Laser induced Compton scattering to dark matter in effective field theory

A bstract The detection of light dark matter (DM) is a longstanding challenge in terrestrial experiments. High-intensity facilities with intense electromagnetic field may provide a plausible strategy to study strong-field particle physics and search for light DM. In this work, we propose to search f...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2025; no. 7; pp. 28 - 24
Main Authors Ma, Kai, Li, Tong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 02.07.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1029-8479
DOI10.1007/JHEP07(2025)028

Cover

Loading…
Abstract A bstract The detection of light dark matter (DM) is a longstanding challenge in terrestrial experiments. High-intensity facilities with intense electromagnetic field may provide a plausible strategy to study strong-field particle physics and search for light DM. In this work, we propose to search for light DM particles through nonlinear Compton scattering in the presence of a high-intensity laser field. An ultra-relativistic electron beam collides with an intense laser pulse containing a number of optical photons and then decays to a pair of DM particles. We take into account the Dirac-type fermionic DM in a leptophilic scenario and the DM-electron interactions in the framework of effective field theory. The decay rates of an electron to a DM pair are calculated for effective DM operators of different bilinear products. We show the sensitivities of laser induced Compton scattering to the effective cutoff scale for DM lighter than 1 MeV and compare them with direct detection experiments.
AbstractList The detection of light dark matter (DM) is a longstanding challenge in terrestrial experiments. High-intensity facilities with intense electromagnetic field may provide a plausible strategy to study strong-field particle physics and search for light DM. In this work, we propose to search for light DM particles through nonlinear Compton scattering in the presence of a high-intensity laser field. An ultra-relativistic electron beam collides with an intense laser pulse containing a number of optical photons and then decays to a pair of DM particles. We take into account the Dirac-type fermionic DM in a leptophilic scenario and the DM-electron interactions in the framework of effective field theory. The decay rates of an electron to a DM pair are calculated for effective DM operators of different bilinear products. We show the sensitivities of laser induced Compton scattering to the effective cutoff scale for DM lighter than 1 MeV and compare them with direct detection experiments.
A bstract The detection of light dark matter (DM) is a longstanding challenge in terrestrial experiments. High-intensity facilities with intense electromagnetic field may provide a plausible strategy to study strong-field particle physics and search for light DM. In this work, we propose to search for light DM particles through nonlinear Compton scattering in the presence of a high-intensity laser field. An ultra-relativistic electron beam collides with an intense laser pulse containing a number of optical photons and then decays to a pair of DM particles. We take into account the Dirac-type fermionic DM in a leptophilic scenario and the DM-electron interactions in the framework of effective field theory. The decay rates of an electron to a DM pair are calculated for effective DM operators of different bilinear products. We show the sensitivities of laser induced Compton scattering to the effective cutoff scale for DM lighter than 1 MeV and compare them with direct detection experiments.
Abstract The detection of light dark matter (DM) is a longstanding challenge in terrestrial experiments. High-intensity facilities with intense electromagnetic field may provide a plausible strategy to study strong-field particle physics and search for light DM. In this work, we propose to search for light DM particles through nonlinear Compton scattering in the presence of a high-intensity laser field. An ultra-relativistic electron beam collides with an intense laser pulse containing a number of optical photons and then decays to a pair of DM particles. We take into account the Dirac-type fermionic DM in a leptophilic scenario and the DM-electron interactions in the framework of effective field theory. The decay rates of an electron to a DM pair are calculated for effective DM operators of different bilinear products. We show the sensitivities of laser induced Compton scattering to the effective cutoff scale for DM lighter than 1 MeV and compare them with direct detection experiments.
ArticleNumber 28
Author Li, Tong
Ma, Kai
Author_xml – sequence: 1
  givenname: Kai
  orcidid: 0000-0001-7119-6117
  surname: Ma
  fullname: Ma, Kai
  organization: Faculty of Science, Xi’an University of Architecture and Technology
– sequence: 2
  givenname: Tong
  orcidid: 0000-0002-6437-8542
  surname: Li
  fullname: Li, Tong
  email: litong@nankai.edu.cn
  organization: School of Physics, Nankai University
BookMark eNp1kM1PGzEQxa0KpPLRc6-WeoFDythe79rHKqKQKhIc6Nma2GO6IVmntlOJ_54NW9FeOI319N6b8e-UHQ1pIMY-C_gqALqrH7fX99BdSJD6EqT5wE4ESDszTWeP_nt_ZKelrAGEFhZO2GKJhTLvh7D3FPg8bXc1Dbx4rJVyPzzymnjA_MS3r8ro5BQj-dr_IR572gRef1HKz-fsOOKm0Ke_84z9_H79ML-dLe9uFvNvy5lXnaqzRjeyWxlNWtJKayUVGiN1NA21ahV8Y2zwaLC1MMrWryJGMlaGVkTrQakztph6Q8K12-V-i_nZJezdq5Dyo8Nce78h17YQkBRCUNAo0yBaIeT4805b9CaMXV-mrl1Ov_dUqlunfR7G852Ssm2sEbIdXVeTy-dUSqb4tlWAO7B3E3t3YO9G9mMCpkTZHRhS_tf7XuQF9s-GZA
Cites_doi 10.1007/JHEP04(2022)146
10.1103/PhysRevD.94.035024
10.1103/PhysRevD.60.092004
10.1007/JHEP10(2018)065
10.1103/PhysRevLett.134.161002
10.1103/PhysRevD.67.043516
10.1088/1475-7516/2021/12/007
10.1103/PhysRev.82.664
10.1103/PhysRevLett.134.011804
10.1088/1475-7516/2009/08/017
10.1088/1674-1137/ad77b3
10.1103/PhysRevD.40.3168
10.1007/JHEP12(2019)162
10.1088/1367-2630/abf705
10.1007/JHEP07(2024)279
10.1007/978-3-642-97223-2
10.1007/s11467-017-0680-z
10.1016/j.physletb.2013.11.069
10.1103/PhysRevLett.115.071304
10.1103/PhysRevD.105.035031
10.1007/BF01331022
10.1146/annurev.aa.27.090189.003213
10.1016/j.physletb.2018.06.016
10.1140/epjc/s10052-019-6587-9
10.1016/j.physletb.2009.06.009
10.1016/j.physrep.2023.01.003
10.1140/epjc/s10052-018-6207-0
10.1103/PhysRevD.96.043017
10.1088/1475-7516/2019/02/032
10.1007/JHEP12(2017)044
10.1103/PhysRevD.82.116010
10.1103/PhysRevD.107.015003
10.1007/s00340-023-08035-6
10.1016/j.physletb.2010.11.009
10.1016/j.physletb.2013.05.057
10.1007/JHEP12(2010)048
10.1103/PhysRevLett.79.1626
10.1103/PhysRevLett.132.182501
10.1103/PhysRevD.31.3059
10.1142/S0217751X18300119
10.1016/j.ppnp.2021.103865
10.1016/j.physrep.2004.08.031
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1007/JHEP07(2025)028
DatabaseName SpringerOpen
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 24
ExternalDocumentID oai_doaj_org_article_660dae3a0d304384aa9112151759ac8d
10_1007_JHEP07_2025_028
GroupedDBID 0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMVHM
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
N5L
N9A
NB0
O93
OK1
P62
P9T
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
R9I
RO9
S1Z
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c373t-45427b85e52eb55323a8825f84e63bdc489dca8a6908259cbfafe892d61f9c033
IEDL.DBID C24
ISSN 1029-8479
IngestDate Wed Aug 27 01:07:32 EDT 2025
Fri Aug 08 05:10:48 EDT 2025
Thu Aug 14 00:04:48 EDT 2025
Fri Aug 08 01:10:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Dark Matter at Colliders
Specific BSM Phenomenology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-45427b85e52eb55323a8825f84e63bdc489dca8a6908259cbfafe892d61f9c033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7119-6117
0000-0002-6437-8542
OpenAccessLink https://link.springer.com/10.1007/JHEP07(2025)028
PQID 3226498126
PQPubID 2034718
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_660dae3a0d304384aa9112151759ac8d
proquest_journals_3226498126
crossref_primary_10_1007_JHEP07_2025_028
springer_journals_10_1007_JHEP07_2025_028
PublicationCentury 2000
PublicationDate 2025-07-02
PublicationDateYYYYMMDD 2025-07-02
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-02
  day: 02
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References 26604_CR7
26604_CR6
26604_CR4
26604_CR2
26604_CR1
B Chauhan (26604_CR52) 2016; 94
BM Dillon (26604_CR18) 2018; 78
R Essig (26604_CR45) 2017; 96
26604_CR25
26604_CR26
A Guha (26604_CR50) 2019; 02
26604_CR27
26604_CR28
Y Bai (26604_CR31) 2013; 723
TR Slatyer (26604_CR5) 2022; 53
A Fedotov (26604_CR30) 2023; 1010
K Ma (26604_CR59) 2022; 46
B Barman (26604_CR37) 2022; 04
Y Bai (26604_CR12) 2010; 12
M Ouhammou (26604_CR16) 2023; 129
A Arbey (26604_CR3) 2021; 119
X-J Bi (26604_CR9) 2009; 678
J Goodman (26604_CR14) 2010; 82
26604_CR33
26604_CR34
26604_CR35
KA Beyer (26604_CR23) 2022; 105
26604_CR39
K Ma (26604_CR24) 2025; 111
26604_CR32
G Busoni (26604_CR36) 2014; 728
26604_CR44
S Kundu (26604_CR38) 2023; 107
M Bauer (26604_CR55) 2017; 12
26604_CR46
TN Wistisen (26604_CR15) 2021; 23
26604_CR47
J Goodman (26604_CR13) 2011; 695
26604_CR48
26604_CR49
M Bauer (26604_CR56) 2019; 79
Z Bai (26604_CR21) 2022; 106
26604_CR40
26604_CR41
26604_CR43
B King (26604_CR19) 2018; 782
A Ibarra (26604_CR10) 2009; 08
Y Ali-Haïmoud (26604_CR53) 2015; 115
I John (26604_CR8) 2021; 12
J-H Liang (26604_CR58) 2024; 48
26604_CR11
B King (26604_CR22) 2019; 12
26604_CR17
A Hartin (26604_CR29) 2018; 33
J-H Liang (26604_CR42) 2024; 07
BM Dillon (26604_CR20) 2019; 99
26604_CR51
J Liu (26604_CR57) 2023; 09
26604_CR54
References_xml – volume: 04
  start-page: 146
  year: 2022
  ident: 26604_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP04(2022)146
– volume: 94
  year: 2016
  ident: 26604_CR52
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.035024
– ident: 26604_CR27
  doi: 10.1103/PhysRevD.60.092004
– ident: 26604_CR35
  doi: 10.1007/JHEP10(2018)065
– ident: 26604_CR54
– volume: 09
  start-page: 104
  year: 2023
  ident: 26604_CR57
  publication-title: JHEP
– ident: 26604_CR40
– ident: 26604_CR49
  doi: 10.1103/PhysRevLett.134.161002
– ident: 26604_CR7
  doi: 10.1103/PhysRevD.67.043516
– volume: 12
  start-page: 007
  year: 2021
  ident: 26604_CR8
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/12/007
– volume: 106
  year: 2022
  ident: 26604_CR21
  publication-title: Phys. Rev. D
– ident: 26604_CR25
  doi: 10.1103/PhysRev.82.664
– ident: 26604_CR48
  doi: 10.1103/PhysRevLett.134.011804
– ident: 26604_CR44
– volume: 08
  start-page: 017
  year: 2009
  ident: 26604_CR10
  publication-title: JCAP
  doi: 10.1088/1475-7516/2009/08/017
– volume: 46
  year: 2022
  ident: 26604_CR59
  publication-title: Chin. Phys. C
– volume: 48
  year: 2024
  ident: 26604_CR58
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/ad77b3
– ident: 26604_CR6
  doi: 10.1103/PhysRevD.40.3168
– volume: 12
  start-page: 162
  year: 2019
  ident: 26604_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)162
– volume: 23
  year: 2021
  ident: 26604_CR15
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/abf705
– volume: 07
  start-page: 279
  year: 2024
  ident: 26604_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP07(2024)279
– volume: 99
  year: 2019
  ident: 26604_CR20
  publication-title: Phys. Rev. D
– ident: 26604_CR32
– ident: 26604_CR28
  doi: 10.1007/978-3-642-97223-2
– ident: 26604_CR2
  doi: 10.1007/s11467-017-0680-z
– volume: 728
  start-page: 412
  year: 2014
  ident: 26604_CR36
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2013.11.069
– volume: 115
  year: 2015
  ident: 26604_CR53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.071304
– ident: 26604_CR43
– volume: 105
  year: 2022
  ident: 26604_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.035031
– ident: 26604_CR47
– ident: 26604_CR39
  doi: 10.1007/BF01331022
– ident: 26604_CR51
  doi: 10.1146/annurev.aa.27.090189.003213
– volume: 782
  start-page: 737
  year: 2018
  ident: 26604_CR19
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.06.016
– volume: 79
  start-page: 74
  year: 2019
  ident: 26604_CR56
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-6587-9
– volume: 678
  start-page: 168
  year: 2009
  ident: 26604_CR9
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2009.06.009
– volume: 1010
  start-page: 1
  year: 2023
  ident: 26604_CR30
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2023.01.003
– ident: 26604_CR33
– volume: 78
  start-page: 775
  year: 2018
  ident: 26604_CR18
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6207-0
– volume: 96
  year: 2017
  ident: 26604_CR45
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.043017
– volume: 02
  start-page: 032
  year: 2019
  ident: 26604_CR50
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/02/032
– volume: 12
  start-page: 044
  year: 2017
  ident: 26604_CR55
  publication-title: JHEP
  doi: 10.1007/JHEP12(2017)044
– ident: 26604_CR46
– volume: 82
  year: 2010
  ident: 26604_CR14
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.82.116010
– volume: 107
  year: 2023
  ident: 26604_CR38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.015003
– volume: 129
  start-page: 103
  year: 2023
  ident: 26604_CR16
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-023-08035-6
– volume: 695
  start-page: 185
  year: 2011
  ident: 26604_CR13
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2010.11.009
– ident: 26604_CR34
– volume: 723
  start-page: 384
  year: 2013
  ident: 26604_CR31
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2013.05.057
– volume: 12
  start-page: 048
  year: 2010
  ident: 26604_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP12(2010)048
– ident: 26604_CR41
– volume: 111
  year: 2025
  ident: 26604_CR24
  publication-title: Phys. Rev. D
– ident: 26604_CR26
  doi: 10.1103/PhysRevLett.79.1626
– ident: 26604_CR17
  doi: 10.1103/PhysRevLett.132.182501
– ident: 26604_CR11
  doi: 10.1103/PhysRevD.31.3059
– volume: 33
  start-page: 1830011
  year: 2018
  ident: 26604_CR29
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X18300119
– volume: 119
  year: 2021
  ident: 26604_CR3
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2021.103865
– ident: 26604_CR4
– volume: 53
  start-page: 1
  year: 2022
  ident: 26604_CR5
  publication-title: SciPost Phys. Lect. Notes
– ident: 26604_CR1
  doi: 10.1016/j.physrep.2004.08.031
SSID ssj0015190
Score 2.4737198
Snippet A bstract The detection of light dark matter (DM) is a longstanding challenge in terrestrial experiments. High-intensity facilities with intense...
The detection of light dark matter (DM) is a longstanding challenge in terrestrial experiments. High-intensity facilities with intense electromagnetic field...
Abstract The detection of light dark matter (DM) is a longstanding challenge in terrestrial experiments. High-intensity facilities with intense electromagnetic...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 28
SubjectTerms Classical and Quantum Gravitation
Dark matter
Dark Matter at Colliders
Decay rate
Elastic scattering
Electromagnetic fields
Elementary Particles
Field theory
High power lasers
Lasers
Particle decay
Particle physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativistic electron beams
Relativity Theory
Specific BSM Phenomenology
String Theory
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6xWycFDe1ia3Tw2Oaq01KLiwUJvIZtkL2Ir7Xrw3zvJ7moVxIvXbAjDTCbzzWbyDUKX0ru0TKVKAIvThJUqT1SZ8iQEV8-Mgz0U_kPeP4jJjE3nfL7R6ivUhNX0wLXihkIQZzw1xNFwacWMAfcMcSrnyljpwukLMa9Nppr7A8AlpCXyIflwOhk9krwPiT4fkNB4fSMGRar-b_jyx5VojDTjPbTbQER8VYu2j7b84gBtx1JNuz5Et3cQeFYYcmmwisPBoQG_4bWNTJmwIq6W2JnVM36JIzAT11UbcLDhWLGG4_PF9yM0G4-ebiZJ0xAhsTSnVeAnz_JCcs8zX3BOM2oAIPNSMi9o4SyTylkjjQh9zLmyRWlKL1XmRFoqSyg9Rp3FcuFPEGY-J5mBuMWVYF4WihvLLHh7wXxIXLuo36pIv9a8F7plOK61qYM2NWizi66DCj-nBcLqOABm1I0Z9V9m7KJeawDdeNFa0_DKVwEEEV00aI3y9fkXeU7_Q54ztBPWi4W5WQ91qtWbPwf4URUXcad9AAte0qM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagCIkF8RSFgjwwtEPUNH7EnhAgSqkAMVCpW-TYDgOiLW0Z-PfcuUkLSLDGlhXd-e4--87fEXKuvOsUHaUjwOIs4oVOI110RITB1XPjYA_hPeTDo-wNeH8ohuWF26wsq6x8YnDUbmzxjrzN8MWnhnAkLybvEXaNwuxq2UJjnWzAgMQdrrq3yywCoJO4ovOJ03a_d_MUp0047otWjO3Xv0WiQNj_A2X-SoyGeNPdIdslUKSXC83ukjU_2iOboWDTzvbJ3T2EnymFEzXoxlE0a0BxdGYDXyasSOdj6sz0lb6FLzCTLmo3wL3RULdGwyPGzwMy6N48X_eisi1CZFnK5shSnqS5El4kPheCJcwATBaF4l6y3FmutLNGGYndzIW2eWEKr3TiZKfQNmbskNRG45E_IpT7NE4MRC-hJfcq18JYbsHmc-7x-FonzUpE2WTBfpFVPMcLaWYozQykWSdXKMLlNKStDh_G05estIJMytgZz0zsGGYguTHgaxF0pEIbq1ydNCoFZKUtzbKV5uukVSllNfzH_xz_v9QJ2cKZofA2aZDafPrhTwFezPOzsIe-AEw8yvE
  priority: 102
  providerName: ProQuest
Title Laser induced Compton scattering to dark matter in effective field theory
URI https://link.springer.com/article/10.1007/JHEP07(2025)028
https://www.proquest.com/docview/3226498126
https://doaj.org/article/660dae3a0d304384aa9112151759ac8d
Volume 2025
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHgRn7g-lhw86KHQNo8mR5VdV1ERccFbSZPUg7gru-vBf-9MtlVUPHgJoU1LmUky33RmvgAc6eCzOtMmQSzOE1GbIjF1JhMyrkFYj3OI_kPe3KrBUFw9yscFyNpamJjt3oYk407dFrtdDXp3aXGMzro8QaO4CMuS-hSfpQKHJnCAgCRtGXx-P_TN-ESO_m_A8kcsNJqY_jqsNdiQnc6VuQELYbQJKzFH00234PIaLc6EoRON6vCMVjICNzZ1kSIT38hmY-bt5Jm9xCs4ks3TNXBHYzFVjcW6xfdtGPZ7D-eDpDkJIXG84DMiJs-LSssg81BJyXNuERnLWougeOWd0MY7q62iA8ylcVVt66BN7lVWG5dyvgNLo_Eo7AIToUhziwZLGiWCroy0Tjhc5pUI5LF24LgVUfk6J7woW2rjuTRLkmaJ0uzAGYnwcxgxVccL48lT2Uz8UqnU28Bt6jkFHYW1uL0SziiksU77Dhy0Ciib5TMtOZX3GsQeqgMnrVK-bv_xPXv_GLsPq9SNibf5ASzNJm_hEOHFrOrCou5fdGH5rHd7d9-N04tadd6NDju2w_z0A2Gsy50
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4hqopeqvKomhaKD60EhxUbP3btQ1VRIE0gIA4gcXO9tpcDIqFJqoo_1d_YGW8WWiS4cfXa1mo8_uazZzwD8EnH0K272mTIxUUma1Nmpu6qjIxrlC6gDtE95PFJ0T-XhxfqYgH-tG9hKKyyxcQE1GHs6Y58R9CLT4PmqPh68zOjqlHkXW1LaDRqcRRvf-ORbfplsI_r-5nz3sHZXj-bVxXIvCjFjJJ887LSKioeK6UEFw5Zpqq1jIWogpfaBO-0K6gYuDK-ql0dteGh6NbG53QBipD_QgphKIRQ977feS2QDeVt-qC83DnsH5zm5RZHWrGdU7n3fyxfKhDwH6t94IhN9q33Bl7PiSnbbTRpGRbiaAVepgBRP12FwRDN3YThCR51ITCCEWSNbOpTfk6ckc3GLLjJFbtOLdiTNbEiCKcsxcmx9Gjydg3On0Vgb2FxNB7Fd8BkLHPu0FoqU8ioK6Oclx4xppKRjssd2GpFZG-abBu2zavcSNOSNC1KswPfSIR33ShNdmoYTy7tfNfZosiDi8LlQZDHUzqH2E4kp1TGeR06sN4ugJ3v3am917QObLeLcv_5kf95__RUm7DUPzse2uHg5OgDvKJRKeiXr8PibPIrbiC1mVUfkz4x-PHcCvwXwO4HiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH8hGI0X42dcAe1BEzhM6PZjpj0Qg8K6C0g4SMKtdtoOB-Mu7K4x_Gv8db7XmQE10RvXmU4zef31vV_7vgDemhSHzdDYArm4LFRjq8I2Q12QcU3KR8QQ3UN-Pi7Hp-rgTJ-twHWfC0Nhlb1OzIo6zgLdkW9Lyvi0hhJemi4s4mRv9P7isqAOUuRp7dtptBA5TFc_8fi22Jns4Vq_E2K0_-XjuOg6DBRBVnJJBb9FVRudtEi11lJIj4xTN0alUtYxKGNj8MaX1Bhc21A3vknGilgOGxs4XYai-r9XScOpe4IZfbrxYCAz4n0pIV5tH4z3T3i1KZBibHFq_f6bFczNAv5guH85ZbOtGz2GRx1JZbstqp7ASpo-hfs5WDQsnsHkCE3fnOFpHnERGakUZJBsEXKtTpyRLWcs-vk39j0_wZGsjRtB1cpyzBzLCZRXz-H0TgT2Alans2l6CUyliguPllPbUiVTW-2DCqhvapXo6DyAzV5E7qKtvOH6GsutNB1J06E0B_CBRHgzjEpm5wez-bnrdqArSx59kp5HSd5P5T3qeSI8lbY-mDiA9X4BXLePF-4WdQPY6hfl9vU__ufV_6d6Aw8Quu5ocny4Bg_poxz_K9ZhdTn_kTaQ5Szr1xlODL7eNX5_Ad2nC7U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+induced+Compton+scattering+to+dark+matter+in+effective+field+theory&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Ma%2C+Kai&rft.au=Li%2C+Tong&rft.date=2025-07-02&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2025&rft.issue=7&rft_id=info:doi/10.1007%2FJHEP07%282025%29028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP07_2025_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon