Maternal embryonic leucine zipper kinase (MELK) optimally regulates the HIV-1 uncoating process

•Modeling the process of core structure uncoating by MELK.•Quantifying the uncoating process in HIV-1 cDNA synthesis and nuclear trafficking.•In silico simulation results show that MELK optimally regulates the HIV-1 uncoating process. Human immunodeficiency virus type-1 (HIV-1) attaches to target ce...

Full description

Saved in:
Bibliographic Details
Published inJournal of theoretical biology Vol. 545; p. 111152
Main Authors Nishiyama, Takara, Takada, Toru, Takeuchi, Hiroaki, Iwami, Shingo
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 21.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Modeling the process of core structure uncoating by MELK.•Quantifying the uncoating process in HIV-1 cDNA synthesis and nuclear trafficking.•In silico simulation results show that MELK optimally regulates the HIV-1 uncoating process. Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus.
AbstractList •Modeling the process of core structure uncoating by MELK.•Quantifying the uncoating process in HIV-1 cDNA synthesis and nuclear trafficking.•In silico simulation results show that MELK optimally regulates the HIV-1 uncoating process. Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus.
Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus.
Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus.Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus.
ArticleNumber 111152
Author Nishiyama, Takara
Takeuchi, Hiroaki
Iwami, Shingo
Takada, Toru
Author_xml – sequence: 1
  givenname: Takara
  surname: Nishiyama
  fullname: Nishiyama, Takara
  organization: Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
– sequence: 2
  givenname: Toru
  surname: Takada
  fullname: Takada, Toru
  organization: Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
– sequence: 3
  givenname: Hiroaki
  orcidid: 0000-0002-5689-9858
  surname: Takeuchi
  fullname: Takeuchi, Hiroaki
  organization: Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
– sequence: 4
  givenname: Shingo
  surname: Iwami
  fullname: Iwami, Shingo
  email: iwami.iblab@bio.nagoya-u.ac.jp
  organization: interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35545145$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1v2zAQhonCRWOn-QMdCo7uIIcfoiQCXQLDbYI4yJJmJajTKaUrUwopBXB_fWk46RguN_B57_A-CzLzvUdCvnC24owXl7vVbqzdSjAhVjw9JT6QOWdaZZXK-YzMWfrJFNfyjCxi3DHGdC6LT-RMKpUrnqs5MXd2xOBtR3Ffh0PvHdAOJ3Ae6V83DBjoH-dtRLq822xvv9F-GN3edt2BBnyaupSOdPyN9PrmMeN08tDb0fknOoQeMMbP5GNru4gXr_Oc_PqxeVhfZ9v7nzfrq20GspRjJttCy7JRVQlaCqa1ti3UeV21gEVupaqEAo6MNWWrC0gltajqGkqrmS2hkedkedqb7j5PGEezdxGw66zHfopGFEVeMVHyMqFfX9Gp3mNjhpAKhYN5k5IAcQIg9DEGbP8jnJmjebMzR_PmaN6czKfQ91MIU8sXh8FEcOgBGxcQRtP07r34P-2hivI
Cites_doi 10.1371/journal.ppat.1006570
10.1007/s12250-019-00095-3
10.1007/978-981-32-9898-9_7
10.1128/JVI.76.11.5667-5677.2002
10.1038/sj.emboj.7601740
10.1371/journal.ppat.1003161
10.1016/j.virusres.2012.09.012
10.1016/S2352-3018(15)00176-9
10.1186/1741-7015-11-251
10.1016/j.virusres.2014.07.010
10.1371/journal.ppat.1003461
10.1172/JCI67399
10.1371/journal.ppat.1006441
10.1016/j.celrep.2020.108201
10.1126/science.6189183
10.1038/nature12769
10.1016/j.chom.2018.03.009
10.1128/JVI.77.9.5439-5450.2003
10.1016/j.virol.2014.02.004
10.7554/eLife.64776
10.1016/j.coph.2020.10.009
10.1016/j.tips.2020.06.003
10.1073/pnas.1920631117
10.1038/nrmicro3503
10.1023/A:1025732728195
10.1038/s41564-020-0735-8
10.1002/cmdc.202000695
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jtbi.2022.111152
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-8541
ExternalDocumentID 35545145
10_1016_j_jtbi_2022_111152
S0022519322001503
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLV
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSZ
T5K
TN5
YQT
ZMT
ZU3
~02
~G-
.GJ
29L
3O-
53G
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FA8
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
R2-
RIG
SEW
SSH
UQL
VH1
WUQ
XPP
ZGI
ZXP
ZY4
~KM
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c373t-3f6937d587c9320999afcb4b8fce64a35825c1e00d7f96c109928bbc7a90a7cd3
IEDL.DBID .~1
ISSN 0022-5193
1095-8541
IngestDate Tue Aug 05 10:38:55 EDT 2025
Mon Jul 21 06:01:01 EDT 2025
Tue Jul 01 03:11:09 EDT 2025
Fri Feb 23 02:39:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords HIV-1
Uncoating
Virus dynamics
Mathematical model
HIV-1 capsid
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-3f6937d587c9320999afcb4b8fce64a35825c1e00d7f96c109928bbc7a90a7cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5689-9858
PMID 35545145
PQID 2664802717
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2664802717
pubmed_primary_35545145
crossref_primary_10_1016_j_jtbi_2022_111152
elsevier_sciencedirect_doi_10_1016_j_jtbi_2022_111152
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-21
PublicationDateYYYYMMDD 2022-07-21
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of theoretical biology
PublicationTitleAlternate J Theor Biol
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jozwik, Passos, Lyumkis (b0055) 2020; 41
Le Sage, Mouland, Valiente-Echeverria (b0060) 2014; 193
Paton, Stöhr, Arenas-Pinto, Fisher, Williams, Johnson, Orkin, Chen, Lee, Winston, Gompels, Fox, Scott, Dunn (b0085) 2015; 2
Forshey, von Schwedler, Sundquist, Aiken (b0045) 2002; 76
Arhel, Souquere-Besse, Munier, Souque, Guadagnini, Rutherford, Prevost, Allen, Charneau (b0010) 2007; 26
Burdick, Li, Munshi, Rawson, Nagashima, Hu, Pathak (b0025) 2020; 117
Rasaiyaah, Tan, Fletcher, Price, Blondeau, Hilditch, Jacques, Selwood, James, Noursadeghi, Towers (b0095) 2013; 503
Novikova, Zhang, Freed, Peng (b0080) 2019; 34
Li, Burdick, Nagashima, Hu, Pathak (b0065) 2021; 118
Campbell, Hope (b0030) 2015; 13
Venanzi Rullo, Ceccarelli, Condorelli, Facciola, Visalli, D'Aleo, Paolucci, Cacopardo, Pinzone, Di Rosa, Nunnari, Pellicano (b0130) 2019; 19
Francis, Melikyan (b0050) 2018; 23
Yoshida, Honma, Kimura, Abe (b0145) 2021; 16
Mohammadi, Desfarges, Bartha, Joos, Zangger, Muñoz, Günthard, Beerenwinkel, Telenti, Ciuffi, Emerman (b0070) 2013; 9
Vanangamudi, Kurup, Namasivayam (b0125) 2020; 54
Muller, Zila, Peters, Schifferdecker, Stanic, Lucic, Laketa, Lusic, Muller, Krausslich (b0075) 2021; 10
Suzuki, Misawa, Sato, Ebina, Masuda, Yamamoto, Koyanagi (b0115) 2003; 27
Selyutina, Persaud, Lee, KewalRamani, Diaz-Griffero (b0110) 2020; 32
von Schwedler, Stray, Garrus, Sundquist (b0140) 2003; 77
Rihn, Wilson, Loman, Alim, Bakker, Bhella, Gifford, Rixon, Bieniasz (b0100) 2013; 9
Verma, A. S., Kumar, V., Saha, M. K., Dutta, S., Singh, A., 2020. HIV: Biology to Treatment. NanoBioMedicine, pp. 167–197.
Sabin (b0105) 2013; 11
Dharan, Bachmann, Talley, Zwikelmaier, Campbell (b0035) 2020; 5
Rabi, Laird, Durand, Laskey, Shan, Bailey, Chioma, Moore, Siliciano (b0090) 2013; 123
Barre-Sinoussi, Chermann, Rey, Nugeyre, Chamaret, Gruest, Dauguet, Axler-Blin, Vezinet-Brun, Rouzioux, Rozenbaum, Montagnier (b0015) 1983; 220
Takeuchi, Saito, Noda, Miyamoto, Yoshinaga, Terahara, Ishii, Tsunetsugu-Yokota, Yamaoka (b0120) 2017; 13
Ambrose, Aiken (b0005) 2014; 454–455
Fassati (b0040) 2012; 170
Burdick, Delviks-Frankenberry, Chen, Janaka, Sastri, Hu, Pathak (b0020) 2017; 13
Rabi (10.1016/j.jtbi.2022.111152_b0090) 2013; 123
Campbell (10.1016/j.jtbi.2022.111152_b0030) 2015; 13
Vanangamudi (10.1016/j.jtbi.2022.111152_b0125) 2020; 54
Mohammadi (10.1016/j.jtbi.2022.111152_b0070) 2013; 9
Yoshida (10.1016/j.jtbi.2022.111152_b0145) 2021; 16
Venanzi Rullo (10.1016/j.jtbi.2022.111152_b0130) 2019; 19
Li (10.1016/j.jtbi.2022.111152_b0065) 2021; 118
Arhel (10.1016/j.jtbi.2022.111152_b0010) 2007; 26
Barre-Sinoussi (10.1016/j.jtbi.2022.111152_b0015) 1983; 220
Forshey (10.1016/j.jtbi.2022.111152_b0045) 2002; 76
Takeuchi (10.1016/j.jtbi.2022.111152_b0120) 2017; 13
Selyutina (10.1016/j.jtbi.2022.111152_b0110) 2020; 32
10.1016/j.jtbi.2022.111152_b0135
Dharan (10.1016/j.jtbi.2022.111152_b0035) 2020; 5
Jozwik (10.1016/j.jtbi.2022.111152_b0055) 2020; 41
von Schwedler (10.1016/j.jtbi.2022.111152_b0140) 2003; 77
Suzuki (10.1016/j.jtbi.2022.111152_b0115) 2003; 27
Sabin (10.1016/j.jtbi.2022.111152_b0105) 2013; 11
Burdick (10.1016/j.jtbi.2022.111152_b0025) 2020; 117
Le Sage (10.1016/j.jtbi.2022.111152_b0060) 2014; 193
Muller (10.1016/j.jtbi.2022.111152_b0075) 2021; 10
Novikova (10.1016/j.jtbi.2022.111152_b0080) 2019; 34
Burdick (10.1016/j.jtbi.2022.111152_b0020) 2017; 13
Francis (10.1016/j.jtbi.2022.111152_b0050) 2018; 23
Ambrose (10.1016/j.jtbi.2022.111152_b0005) 2014; 454–455
Fassati (10.1016/j.jtbi.2022.111152_b0040) 2012; 170
Paton (10.1016/j.jtbi.2022.111152_b0085) 2015; 2
Rasaiyaah (10.1016/j.jtbi.2022.111152_b0095) 2013; 503
Rihn (10.1016/j.jtbi.2022.111152_b0100) 2013; 9
References_xml – volume: 2
  start-page: e417
  year: 2015
  end-page: e426
  ident: b0085
  article-title: Protease inhibitor monotherapy for long-term management of HIV infection: a randomised, controlled, open-label, non-inferiority trial
  publication-title: Lancet HIV
– volume: 193
  start-page: 116
  year: 2014
  end-page: 129
  ident: b0060
  article-title: Roles of HIV-1 capsid in viral replication and immune evasion
  publication-title: Virus Res.
– volume: 123
  start-page: 3848
  year: 2013
  end-page: 3860
  ident: b0090
  article-title: Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance
  publication-title: J. Clin. Invest.
– volume: 19
  start-page: 1987
  year: 2019
  end-page: 1995
  ident: b0130
  article-title: Investigational drugs in HIV: Pros and cons of entry and fusion inhibitors (Review)
  publication-title: Mol. Med. Rep.
– volume: 32
  start-page: 108201
  year: 2020
  ident: b0110
  article-title: Nuclear import of the HIV-1 core precedes reverse transcription and uncoating
  publication-title: Cell Rep.
– volume: 503
  start-page: 402
  year: 2013
  end-page: 405
  ident: b0095
  article-title: HIV-1 evades innate immune recognition through specific cofactor recruitment
  publication-title: Nature
– volume: 76
  start-page: 5667
  year: 2002
  end-page: 5677
  ident: b0045
  article-title: Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication
  publication-title: J. Virol.
– reference: Verma, A. S., Kumar, V., Saha, M. K., Dutta, S., Singh, A., 2020. HIV: Biology to Treatment. NanoBioMedicine, pp. 167–197.
– volume: 77
  start-page: 5439
  year: 2003
  end-page: 5450
  ident: b0140
  article-title: Functional surfaces of the human immunodeficiency virus type 1 capsid protein
  publication-title: J. Virol.
– volume: 34
  start-page: 119
  year: 2019
  end-page: 134
  ident: b0080
  article-title: Multiple roles of HIV-1 capsid during the virus replication cycle
  publication-title: Virol. Sin.
– volume: 13
  start-page: e1006441
  year: 2017
  ident: b0120
  article-title: Phosphorylation of the HIV-1 capsid by MELK triggers uncoating to promote viral cDNA synthesis
  publication-title: PLoS Pathog.
– volume: 9
  start-page: e1003461
  year: 2013
  ident: b0100
  article-title: Extreme genetic fragility of the HIV-1 capsid
  publication-title: PLoS Pathog.
– volume: 5
  start-page: 1088
  year: 2020
  end-page: 1095
  ident: b0035
  article-title: Nuclear pore blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus
  publication-title: Nat. Microbiol.
– volume: 16
  start-page: 743
  year: 2021
  end-page: 766
  ident: b0145
  article-title: Structure, synthesis and inhibition mechanism of nucleoside analogues as HIV-1 reverse transcriptase inhibitors (NRTIs)
  publication-title: ChemMedChem
– volume: 117
  start-page: 5486
  year: 2020
  end-page: 5493
  ident: b0025
  article-title: HIV-1 uncoats in the nucleus near sites of integration
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 118
  year: 2021
  ident: b0065
  article-title: HIV-1 cores retain their integrity until minutes before uncoating in the nucleus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 54
  start-page: 179
  year: 2020
  end-page: 187
  ident: b0125
  article-title: Non-nucleoside reverse transcriptase inhibitors (NNRTIs): a brief overview of clinically approved drugs and combination regimens
  publication-title: Curr. Opin. Pharmacol.
– volume: 10
  year: 2021
  ident: b0075
  article-title: HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells
  publication-title: Elife
– volume: 26
  start-page: 3025
  year: 2007
  end-page: 3037
  ident: b0010
  article-title: HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore
  publication-title: EMBO J.
– volume: 170
  start-page: 15
  year: 2012
  end-page: 24
  ident: b0040
  article-title: Multiple roles of the capsid protein in the early steps of HIV-1 infection
  publication-title: Virus Res.
– volume: 27
  start-page: 177
  year: 2003
  end-page: 188
  ident: b0115
  article-title: Quantitative analysis of human immunodeficiency virus type 1 DNA dynamics by real-time PCR: integration efficiency in stimulated and unstimulated peripheral blood mononuclear cells
  publication-title: Virus Genes
– volume: 23
  start-page: 536
  year: 2018
  end-page: 548 e6
  ident: b0050
  article-title: Single HIV-1 imaging reveals progression of infection through CA-dependent steps of docking at the nuclear pore, uncoating, and nuclear transport
  publication-title: Cell Host Microbe
– volume: 220
  start-page: 868
  year: 1983
  end-page: 871
  ident: b0015
  article-title: Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS)
  publication-title: Science
– volume: 13
  start-page: e1006570
  year: 2017
  ident: b0020
  article-title: Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes
  publication-title: PLoS Pathog.
– volume: 41
  start-page: 611
  year: 2020
  end-page: 626
  ident: b0055
  article-title: Structural biology of HIV integrase strand transfer inhibitors
  publication-title: Trends Pharmacol. Sci.
– volume: 13
  start-page: 471
  year: 2015
  end-page: 483
  ident: b0030
  article-title: HIV-1 capsid: the multifaceted key player in HIV-1 infection
  publication-title: Nat. Rev. Microbiol.
– volume: 11
  start-page: 251
  year: 2013
  ident: b0105
  article-title: Do people with HIV infection have a normal life expectancy in the era of combination antiretroviral therapy?
  publication-title: BMC Med.
– volume: 9
  start-page: e1003161
  year: 2013
  ident: b0070
  article-title: 24 hours in the life of HIV-1 in a T cell line
  publication-title: PLoS Pathog.
– volume: 454–455
  start-page: 371
  year: 2014
  end-page: 379
  ident: b0005
  article-title: HIV-1 uncoating: connection to nuclear entry and regulation by host proteins
  publication-title: Virology
– volume: 13
  start-page: e1006570
  year: 2017
  ident: 10.1016/j.jtbi.2022.111152_b0020
  article-title: Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006570
– volume: 34
  start-page: 119
  year: 2019
  ident: 10.1016/j.jtbi.2022.111152_b0080
  article-title: Multiple roles of HIV-1 capsid during the virus replication cycle
  publication-title: Virol. Sin.
  doi: 10.1007/s12250-019-00095-3
– ident: 10.1016/j.jtbi.2022.111152_b0135
  doi: 10.1007/978-981-32-9898-9_7
– volume: 76
  start-page: 5667
  year: 2002
  ident: 10.1016/j.jtbi.2022.111152_b0045
  article-title: Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.11.5667-5677.2002
– volume: 26
  start-page: 3025
  year: 2007
  ident: 10.1016/j.jtbi.2022.111152_b0010
  article-title: HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601740
– volume: 9
  start-page: e1003161
  year: 2013
  ident: 10.1016/j.jtbi.2022.111152_b0070
  article-title: 24 hours in the life of HIV-1 in a T cell line
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003161
– volume: 170
  start-page: 15
  year: 2012
  ident: 10.1016/j.jtbi.2022.111152_b0040
  article-title: Multiple roles of the capsid protein in the early steps of HIV-1 infection
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2012.09.012
– volume: 2
  start-page: e417
  year: 2015
  ident: 10.1016/j.jtbi.2022.111152_b0085
  article-title: Protease inhibitor monotherapy for long-term management of HIV infection: a randomised, controlled, open-label, non-inferiority trial
  publication-title: Lancet HIV
  doi: 10.1016/S2352-3018(15)00176-9
– volume: 11
  start-page: 251
  year: 2013
  ident: 10.1016/j.jtbi.2022.111152_b0105
  article-title: Do people with HIV infection have a normal life expectancy in the era of combination antiretroviral therapy?
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-11-251
– volume: 193
  start-page: 116
  year: 2014
  ident: 10.1016/j.jtbi.2022.111152_b0060
  article-title: Roles of HIV-1 capsid in viral replication and immune evasion
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2014.07.010
– volume: 9
  start-page: e1003461
  year: 2013
  ident: 10.1016/j.jtbi.2022.111152_b0100
  article-title: Extreme genetic fragility of the HIV-1 capsid
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003461
– volume: 123
  start-page: 3848
  year: 2013
  ident: 10.1016/j.jtbi.2022.111152_b0090
  article-title: Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI67399
– volume: 19
  start-page: 1987
  year: 2019
  ident: 10.1016/j.jtbi.2022.111152_b0130
  article-title: Investigational drugs in HIV: Pros and cons of entry and fusion inhibitors (Review)
  publication-title: Mol. Med. Rep.
– volume: 13
  start-page: e1006441
  year: 2017
  ident: 10.1016/j.jtbi.2022.111152_b0120
  article-title: Phosphorylation of the HIV-1 capsid by MELK triggers uncoating to promote viral cDNA synthesis
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006441
– volume: 32
  start-page: 108201
  year: 2020
  ident: 10.1016/j.jtbi.2022.111152_b0110
  article-title: Nuclear import of the HIV-1 core precedes reverse transcription and uncoating
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108201
– volume: 220
  start-page: 868
  year: 1983
  ident: 10.1016/j.jtbi.2022.111152_b0015
  article-title: Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS)
  publication-title: Science
  doi: 10.1126/science.6189183
– volume: 503
  start-page: 402
  year: 2013
  ident: 10.1016/j.jtbi.2022.111152_b0095
  article-title: HIV-1 evades innate immune recognition through specific cofactor recruitment
  publication-title: Nature
  doi: 10.1038/nature12769
– volume: 23
  start-page: 536
  year: 2018
  ident: 10.1016/j.jtbi.2022.111152_b0050
  article-title: Single HIV-1 imaging reveals progression of infection through CA-dependent steps of docking at the nuclear pore, uncoating, and nuclear transport
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.03.009
– volume: 77
  start-page: 5439
  year: 2003
  ident: 10.1016/j.jtbi.2022.111152_b0140
  article-title: Functional surfaces of the human immunodeficiency virus type 1 capsid protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.9.5439-5450.2003
– volume: 454–455
  start-page: 371
  year: 2014
  ident: 10.1016/j.jtbi.2022.111152_b0005
  article-title: HIV-1 uncoating: connection to nuclear entry and regulation by host proteins
  publication-title: Virology
  doi: 10.1016/j.virol.2014.02.004
– volume: 10
  year: 2021
  ident: 10.1016/j.jtbi.2022.111152_b0075
  article-title: HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells
  publication-title: Elife
  doi: 10.7554/eLife.64776
– volume: 54
  start-page: 179
  year: 2020
  ident: 10.1016/j.jtbi.2022.111152_b0125
  article-title: Non-nucleoside reverse transcriptase inhibitors (NNRTIs): a brief overview of clinically approved drugs and combination regimens
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2020.10.009
– volume: 41
  start-page: 611
  year: 2020
  ident: 10.1016/j.jtbi.2022.111152_b0055
  article-title: Structural biology of HIV integrase strand transfer inhibitors
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2020.06.003
– volume: 117
  start-page: 5486
  year: 2020
  ident: 10.1016/j.jtbi.2022.111152_b0025
  article-title: HIV-1 uncoats in the nucleus near sites of integration
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1920631117
– volume: 13
  start-page: 471
  year: 2015
  ident: 10.1016/j.jtbi.2022.111152_b0030
  article-title: HIV-1 capsid: the multifaceted key player in HIV-1 infection
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3503
– volume: 27
  start-page: 177
  year: 2003
  ident: 10.1016/j.jtbi.2022.111152_b0115
  article-title: Quantitative analysis of human immunodeficiency virus type 1 DNA dynamics by real-time PCR: integration efficiency in stimulated and unstimulated peripheral blood mononuclear cells
  publication-title: Virus Genes
  doi: 10.1023/A:1025732728195
– volume: 5
  start-page: 1088
  year: 2020
  ident: 10.1016/j.jtbi.2022.111152_b0035
  article-title: Nuclear pore blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0735-8
– volume: 118
  year: 2021
  ident: 10.1016/j.jtbi.2022.111152_b0065
  article-title: HIV-1 cores retain their integrity until minutes before uncoating in the nucleus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 743
  year: 2021
  ident: 10.1016/j.jtbi.2022.111152_b0145
  article-title: Structure, synthesis and inhibition mechanism of nucleoside analogues as HIV-1 reverse transcriptase inhibitors (NRTIs)
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.202000695
SSID ssj0009436
Score 2.3827014
Snippet •Modeling the process of core structure uncoating by MELK.•Quantifying the uncoating process in HIV-1 cDNA synthesis and nuclear trafficking.•In silico...
Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 111152
SubjectTerms HIV-1
HIV-1 capsid
Mathematical model
Uncoating
Virus dynamics
Title Maternal embryonic leucine zipper kinase (MELK) optimally regulates the HIV-1 uncoating process
URI https://dx.doi.org/10.1016/j.jtbi.2022.111152
https://www.ncbi.nlm.nih.gov/pubmed/35545145
https://www.proquest.com/docview/2664802717
Volume 545
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQCIkF8aa8ZCQGEAokjhOnI6qoyqOdKOpm2Y4jpbRpVNqhDPx2fHYCYigDY6JEsb5z7j7b390hdMFYIg2tZx5UD_doIGJP-An1WBoQn2ZmlZ3CPmS3F3f69HEQDVZQq86FAVll5fudT7feurpzW6F5W-Y55PgSYvkHsXXyoOInpQxm-c3nj8yjSW2bQKtah6erxBmn8RrOZG7WiIRYzxGRZcFpGfm0Qai9hTYr9ojv3AC30YoudtC66ye52EW8K1xNZ6zHcrqAqrd4pOdwdo4_8rLUU_yWFyZu4cvu_fPTFZ4YhzEWo9ECT11Pev2ODSPEnYdXL8Am5E0EyKJx6dIJ9lC_ff_S6nhVBwVPhSyceWEWG_qRRglTBicggyJTksokUzqmArJkIxVo309Z1owVnJKRRErFRNMXTKXhPlotJoU-RJilKkyUnwUizShLUiGYhM5WJBBWK9VA1zV0vHSFMnitIBtyAJoD0NwB3UBRjS7_ZW5uPPmf753XpuDmP4DDDVHoyfydG6JBE7PGDlgDHTgbfY8DOJUhhtHRP796jDbgCrZ0SXCCVmfTuT41XGQmz-xkO0Nrdw9Pnd4XNmXazw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BEYILgoWF8umV9rBoFTVxnDgcEQKl9OMEK26W7ThSoKRRaQ_l1-OJk0Uc4MA1kRXr2Zl5Y8-8AfjNeaIsreceqod7LJCxJ_2EeTwLqM9yG2VneA45GsfpPbt9iB5W4KqthcG0ysb2O5teW-vmSa9Bs1cVBdb4UlrzD1rr5IWrsIbqVFEH1i77g3T8rr3L6k6BdeI6DmhqZ1ya1-NcFTZMpLQ2HhH9zD99xj9rP3SzDVsNgSSXbo47sGLKH7DuWkoud0GMpJN1JuZZzZYofEsmZoHX5-S1qCozI09FaV0X-TO6Hg7OydTajGc5mSzJzLWlNy_EkkKS9v95AbFebyoxM5pUrqJgD-5vru-uUq9pouDpkIdzL8xjy0CyKOHaQoV8UOZaMZXk2sRMYqFspAPj-xnPL2KNF2U0UUpzeeFLrrPwJ3TKaWkOgPBMh4n280BmOeNJJiVX2NyKBrJOl-rC3xY6UTmtDNEmkT0KBFog0MIB3YWoRVd8WHFhjfmX4361SyHsr4D3G7I008WLsFyDJTbMDngX9t0a_Z8H0irLDaPDb371DDbSu9FQDPvjwRFs4hs84aXBMXTms4U5sdRkrk6brfcGxeLdgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maternal+embryonic+leucine+zipper+kinase+%28MELK%29+optimally+regulates+the+HIV-1+uncoating+process&rft.jtitle=Journal+of+theoretical+biology&rft.au=Nishiyama%2C+Takara&rft.au=Takada%2C+Toru&rft.au=Takeuchi%2C+Hiroaki&rft.au=Iwami%2C+Shingo&rft.date=2022-07-21&rft.issn=0022-5193&rft.volume=545&rft.spage=111152&rft_id=info:doi/10.1016%2Fj.jtbi.2022.111152&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jtbi_2022_111152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon