Maternal embryonic leucine zipper kinase (MELK) optimally regulates the HIV-1 uncoating process
•Modeling the process of core structure uncoating by MELK.•Quantifying the uncoating process in HIV-1 cDNA synthesis and nuclear trafficking.•In silico simulation results show that MELK optimally regulates the HIV-1 uncoating process. Human immunodeficiency virus type-1 (HIV-1) attaches to target ce...
Saved in:
Published in | Journal of theoretical biology Vol. 545; p. 111152 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
21.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Modeling the process of core structure uncoating by MELK.•Quantifying the uncoating process in HIV-1 cDNA synthesis and nuclear trafficking.•In silico simulation results show that MELK optimally regulates the HIV-1 uncoating process.
Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus. |
---|---|
AbstractList | •Modeling the process of core structure uncoating by MELK.•Quantifying the uncoating process in HIV-1 cDNA synthesis and nuclear trafficking.•In silico simulation results show that MELK optimally regulates the HIV-1 uncoating process.
Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus. Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus. Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus.Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus. |
ArticleNumber | 111152 |
Author | Nishiyama, Takara Takeuchi, Hiroaki Iwami, Shingo Takada, Toru |
Author_xml | – sequence: 1 givenname: Takara surname: Nishiyama fullname: Nishiyama, Takara organization: Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan – sequence: 2 givenname: Toru surname: Takada fullname: Takada, Toru organization: Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan – sequence: 3 givenname: Hiroaki orcidid: 0000-0002-5689-9858 surname: Takeuchi fullname: Takeuchi, Hiroaki organization: Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan – sequence: 4 givenname: Shingo surname: Iwami fullname: Iwami, Shingo email: iwami.iblab@bio.nagoya-u.ac.jp organization: interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35545145$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1v2zAQhonCRWOn-QMdCo7uIIcfoiQCXQLDbYI4yJJmJajTKaUrUwopBXB_fWk46RguN_B57_A-CzLzvUdCvnC24owXl7vVbqzdSjAhVjw9JT6QOWdaZZXK-YzMWfrJFNfyjCxi3DHGdC6LT-RMKpUrnqs5MXd2xOBtR3Ffh0PvHdAOJ3Ae6V83DBjoH-dtRLq822xvv9F-GN3edt2BBnyaupSOdPyN9PrmMeN08tDb0fknOoQeMMbP5GNru4gXr_Oc_PqxeVhfZ9v7nzfrq20GspRjJttCy7JRVQlaCqa1ti3UeV21gEVupaqEAo6MNWWrC0gltajqGkqrmS2hkedkedqb7j5PGEezdxGw66zHfopGFEVeMVHyMqFfX9Gp3mNjhpAKhYN5k5IAcQIg9DEGbP8jnJmjebMzR_PmaN6czKfQ91MIU8sXh8FEcOgBGxcQRtP07r34P-2hivI |
Cites_doi | 10.1371/journal.ppat.1006570 10.1007/s12250-019-00095-3 10.1007/978-981-32-9898-9_7 10.1128/JVI.76.11.5667-5677.2002 10.1038/sj.emboj.7601740 10.1371/journal.ppat.1003161 10.1016/j.virusres.2012.09.012 10.1016/S2352-3018(15)00176-9 10.1186/1741-7015-11-251 10.1016/j.virusres.2014.07.010 10.1371/journal.ppat.1003461 10.1172/JCI67399 10.1371/journal.ppat.1006441 10.1016/j.celrep.2020.108201 10.1126/science.6189183 10.1038/nature12769 10.1016/j.chom.2018.03.009 10.1128/JVI.77.9.5439-5450.2003 10.1016/j.virol.2014.02.004 10.7554/eLife.64776 10.1016/j.coph.2020.10.009 10.1016/j.tips.2020.06.003 10.1073/pnas.1920631117 10.1038/nrmicro3503 10.1023/A:1025732728195 10.1038/s41564-020-0735-8 10.1002/cmdc.202000695 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jtbi.2022.111152 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-8541 |
ExternalDocumentID | 35545145 10_1016_j_jtbi_2022_111152 S0022519322001503 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLV IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSZ T5K TN5 YQT ZMT ZU3 ~02 ~G- .GJ 29L 3O- 53G AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AETEA AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FA8 FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT R2- RIG SEW SSH UQL VH1 WUQ XPP ZGI ZXP ZY4 ~KM EFKBS NPM 7X8 |
ID | FETCH-LOGICAL-c373t-3f6937d587c9320999afcb4b8fce64a35825c1e00d7f96c109928bbc7a90a7cd3 |
IEDL.DBID | .~1 |
ISSN | 0022-5193 1095-8541 |
IngestDate | Tue Aug 05 10:38:55 EDT 2025 Mon Jul 21 06:01:01 EDT 2025 Tue Jul 01 03:11:09 EDT 2025 Fri Feb 23 02:39:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | HIV-1 Uncoating Virus dynamics Mathematical model HIV-1 capsid |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-3f6937d587c9320999afcb4b8fce64a35825c1e00d7f96c109928bbc7a90a7cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5689-9858 |
PMID | 35545145 |
PQID | 2664802717 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2664802717 pubmed_primary_35545145 crossref_primary_10_1016_j_jtbi_2022_111152 elsevier_sciencedirect_doi_10_1016_j_jtbi_2022_111152 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-21 |
PublicationDateYYYYMMDD | 2022-07-21 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of theoretical biology |
PublicationTitleAlternate | J Theor Biol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jozwik, Passos, Lyumkis (b0055) 2020; 41 Le Sage, Mouland, Valiente-Echeverria (b0060) 2014; 193 Paton, Stöhr, Arenas-Pinto, Fisher, Williams, Johnson, Orkin, Chen, Lee, Winston, Gompels, Fox, Scott, Dunn (b0085) 2015; 2 Forshey, von Schwedler, Sundquist, Aiken (b0045) 2002; 76 Arhel, Souquere-Besse, Munier, Souque, Guadagnini, Rutherford, Prevost, Allen, Charneau (b0010) 2007; 26 Burdick, Li, Munshi, Rawson, Nagashima, Hu, Pathak (b0025) 2020; 117 Rasaiyaah, Tan, Fletcher, Price, Blondeau, Hilditch, Jacques, Selwood, James, Noursadeghi, Towers (b0095) 2013; 503 Novikova, Zhang, Freed, Peng (b0080) 2019; 34 Li, Burdick, Nagashima, Hu, Pathak (b0065) 2021; 118 Campbell, Hope (b0030) 2015; 13 Venanzi Rullo, Ceccarelli, Condorelli, Facciola, Visalli, D'Aleo, Paolucci, Cacopardo, Pinzone, Di Rosa, Nunnari, Pellicano (b0130) 2019; 19 Francis, Melikyan (b0050) 2018; 23 Yoshida, Honma, Kimura, Abe (b0145) 2021; 16 Mohammadi, Desfarges, Bartha, Joos, Zangger, Muñoz, Günthard, Beerenwinkel, Telenti, Ciuffi, Emerman (b0070) 2013; 9 Vanangamudi, Kurup, Namasivayam (b0125) 2020; 54 Muller, Zila, Peters, Schifferdecker, Stanic, Lucic, Laketa, Lusic, Muller, Krausslich (b0075) 2021; 10 Suzuki, Misawa, Sato, Ebina, Masuda, Yamamoto, Koyanagi (b0115) 2003; 27 Selyutina, Persaud, Lee, KewalRamani, Diaz-Griffero (b0110) 2020; 32 von Schwedler, Stray, Garrus, Sundquist (b0140) 2003; 77 Rihn, Wilson, Loman, Alim, Bakker, Bhella, Gifford, Rixon, Bieniasz (b0100) 2013; 9 Verma, A. S., Kumar, V., Saha, M. K., Dutta, S., Singh, A., 2020. HIV: Biology to Treatment. NanoBioMedicine, pp. 167–197. Sabin (b0105) 2013; 11 Dharan, Bachmann, Talley, Zwikelmaier, Campbell (b0035) 2020; 5 Rabi, Laird, Durand, Laskey, Shan, Bailey, Chioma, Moore, Siliciano (b0090) 2013; 123 Barre-Sinoussi, Chermann, Rey, Nugeyre, Chamaret, Gruest, Dauguet, Axler-Blin, Vezinet-Brun, Rouzioux, Rozenbaum, Montagnier (b0015) 1983; 220 Takeuchi, Saito, Noda, Miyamoto, Yoshinaga, Terahara, Ishii, Tsunetsugu-Yokota, Yamaoka (b0120) 2017; 13 Ambrose, Aiken (b0005) 2014; 454–455 Fassati (b0040) 2012; 170 Burdick, Delviks-Frankenberry, Chen, Janaka, Sastri, Hu, Pathak (b0020) 2017; 13 Rabi (10.1016/j.jtbi.2022.111152_b0090) 2013; 123 Campbell (10.1016/j.jtbi.2022.111152_b0030) 2015; 13 Vanangamudi (10.1016/j.jtbi.2022.111152_b0125) 2020; 54 Mohammadi (10.1016/j.jtbi.2022.111152_b0070) 2013; 9 Yoshida (10.1016/j.jtbi.2022.111152_b0145) 2021; 16 Venanzi Rullo (10.1016/j.jtbi.2022.111152_b0130) 2019; 19 Li (10.1016/j.jtbi.2022.111152_b0065) 2021; 118 Arhel (10.1016/j.jtbi.2022.111152_b0010) 2007; 26 Barre-Sinoussi (10.1016/j.jtbi.2022.111152_b0015) 1983; 220 Forshey (10.1016/j.jtbi.2022.111152_b0045) 2002; 76 Takeuchi (10.1016/j.jtbi.2022.111152_b0120) 2017; 13 Selyutina (10.1016/j.jtbi.2022.111152_b0110) 2020; 32 10.1016/j.jtbi.2022.111152_b0135 Dharan (10.1016/j.jtbi.2022.111152_b0035) 2020; 5 Jozwik (10.1016/j.jtbi.2022.111152_b0055) 2020; 41 von Schwedler (10.1016/j.jtbi.2022.111152_b0140) 2003; 77 Suzuki (10.1016/j.jtbi.2022.111152_b0115) 2003; 27 Sabin (10.1016/j.jtbi.2022.111152_b0105) 2013; 11 Burdick (10.1016/j.jtbi.2022.111152_b0025) 2020; 117 Le Sage (10.1016/j.jtbi.2022.111152_b0060) 2014; 193 Muller (10.1016/j.jtbi.2022.111152_b0075) 2021; 10 Novikova (10.1016/j.jtbi.2022.111152_b0080) 2019; 34 Burdick (10.1016/j.jtbi.2022.111152_b0020) 2017; 13 Francis (10.1016/j.jtbi.2022.111152_b0050) 2018; 23 Ambrose (10.1016/j.jtbi.2022.111152_b0005) 2014; 454–455 Fassati (10.1016/j.jtbi.2022.111152_b0040) 2012; 170 Paton (10.1016/j.jtbi.2022.111152_b0085) 2015; 2 Rasaiyaah (10.1016/j.jtbi.2022.111152_b0095) 2013; 503 Rihn (10.1016/j.jtbi.2022.111152_b0100) 2013; 9 |
References_xml | – volume: 2 start-page: e417 year: 2015 end-page: e426 ident: b0085 article-title: Protease inhibitor monotherapy for long-term management of HIV infection: a randomised, controlled, open-label, non-inferiority trial publication-title: Lancet HIV – volume: 193 start-page: 116 year: 2014 end-page: 129 ident: b0060 article-title: Roles of HIV-1 capsid in viral replication and immune evasion publication-title: Virus Res. – volume: 123 start-page: 3848 year: 2013 end-page: 3860 ident: b0090 article-title: Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance publication-title: J. Clin. Invest. – volume: 19 start-page: 1987 year: 2019 end-page: 1995 ident: b0130 article-title: Investigational drugs in HIV: Pros and cons of entry and fusion inhibitors (Review) publication-title: Mol. Med. Rep. – volume: 32 start-page: 108201 year: 2020 ident: b0110 article-title: Nuclear import of the HIV-1 core precedes reverse transcription and uncoating publication-title: Cell Rep. – volume: 503 start-page: 402 year: 2013 end-page: 405 ident: b0095 article-title: HIV-1 evades innate immune recognition through specific cofactor recruitment publication-title: Nature – volume: 76 start-page: 5667 year: 2002 end-page: 5677 ident: b0045 article-title: Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication publication-title: J. Virol. – reference: Verma, A. S., Kumar, V., Saha, M. K., Dutta, S., Singh, A., 2020. HIV: Biology to Treatment. NanoBioMedicine, pp. 167–197. – volume: 77 start-page: 5439 year: 2003 end-page: 5450 ident: b0140 article-title: Functional surfaces of the human immunodeficiency virus type 1 capsid protein publication-title: J. Virol. – volume: 34 start-page: 119 year: 2019 end-page: 134 ident: b0080 article-title: Multiple roles of HIV-1 capsid during the virus replication cycle publication-title: Virol. Sin. – volume: 13 start-page: e1006441 year: 2017 ident: b0120 article-title: Phosphorylation of the HIV-1 capsid by MELK triggers uncoating to promote viral cDNA synthesis publication-title: PLoS Pathog. – volume: 9 start-page: e1003461 year: 2013 ident: b0100 article-title: Extreme genetic fragility of the HIV-1 capsid publication-title: PLoS Pathog. – volume: 5 start-page: 1088 year: 2020 end-page: 1095 ident: b0035 article-title: Nuclear pore blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus publication-title: Nat. Microbiol. – volume: 16 start-page: 743 year: 2021 end-page: 766 ident: b0145 article-title: Structure, synthesis and inhibition mechanism of nucleoside analogues as HIV-1 reverse transcriptase inhibitors (NRTIs) publication-title: ChemMedChem – volume: 117 start-page: 5486 year: 2020 end-page: 5493 ident: b0025 article-title: HIV-1 uncoats in the nucleus near sites of integration publication-title: Proc. Natl. Acad. Sci. U S A – volume: 118 year: 2021 ident: b0065 article-title: HIV-1 cores retain their integrity until minutes before uncoating in the nucleus publication-title: Proc. Natl. Acad. Sci. USA – volume: 54 start-page: 179 year: 2020 end-page: 187 ident: b0125 article-title: Non-nucleoside reverse transcriptase inhibitors (NNRTIs): a brief overview of clinically approved drugs and combination regimens publication-title: Curr. Opin. Pharmacol. – volume: 10 year: 2021 ident: b0075 article-title: HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells publication-title: Elife – volume: 26 start-page: 3025 year: 2007 end-page: 3037 ident: b0010 article-title: HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore publication-title: EMBO J. – volume: 170 start-page: 15 year: 2012 end-page: 24 ident: b0040 article-title: Multiple roles of the capsid protein in the early steps of HIV-1 infection publication-title: Virus Res. – volume: 27 start-page: 177 year: 2003 end-page: 188 ident: b0115 article-title: Quantitative analysis of human immunodeficiency virus type 1 DNA dynamics by real-time PCR: integration efficiency in stimulated and unstimulated peripheral blood mononuclear cells publication-title: Virus Genes – volume: 23 start-page: 536 year: 2018 end-page: 548 e6 ident: b0050 article-title: Single HIV-1 imaging reveals progression of infection through CA-dependent steps of docking at the nuclear pore, uncoating, and nuclear transport publication-title: Cell Host Microbe – volume: 220 start-page: 868 year: 1983 end-page: 871 ident: b0015 article-title: Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS) publication-title: Science – volume: 13 start-page: e1006570 year: 2017 ident: b0020 article-title: Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes publication-title: PLoS Pathog. – volume: 41 start-page: 611 year: 2020 end-page: 626 ident: b0055 article-title: Structural biology of HIV integrase strand transfer inhibitors publication-title: Trends Pharmacol. Sci. – volume: 13 start-page: 471 year: 2015 end-page: 483 ident: b0030 article-title: HIV-1 capsid: the multifaceted key player in HIV-1 infection publication-title: Nat. Rev. Microbiol. – volume: 11 start-page: 251 year: 2013 ident: b0105 article-title: Do people with HIV infection have a normal life expectancy in the era of combination antiretroviral therapy? publication-title: BMC Med. – volume: 9 start-page: e1003161 year: 2013 ident: b0070 article-title: 24 hours in the life of HIV-1 in a T cell line publication-title: PLoS Pathog. – volume: 454–455 start-page: 371 year: 2014 end-page: 379 ident: b0005 article-title: HIV-1 uncoating: connection to nuclear entry and regulation by host proteins publication-title: Virology – volume: 13 start-page: e1006570 year: 2017 ident: 10.1016/j.jtbi.2022.111152_b0020 article-title: Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006570 – volume: 34 start-page: 119 year: 2019 ident: 10.1016/j.jtbi.2022.111152_b0080 article-title: Multiple roles of HIV-1 capsid during the virus replication cycle publication-title: Virol. Sin. doi: 10.1007/s12250-019-00095-3 – ident: 10.1016/j.jtbi.2022.111152_b0135 doi: 10.1007/978-981-32-9898-9_7 – volume: 76 start-page: 5667 year: 2002 ident: 10.1016/j.jtbi.2022.111152_b0045 article-title: Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication publication-title: J. Virol. doi: 10.1128/JVI.76.11.5667-5677.2002 – volume: 26 start-page: 3025 year: 2007 ident: 10.1016/j.jtbi.2022.111152_b0010 article-title: HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore publication-title: EMBO J. doi: 10.1038/sj.emboj.7601740 – volume: 9 start-page: e1003161 year: 2013 ident: 10.1016/j.jtbi.2022.111152_b0070 article-title: 24 hours in the life of HIV-1 in a T cell line publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003161 – volume: 170 start-page: 15 year: 2012 ident: 10.1016/j.jtbi.2022.111152_b0040 article-title: Multiple roles of the capsid protein in the early steps of HIV-1 infection publication-title: Virus Res. doi: 10.1016/j.virusres.2012.09.012 – volume: 2 start-page: e417 year: 2015 ident: 10.1016/j.jtbi.2022.111152_b0085 article-title: Protease inhibitor monotherapy for long-term management of HIV infection: a randomised, controlled, open-label, non-inferiority trial publication-title: Lancet HIV doi: 10.1016/S2352-3018(15)00176-9 – volume: 11 start-page: 251 year: 2013 ident: 10.1016/j.jtbi.2022.111152_b0105 article-title: Do people with HIV infection have a normal life expectancy in the era of combination antiretroviral therapy? publication-title: BMC Med. doi: 10.1186/1741-7015-11-251 – volume: 193 start-page: 116 year: 2014 ident: 10.1016/j.jtbi.2022.111152_b0060 article-title: Roles of HIV-1 capsid in viral replication and immune evasion publication-title: Virus Res. doi: 10.1016/j.virusres.2014.07.010 – volume: 9 start-page: e1003461 year: 2013 ident: 10.1016/j.jtbi.2022.111152_b0100 article-title: Extreme genetic fragility of the HIV-1 capsid publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003461 – volume: 123 start-page: 3848 year: 2013 ident: 10.1016/j.jtbi.2022.111152_b0090 article-title: Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance publication-title: J. Clin. Invest. doi: 10.1172/JCI67399 – volume: 19 start-page: 1987 year: 2019 ident: 10.1016/j.jtbi.2022.111152_b0130 article-title: Investigational drugs in HIV: Pros and cons of entry and fusion inhibitors (Review) publication-title: Mol. Med. Rep. – volume: 13 start-page: e1006441 year: 2017 ident: 10.1016/j.jtbi.2022.111152_b0120 article-title: Phosphorylation of the HIV-1 capsid by MELK triggers uncoating to promote viral cDNA synthesis publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006441 – volume: 32 start-page: 108201 year: 2020 ident: 10.1016/j.jtbi.2022.111152_b0110 article-title: Nuclear import of the HIV-1 core precedes reverse transcription and uncoating publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108201 – volume: 220 start-page: 868 year: 1983 ident: 10.1016/j.jtbi.2022.111152_b0015 article-title: Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS) publication-title: Science doi: 10.1126/science.6189183 – volume: 503 start-page: 402 year: 2013 ident: 10.1016/j.jtbi.2022.111152_b0095 article-title: HIV-1 evades innate immune recognition through specific cofactor recruitment publication-title: Nature doi: 10.1038/nature12769 – volume: 23 start-page: 536 year: 2018 ident: 10.1016/j.jtbi.2022.111152_b0050 article-title: Single HIV-1 imaging reveals progression of infection through CA-dependent steps of docking at the nuclear pore, uncoating, and nuclear transport publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.03.009 – volume: 77 start-page: 5439 year: 2003 ident: 10.1016/j.jtbi.2022.111152_b0140 article-title: Functional surfaces of the human immunodeficiency virus type 1 capsid protein publication-title: J. Virol. doi: 10.1128/JVI.77.9.5439-5450.2003 – volume: 454–455 start-page: 371 year: 2014 ident: 10.1016/j.jtbi.2022.111152_b0005 article-title: HIV-1 uncoating: connection to nuclear entry and regulation by host proteins publication-title: Virology doi: 10.1016/j.virol.2014.02.004 – volume: 10 year: 2021 ident: 10.1016/j.jtbi.2022.111152_b0075 article-title: HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells publication-title: Elife doi: 10.7554/eLife.64776 – volume: 54 start-page: 179 year: 2020 ident: 10.1016/j.jtbi.2022.111152_b0125 article-title: Non-nucleoside reverse transcriptase inhibitors (NNRTIs): a brief overview of clinically approved drugs and combination regimens publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2020.10.009 – volume: 41 start-page: 611 year: 2020 ident: 10.1016/j.jtbi.2022.111152_b0055 article-title: Structural biology of HIV integrase strand transfer inhibitors publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2020.06.003 – volume: 117 start-page: 5486 year: 2020 ident: 10.1016/j.jtbi.2022.111152_b0025 article-title: HIV-1 uncoats in the nucleus near sites of integration publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1920631117 – volume: 13 start-page: 471 year: 2015 ident: 10.1016/j.jtbi.2022.111152_b0030 article-title: HIV-1 capsid: the multifaceted key player in HIV-1 infection publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3503 – volume: 27 start-page: 177 year: 2003 ident: 10.1016/j.jtbi.2022.111152_b0115 article-title: Quantitative analysis of human immunodeficiency virus type 1 DNA dynamics by real-time PCR: integration efficiency in stimulated and unstimulated peripheral blood mononuclear cells publication-title: Virus Genes doi: 10.1023/A:1025732728195 – volume: 5 start-page: 1088 year: 2020 ident: 10.1016/j.jtbi.2022.111152_b0035 article-title: Nuclear pore blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0735-8 – volume: 118 year: 2021 ident: 10.1016/j.jtbi.2022.111152_b0065 article-title: HIV-1 cores retain their integrity until minutes before uncoating in the nucleus publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 743 year: 2021 ident: 10.1016/j.jtbi.2022.111152_b0145 article-title: Structure, synthesis and inhibition mechanism of nucleoside analogues as HIV-1 reverse transcriptase inhibitors (NRTIs) publication-title: ChemMedChem doi: 10.1002/cmdc.202000695 |
SSID | ssj0009436 |
Score | 2.3827014 |
Snippet | •Modeling the process of core structure uncoating by MELK.•Quantifying the uncoating process in HIV-1 cDNA synthesis and nuclear trafficking.•In silico... Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 111152 |
SubjectTerms | HIV-1 HIV-1 capsid Mathematical model Uncoating Virus dynamics |
Title | Maternal embryonic leucine zipper kinase (MELK) optimally regulates the HIV-1 uncoating process |
URI | https://dx.doi.org/10.1016/j.jtbi.2022.111152 https://www.ncbi.nlm.nih.gov/pubmed/35545145 https://www.proquest.com/docview/2664802717 |
Volume | 545 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQCIkF8aa8ZCQGEAokjhOnI6qoyqOdKOpm2Y4jpbRpVNqhDPx2fHYCYigDY6JEsb5z7j7b390hdMFYIg2tZx5UD_doIGJP-An1WBoQn2ZmlZ3CPmS3F3f69HEQDVZQq86FAVll5fudT7feurpzW6F5W-Y55PgSYvkHsXXyoOInpQxm-c3nj8yjSW2bQKtah6erxBmn8RrOZG7WiIRYzxGRZcFpGfm0Qai9hTYr9ojv3AC30YoudtC66ye52EW8K1xNZ6zHcrqAqrd4pOdwdo4_8rLUU_yWFyZu4cvu_fPTFZ4YhzEWo9ECT11Pev2ODSPEnYdXL8Am5E0EyKJx6dIJ9lC_ff_S6nhVBwVPhSyceWEWG_qRRglTBicggyJTksokUzqmArJkIxVo309Z1owVnJKRRErFRNMXTKXhPlotJoU-RJilKkyUnwUizShLUiGYhM5WJBBWK9VA1zV0vHSFMnitIBtyAJoD0NwB3UBRjS7_ZW5uPPmf753XpuDmP4DDDVHoyfydG6JBE7PGDlgDHTgbfY8DOJUhhtHRP796jDbgCrZ0SXCCVmfTuT41XGQmz-xkO0Nrdw9Pnd4XNmXazw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BEYILgoWF8umV9rBoFTVxnDgcEQKl9OMEK26W7ThSoKRRaQ_l1-OJk0Uc4MA1kRXr2Zl5Y8-8AfjNeaIsreceqod7LJCxJ_2EeTwLqM9yG2VneA45GsfpPbt9iB5W4KqthcG0ysb2O5teW-vmSa9Bs1cVBdb4UlrzD1rr5IWrsIbqVFEH1i77g3T8rr3L6k6BdeI6DmhqZ1ya1-NcFTZMpLQ2HhH9zD99xj9rP3SzDVsNgSSXbo47sGLKH7DuWkoud0GMpJN1JuZZzZYofEsmZoHX5-S1qCozI09FaV0X-TO6Hg7OydTajGc5mSzJzLWlNy_EkkKS9v95AbFebyoxM5pUrqJgD-5vru-uUq9pouDpkIdzL8xjy0CyKOHaQoV8UOZaMZXk2sRMYqFspAPj-xnPL2KNF2U0UUpzeeFLrrPwJ3TKaWkOgPBMh4n280BmOeNJJiVX2NyKBrJOl-rC3xY6UTmtDNEmkT0KBFog0MIB3YWoRVd8WHFhjfmX4361SyHsr4D3G7I008WLsFyDJTbMDngX9t0a_Z8H0irLDaPDb371DDbSu9FQDPvjwRFs4hs84aXBMXTms4U5sdRkrk6brfcGxeLdgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maternal+embryonic+leucine+zipper+kinase+%28MELK%29+optimally+regulates+the+HIV-1+uncoating+process&rft.jtitle=Journal+of+theoretical+biology&rft.au=Nishiyama%2C+Takara&rft.au=Takada%2C+Toru&rft.au=Takeuchi%2C+Hiroaki&rft.au=Iwami%2C+Shingo&rft.date=2022-07-21&rft.issn=0022-5193&rft.volume=545&rft.spage=111152&rft_id=info:doi/10.1016%2Fj.jtbi.2022.111152&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jtbi_2022_111152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon |