Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning
The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally resolved and spatially explicit maps of parameters of interest has been the subject of intense research. However, deriving products from optical sen...
Saved in:
Published in | Remote sensing of environment Vol. 280; p. 113199 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0034-4257 1879-0704 |
DOI | 10.1016/j.rse.2022.113199 |
Cover
Loading…
Abstract | The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally resolved and spatially explicit maps of parameters of interest has been the subject of intense research. However, deriving products from optical sensors is typically hampered by cloud contamination and the trade-off between spatial and temporal resolutions. In this work we rely on the HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to generate long gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectances. An artificial neural network is trained on PROSAIL inversion to predict monthly biophysical variables at 30 m spatial resolution with associated, realistic uncertainty bars. We emphasize the need for a more thorough analysis of uncertainty, and propose a general and scalable approach to combine both epistemic and aleatoric uncertainties by exploiting Monte Carlo (MC) dropout techniques from the trained artificial network and the propagation of HISTARFM uncertainties through the model, respectively. A model recalibration was performed in order to provide reliable uncertainties. We provide new high resolution products of several key variables to quantify the terrestrial biosphere: Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Canopy Water Content (CWC) and Fractional Vegetation Cover (FVC) are at 30 m Landsat spatial resolution and over large continental areas. Two study areas are considered: the large heterogeneous but moderately cloud covered contiguous United States, and the homogeneous but largely cloud covered Amazonia. The produced vegetation products largely agree with the test dataset (R = 0.90, RMSE = 0.80 m2/m2 and ME = 0.12 m2/m2 for LAI, and R = 0.98, RMSE = 0.07 and ME = 0.01 for FAPAR) providing low error and high accuracy. Additionally, the validation considers a thorough comparison with operational and largely validated medium resolution products, such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Copernicus Global Land Service. Our products presented a good agreement and consistency with both MODIS (R = 0.84 and R = 0.85 for LAI and FAPAR, respectively) and Copernicus (R = 0.92 and R = 0.91 for LAI and FAPAR, respectively). To foster a wider adoption and reproducibility of the methodology we provide an application in GEE and source code at:https://github.com/IPL-UV/ee_BioNet/
•Proposed a methodology based on RTM inversion with NN for biophysical parameter estimation.•Uncertainty quantification considering model and data uncertainties.•Biophysical parameters and realistic uncertainties gap-free maps at high resolution (30 m).•Implications for high resolution carbon fluxes and phenologies applications. |
---|---|
AbstractList | The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally resolved and spatially explicit maps of parameters of interest has been the subject of intense research. However, deriving products from optical sensors is typically hampered by cloud contamination and the trade-off between spatial and temporal resolutions. In this work we rely on the HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to generate long gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectances. An artificial neural network is trained on PROSAIL inversion to predict monthly biophysical variables at 30 m spatial resolution with associated, realistic uncertainty bars. We emphasize the need for a more thorough analysis of uncertainty, and propose a general and scalable approach to combine both epistemic and aleatoric uncertainties by exploiting Monte Carlo (MC) dropout techniques from the trained artificial network and the propagation of HISTARFM uncertainties through the model, respectively. A model recalibration was performed in order to provide reliable uncertainties. We provide new high resolution products of several key variables to quantify the terrestrial biosphere: Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Canopy Water Content (CWC) and Fractional Vegetation Cover (FVC) are at 30 m Landsat spatial resolution and over large continental areas. Two study areas are considered: the large heterogeneous but moderately cloud covered contiguous United States, and the homogeneous but largely cloud covered Amazonia. The produced vegetation products largely agree with the test dataset (R = 0.90, RMSE = 0.80 m2/m2 and ME = 0.12 m2/m2 for LAI, and R = 0.98, RMSE = 0.07 and ME = 0.01 for FAPAR) providing low error and high accuracy. Additionally, the validation considers a thorough comparison with operational and largely validated medium resolution products, such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Copernicus Global Land Service. Our products presented a good agreement and consistency with both MODIS (R = 0.84 and R = 0.85 for LAI and FAPAR, respectively) and Copernicus (R = 0.92 and R = 0.91 for LAI and FAPAR, respectively). To foster a wider adoption and reproducibility of the methodology we provide an application in GEE and source code at:https://github.com/IPL-UV/ee_BioNet/
•Proposed a methodology based on RTM inversion with NN for biophysical parameter estimation.•Uncertainty quantification considering model and data uncertainties.•Biophysical parameters and realistic uncertainties gap-free maps at high resolution (30 m).•Implications for high resolution carbon fluxes and phenologies applications. The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally resolved and spatially explicit maps of parameters of interest has been the subject of intense research. However, deriving products from optical sensors is typically hampered by cloud contamination and the trade-off between spatial and temporal resolutions. In this work we rely on the HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to generate long gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectances. An artificial neural network is trained on PROSAIL inversion to predict monthly biophysical variables at 30 m spatial resolution with associated, realistic uncertainty bars. We emphasize the need for a more thorough analysis of uncertainty, and propose a general and scalable approach to combine both epistemic and aleatoric uncertainties by exploiting Monte Carlo (MC) dropout techniques from the trained artificial network and the propagation of HISTARFM uncertainties through the model, respectively. A model recalibration was performed in order to provide reliable uncertainties. We provide new high resolution products of several key variables to quantify the terrestrial biosphere: Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Canopy Water Content (CWC) and Fractional Vegetation Cover (FVC) are at 30 m Landsat spatial resolution and over large continental areas. Two study areas are considered: the large heterogeneous but moderately cloud covered contiguous United States, and the homogeneous but largely cloud covered Amazonia. The produced vegetation products largely agree with the test dataset (R = 0.90, RMSE = 0.80 m²/m² and ME = 0.12 m²/m² for LAI, and R = 0.98, RMSE = 0.07 and ME = 0.01 for FAPAR) providing low error and high accuracy. Additionally, the validation considers a thorough comparison with operational and largely validated medium resolution products, such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Copernicus Global Land Service. Our products presented a good agreement and consistency with both MODIS (R = 0.84 and R = 0.85 for LAI and FAPAR, respectively) and Copernicus (R = 0.92 and R = 0.91 for LAI and FAPAR, respectively). To foster a wider adoption and reproducibility of the methodology we provide an application in GEE and source code at:https://github.com/IPL-UV/ee_BioNet/ |
ArticleNumber | 113199 |
Author | Martínez-Ferrer, Laura Running, Steven W. Clinton, Nicholas García-Haro, Francisco Javier Campos-Taberner, Manuel Camps-Valls, Gustau Moreno-Martínez, Álvaro Kimball, John Muñoz-Marí, Jordi |
Author_xml | – sequence: 1 givenname: Laura surname: Martínez-Ferrer fullname: Martínez-Ferrer, Laura email: laura.martinez-ferrer@uv.es organization: Image Processing Laboratory (IPL), Universitat de València, València, Spain – sequence: 2 givenname: Álvaro surname: Moreno-Martínez fullname: Moreno-Martínez, Álvaro organization: Image Processing Laboratory (IPL), Universitat de València, València, Spain – sequence: 3 givenname: Manuel surname: Campos-Taberner fullname: Campos-Taberner, Manuel organization: Environmental Remote Sensing Group, Universitat de València, València, Spain – sequence: 4 givenname: Francisco Javier surname: García-Haro fullname: García-Haro, Francisco Javier organization: Environmental Remote Sensing Group, Universitat de València, València, Spain – sequence: 5 givenname: Jordi surname: Muñoz-Marí fullname: Muñoz-Marí, Jordi organization: Image Processing Laboratory (IPL), Universitat de València, València, Spain – sequence: 6 givenname: Steven W. surname: Running fullname: Running, Steven W. organization: Numerical Terradynamic Simulation Group (NTSG), University of Montana, USA – sequence: 7 givenname: John surname: Kimball fullname: Kimball, John organization: Numerical Terradynamic Simulation Group (NTSG), University of Montana, USA – sequence: 8 givenname: Nicholas surname: Clinton fullname: Clinton, Nicholas organization: Google, Inc., Mountain View, CA, USA – sequence: 9 givenname: Gustau surname: Camps-Valls fullname: Camps-Valls, Gustau organization: Image Processing Laboratory (IPL), Universitat de València, València, Spain |
BookMark | eNp9kMtqwzAQRUVJoUnaD-jOy26c6mFbNl2V0BcESiF7IcvjeIIjp5Kc4r-vg7vqIquBmXsuzFmQme0sEHLP6IpRlj3uV87DilPOV4wJVhRXZM5yWcRU0mRG5pSKJE54Km_Iwvs9pSzNJZsT9dVrG7Ae0O6i3hpwQaMNQ4Q2anDXRA581_YBOxuV2B2bwaPRbXTSDnXZwngPDuE0rn4wNNFBmwYtRC1oZ8fOW3Jd69bD3d9cku3ry3b9Hm8-3z7Wz5vYCClCLCoqIUnqRAgjRF2mdSWpLk2R1gA8YzTJjDC6AFPKrJRQpSkvUk4p1LIsuViSh6n26LrvHnxQB_QG2lZb6HqvuGS5EBnPkzHKpqhxnfcOanV0eNBuUIyqs0u1V6NLdXapJpcjI_8xBoM-SwlOY3uRfJpIGJ8_ITjlDcLouUIHJqiqwwv0Lx_Dky0 |
CitedBy_id | crossref_primary_10_1002_spe_3365 crossref_primary_10_1017_eds_2024_22 crossref_primary_10_61186_jgst_14_2_89 crossref_primary_10_1029_2024WR037444 crossref_primary_10_3390_f14071418 crossref_primary_10_1109_JSTARS_2022_3231380 crossref_primary_10_1016_j_asr_2025_02_052 crossref_primary_10_1109_JSTARS_2024_3522938 crossref_primary_10_1016_j_eja_2024_127362 crossref_primary_10_1109_JSTARS_2024_3426044 crossref_primary_10_1038_s41597_024_02998_7 crossref_primary_10_1088_1748_9326_acaf0f crossref_primary_10_1016_j_rse_2024_114228 crossref_primary_10_1109_TGRS_2022_3227565 crossref_primary_10_1016_j_rse_2024_114224 crossref_primary_10_3390_rs15133404 |
Cites_doi | 10.1038/s41586-019-0912-1 10.3390/rs10081167 10.1016/j.rse.2020.111901 10.1109/TGRS.2003.813493 10.1111/j.1365-3040.1992.tb00992.x 10.1029/97JD03380 10.1016/S0034-4257(02)00035-4 10.1126/sciadv.abc7447 10.1080/01431161.2020.1841323 10.1016/j.isprsjprs.2020.02.007 10.1016/j.rse.2010.09.012 10.1214/009053607000000505 10.1016/j.rse.2021.112383 10.3390/rs10010085 10.1109/TGRS.2019.2931085 10.1016/0034-4257(84)90057-9 10.1016/j.rse.2016.10.009 10.1016/j.isprsjprs.2018.03.005 10.1016/j.rse.2004.06.003 10.1016/j.rse.2011.11.002 10.1016/j.isprsjprs.2015.05.005 10.3390/s8042136 10.1029/98JD02461 10.1016/j.rse.2007.02.018 10.1109/LRA.2020.2974682 10.1080/0143116031000070319 10.1080/00401706.2000.10485979 10.1109/TGRS.2006.876030 10.3390/s19173662 10.1137/0806023 10.1162/0899766041941925 10.1016/j.rse.2003.12.013 10.1109/JSTARS.2010.2046626 10.1016/j.rse.2008.02.012 10.1080/01431160802555804 10.1109/MGRS.2015.2510084 10.1016/j.rse.2012.12.027 10.1016/j.rse.2019.03.020 10.1016/j.foreco.2017.12.002 10.3390/rs13050992 10.1016/S0034-4257(98)00014-5 10.1016/j.rse.2017.06.031 10.1111/gcb.14904 10.1080/014311699213631 10.1016/j.earscirev.2019.103076 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.rse.2022.113199 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
ExternalDocumentID | 10_1016_j_rse_2022_113199 S0034425722003091 |
GeographicLocations | Amazonia |
GeographicLocations_xml | – name: Amazonia |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6I. 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c373t-3d07e44f433c33fb5fd70abc95fee261046c3ca9ecb76b7ed55295200ef7bb23 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Tue Aug 05 10:53:59 EDT 2025 Thu Apr 24 23:10:41 EDT 2025 Tue Jul 01 03:51:31 EDT 2025 Fri Feb 23 02:39:44 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biophysical parameter estimation Uncertainty Downscaling Neural networks MODIS Landsat |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-3d07e44f433c33fb5fd70abc95fee261046c3ca9ecb76b7ed55295200ef7bb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0034425722003091 |
PQID | 2718336284 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2718336284 crossref_primary_10_1016_j_rse_2022_113199 crossref_citationtrail_10_1016_j_rse_2022_113199 elsevier_sciencedirect_doi_10_1016_j_rse_2022_113199 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Knyazikhin (bb0220) 1999 Verrelst, Camps-Valls, Muñoz-Marí, Rivera, Veroustraete, Clevers, Moreno (bb0345) 2015; 108 García-Haro, Campos-Taberner, Moreno, Tagesson, Camacho, Martínez, Sánchez, Piles, Camps-Valls, Yebra, Gilabert (bb0160) 2020; 162 Cover, Thomas (bb0120) 2006 Baret, Morissette, Fernandes, Champeaux, Myneni, Chen, Plummer, Weiss, Bacour, Garrigues, Nickeson (bb0025) 2006; 44 García-Haro, Campos-Taberner, Muñoz-Marí, Laparra, Camacho, Sãnchez-Zapero, Camps-Valls (bb0155) 2018; 139 Kingma, Ba (bb0215) 2014 Mckay, Beckman, Conover (bb0270) 2000; 42 Knyazikhin, Martonchik, Diner, Myneni, Verstraete, Pinty, Gobron (bb0230) 1998; 103 Kattge, Bönisch, Díaz, Lavorel, Prentice, Leadley, Tautenhahn, Werner, Aakala, Abedi (bb0210) 2020; 26 Liang (bb0235) 2004 Glenn, Huete, Nagler, Nelson (bb0170) 2008; 8 Hollander, Wolfe, Chicken (bb0200) 2013; vol. 751 Pearce, Leibfried, Brintrup (bb0285) 2020 Ardizzone, Kruse, Wirkert, Rahner, Pellegrini, Klessen, Maier-Hein, Rother, Köthe (bb0015) 2019 Bonham (bb0055) 2013 Caers (bb0060) 2011 Goodfellow, Bengio, Courville (bb0180) 2016 Weiss, Baret (bb0355) 2016 Adsuara, Pérez-Suay, Muñoz-Marí, Mateo-Sanchis, Piles, Camps-Valls (bb0005) 2019; 57 Campos-Taberner, García-Haro, Camps-Valls, Grau-Muedra, Nutini, Crema, Boschetti (bb0065) 2016; 187 Clerici, Vossbeck, Pinty, Kaminski, Taberner, Lavergne, Andredakis (bb0100) 2010; 3 Peng, Muller, Blessing, Giering, Danne, Gobron, Kharbouche, Ludwig, Müller, Leng, You, Duan, Dadson (bb0290) 2019; 19 Baret, Weiss, Lacaze, Camacho, Makhmara, Pacholcyzk, Smets (bb0040) 2013; 137 Haboudane, Miller, Pattey, Zarco-Tejada, Strachan (bb0195) 2004; 90 Coleman, Li (bb0110) 1996; 6 Lillesand, Kiefer, Chipman (bb0245) 2008 Gong (bb0175) 1999; 20 Verhoef (bb0335) 1984; 16 Aires, Prigent, Rossow (bb0010) 2004; 16 Liu, Zhang, Chen, Lai, Chen, Cheng, Ko (bb0250) 2019; 11 Verger, Martínez, Coca, García-Haro (bb0325) 2009; 30 Danson, Rowland, Baret (bb0125) 2003; 24 Clevers, Kooistra, Schaepman (bb0105) 2010; 12 Walthall, Dulaney, Anderson, Norman, Fang, Liang (bb0350) 2004; 92 Sun, Lu, Liu (bb0315) 2021; 42 Combal, Baret, Weiss, Trubuil, Mace, Pragnere, Myneni, Knyazikhin, Wang (bb0115) 2003; 84 Berger, Atzberger, Danner, D’Urso, Mauser, Vuolo, Hank (bb0045) 2018; 10 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bb0300) 2019; 566 Székely, Rizzo, Bakirov (bb0320) 2007; 35 Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bb0185) 2017; 202 López-Puigdollers, Mateo-García, Gómez-Chova (bb0255) 2021; 13 Fang, Liang (bb0140) 2003; 41 Spence, Townshend (bb0305) 1996 Montavon, Orr, Müller (bb0275) 2012; vol. 7700 (bb0075) 2011 Feret, François, Asner, Gitelson, Martin, Bidel, Ustin, Le Maire, Jacquemoud (bb0145) 2008; 112 Bishop (bb0050) 1995 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0310) 2014; 15 Guo, Pleiss, Sun, Weinberger (bb0190) 2017 Verrelst, Muñoz, Alonso, Delegido, Rivera, Camps-Valls, Moreno (bb0340) 2012; 118 Knyazikhin, Kranigk, Myneni, Panfyorov, Gravenhorst (bb0225) 1998; 103 Campos-Taberner, Moreno-Martínez, García-Haro, Camps-Valls, Robinson, Kattge, Running (bb0070) 2018; 10 GCOS (bb0165) 2011 Camps-Valls, Verrelst, Muñoz-Marí, Laparra, Mateo-Jimenez, Gómez-Dans (bb0080) 2016; 4 Camps-Valls, Tuia, Zhu, Reichstein (bb0090) 2021 Djamai, Fernandes, Weiss, McNairn, Goïta (bb0135) 2019; 225 Liang (bb0240) 2008 Martin, Asner, Francis, Ambrose, Baxter, Das, Vaughn, Paz-Kagan, Dawson, Nydick, Stephenson (bb0265) 2018; 419-420 Moreno-Martínez, Izquierdo-Verdiguier, Maneta, Camps-Valls, Robinson, Muñoz-Marí, Sedano, Clinton, Running (bb0280) 2020; 247 Kang, Ozdogan, Gao, Anderson, White, Yang, Yang, Erickson (bb0205) 2021; 258 Asner (bb0020) 1998; 64 Dennis (bb0130) 1977 Piotrowski, Napiorkowski, Piotrowska (bb0295) 2020; 201 Loquercio, Segu, Scaramuzza (bb0260) 2020; 5 Camps-Valls, Campos-Taberner, Moreno-Martínez, Walther, Duveiller, Cescatti, Mahecha, Muñoz-Marí, García-Haro, Guanter, Jung, Gamon, Reichstein, Running (bb0085) 2021; 7 Chen, Black (bb0095) 1992; 15 Baret, Hagolle, Geiger, Bicheron, Miras, Huc, Berthelot, Niño, Weiss, Samain, Roujean, Leroy (bb0035) 2007; 110 Gal, Ghahramani (bb0150) 2016 Verger, Baret, Camacho (bb0330) 2011; 115 Glenn (10.1016/j.rse.2022.113199_bb0170) 2008; 8 Peng (10.1016/j.rse.2022.113199_bb0290) 2019; 19 Clevers (10.1016/j.rse.2022.113199_bb0105) 2010; 12 Danson (10.1016/j.rse.2022.113199_bb0125) 2003; 24 Liang (10.1016/j.rse.2022.113199_bb0235) 2004 Knyazikhin (10.1016/j.rse.2022.113199_bb0220) 1999 Bonham (10.1016/j.rse.2022.113199_bb0055) 2013 Campos-Taberner (10.1016/j.rse.2022.113199_bb0065) 2016; 187 Gal (10.1016/j.rse.2022.113199_bb0150) 2016 Djamai (10.1016/j.rse.2022.113199_bb0135) 2019; 225 Spence (10.1016/j.rse.2022.113199_bb0305) 1996 Verhoef (10.1016/j.rse.2022.113199_bb0335) 1984; 16 Pearce (10.1016/j.rse.2022.113199_bb0285) 2020 Srivastava (10.1016/j.rse.2022.113199_bb0310) 2014; 15 Ardizzone (10.1016/j.rse.2022.113199_bb0015) 2019 Fang (10.1016/j.rse.2022.113199_bb0140) 2003; 41 GCOS (10.1016/j.rse.2022.113199_bb0165) 2011 Combal (10.1016/j.rse.2022.113199_bb0115) 2003; 84 Haboudane (10.1016/j.rse.2022.113199_bb0195) 2004; 90 Adsuara (10.1016/j.rse.2022.113199_bb0005) 2019; 57 Knyazikhin (10.1016/j.rse.2022.113199_bb0225) 1998; 103 Mckay (10.1016/j.rse.2022.113199_bb0270) 2000; 42 Verger (10.1016/j.rse.2022.113199_bb0325) 2009; 30 Montavon (10.1016/j.rse.2022.113199_bb0275) 2012; vol. 7700 Székely (10.1016/j.rse.2022.113199_bb0320) 2007; 35 Sun (10.1016/j.rse.2022.113199_bb0315) 2021; 42 Gong (10.1016/j.rse.2022.113199_bb0175) 1999; 20 López-Puigdollers (10.1016/j.rse.2022.113199_bb0255) 2021; 13 Knyazikhin (10.1016/j.rse.2022.113199_bb0230) 1998; 103 Berger (10.1016/j.rse.2022.113199_bb0045) 2018; 10 Camps-Valls (10.1016/j.rse.2022.113199_bb0085) 2021; 7 Aires (10.1016/j.rse.2022.113199_bb0010) 2004; 16 Lillesand (10.1016/j.rse.2022.113199_bb0245) 2008 Liu (10.1016/j.rse.2022.113199_bb0250) 2019; 11 Kingma (10.1016/j.rse.2022.113199_bb0215) 2014 Cover (10.1016/j.rse.2022.113199_bb0120) 2006 Martin (10.1016/j.rse.2022.113199_bb0265) 2018; 419-420 Baret (10.1016/j.rse.2022.113199_bb0040) 2013; 137 Campos-Taberner (10.1016/j.rse.2022.113199_bb0070) 2018; 10 Reichstein (10.1016/j.rse.2022.113199_bb0300) 2019; 566 Verrelst (10.1016/j.rse.2022.113199_bb0340) 2012; 118 Verrelst (10.1016/j.rse.2022.113199_bb0345) 2015; 108 Liang (10.1016/j.rse.2022.113199_bb0240) 2008 Camps-Valls (10.1016/j.rse.2022.113199_bb0090) 2021 Asner (10.1016/j.rse.2022.113199_bb0020) 1998; 64 Dennis (10.1016/j.rse.2022.113199_bb0130) 1977 Moreno-Martínez (10.1016/j.rse.2022.113199_bb0280) 2020; 247 García-Haro (10.1016/j.rse.2022.113199_bb0155) 2018; 139 Baret (10.1016/j.rse.2022.113199_bb0035) 2007; 110 Caers (10.1016/j.rse.2022.113199_bb0060) 2011 Loquercio (10.1016/j.rse.2022.113199_bb0260) 2020; 5 Clerici (10.1016/j.rse.2022.113199_bb0100) 2010; 3 Chen (10.1016/j.rse.2022.113199_bb0095) 1992; 15 (10.1016/j.rse.2022.113199_bb0075) 2011 Coleman (10.1016/j.rse.2022.113199_bb0110) 1996; 6 Weiss (10.1016/j.rse.2022.113199_bb0355) 2016 Walthall (10.1016/j.rse.2022.113199_bb0350) 2004; 92 Goodfellow (10.1016/j.rse.2022.113199_bb0180) 2016 Kattge (10.1016/j.rse.2022.113199_bb0210) 2020; 26 Camps-Valls (10.1016/j.rse.2022.113199_bb0080) 2016; 4 Baret (10.1016/j.rse.2022.113199_bb0025) 2006; 44 Kang (10.1016/j.rse.2022.113199_bb0205) 2021; 258 Gorelick (10.1016/j.rse.2022.113199_bb0185) 2017; 202 García-Haro (10.1016/j.rse.2022.113199_bb0160) 2020; 162 Verger (10.1016/j.rse.2022.113199_bb0330) 2011; 115 Feret (10.1016/j.rse.2022.113199_bb0145) 2008; 112 Guo (10.1016/j.rse.2022.113199_bb0190) 2017 Hollander (10.1016/j.rse.2022.113199_bb0200) 2013; vol. 751 Bishop (10.1016/j.rse.2022.113199_bb0050) 1995 Piotrowski (10.1016/j.rse.2022.113199_bb0295) 2020; 201 |
References_xml | – volume: 84 start-page: 1 year: 2003 end-page: 15 ident: bb0115 article-title: Retrieval of canopy biophysical variables from bidirectional reflectance: using prior information to solve the ill-posed inverse problem publication-title: Remote Sens. Environ. – volume: 13 year: 2021 ident: bb0255 article-title: Benchmarking deep learning models for cloud detection in Landsat-8 and Sentinel-2 images publication-title: Remote Sens. – year: 2016 ident: bb0180 article-title: Deep Learning – volume: 112 start-page: 3030 year: 2008 end-page: 3043 ident: bb0145 article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments publication-title: Remote Sens. Environ. – volume: 92 start-page: 465 year: 2004 end-page: 474 ident: bb0350 article-title: A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery publication-title: Remote Sens. Environ. – year: 2019 ident: bb0015 article-title: Analyzing inverse problems with invertible neural networks publication-title: International Conference on Learning Representations – volume: 41 start-page: 2052 year: 2003 end-page: 2062 ident: bb0140 article-title: Retrieving leaf area index with a neural network method: simulation and validation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 10 start-page: 85 year: 2018 ident: bb0045 article-title: Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: a review study publication-title: Remote Sens. – year: 1995 ident: bb0050 article-title: Neural Networks for Pattern Recognition – year: 1999 ident: bb0220 article-title: MODIS leaf area index (LAI), and fraction of photosynthetically active radiation absorbed by vegetation FPAR publication-title: Technical Report GSFC/NASA – start-page: 269 year: 1977 end-page: 312 ident: bb0130 article-title: Nonlinear least-squares publication-title: State of the Art in Numerical Analysis – volume: 162 start-page: 77 year: 2020 end-page: 93 ident: bb0160 article-title: A global canopy water content product from AVHRR/Metop publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 15 start-page: 421 year: 1992 end-page: 429 ident: bb0095 article-title: Defining leaf area index for non-flat leaves publication-title: Plant Cell Environ. – volume: 10 start-page: 1167 year: 2018 ident: bb0070 article-title: Global estimation of biophysical variables from Google Earth Engine platform publication-title: Remote Sens. – volume: 5 start-page: 3153 year: 2020 end-page: 3160 ident: bb0260 article-title: A general framework for uncertainty estimation in deep learning publication-title: IEEE Robot. Automat. Lett. – volume: vol. 751 year: 2013 ident: bb0200 article-title: Nonparametric Statistical Methods – year: 2008 ident: bb0240 article-title: Advances in Land Remote Sensing: System, Modeling, Inversion and Applications – volume: 118 start-page: 127 year: 2012 end-page: 139 ident: bb0340 article-title: Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3 publication-title: Remote Sens. Environ. – volume: 44 start-page: 1794 year: 2006 end-page: 1803 ident: bb0025 article-title: Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: proposition of the CEOS-BELMANIP publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 26 start-page: 119 year: 2020 end-page: 188 ident: bb0210 article-title: TRY plant trait database–enhanced coverage and open access publication-title: Glob. Chang. Biol. – volume: 90 start-page: 337 year: 2004 end-page: 352 ident: bb0195 article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture publication-title: Remote Sens. Environ. – start-page: 1 year: 2014 end-page: 15 ident: bb0215 article-title: Adam: A Method for Stochastic Optimization – volume: 201 year: 2020 ident: bb0295 article-title: Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling publication-title: Earth Sci. Rev. – volume: 103 start-page: 6133 year: 1998 end-page: 6144 ident: bb0225 article-title: Influence of small-scale structure on radiative tranfer and photosynthesis in vegetation canopies publication-title: J. Geophys. Res. – volume: 42 start-page: 55 year: 2000 end-page: 61 ident: bb0270 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 103 start-page: 32239 year: 1998 end-page: 32256 ident: bb0230 article-title: Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data publication-title: J. Geophys. Res.-Atmos. – year: 2021 ident: bb0090 article-title: Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences – volume: 258 year: 2021 ident: bb0205 article-title: A data-driven approach to estimate leaf area index for Landsat images over the contiguous US publication-title: Remote Sens. Environ. – volume: 108 start-page: 273 year: 2015 end-page: 290 ident: bb0345 article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – a review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 137 start-page: 299 year: 2013 end-page: 309 ident: bb0040 article-title: GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: principles of development and production publication-title: Remote Sens. Environ. – start-page: 1321 year: 2017 end-page: 1330 ident: bb0190 article-title: On calibration of modern neural networks publication-title: Proceedings of the 34th International Conference on Machine Learning – volume: 187 start-page: 102 year: 2016 end-page: 118 ident: bb0065 article-title: Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring publication-title: Remote Sens. Environ. – volume: 64 start-page: 234 year: 1998 end-page: 253 ident: bb0020 article-title: Biophysical and biochemical sources of variability in canopy reflectance publication-title: Remote Sens. Environ. – volume: 139 start-page: 57 year: 2018 end-page: 74 ident: bb0155 article-title: Derivation of global vegetation biophysical parameters from EUMETSAT polar system publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 57 start-page: 10025 year: 2019 end-page: 10035 ident: bb0005 article-title: Nonlinear distribution regression for remote sensing applications publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 4 start-page: 58 year: 2016 end-page: 78 ident: bb0080 article-title: A survey on Gaussian processes for earth observation data analysis: a comprehensive investigation publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 8 start-page: 2136 year: 2008 end-page: 2160 ident: bb0170 article-title: Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape publication-title: Sensors – year: 2011 ident: bb0075 publication-title: Remote Sensing Image Processing – volume: 419-420 start-page: 279 year: 2018 end-page: 290 ident: bb0265 article-title: Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought publication-title: For. Ecol. Manag. – volume: 16 start-page: 2415 year: 2004 end-page: 2458 ident: bb0010 article-title: Neural network uncertainty assessment using Bayesian statistics: a remote sensing application publication-title: Neural Comput. – year: 2013 ident: bb0055 article-title: Measurements for Terrestrial Vegetation – year: 2004 ident: bb0235 article-title: Quantitative Remote Sensing of Land Surfaces – volume: 42 start-page: 1688 year: 2021 end-page: 1712 ident: bb0315 article-title: Inversion of the leaf area index of rice fields using vegetation isoline patterns considering the fraction of vegetation cover publication-title: Int. J. Remote Sens. – volume: 30 start-page: 2685 year: 2009 end-page: 2704 ident: bb0325 article-title: Accuracy assessment of fraction of vegetation cover and leaf area index estimates from pragmatic methods in a cropland area publication-title: Int. J. Remote Sens. – volume: 6 start-page: 418 year: 1996 end-page: 445 ident: bb0110 article-title: An interior trust region approach for nonlinear minimization subject to bounds publication-title: SIAM J. Optim. – volume: vol. 7700 year: 2012 ident: bb0275 article-title: Neural Networks: Tricks of the Trade – volume: 19 year: 2019 ident: bb0290 article-title: Can we use satellite-based FAPAR to detect drought? publication-title: Sensors – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: bb0300 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature – volume: 7 year: 2021 ident: bb0085 article-title: A unified vegetation index for quantifying the terrestrial biosphere publication-title: Sci. Adv. – year: 2011 ident: bb0060 article-title: Modeling Uncertainty in the Earth Sciences – start-page: 234 year: 2020 end-page: 244 ident: bb0285 article-title: Uncertainty in neural networks: Approximately bayesian ensembling publication-title: International Conference on Artificial Intelligence and Statistics – volume: 12 start-page: 119 year: 2010 end-page: 125 ident: bb0105 article-title: Estimating canopy water content using hyperspectral remote sensing data publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2011 ident: bb0165 article-title: Systematic Observation Requirements for Satellite-Based Products for Climate, 2011 – start-page: 1 year: 1996 end-page: 4 ident: bb0305 article-title: The Global Climate Observing System (GCOS) publication-title: Long-Term Climate Monitoring by the Global Climate Observing System – volume: 24 start-page: 4891 year: 2003 end-page: 4905 ident: bb0125 article-title: Training a neural network with a canopy reflectance model to estimate crop leaf area index publication-title: Int. J. Remote Sens. – volume: 3 start-page: 286 year: 2010 end-page: 295 ident: bb0100 article-title: Consolidating the two-stream inversion package (jrc-tip) to retrieve land surface parameters from albedo products publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 115 start-page: 415 year: 2011 end-page: 426 ident: bb0330 article-title: Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: evaluation over an agricultural area with CHRIS/PROBA observations publication-title: Remote Sens. Environ. – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: bb0185 article-title: Google earth engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 110 start-page: 275 year: 2007 end-page: 286 ident: bb0035 article-title: LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: part 1: principles of the algorithm publication-title: Remote Sens. Environ. – year: 2008 ident: bb0245 article-title: Remote Sensing and Image Interpretation – year: 2006 ident: bb0120 article-title: Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) – volume: 35 start-page: 2769 year: 2007 end-page: 2794 ident: bb0320 article-title: Measuring and testing dependence by correlation of distances publication-title: Ann. Stat. – start-page: 1050 year: 2016 end-page: 1059 ident: bb0150 article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning publication-title: International Conference on Machine Learning – year: 2016 ident: bb0355 article-title: S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER – volume: 20 start-page: 111 year: 1999 end-page: 122 ident: bb0175 article-title: Inverting a canopy reflectance model using a neural network publication-title: Int. J. Remote Sens. – volume: 225 start-page: 416 year: 2019 end-page: 430 ident: bb0135 article-title: Validation of the sentinel simplified level 2 product prototype processor (SL2P) for mapping cropland biophysical variables using Sentinel-2/MSI and Landsat-8/OLI data publication-title: Remote Sens. Environ. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bb0310 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 11 year: 2019 ident: bb0250 article-title: Clouds classification from Sentinel-2 imagery with deep residual learning and semantic image segmentation publication-title: Remote Sens. – volume: 16 start-page: 125 year: 1984 end-page: 141 ident: bb0335 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model publication-title: Remote Sens. Environ. – volume: 247 year: 2020 ident: bb0280 article-title: Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud publication-title: Remote Sens. Environ. – year: 2021 ident: 10.1016/j.rse.2022.113199_bb0090 – start-page: 1 year: 2014 ident: 10.1016/j.rse.2022.113199_bb0215 – year: 2008 ident: 10.1016/j.rse.2022.113199_bb0240 – volume: 566 start-page: 195 year: 2019 ident: 10.1016/j.rse.2022.113199_bb0300 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 10 start-page: 1167 year: 2018 ident: 10.1016/j.rse.2022.113199_bb0070 article-title: Global estimation of biophysical variables from Google Earth Engine platform publication-title: Remote Sens. doi: 10.3390/rs10081167 – volume: 247 year: 2020 ident: 10.1016/j.rse.2022.113199_bb0280 article-title: Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111901 – volume: 41 start-page: 2052 year: 2003 ident: 10.1016/j.rse.2022.113199_bb0140 article-title: Retrieving leaf area index with a neural network method: simulation and validation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.813493 – volume: vol. 751 year: 2013 ident: 10.1016/j.rse.2022.113199_bb0200 – year: 2008 ident: 10.1016/j.rse.2022.113199_bb0245 – volume: 15 start-page: 421 year: 1992 ident: 10.1016/j.rse.2022.113199_bb0095 article-title: Defining leaf area index for non-flat leaves publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1992.tb00992.x – volume: 103 start-page: 6133 year: 1998 ident: 10.1016/j.rse.2022.113199_bb0225 article-title: Influence of small-scale structure on radiative tranfer and photosynthesis in vegetation canopies publication-title: J. Geophys. Res. doi: 10.1029/97JD03380 – volume: 84 start-page: 1 year: 2003 ident: 10.1016/j.rse.2022.113199_bb0115 article-title: Retrieval of canopy biophysical variables from bidirectional reflectance: using prior information to solve the ill-posed inverse problem publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00035-4 – volume: 12 start-page: 119 year: 2010 ident: 10.1016/j.rse.2022.113199_bb0105 article-title: Estimating canopy water content using hyperspectral remote sensing data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 7 year: 2021 ident: 10.1016/j.rse.2022.113199_bb0085 article-title: A unified vegetation index for quantifying the terrestrial biosphere publication-title: Sci. Adv. doi: 10.1126/sciadv.abc7447 – volume: 42 start-page: 1688 year: 2021 ident: 10.1016/j.rse.2022.113199_bb0315 article-title: Inversion of the leaf area index of rice fields using vegetation isoline patterns considering the fraction of vegetation cover publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1841323 – volume: 162 start-page: 77 year: 2020 ident: 10.1016/j.rse.2022.113199_bb0160 article-title: A global canopy water content product from AVHRR/Metop publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.02.007 – volume: 115 start-page: 415 year: 2011 ident: 10.1016/j.rse.2022.113199_bb0330 article-title: Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: evaluation over an agricultural area with CHRIS/PROBA observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.09.012 – start-page: 1 year: 1996 ident: 10.1016/j.rse.2022.113199_bb0305 article-title: The Global Climate Observing System (GCOS) – volume: 35 start-page: 2769 year: 2007 ident: 10.1016/j.rse.2022.113199_bb0320 article-title: Measuring and testing dependence by correlation of distances publication-title: Ann. Stat. doi: 10.1214/009053607000000505 – volume: 258 year: 2021 ident: 10.1016/j.rse.2022.113199_bb0205 article-title: A data-driven approach to estimate leaf area index for Landsat images over the contiguous US publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112383 – volume: 10 start-page: 85 year: 2018 ident: 10.1016/j.rse.2022.113199_bb0045 article-title: Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: a review study publication-title: Remote Sens. doi: 10.3390/rs10010085 – year: 2016 ident: 10.1016/j.rse.2022.113199_bb0180 – volume: 57 start-page: 10025 year: 2019 ident: 10.1016/j.rse.2022.113199_bb0005 article-title: Nonlinear distribution regression for remote sensing applications publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2931085 – volume: 16 start-page: 125 year: 1984 ident: 10.1016/j.rse.2022.113199_bb0335 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(84)90057-9 – volume: 187 start-page: 102 year: 2016 ident: 10.1016/j.rse.2022.113199_bb0065 article-title: Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.009 – volume: 139 start-page: 57 year: 2018 ident: 10.1016/j.rse.2022.113199_bb0155 article-title: Derivation of global vegetation biophysical parameters from EUMETSAT polar system publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.03.005 – volume: 92 start-page: 465 year: 2004 ident: 10.1016/j.rse.2022.113199_bb0350 article-title: A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.06.003 – volume: 118 start-page: 127 year: 2012 ident: 10.1016/j.rse.2022.113199_bb0340 article-title: Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.002 – volume: 108 start-page: 273 year: 2015 ident: 10.1016/j.rse.2022.113199_bb0345 article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – a review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.05.005 – volume: 8 start-page: 2136 year: 2008 ident: 10.1016/j.rse.2022.113199_bb0170 article-title: Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape publication-title: Sensors doi: 10.3390/s8042136 – volume: 103 start-page: 32239 year: 1998 ident: 10.1016/j.rse.2022.113199_bb0230 article-title: Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/98JD02461 – year: 2013 ident: 10.1016/j.rse.2022.113199_bb0055 – volume: 110 start-page: 275 year: 2007 ident: 10.1016/j.rse.2022.113199_bb0035 article-title: LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: part 1: principles of the algorithm publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.018 – year: 1995 ident: 10.1016/j.rse.2022.113199_bb0050 – volume: vol. 7700 year: 2012 ident: 10.1016/j.rse.2022.113199_bb0275 – start-page: 234 year: 2020 ident: 10.1016/j.rse.2022.113199_bb0285 article-title: Uncertainty in neural networks: Approximately bayesian ensembling – volume: 5 start-page: 3153 year: 2020 ident: 10.1016/j.rse.2022.113199_bb0260 article-title: A general framework for uncertainty estimation in deep learning publication-title: IEEE Robot. Automat. Lett. doi: 10.1109/LRA.2020.2974682 – year: 2019 ident: 10.1016/j.rse.2022.113199_bb0015 article-title: Analyzing inverse problems with invertible neural networks – volume: 24 start-page: 4891 year: 2003 ident: 10.1016/j.rse.2022.113199_bb0125 article-title: Training a neural network with a canopy reflectance model to estimate crop leaf area index publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000070319 – year: 2006 ident: 10.1016/j.rse.2022.113199_bb0120 – year: 1999 ident: 10.1016/j.rse.2022.113199_bb0220 article-title: MODIS leaf area index (LAI), and fraction of photosynthetically active radiation absorbed by vegetation FPAR – volume: 42 start-page: 55 year: 2000 ident: 10.1016/j.rse.2022.113199_bb0270 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics doi: 10.1080/00401706.2000.10485979 – start-page: 1321 year: 2017 ident: 10.1016/j.rse.2022.113199_bb0190 article-title: On calibration of modern neural networks – year: 2011 ident: 10.1016/j.rse.2022.113199_bb0075 – volume: 11 year: 2019 ident: 10.1016/j.rse.2022.113199_bb0250 article-title: Clouds classification from Sentinel-2 imagery with deep residual learning and semantic image segmentation publication-title: Remote Sens. – volume: 44 start-page: 1794 year: 2006 ident: 10.1016/j.rse.2022.113199_bb0025 article-title: Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: proposition of the CEOS-BELMANIP publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.876030 – volume: 19 year: 2019 ident: 10.1016/j.rse.2022.113199_bb0290 article-title: Can we use satellite-based FAPAR to detect drought? publication-title: Sensors doi: 10.3390/s19173662 – volume: 6 start-page: 418 year: 1996 ident: 10.1016/j.rse.2022.113199_bb0110 article-title: An interior trust region approach for nonlinear minimization subject to bounds publication-title: SIAM J. Optim. doi: 10.1137/0806023 – volume: 16 start-page: 2415 year: 2004 ident: 10.1016/j.rse.2022.113199_bb0010 article-title: Neural network uncertainty assessment using Bayesian statistics: a remote sensing application publication-title: Neural Comput. doi: 10.1162/0899766041941925 – volume: 90 start-page: 337 year: 2004 ident: 10.1016/j.rse.2022.113199_bb0195 article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.12.013 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.rse.2022.113199_bb0310 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 3 start-page: 286 year: 2010 ident: 10.1016/j.rse.2022.113199_bb0100 article-title: Consolidating the two-stream inversion package (jrc-tip) to retrieve land surface parameters from albedo products publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2010.2046626 – volume: 112 start-page: 3030 year: 2008 ident: 10.1016/j.rse.2022.113199_bb0145 article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.012 – year: 2016 ident: 10.1016/j.rse.2022.113199_bb0355 – volume: 30 start-page: 2685 year: 2009 ident: 10.1016/j.rse.2022.113199_bb0325 article-title: Accuracy assessment of fraction of vegetation cover and leaf area index estimates from pragmatic methods in a cropland area publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802555804 – volume: 4 start-page: 58 year: 2016 ident: 10.1016/j.rse.2022.113199_bb0080 article-title: A survey on Gaussian processes for earth observation data analysis: a comprehensive investigation publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2015.2510084 – year: 2004 ident: 10.1016/j.rse.2022.113199_bb0235 – volume: 137 start-page: 299 year: 2013 ident: 10.1016/j.rse.2022.113199_bb0040 article-title: GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: principles of development and production publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.027 – volume: 225 start-page: 416 year: 2019 ident: 10.1016/j.rse.2022.113199_bb0135 article-title: Validation of the sentinel simplified level 2 product prototype processor (SL2P) for mapping cropland biophysical variables using Sentinel-2/MSI and Landsat-8/OLI data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.03.020 – year: 2011 ident: 10.1016/j.rse.2022.113199_bb0060 – volume: 419-420 start-page: 279 year: 2018 ident: 10.1016/j.rse.2022.113199_bb0265 article-title: Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.12.002 – volume: 13 year: 2021 ident: 10.1016/j.rse.2022.113199_bb0255 article-title: Benchmarking deep learning models for cloud detection in Landsat-8 and Sentinel-2 images publication-title: Remote Sens. doi: 10.3390/rs13050992 – volume: 64 start-page: 234 year: 1998 ident: 10.1016/j.rse.2022.113199_bb0020 article-title: Biophysical and biochemical sources of variability in canopy reflectance publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00014-5 – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.rse.2022.113199_bb0185 article-title: Google earth engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 26 start-page: 119 year: 2020 ident: 10.1016/j.rse.2022.113199_bb0210 article-title: TRY plant trait database–enhanced coverage and open access publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14904 – year: 2011 ident: 10.1016/j.rse.2022.113199_bb0165 – volume: 20 start-page: 111 year: 1999 ident: 10.1016/j.rse.2022.113199_bb0175 article-title: Inverting a canopy reflectance model using a neural network publication-title: Int. J. Remote Sens. doi: 10.1080/014311699213631 – start-page: 1050 year: 2016 ident: 10.1016/j.rse.2022.113199_bb0150 article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning – start-page: 269 year: 1977 ident: 10.1016/j.rse.2022.113199_bb0130 article-title: Nonlinear least-squares – volume: 201 year: 2020 ident: 10.1016/j.rse.2022.113199_bb0295 article-title: Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2019.103076 |
SSID | ssj0015871 |
Score | 2.4899197 |
Snippet | The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113199 |
SubjectTerms | algorithms Amazonia Biophysical parameter estimation biosphere canopy data collection Downscaling fractional vegetation cover Landsat leaf area index MODIS Neural networks photosynthetically active radiation reflectance time series analysis Uncertainty water content |
Title | Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning |
URI | https://dx.doi.org/10.1016/j.rse.2022.113199 https://www.proquest.com/docview/2718336284 |
Volume | 280 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED6GIvoiOhV_jgg-CdXaJEt9FHFOxYGg4FtI2kQn2g23CXvxb_euTRVFfPCxbVJK7nJ36X13H8AetUCzsk1t9lUcCW9kZD1ud8PJX5lcpJKqka977e6duLyX9w04rWthCFYZbH9l00trHe4chtU8HPb7VOPLBWlckpT5vLKCXSiC9R28f8I8jmSqKtY8LiIaXWc2S4zX64g6ZSYJMZtU7V9_9U0_rHTpejpLsBhiRnZSfdYyNFzRhLWzrxI1fBj26KgJ84HX_HHahLnzkrh3ugL6ZmIIF0RVTQx9WYUEGE9Zv2DUspjhsTtoIbP9wTCIj73hWZqqq_A5UW-hXjL6dcteShCmY4F14mEVbjtnt6fdKJArRBlXfBzxPFZOCC84zzj3VvpcxcZmx9I7h8cqPDdnPDPHLrOqbZXLJaUEcamdV9YmfA1mikHh1oGlymOYlHopcpRHOzUCbZbBUMOkcWas24C4XlWdhcbjxH_xrGuE2ZNGQWgShK4EsQH7n1OGVdeNvwaLWlT6m-po9Ap_TdutxapxS1GexBRuMBnpBP01R8eeis3_vXoLFuiqwvxtw8z4deJ2MHYZ21apnC2YPbm46vY-ACLk7pc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kQ_RFdCp-G8EnoViaZKmPMtT5NRAm-BaSNtGJdsNtwv5779pUUcQHX5ellNzlPnp3vx_AIUGgWdkmmH0VR8IbGVmP191w8lcmF6mkaeTbXrt7L64e5MMcdOpZGGqrDLa_sumltQ6_HIfTPB4NBjTjywVpXJKU9TxMgZqETiUa0Dy9vO72PosJMlUVcR4XEW2oi5tlm9fbmMAyk4TITSoE2F_d0w9DXXqf82VYCmEjO63ebAXmXNGC9bOvKTVcDNd03IKFQG3-NGvB_EXJ3TtbBX03NdQaRINNDN1Z1QwwmbFBwQi1mGHmHRSR2cFwFCTI3jGdpgErXCf2LVRNRl9v2WvZh-lYIJ54XIP--Vm_040Cv0KUccUnEc9j5YTwgvOMc2-lz1VsbHYivXOYWWHqnPHMnLjMqrZVLpdUFcTTdl5Zm_B1aBTDwm0AS5XHSCn1UuQoknZqBJotg9GGSePMWLcJcX2qOgvY40SB8aLrJrNnjYLQJAhdCWITjj63jCrgjb_-LGpR6W_ao9Ex_LXtoBarxltFpRJTuOF0rBN02Rx9eyq2_vfofVjo9m9v9M1l73obFmmlagHcgcbkbep2MZSZ2L2gqh9QDPFI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+uncertainty+in+high+resolution+biophysical+variable+retrieval+with+machine+learning&rft.jtitle=Remote+sensing+of+environment&rft.au=Mart%C3%ADnez-Ferrer%2C+Laura&rft.au=Moreno-Mart%C3%ADnez%2C+%C3%81lvaro&rft.au=Campos-Taberner%2C+Manuel&rft.au=Garc%C3%ADa-Haro%2C+Francisco+Javier&rft.date=2022-10-01&rft.issn=0034-4257&rft.volume=280&rft.spage=113199&rft_id=info:doi/10.1016%2Fj.rse.2022.113199&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2022_113199 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |