Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning

The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally resolved and spatially explicit maps of parameters of interest has been the subject of intense research. However, deriving products from optical sen...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 280; p. 113199
Main Authors Martínez-Ferrer, Laura, Moreno-Martínez, Álvaro, Campos-Taberner, Manuel, García-Haro, Francisco Javier, Muñoz-Marí, Jordi, Running, Steven W., Kimball, John, Clinton, Nicholas, Camps-Valls, Gustau
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2022
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2022.113199

Cover

Loading…
Abstract The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally resolved and spatially explicit maps of parameters of interest has been the subject of intense research. However, deriving products from optical sensors is typically hampered by cloud contamination and the trade-off between spatial and temporal resolutions. In this work we rely on the HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to generate long gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectances. An artificial neural network is trained on PROSAIL inversion to predict monthly biophysical variables at 30 m spatial resolution with associated, realistic uncertainty bars. We emphasize the need for a more thorough analysis of uncertainty, and propose a general and scalable approach to combine both epistemic and aleatoric uncertainties by exploiting Monte Carlo (MC) dropout techniques from the trained artificial network and the propagation of HISTARFM uncertainties through the model, respectively. A model recalibration was performed in order to provide reliable uncertainties. We provide new high resolution products of several key variables to quantify the terrestrial biosphere: Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Canopy Water Content (CWC) and Fractional Vegetation Cover (FVC) are at 30 m Landsat spatial resolution and over large continental areas. Two study areas are considered: the large heterogeneous but moderately cloud covered contiguous United States, and the homogeneous but largely cloud covered Amazonia. The produced vegetation products largely agree with the test dataset (R = 0.90, RMSE = 0.80 m2/m2 and ME = 0.12 m2/m2 for LAI, and R = 0.98, RMSE = 0.07 and ME = 0.01 for FAPAR) providing low error and high accuracy. Additionally, the validation considers a thorough comparison with operational and largely validated medium resolution products, such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Copernicus Global Land Service. Our products presented a good agreement and consistency with both MODIS (R = 0.84 and R = 0.85 for LAI and FAPAR, respectively) and Copernicus (R = 0.92 and R = 0.91 for LAI and FAPAR, respectively). To foster a wider adoption and reproducibility of the methodology we provide an application in GEE and source code at:https://github.com/IPL-UV/ee_BioNet/ •Proposed a methodology based on RTM inversion with NN for biophysical parameter estimation.•Uncertainty quantification considering model and data uncertainties.•Biophysical parameters and realistic uncertainties gap-free maps at high resolution (30 m).•Implications for high resolution carbon fluxes and phenologies applications.
AbstractList The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally resolved and spatially explicit maps of parameters of interest has been the subject of intense research. However, deriving products from optical sensors is typically hampered by cloud contamination and the trade-off between spatial and temporal resolutions. In this work we rely on the HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to generate long gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectances. An artificial neural network is trained on PROSAIL inversion to predict monthly biophysical variables at 30 m spatial resolution with associated, realistic uncertainty bars. We emphasize the need for a more thorough analysis of uncertainty, and propose a general and scalable approach to combine both epistemic and aleatoric uncertainties by exploiting Monte Carlo (MC) dropout techniques from the trained artificial network and the propagation of HISTARFM uncertainties through the model, respectively. A model recalibration was performed in order to provide reliable uncertainties. We provide new high resolution products of several key variables to quantify the terrestrial biosphere: Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Canopy Water Content (CWC) and Fractional Vegetation Cover (FVC) are at 30 m Landsat spatial resolution and over large continental areas. Two study areas are considered: the large heterogeneous but moderately cloud covered contiguous United States, and the homogeneous but largely cloud covered Amazonia. The produced vegetation products largely agree with the test dataset (R = 0.90, RMSE = 0.80 m2/m2 and ME = 0.12 m2/m2 for LAI, and R = 0.98, RMSE = 0.07 and ME = 0.01 for FAPAR) providing low error and high accuracy. Additionally, the validation considers a thorough comparison with operational and largely validated medium resolution products, such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Copernicus Global Land Service. Our products presented a good agreement and consistency with both MODIS (R = 0.84 and R = 0.85 for LAI and FAPAR, respectively) and Copernicus (R = 0.92 and R = 0.91 for LAI and FAPAR, respectively). To foster a wider adoption and reproducibility of the methodology we provide an application in GEE and source code at:https://github.com/IPL-UV/ee_BioNet/ •Proposed a methodology based on RTM inversion with NN for biophysical parameter estimation.•Uncertainty quantification considering model and data uncertainties.•Biophysical parameters and realistic uncertainties gap-free maps at high resolution (30 m).•Implications for high resolution carbon fluxes and phenologies applications.
The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally resolved and spatially explicit maps of parameters of interest has been the subject of intense research. However, deriving products from optical sensors is typically hampered by cloud contamination and the trade-off between spatial and temporal resolutions. In this work we rely on the HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to generate long gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectances. An artificial neural network is trained on PROSAIL inversion to predict monthly biophysical variables at 30 m spatial resolution with associated, realistic uncertainty bars. We emphasize the need for a more thorough analysis of uncertainty, and propose a general and scalable approach to combine both epistemic and aleatoric uncertainties by exploiting Monte Carlo (MC) dropout techniques from the trained artificial network and the propagation of HISTARFM uncertainties through the model, respectively. A model recalibration was performed in order to provide reliable uncertainties. We provide new high resolution products of several key variables to quantify the terrestrial biosphere: Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Canopy Water Content (CWC) and Fractional Vegetation Cover (FVC) are at 30 m Landsat spatial resolution and over large continental areas. Two study areas are considered: the large heterogeneous but moderately cloud covered contiguous United States, and the homogeneous but largely cloud covered Amazonia. The produced vegetation products largely agree with the test dataset (R = 0.90, RMSE = 0.80 m²/m² and ME = 0.12 m²/m² for LAI, and R = 0.98, RMSE = 0.07 and ME = 0.01 for FAPAR) providing low error and high accuracy. Additionally, the validation considers a thorough comparison with operational and largely validated medium resolution products, such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Copernicus Global Land Service. Our products presented a good agreement and consistency with both MODIS (R = 0.84 and R = 0.85 for LAI and FAPAR, respectively) and Copernicus (R = 0.92 and R = 0.91 for LAI and FAPAR, respectively). To foster a wider adoption and reproducibility of the methodology we provide an application in GEE and source code at:https://github.com/IPL-UV/ee_BioNet/
ArticleNumber 113199
Author Martínez-Ferrer, Laura
Running, Steven W.
Clinton, Nicholas
García-Haro, Francisco Javier
Campos-Taberner, Manuel
Camps-Valls, Gustau
Moreno-Martínez, Álvaro
Kimball, John
Muñoz-Marí, Jordi
Author_xml – sequence: 1
  givenname: Laura
  surname: Martínez-Ferrer
  fullname: Martínez-Ferrer, Laura
  email: laura.martinez-ferrer@uv.es
  organization: Image Processing Laboratory (IPL), Universitat de València, València, Spain
– sequence: 2
  givenname: Álvaro
  surname: Moreno-Martínez
  fullname: Moreno-Martínez, Álvaro
  organization: Image Processing Laboratory (IPL), Universitat de València, València, Spain
– sequence: 3
  givenname: Manuel
  surname: Campos-Taberner
  fullname: Campos-Taberner, Manuel
  organization: Environmental Remote Sensing Group, Universitat de València, València, Spain
– sequence: 4
  givenname: Francisco Javier
  surname: García-Haro
  fullname: García-Haro, Francisco Javier
  organization: Environmental Remote Sensing Group, Universitat de València, València, Spain
– sequence: 5
  givenname: Jordi
  surname: Muñoz-Marí
  fullname: Muñoz-Marí, Jordi
  organization: Image Processing Laboratory (IPL), Universitat de València, València, Spain
– sequence: 6
  givenname: Steven W.
  surname: Running
  fullname: Running, Steven W.
  organization: Numerical Terradynamic Simulation Group (NTSG), University of Montana, USA
– sequence: 7
  givenname: John
  surname: Kimball
  fullname: Kimball, John
  organization: Numerical Terradynamic Simulation Group (NTSG), University of Montana, USA
– sequence: 8
  givenname: Nicholas
  surname: Clinton
  fullname: Clinton, Nicholas
  organization: Google, Inc., Mountain View, CA, USA
– sequence: 9
  givenname: Gustau
  surname: Camps-Valls
  fullname: Camps-Valls, Gustau
  organization: Image Processing Laboratory (IPL), Universitat de València, València, Spain
BookMark eNp9kMtqwzAQRUVJoUnaD-jOy26c6mFbNl2V0BcESiF7IcvjeIIjp5Kc4r-vg7vqIquBmXsuzFmQme0sEHLP6IpRlj3uV87DilPOV4wJVhRXZM5yWcRU0mRG5pSKJE54Km_Iwvs9pSzNJZsT9dVrG7Ae0O6i3hpwQaMNQ4Q2anDXRA581_YBOxuV2B2bwaPRbXTSDnXZwngPDuE0rn4wNNFBmwYtRC1oZ8fOW3Jd69bD3d9cku3ry3b9Hm8-3z7Wz5vYCClCLCoqIUnqRAgjRF2mdSWpLk2R1gA8YzTJjDC6AFPKrJRQpSkvUk4p1LIsuViSh6n26LrvHnxQB_QG2lZb6HqvuGS5EBnPkzHKpqhxnfcOanV0eNBuUIyqs0u1V6NLdXapJpcjI_8xBoM-SwlOY3uRfJpIGJ8_ITjlDcLouUIHJqiqwwv0Lx_Dky0
CitedBy_id crossref_primary_10_1002_spe_3365
crossref_primary_10_1017_eds_2024_22
crossref_primary_10_61186_jgst_14_2_89
crossref_primary_10_1029_2024WR037444
crossref_primary_10_3390_f14071418
crossref_primary_10_1109_JSTARS_2022_3231380
crossref_primary_10_1016_j_asr_2025_02_052
crossref_primary_10_1109_JSTARS_2024_3522938
crossref_primary_10_1016_j_eja_2024_127362
crossref_primary_10_1109_JSTARS_2024_3426044
crossref_primary_10_1038_s41597_024_02998_7
crossref_primary_10_1088_1748_9326_acaf0f
crossref_primary_10_1016_j_rse_2024_114228
crossref_primary_10_1109_TGRS_2022_3227565
crossref_primary_10_1016_j_rse_2024_114224
crossref_primary_10_3390_rs15133404
Cites_doi 10.1038/s41586-019-0912-1
10.3390/rs10081167
10.1016/j.rse.2020.111901
10.1109/TGRS.2003.813493
10.1111/j.1365-3040.1992.tb00992.x
10.1029/97JD03380
10.1016/S0034-4257(02)00035-4
10.1126/sciadv.abc7447
10.1080/01431161.2020.1841323
10.1016/j.isprsjprs.2020.02.007
10.1016/j.rse.2010.09.012
10.1214/009053607000000505
10.1016/j.rse.2021.112383
10.3390/rs10010085
10.1109/TGRS.2019.2931085
10.1016/0034-4257(84)90057-9
10.1016/j.rse.2016.10.009
10.1016/j.isprsjprs.2018.03.005
10.1016/j.rse.2004.06.003
10.1016/j.rse.2011.11.002
10.1016/j.isprsjprs.2015.05.005
10.3390/s8042136
10.1029/98JD02461
10.1016/j.rse.2007.02.018
10.1109/LRA.2020.2974682
10.1080/0143116031000070319
10.1080/00401706.2000.10485979
10.1109/TGRS.2006.876030
10.3390/s19173662
10.1137/0806023
10.1162/0899766041941925
10.1016/j.rse.2003.12.013
10.1109/JSTARS.2010.2046626
10.1016/j.rse.2008.02.012
10.1080/01431160802555804
10.1109/MGRS.2015.2510084
10.1016/j.rse.2012.12.027
10.1016/j.rse.2019.03.020
10.1016/j.foreco.2017.12.002
10.3390/rs13050992
10.1016/S0034-4257(98)00014-5
10.1016/j.rse.2017.06.031
10.1111/gcb.14904
10.1080/014311699213631
10.1016/j.earscirev.2019.103076
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rse.2022.113199
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2022_113199
S0034425722003091
GeographicLocations Amazonia
GeographicLocations_xml – name: Amazonia
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c373t-3d07e44f433c33fb5fd70abc95fee261046c3ca9ecb76b7ed55295200ef7bb23
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Tue Aug 05 10:53:59 EDT 2025
Thu Apr 24 23:10:41 EDT 2025
Tue Jul 01 03:51:31 EDT 2025
Fri Feb 23 02:39:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biophysical parameter estimation
Uncertainty
Downscaling
Neural networks
MODIS
Landsat
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-3d07e44f433c33fb5fd70abc95fee261046c3ca9ecb76b7ed55295200ef7bb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0034425722003091
PQID 2718336284
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718336284
crossref_primary_10_1016_j_rse_2022_113199
crossref_citationtrail_10_1016_j_rse_2022_113199
elsevier_sciencedirect_doi_10_1016_j_rse_2022_113199
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Remote sensing of environment
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Knyazikhin (bb0220) 1999
Verrelst, Camps-Valls, Muñoz-Marí, Rivera, Veroustraete, Clevers, Moreno (bb0345) 2015; 108
García-Haro, Campos-Taberner, Moreno, Tagesson, Camacho, Martínez, Sánchez, Piles, Camps-Valls, Yebra, Gilabert (bb0160) 2020; 162
Cover, Thomas (bb0120) 2006
Baret, Morissette, Fernandes, Champeaux, Myneni, Chen, Plummer, Weiss, Bacour, Garrigues, Nickeson (bb0025) 2006; 44
García-Haro, Campos-Taberner, Muñoz-Marí, Laparra, Camacho, Sãnchez-Zapero, Camps-Valls (bb0155) 2018; 139
Kingma, Ba (bb0215) 2014
Mckay, Beckman, Conover (bb0270) 2000; 42
Knyazikhin, Martonchik, Diner, Myneni, Verstraete, Pinty, Gobron (bb0230) 1998; 103
Kattge, Bönisch, Díaz, Lavorel, Prentice, Leadley, Tautenhahn, Werner, Aakala, Abedi (bb0210) 2020; 26
Liang (bb0235) 2004
Glenn, Huete, Nagler, Nelson (bb0170) 2008; 8
Hollander, Wolfe, Chicken (bb0200) 2013; vol. 751
Pearce, Leibfried, Brintrup (bb0285) 2020
Ardizzone, Kruse, Wirkert, Rahner, Pellegrini, Klessen, Maier-Hein, Rother, Köthe (bb0015) 2019
Bonham (bb0055) 2013
Caers (bb0060) 2011
Goodfellow, Bengio, Courville (bb0180) 2016
Weiss, Baret (bb0355) 2016
Adsuara, Pérez-Suay, Muñoz-Marí, Mateo-Sanchis, Piles, Camps-Valls (bb0005) 2019; 57
Campos-Taberner, García-Haro, Camps-Valls, Grau-Muedra, Nutini, Crema, Boschetti (bb0065) 2016; 187
Clerici, Vossbeck, Pinty, Kaminski, Taberner, Lavergne, Andredakis (bb0100) 2010; 3
Peng, Muller, Blessing, Giering, Danne, Gobron, Kharbouche, Ludwig, Müller, Leng, You, Duan, Dadson (bb0290) 2019; 19
Baret, Weiss, Lacaze, Camacho, Makhmara, Pacholcyzk, Smets (bb0040) 2013; 137
Haboudane, Miller, Pattey, Zarco-Tejada, Strachan (bb0195) 2004; 90
Coleman, Li (bb0110) 1996; 6
Lillesand, Kiefer, Chipman (bb0245) 2008
Gong (bb0175) 1999; 20
Verhoef (bb0335) 1984; 16
Aires, Prigent, Rossow (bb0010) 2004; 16
Liu, Zhang, Chen, Lai, Chen, Cheng, Ko (bb0250) 2019; 11
Verger, Martínez, Coca, García-Haro (bb0325) 2009; 30
Danson, Rowland, Baret (bb0125) 2003; 24
Clevers, Kooistra, Schaepman (bb0105) 2010; 12
Walthall, Dulaney, Anderson, Norman, Fang, Liang (bb0350) 2004; 92
Sun, Lu, Liu (bb0315) 2021; 42
Combal, Baret, Weiss, Trubuil, Mace, Pragnere, Myneni, Knyazikhin, Wang (bb0115) 2003; 84
Berger, Atzberger, Danner, D’Urso, Mauser, Vuolo, Hank (bb0045) 2018; 10
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bb0300) 2019; 566
Székely, Rizzo, Bakirov (bb0320) 2007; 35
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bb0185) 2017; 202
López-Puigdollers, Mateo-García, Gómez-Chova (bb0255) 2021; 13
Fang, Liang (bb0140) 2003; 41
Spence, Townshend (bb0305) 1996
Montavon, Orr, Müller (bb0275) 2012; vol. 7700
(bb0075) 2011
Feret, François, Asner, Gitelson, Martin, Bidel, Ustin, Le Maire, Jacquemoud (bb0145) 2008; 112
Bishop (bb0050) 1995
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0310) 2014; 15
Guo, Pleiss, Sun, Weinberger (bb0190) 2017
Verrelst, Muñoz, Alonso, Delegido, Rivera, Camps-Valls, Moreno (bb0340) 2012; 118
Knyazikhin, Kranigk, Myneni, Panfyorov, Gravenhorst (bb0225) 1998; 103
Campos-Taberner, Moreno-Martínez, García-Haro, Camps-Valls, Robinson, Kattge, Running (bb0070) 2018; 10
GCOS (bb0165) 2011
Camps-Valls, Verrelst, Muñoz-Marí, Laparra, Mateo-Jimenez, Gómez-Dans (bb0080) 2016; 4
Camps-Valls, Tuia, Zhu, Reichstein (bb0090) 2021
Djamai, Fernandes, Weiss, McNairn, Goïta (bb0135) 2019; 225
Liang (bb0240) 2008
Martin, Asner, Francis, Ambrose, Baxter, Das, Vaughn, Paz-Kagan, Dawson, Nydick, Stephenson (bb0265) 2018; 419-420
Moreno-Martínez, Izquierdo-Verdiguier, Maneta, Camps-Valls, Robinson, Muñoz-Marí, Sedano, Clinton, Running (bb0280) 2020; 247
Kang, Ozdogan, Gao, Anderson, White, Yang, Yang, Erickson (bb0205) 2021; 258
Asner (bb0020) 1998; 64
Dennis (bb0130) 1977
Piotrowski, Napiorkowski, Piotrowska (bb0295) 2020; 201
Loquercio, Segu, Scaramuzza (bb0260) 2020; 5
Camps-Valls, Campos-Taberner, Moreno-Martínez, Walther, Duveiller, Cescatti, Mahecha, Muñoz-Marí, García-Haro, Guanter, Jung, Gamon, Reichstein, Running (bb0085) 2021; 7
Chen, Black (bb0095) 1992; 15
Baret, Hagolle, Geiger, Bicheron, Miras, Huc, Berthelot, Niño, Weiss, Samain, Roujean, Leroy (bb0035) 2007; 110
Gal, Ghahramani (bb0150) 2016
Verger, Baret, Camacho (bb0330) 2011; 115
Glenn (10.1016/j.rse.2022.113199_bb0170) 2008; 8
Peng (10.1016/j.rse.2022.113199_bb0290) 2019; 19
Clevers (10.1016/j.rse.2022.113199_bb0105) 2010; 12
Danson (10.1016/j.rse.2022.113199_bb0125) 2003; 24
Liang (10.1016/j.rse.2022.113199_bb0235) 2004
Knyazikhin (10.1016/j.rse.2022.113199_bb0220) 1999
Bonham (10.1016/j.rse.2022.113199_bb0055) 2013
Campos-Taberner (10.1016/j.rse.2022.113199_bb0065) 2016; 187
Gal (10.1016/j.rse.2022.113199_bb0150) 2016
Djamai (10.1016/j.rse.2022.113199_bb0135) 2019; 225
Spence (10.1016/j.rse.2022.113199_bb0305) 1996
Verhoef (10.1016/j.rse.2022.113199_bb0335) 1984; 16
Pearce (10.1016/j.rse.2022.113199_bb0285) 2020
Srivastava (10.1016/j.rse.2022.113199_bb0310) 2014; 15
Ardizzone (10.1016/j.rse.2022.113199_bb0015) 2019
Fang (10.1016/j.rse.2022.113199_bb0140) 2003; 41
GCOS (10.1016/j.rse.2022.113199_bb0165) 2011
Combal (10.1016/j.rse.2022.113199_bb0115) 2003; 84
Haboudane (10.1016/j.rse.2022.113199_bb0195) 2004; 90
Adsuara (10.1016/j.rse.2022.113199_bb0005) 2019; 57
Knyazikhin (10.1016/j.rse.2022.113199_bb0225) 1998; 103
Mckay (10.1016/j.rse.2022.113199_bb0270) 2000; 42
Verger (10.1016/j.rse.2022.113199_bb0325) 2009; 30
Montavon (10.1016/j.rse.2022.113199_bb0275) 2012; vol. 7700
Székely (10.1016/j.rse.2022.113199_bb0320) 2007; 35
Sun (10.1016/j.rse.2022.113199_bb0315) 2021; 42
Gong (10.1016/j.rse.2022.113199_bb0175) 1999; 20
López-Puigdollers (10.1016/j.rse.2022.113199_bb0255) 2021; 13
Knyazikhin (10.1016/j.rse.2022.113199_bb0230) 1998; 103
Berger (10.1016/j.rse.2022.113199_bb0045) 2018; 10
Camps-Valls (10.1016/j.rse.2022.113199_bb0085) 2021; 7
Aires (10.1016/j.rse.2022.113199_bb0010) 2004; 16
Lillesand (10.1016/j.rse.2022.113199_bb0245) 2008
Liu (10.1016/j.rse.2022.113199_bb0250) 2019; 11
Kingma (10.1016/j.rse.2022.113199_bb0215) 2014
Cover (10.1016/j.rse.2022.113199_bb0120) 2006
Martin (10.1016/j.rse.2022.113199_bb0265) 2018; 419-420
Baret (10.1016/j.rse.2022.113199_bb0040) 2013; 137
Campos-Taberner (10.1016/j.rse.2022.113199_bb0070) 2018; 10
Reichstein (10.1016/j.rse.2022.113199_bb0300) 2019; 566
Verrelst (10.1016/j.rse.2022.113199_bb0340) 2012; 118
Verrelst (10.1016/j.rse.2022.113199_bb0345) 2015; 108
Liang (10.1016/j.rse.2022.113199_bb0240) 2008
Camps-Valls (10.1016/j.rse.2022.113199_bb0090) 2021
Asner (10.1016/j.rse.2022.113199_bb0020) 1998; 64
Dennis (10.1016/j.rse.2022.113199_bb0130) 1977
Moreno-Martínez (10.1016/j.rse.2022.113199_bb0280) 2020; 247
García-Haro (10.1016/j.rse.2022.113199_bb0155) 2018; 139
Baret (10.1016/j.rse.2022.113199_bb0035) 2007; 110
Caers (10.1016/j.rse.2022.113199_bb0060) 2011
Loquercio (10.1016/j.rse.2022.113199_bb0260) 2020; 5
Clerici (10.1016/j.rse.2022.113199_bb0100) 2010; 3
Chen (10.1016/j.rse.2022.113199_bb0095) 1992; 15
(10.1016/j.rse.2022.113199_bb0075) 2011
Coleman (10.1016/j.rse.2022.113199_bb0110) 1996; 6
Weiss (10.1016/j.rse.2022.113199_bb0355) 2016
Walthall (10.1016/j.rse.2022.113199_bb0350) 2004; 92
Goodfellow (10.1016/j.rse.2022.113199_bb0180) 2016
Kattge (10.1016/j.rse.2022.113199_bb0210) 2020; 26
Camps-Valls (10.1016/j.rse.2022.113199_bb0080) 2016; 4
Baret (10.1016/j.rse.2022.113199_bb0025) 2006; 44
Kang (10.1016/j.rse.2022.113199_bb0205) 2021; 258
Gorelick (10.1016/j.rse.2022.113199_bb0185) 2017; 202
García-Haro (10.1016/j.rse.2022.113199_bb0160) 2020; 162
Verger (10.1016/j.rse.2022.113199_bb0330) 2011; 115
Feret (10.1016/j.rse.2022.113199_bb0145) 2008; 112
Guo (10.1016/j.rse.2022.113199_bb0190) 2017
Hollander (10.1016/j.rse.2022.113199_bb0200) 2013; vol. 751
Bishop (10.1016/j.rse.2022.113199_bb0050) 1995
Piotrowski (10.1016/j.rse.2022.113199_bb0295) 2020; 201
References_xml – volume: 84
  start-page: 1
  year: 2003
  end-page: 15
  ident: bb0115
  article-title: Retrieval of canopy biophysical variables from bidirectional reflectance: using prior information to solve the ill-posed inverse problem
  publication-title: Remote Sens. Environ.
– volume: 13
  year: 2021
  ident: bb0255
  article-title: Benchmarking deep learning models for cloud detection in Landsat-8 and Sentinel-2 images
  publication-title: Remote Sens.
– year: 2016
  ident: bb0180
  article-title: Deep Learning
– volume: 112
  start-page: 3030
  year: 2008
  end-page: 3043
  ident: bb0145
  article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments
  publication-title: Remote Sens. Environ.
– volume: 92
  start-page: 465
  year: 2004
  end-page: 474
  ident: bb0350
  article-title: A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery
  publication-title: Remote Sens. Environ.
– year: 2019
  ident: bb0015
  article-title: Analyzing inverse problems with invertible neural networks
  publication-title: International Conference on Learning Representations
– volume: 41
  start-page: 2052
  year: 2003
  end-page: 2062
  ident: bb0140
  article-title: Retrieving leaf area index with a neural network method: simulation and validation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  start-page: 85
  year: 2018
  ident: bb0045
  article-title: Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: a review study
  publication-title: Remote Sens.
– year: 1995
  ident: bb0050
  article-title: Neural Networks for Pattern Recognition
– year: 1999
  ident: bb0220
  article-title: MODIS leaf area index (LAI), and fraction of photosynthetically active radiation absorbed by vegetation FPAR
  publication-title: Technical Report GSFC/NASA
– start-page: 269
  year: 1977
  end-page: 312
  ident: bb0130
  article-title: Nonlinear least-squares
  publication-title: State of the Art in Numerical Analysis
– volume: 162
  start-page: 77
  year: 2020
  end-page: 93
  ident: bb0160
  article-title: A global canopy water content product from AVHRR/Metop
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 15
  start-page: 421
  year: 1992
  end-page: 429
  ident: bb0095
  article-title: Defining leaf area index for non-flat leaves
  publication-title: Plant Cell Environ.
– volume: 10
  start-page: 1167
  year: 2018
  ident: bb0070
  article-title: Global estimation of biophysical variables from Google Earth Engine platform
  publication-title: Remote Sens.
– volume: 5
  start-page: 3153
  year: 2020
  end-page: 3160
  ident: bb0260
  article-title: A general framework for uncertainty estimation in deep learning
  publication-title: IEEE Robot. Automat. Lett.
– volume: vol. 751
  year: 2013
  ident: bb0200
  article-title: Nonparametric Statistical Methods
– year: 2008
  ident: bb0240
  article-title: Advances in Land Remote Sensing: System, Modeling, Inversion and Applications
– volume: 118
  start-page: 127
  year: 2012
  end-page: 139
  ident: bb0340
  article-title: Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3
  publication-title: Remote Sens. Environ.
– volume: 44
  start-page: 1794
  year: 2006
  end-page: 1803
  ident: bb0025
  article-title: Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: proposition of the CEOS-BELMANIP
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 26
  start-page: 119
  year: 2020
  end-page: 188
  ident: bb0210
  article-title: TRY plant trait database–enhanced coverage and open access
  publication-title: Glob. Chang. Biol.
– volume: 90
  start-page: 337
  year: 2004
  end-page: 352
  ident: bb0195
  article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture
  publication-title: Remote Sens. Environ.
– start-page: 1
  year: 2014
  end-page: 15
  ident: bb0215
  article-title: Adam: A Method for Stochastic Optimization
– volume: 201
  year: 2020
  ident: bb0295
  article-title: Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling
  publication-title: Earth Sci. Rev.
– volume: 103
  start-page: 6133
  year: 1998
  end-page: 6144
  ident: bb0225
  article-title: Influence of small-scale structure on radiative tranfer and photosynthesis in vegetation canopies
  publication-title: J. Geophys. Res.
– volume: 42
  start-page: 55
  year: 2000
  end-page: 61
  ident: bb0270
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 103
  start-page: 32239
  year: 1998
  end-page: 32256
  ident: bb0230
  article-title: Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data
  publication-title: J. Geophys. Res.-Atmos.
– year: 2021
  ident: bb0090
  article-title: Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences
– volume: 258
  year: 2021
  ident: bb0205
  article-title: A data-driven approach to estimate leaf area index for Landsat images over the contiguous US
  publication-title: Remote Sens. Environ.
– volume: 108
  start-page: 273
  year: 2015
  end-page: 290
  ident: bb0345
  article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 137
  start-page: 299
  year: 2013
  end-page: 309
  ident: bb0040
  article-title: GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: principles of development and production
  publication-title: Remote Sens. Environ.
– start-page: 1321
  year: 2017
  end-page: 1330
  ident: bb0190
  article-title: On calibration of modern neural networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– volume: 187
  start-page: 102
  year: 2016
  end-page: 118
  ident: bb0065
  article-title: Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring
  publication-title: Remote Sens. Environ.
– volume: 64
  start-page: 234
  year: 1998
  end-page: 253
  ident: bb0020
  article-title: Biophysical and biochemical sources of variability in canopy reflectance
  publication-title: Remote Sens. Environ.
– volume: 139
  start-page: 57
  year: 2018
  end-page: 74
  ident: bb0155
  article-title: Derivation of global vegetation biophysical parameters from EUMETSAT polar system
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 57
  start-page: 10025
  year: 2019
  end-page: 10035
  ident: bb0005
  article-title: Nonlinear distribution regression for remote sensing applications
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 4
  start-page: 58
  year: 2016
  end-page: 78
  ident: bb0080
  article-title: A survey on Gaussian processes for earth observation data analysis: a comprehensive investigation
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 8
  start-page: 2136
  year: 2008
  end-page: 2160
  ident: bb0170
  article-title: Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape
  publication-title: Sensors
– year: 2011
  ident: bb0075
  publication-title: Remote Sensing Image Processing
– volume: 419-420
  start-page: 279
  year: 2018
  end-page: 290
  ident: bb0265
  article-title: Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought
  publication-title: For. Ecol. Manag.
– volume: 16
  start-page: 2415
  year: 2004
  end-page: 2458
  ident: bb0010
  article-title: Neural network uncertainty assessment using Bayesian statistics: a remote sensing application
  publication-title: Neural Comput.
– year: 2013
  ident: bb0055
  article-title: Measurements for Terrestrial Vegetation
– year: 2004
  ident: bb0235
  article-title: Quantitative Remote Sensing of Land Surfaces
– volume: 42
  start-page: 1688
  year: 2021
  end-page: 1712
  ident: bb0315
  article-title: Inversion of the leaf area index of rice fields using vegetation isoline patterns considering the fraction of vegetation cover
  publication-title: Int. J. Remote Sens.
– volume: 30
  start-page: 2685
  year: 2009
  end-page: 2704
  ident: bb0325
  article-title: Accuracy assessment of fraction of vegetation cover and leaf area index estimates from pragmatic methods in a cropland area
  publication-title: Int. J. Remote Sens.
– volume: 6
  start-page: 418
  year: 1996
  end-page: 445
  ident: bb0110
  article-title: An interior trust region approach for nonlinear minimization subject to bounds
  publication-title: SIAM J. Optim.
– volume: vol. 7700
  year: 2012
  ident: bb0275
  article-title: Neural Networks: Tricks of the Trade
– volume: 19
  year: 2019
  ident: bb0290
  article-title: Can we use satellite-based FAPAR to detect drought?
  publication-title: Sensors
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: bb0300
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
– volume: 7
  year: 2021
  ident: bb0085
  article-title: A unified vegetation index for quantifying the terrestrial biosphere
  publication-title: Sci. Adv.
– year: 2011
  ident: bb0060
  article-title: Modeling Uncertainty in the Earth Sciences
– start-page: 234
  year: 2020
  end-page: 244
  ident: bb0285
  article-title: Uncertainty in neural networks: Approximately bayesian ensembling
  publication-title: International Conference on Artificial Intelligence and Statistics
– volume: 12
  start-page: 119
  year: 2010
  end-page: 125
  ident: bb0105
  article-title: Estimating canopy water content using hyperspectral remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2011
  ident: bb0165
  article-title: Systematic Observation Requirements for Satellite-Based Products for Climate, 2011
– start-page: 1
  year: 1996
  end-page: 4
  ident: bb0305
  article-title: The Global Climate Observing System (GCOS)
  publication-title: Long-Term Climate Monitoring by the Global Climate Observing System
– volume: 24
  start-page: 4891
  year: 2003
  end-page: 4905
  ident: bb0125
  article-title: Training a neural network with a canopy reflectance model to estimate crop leaf area index
  publication-title: Int. J. Remote Sens.
– volume: 3
  start-page: 286
  year: 2010
  end-page: 295
  ident: bb0100
  article-title: Consolidating the two-stream inversion package (jrc-tip) to retrieve land surface parameters from albedo products
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 115
  start-page: 415
  year: 2011
  end-page: 426
  ident: bb0330
  article-title: Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: evaluation over an agricultural area with CHRIS/PROBA observations
  publication-title: Remote Sens. Environ.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: bb0185
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 110
  start-page: 275
  year: 2007
  end-page: 286
  ident: bb0035
  article-title: LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: part 1: principles of the algorithm
  publication-title: Remote Sens. Environ.
– year: 2008
  ident: bb0245
  article-title: Remote Sensing and Image Interpretation
– year: 2006
  ident: bb0120
  article-title: Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing)
– volume: 35
  start-page: 2769
  year: 2007
  end-page: 2794
  ident: bb0320
  article-title: Measuring and testing dependence by correlation of distances
  publication-title: Ann. Stat.
– start-page: 1050
  year: 2016
  end-page: 1059
  ident: bb0150
  article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning
  publication-title: International Conference on Machine Learning
– year: 2016
  ident: bb0355
  article-title: S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER
– volume: 20
  start-page: 111
  year: 1999
  end-page: 122
  ident: bb0175
  article-title: Inverting a canopy reflectance model using a neural network
  publication-title: Int. J. Remote Sens.
– volume: 225
  start-page: 416
  year: 2019
  end-page: 430
  ident: bb0135
  article-title: Validation of the sentinel simplified level 2 product prototype processor (SL2P) for mapping cropland biophysical variables using Sentinel-2/MSI and Landsat-8/OLI data
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bb0310
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 11
  year: 2019
  ident: bb0250
  article-title: Clouds classification from Sentinel-2 imagery with deep residual learning and semantic image segmentation
  publication-title: Remote Sens.
– volume: 16
  start-page: 125
  year: 1984
  end-page: 141
  ident: bb0335
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model
  publication-title: Remote Sens. Environ.
– volume: 247
  year: 2020
  ident: bb0280
  article-title: Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
  publication-title: Remote Sens. Environ.
– year: 2021
  ident: 10.1016/j.rse.2022.113199_bb0090
– start-page: 1
  year: 2014
  ident: 10.1016/j.rse.2022.113199_bb0215
– year: 2008
  ident: 10.1016/j.rse.2022.113199_bb0240
– volume: 566
  start-page: 195
  year: 2019
  ident: 10.1016/j.rse.2022.113199_bb0300
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 10
  start-page: 1167
  year: 2018
  ident: 10.1016/j.rse.2022.113199_bb0070
  article-title: Global estimation of biophysical variables from Google Earth Engine platform
  publication-title: Remote Sens.
  doi: 10.3390/rs10081167
– volume: 247
  year: 2020
  ident: 10.1016/j.rse.2022.113199_bb0280
  article-title: Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111901
– volume: 41
  start-page: 2052
  year: 2003
  ident: 10.1016/j.rse.2022.113199_bb0140
  article-title: Retrieving leaf area index with a neural network method: simulation and validation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.813493
– volume: vol. 751
  year: 2013
  ident: 10.1016/j.rse.2022.113199_bb0200
– year: 2008
  ident: 10.1016/j.rse.2022.113199_bb0245
– volume: 15
  start-page: 421
  year: 1992
  ident: 10.1016/j.rse.2022.113199_bb0095
  article-title: Defining leaf area index for non-flat leaves
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.1992.tb00992.x
– volume: 103
  start-page: 6133
  year: 1998
  ident: 10.1016/j.rse.2022.113199_bb0225
  article-title: Influence of small-scale structure on radiative tranfer and photosynthesis in vegetation canopies
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JD03380
– volume: 84
  start-page: 1
  year: 2003
  ident: 10.1016/j.rse.2022.113199_bb0115
  article-title: Retrieval of canopy biophysical variables from bidirectional reflectance: using prior information to solve the ill-posed inverse problem
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00035-4
– volume: 12
  start-page: 119
  year: 2010
  ident: 10.1016/j.rse.2022.113199_bb0105
  article-title: Estimating canopy water content using hyperspectral remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  year: 2021
  ident: 10.1016/j.rse.2022.113199_bb0085
  article-title: A unified vegetation index for quantifying the terrestrial biosphere
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc7447
– volume: 42
  start-page: 1688
  year: 2021
  ident: 10.1016/j.rse.2022.113199_bb0315
  article-title: Inversion of the leaf area index of rice fields using vegetation isoline patterns considering the fraction of vegetation cover
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1841323
– volume: 162
  start-page: 77
  year: 2020
  ident: 10.1016/j.rse.2022.113199_bb0160
  article-title: A global canopy water content product from AVHRR/Metop
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.02.007
– volume: 115
  start-page: 415
  year: 2011
  ident: 10.1016/j.rse.2022.113199_bb0330
  article-title: Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: evaluation over an agricultural area with CHRIS/PROBA observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.09.012
– start-page: 1
  year: 1996
  ident: 10.1016/j.rse.2022.113199_bb0305
  article-title: The Global Climate Observing System (GCOS)
– volume: 35
  start-page: 2769
  year: 2007
  ident: 10.1016/j.rse.2022.113199_bb0320
  article-title: Measuring and testing dependence by correlation of distances
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000505
– volume: 258
  year: 2021
  ident: 10.1016/j.rse.2022.113199_bb0205
  article-title: A data-driven approach to estimate leaf area index for Landsat images over the contiguous US
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112383
– volume: 10
  start-page: 85
  year: 2018
  ident: 10.1016/j.rse.2022.113199_bb0045
  article-title: Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: a review study
  publication-title: Remote Sens.
  doi: 10.3390/rs10010085
– year: 2016
  ident: 10.1016/j.rse.2022.113199_bb0180
– volume: 57
  start-page: 10025
  year: 2019
  ident: 10.1016/j.rse.2022.113199_bb0005
  article-title: Nonlinear distribution regression for remote sensing applications
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2931085
– volume: 16
  start-page: 125
  year: 1984
  ident: 10.1016/j.rse.2022.113199_bb0335
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(84)90057-9
– volume: 187
  start-page: 102
  year: 2016
  ident: 10.1016/j.rse.2022.113199_bb0065
  article-title: Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.009
– volume: 139
  start-page: 57
  year: 2018
  ident: 10.1016/j.rse.2022.113199_bb0155
  article-title: Derivation of global vegetation biophysical parameters from EUMETSAT polar system
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.03.005
– volume: 92
  start-page: 465
  year: 2004
  ident: 10.1016/j.rse.2022.113199_bb0350
  article-title: A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.06.003
– volume: 118
  start-page: 127
  year: 2012
  ident: 10.1016/j.rse.2022.113199_bb0340
  article-title: Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.002
– volume: 108
  start-page: 273
  year: 2015
  ident: 10.1016/j.rse.2022.113199_bb0345
  article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.05.005
– volume: 8
  start-page: 2136
  year: 2008
  ident: 10.1016/j.rse.2022.113199_bb0170
  article-title: Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape
  publication-title: Sensors
  doi: 10.3390/s8042136
– volume: 103
  start-page: 32239
  year: 1998
  ident: 10.1016/j.rse.2022.113199_bb0230
  article-title: Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/98JD02461
– year: 2013
  ident: 10.1016/j.rse.2022.113199_bb0055
– volume: 110
  start-page: 275
  year: 2007
  ident: 10.1016/j.rse.2022.113199_bb0035
  article-title: LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: part 1: principles of the algorithm
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.018
– year: 1995
  ident: 10.1016/j.rse.2022.113199_bb0050
– volume: vol. 7700
  year: 2012
  ident: 10.1016/j.rse.2022.113199_bb0275
– start-page: 234
  year: 2020
  ident: 10.1016/j.rse.2022.113199_bb0285
  article-title: Uncertainty in neural networks: Approximately bayesian ensembling
– volume: 5
  start-page: 3153
  year: 2020
  ident: 10.1016/j.rse.2022.113199_bb0260
  article-title: A general framework for uncertainty estimation in deep learning
  publication-title: IEEE Robot. Automat. Lett.
  doi: 10.1109/LRA.2020.2974682
– year: 2019
  ident: 10.1016/j.rse.2022.113199_bb0015
  article-title: Analyzing inverse problems with invertible neural networks
– volume: 24
  start-page: 4891
  year: 2003
  ident: 10.1016/j.rse.2022.113199_bb0125
  article-title: Training a neural network with a canopy reflectance model to estimate crop leaf area index
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000070319
– year: 2006
  ident: 10.1016/j.rse.2022.113199_bb0120
– year: 1999
  ident: 10.1016/j.rse.2022.113199_bb0220
  article-title: MODIS leaf area index (LAI), and fraction of photosynthetically active radiation absorbed by vegetation FPAR
– volume: 42
  start-page: 55
  year: 2000
  ident: 10.1016/j.rse.2022.113199_bb0270
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485979
– start-page: 1321
  year: 2017
  ident: 10.1016/j.rse.2022.113199_bb0190
  article-title: On calibration of modern neural networks
– year: 2011
  ident: 10.1016/j.rse.2022.113199_bb0075
– volume: 11
  year: 2019
  ident: 10.1016/j.rse.2022.113199_bb0250
  article-title: Clouds classification from Sentinel-2 imagery with deep residual learning and semantic image segmentation
  publication-title: Remote Sens.
– volume: 44
  start-page: 1794
  year: 2006
  ident: 10.1016/j.rse.2022.113199_bb0025
  article-title: Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: proposition of the CEOS-BELMANIP
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.876030
– volume: 19
  year: 2019
  ident: 10.1016/j.rse.2022.113199_bb0290
  article-title: Can we use satellite-based FAPAR to detect drought?
  publication-title: Sensors
  doi: 10.3390/s19173662
– volume: 6
  start-page: 418
  year: 1996
  ident: 10.1016/j.rse.2022.113199_bb0110
  article-title: An interior trust region approach for nonlinear minimization subject to bounds
  publication-title: SIAM J. Optim.
  doi: 10.1137/0806023
– volume: 16
  start-page: 2415
  year: 2004
  ident: 10.1016/j.rse.2022.113199_bb0010
  article-title: Neural network uncertainty assessment using Bayesian statistics: a remote sensing application
  publication-title: Neural Comput.
  doi: 10.1162/0899766041941925
– volume: 90
  start-page: 337
  year: 2004
  ident: 10.1016/j.rse.2022.113199_bb0195
  article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.12.013
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.rse.2022.113199_bb0310
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 286
  year: 2010
  ident: 10.1016/j.rse.2022.113199_bb0100
  article-title: Consolidating the two-stream inversion package (jrc-tip) to retrieve land surface parameters from albedo products
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2010.2046626
– volume: 112
  start-page: 3030
  year: 2008
  ident: 10.1016/j.rse.2022.113199_bb0145
  article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.012
– year: 2016
  ident: 10.1016/j.rse.2022.113199_bb0355
– volume: 30
  start-page: 2685
  year: 2009
  ident: 10.1016/j.rse.2022.113199_bb0325
  article-title: Accuracy assessment of fraction of vegetation cover and leaf area index estimates from pragmatic methods in a cropland area
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802555804
– volume: 4
  start-page: 58
  year: 2016
  ident: 10.1016/j.rse.2022.113199_bb0080
  article-title: A survey on Gaussian processes for earth observation data analysis: a comprehensive investigation
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2015.2510084
– year: 2004
  ident: 10.1016/j.rse.2022.113199_bb0235
– volume: 137
  start-page: 299
  year: 2013
  ident: 10.1016/j.rse.2022.113199_bb0040
  article-title: GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: principles of development and production
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.027
– volume: 225
  start-page: 416
  year: 2019
  ident: 10.1016/j.rse.2022.113199_bb0135
  article-title: Validation of the sentinel simplified level 2 product prototype processor (SL2P) for mapping cropland biophysical variables using Sentinel-2/MSI and Landsat-8/OLI data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.03.020
– year: 2011
  ident: 10.1016/j.rse.2022.113199_bb0060
– volume: 419-420
  start-page: 279
  year: 2018
  ident: 10.1016/j.rse.2022.113199_bb0265
  article-title: Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.12.002
– volume: 13
  year: 2021
  ident: 10.1016/j.rse.2022.113199_bb0255
  article-title: Benchmarking deep learning models for cloud detection in Landsat-8 and Sentinel-2 images
  publication-title: Remote Sens.
  doi: 10.3390/rs13050992
– volume: 64
  start-page: 234
  year: 1998
  ident: 10.1016/j.rse.2022.113199_bb0020
  article-title: Biophysical and biochemical sources of variability in canopy reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00014-5
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.rse.2022.113199_bb0185
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 26
  start-page: 119
  year: 2020
  ident: 10.1016/j.rse.2022.113199_bb0210
  article-title: TRY plant trait database–enhanced coverage and open access
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14904
– year: 2011
  ident: 10.1016/j.rse.2022.113199_bb0165
– volume: 20
  start-page: 111
  year: 1999
  ident: 10.1016/j.rse.2022.113199_bb0175
  article-title: Inverting a canopy reflectance model using a neural network
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311699213631
– start-page: 1050
  year: 2016
  ident: 10.1016/j.rse.2022.113199_bb0150
  article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning
– start-page: 269
  year: 1977
  ident: 10.1016/j.rse.2022.113199_bb0130
  article-title: Nonlinear least-squares
– volume: 201
  year: 2020
  ident: 10.1016/j.rse.2022.113199_bb0295
  article-title: Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.103076
SSID ssj0015871
Score 2.4899197
Snippet The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113199
SubjectTerms algorithms
Amazonia
Biophysical parameter estimation
biosphere
canopy
data collection
Downscaling
fractional vegetation cover
Landsat
leaf area index
MODIS
Neural networks
photosynthetically active radiation
reflectance
time series analysis
Uncertainty
water content
Title Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning
URI https://dx.doi.org/10.1016/j.rse.2022.113199
https://www.proquest.com/docview/2718336284
Volume 280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED6GIvoiOhV_jgg-CdXaJEt9FHFOxYGg4FtI2kQn2g23CXvxb_euTRVFfPCxbVJK7nJ36X13H8AetUCzsk1t9lUcCW9kZD1ud8PJX5lcpJKqka977e6duLyX9w04rWthCFYZbH9l00trHe4chtU8HPb7VOPLBWlckpT5vLKCXSiC9R28f8I8jmSqKtY8LiIaXWc2S4zX64g6ZSYJMZtU7V9_9U0_rHTpejpLsBhiRnZSfdYyNFzRhLWzrxI1fBj26KgJ84HX_HHahLnzkrh3ugL6ZmIIF0RVTQx9WYUEGE9Zv2DUspjhsTtoIbP9wTCIj73hWZqqq_A5UW-hXjL6dcteShCmY4F14mEVbjtnt6fdKJArRBlXfBzxPFZOCC84zzj3VvpcxcZmx9I7h8cqPDdnPDPHLrOqbZXLJaUEcamdV9YmfA1mikHh1oGlymOYlHopcpRHOzUCbZbBUMOkcWas24C4XlWdhcbjxH_xrGuE2ZNGQWgShK4EsQH7n1OGVdeNvwaLWlT6m-po9Ap_TdutxapxS1GexBRuMBnpBP01R8eeis3_vXoLFuiqwvxtw8z4deJ2MHYZ21apnC2YPbm46vY-ACLk7pc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kQ_RFdCp-G8EnoViaZKmPMtT5NRAm-BaSNtGJdsNtwv5779pUUcQHX5ellNzlPnp3vx_AIUGgWdkmmH0VR8IbGVmP191w8lcmF6mkaeTbXrt7L64e5MMcdOpZGGqrDLa_sumltQ6_HIfTPB4NBjTjywVpXJKU9TxMgZqETiUa0Dy9vO72PosJMlUVcR4XEW2oi5tlm9fbmMAyk4TITSoE2F_d0w9DXXqf82VYCmEjO63ebAXmXNGC9bOvKTVcDNd03IKFQG3-NGvB_EXJ3TtbBX03NdQaRINNDN1Z1QwwmbFBwQi1mGHmHRSR2cFwFCTI3jGdpgErXCf2LVRNRl9v2WvZh-lYIJ54XIP--Vm_040Cv0KUccUnEc9j5YTwgvOMc2-lz1VsbHYivXOYWWHqnPHMnLjMqrZVLpdUFcTTdl5Zm_B1aBTDwm0AS5XHSCn1UuQoknZqBJotg9GGSePMWLcJcX2qOgvY40SB8aLrJrNnjYLQJAhdCWITjj63jCrgjb_-LGpR6W_ao9Ex_LXtoBarxltFpRJTuOF0rBN02Rx9eyq2_vfofVjo9m9v9M1l73obFmmlagHcgcbkbep2MZSZ2L2gqh9QDPFI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+uncertainty+in+high+resolution+biophysical+variable+retrieval+with+machine+learning&rft.jtitle=Remote+sensing+of+environment&rft.au=Mart%C3%ADnez-Ferrer%2C+Laura&rft.au=Moreno-Mart%C3%ADnez%2C+%C3%81lvaro&rft.au=Campos-Taberner%2C+Manuel&rft.au=Garc%C3%ADa-Haro%2C+Francisco+Javier&rft.date=2022-10-01&rft.issn=0034-4257&rft.volume=280&rft.spage=113199&rft_id=info:doi/10.1016%2Fj.rse.2022.113199&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2022_113199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon