A multi-model integration method for monthly streamflow prediction: modified stacking ensemble strategy

In this study, we evaluate elastic net regression (ENR), support vector regression (SVR), random forest (RF) and eXtreme Gradient Boosting (XGB) models and propose a modified multi-model integration method named a modified stacking ensemble strategy (MSES) for monthly streamflow forecasting. We appl...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 22; no. 2; pp. 310 - 326
Main Authors Li, Yujie, Liang, Zhongmin, Hu, Yiming, Li, Binquan, Xu, Bin, Wang, Dong
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we evaluate elastic net regression (ENR), support vector regression (SVR), random forest (RF) and eXtreme Gradient Boosting (XGB) models and propose a modified multi-model integration method named a modified stacking ensemble strategy (MSES) for monthly streamflow forecasting. We apply the above methods to the Three Gorges Reservoir in the Yangtze River Basin, and the results show the following: (1) RF and XGB present better and more stable forecast performance than ENR and SVR. It can be concluded that the machine learning-based models have the potential for monthly streamflow forecasting. (2) The MSES can effectively reconstruct the original training data in the first layer and optimize the XGB model in the second layer, improving the forecast performance. We believe that the MSES is a computing framework worthy of development, with simple mathematical structure and low computational cost. (3) The forecast performance mainly depends on the size and distribution characteristics of the monthly streamflow sequence, which is still difficult to predict using only climate indices.
AbstractList In this study, we evaluate elastic net regression (ENR), support vector regression (SVR), random forest (RF) and eXtreme Gradient Boosting (XGB) models and propose a modified multi-model integration method named a modified stacking ensemble strategy (MSES) for monthly streamflow forecasting. We apply the above methods to the Three Gorges Reservoir in the Yangtze River Basin, and the results show the following: (1) RF and XGB present better and more stable forecast performance than ENR and SVR. It can be concluded that the machine learning-based models have the potential for monthly streamflow forecasting. (2) The MSES can effectively reconstruct the original training data in the first layer and optimize the XGB model in the second layer, improving the forecast performance. We believe that the MSES is a computing framework worthy of development, with simple mathematical structure and low computational cost. (3) The forecast performance mainly depends on the size and distribution characteristics of the monthly streamflow sequence, which is still difficult to predict using only climate indices.
Author Xu, Bin
Liang, Zhongmin
Wang, Dong
Hu, Yiming
Li, Yujie
Li, Binquan
Author_xml – sequence: 1
  givenname: Yujie
  surname: Li
  fullname: Li, Yujie
  organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China, Department of Infrastructure Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
– sequence: 2
  givenname: Zhongmin
  surname: Liang
  fullname: Liang, Zhongmin
  organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
– sequence: 3
  givenname: Yiming
  surname: Hu
  fullname: Hu, Yiming
  organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
– sequence: 4
  givenname: Binquan
  surname: Li
  fullname: Li, Binquan
  organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
– sequence: 5
  givenname: Bin
  surname: Xu
  fullname: Xu, Bin
  organization: School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
– sequence: 6
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan 430010, China
BookMark eNp1kElLAzEUx4NUsK1ePQ94npptJlNvpbhBwYueQ7ZpU2eSmqTIfHszrSfB03vwXx7vNwMT550B4BbBBUZ1fb8bdPALDNFyAev6AkwRrasSMUInp52WDFF0BWYx7iHEiDRoCraroj92yZa916YrrEtmG0Sy3hW9STuvi9aHovcu7bqhiCkY0bed_y4OwWirRuNDlrVtrdFZF-rTum1hXDS97MyYELlyuAaXreiiufmdc_Dx9Pi-fik3b8-v69WmVISRVBLZikYpSGHd4tZIXItGSqoIkaQReKkZ0xWrJFwSqLAkhjaSMMwgJSR7NZmDu3PvIfivo4mJ7_0xuHySY9JUTcVqCLNrcXap4GMMpuWHYHsRBo4gH2HyE0w-wuQZZg7QPwFl0wlT_s92_8V-AMIXfkE
CitedBy_id crossref_primary_10_1007_s00382_020_05173_x
crossref_primary_10_1007_s00521_024_10864_1
crossref_primary_10_1007_s11356_022_18809_8
crossref_primary_10_1016_j_jhydrol_2021_126681
crossref_primary_10_1016_j_jhydrol_2021_126266
crossref_primary_10_1016_j_jhydrol_2024_132565
crossref_primary_10_2166_ws_2021_151
crossref_primary_10_1515_npprj_2024_0066
crossref_primary_10_1002_joc_7988
crossref_primary_10_1016_j_ejrh_2024_101694
crossref_primary_10_3390_w13192737
crossref_primary_10_2166_hydro_2021_142
crossref_primary_10_2166_wst_2023_171
crossref_primary_10_1007_s11269_023_03620_y
crossref_primary_10_2166_wcc_2020_365
crossref_primary_10_1016_j_agwat_2023_108604
crossref_primary_10_1007_s11269_022_03292_0
crossref_primary_10_2166_wst_2024_142
crossref_primary_10_3390_atmos13020362
crossref_primary_10_3390_w14030492
crossref_primary_10_1007_s10668_023_03131_1
crossref_primary_10_1007_s00477_022_02367_z
crossref_primary_10_1590_2318_0331_282320230118
crossref_primary_10_2166_wcc_2021_223
crossref_primary_10_2166_wpt_2023_144
crossref_primary_10_3390_math10162971
crossref_primary_10_1007_s11269_023_03534_9
crossref_primary_10_1007_s12517_022_10274_4
crossref_primary_10_1016_j_advwatres_2020_103595
crossref_primary_10_1007_s00704_024_04935_5
crossref_primary_10_1109_JSTARS_2025_3528475
crossref_primary_10_3390_rs17060967
crossref_primary_10_1038_s41598_022_07693_4
crossref_primary_10_1080_02626667_2022_2141121
crossref_primary_10_1007_s00477_022_02185_3
crossref_primary_10_1109_JSTARS_2022_3140442
crossref_primary_10_1016_j_catena_2024_107848
crossref_primary_10_1007_s11069_023_06211_7
crossref_primary_10_1007_s11269_023_03566_1
crossref_primary_10_1016_j_agwat_2023_108232
crossref_primary_10_1007_s00477_023_02390_8
Cites_doi 10.3390/en11040949
10.1002/hyp.5862
10.2166/hydro.2017.189
10.2166/hydro.2017.102
10.2166/hydro.2018.116
10.1007/BF00117832
10.2166/nh.2017.085
10.5194/hess-20-2611-2016
10.2166/hydro.2010.005
10.3390/atmos9070251
10.1016/j.jhydrol.2018.09.055
10.1016/j.jhydrol.2016.09.035
10.1061/(ASCE)0733-9429(2001)127:3(181)
10.1016/j.jhydrol.2016.06.026
10.1007/s10109-018-0280-7
10.1016/j.agrformet.2018.09.021
10.2166/hydro.2016.141
10.1002/2014WR016163
10.1023/A:1010933404324
10.1061/(ASCE)0733-9496(2003)129:6(511)
10.1002/2016WR019193
10.1016/j.jhydrol.2018.03.057
10.5194/hess-20-4117-2016
10.1023/A:1007519102914
10.1016/j.scitotenv.2018.07.194
10.2166/hydro.2017.078
10.3390/w10111536
10.3390/atmos2030330
10.1007/s11069-017-2990-4
10.2166/nh.2017.044
10.1613/jair.594
10.2166/hydro.2016.085
10.1016/j.jhydrol.2018.04.008
10.3390/w10030291
10.2166/hydro.2019.064
10.1016/j.scitotenv.2018.04.040
10.1007/BF00994018
10.4018/978-1-4666-7272-7.ch004
10.1016/j.asr.2013.04.005
10.5194/hess-21-6007-2017
10.1016/j.jhydrol.2015.07.008
10.3390/w10101486
10.3390/atmos9120478
ContentType Journal Article
Copyright Copyright IWA Publishing Mar 2020
Copyright_xml – notice: Copyright IWA Publishing Mar 2020
DBID AAYXX
CITATION
7QH
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOI 10.2166/hydro.2019.066
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1465-1734
EndPage 326
ExternalDocumentID 10_2166_hydro_2019_066
GroupedDBID 0R~
4.4
5GY
7XC
8CJ
8FE
8FH
AAJMC
AAJVE
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CS3
D1J
DU5
EBS
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
~02
7QH
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c373t-3bfa8cc0406f2feb26a8bb4c33b38a29d77d575b0930c2b3e48b3727043326ad3
IEDL.DBID BENPR
ISSN 1464-7141
IngestDate Mon Jun 30 13:28:25 EDT 2025
Thu Apr 24 22:59:01 EDT 2025
Tue Jul 01 04:10:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-3bfa8cc0406f2feb26a8bb4c33b38a29d77d575b0930c2b3e48b3727043326ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iwaponline.com/jh/article-pdf/22/2/310/665574/jh0220310.pdf
PQID 2385857600
PQPubID 2044529
PageCount 17
ParticipantIDs proquest_journals_2385857600
crossref_primary_10_2166_hydro_2019_066
crossref_citationtrail_10_2166_hydro_2019_066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of hydroinformatics
PublicationYear 2020
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References (2020032614513974400_HYDRO-D-19-00066C6) 1996; 24
(2020032614513974400_HYDRO-D-19-00066C27) 2017; 89
(2020032614513974400_HYDRO-D-19-00066C25) 2018; 561
(2020032614513974400_HYDRO-D-19-00066C38) 2019; 646
(2020032614513974400_HYDRO-D-19-00066C8) 2019; 21
(2020032614513974400_HYDRO-D-19-00066C9) 2016
(2020032614513974400_HYDRO-D-19-00066C47) 2018; 20
(2020032614513974400_HYDRO-D-19-00066C5) 2017; 21
(2020032614513974400_HYDRO-D-19-00066C46) 2018; 10
(2020032614513974400_HYDRO-D-19-00066C45) 1999; 35
(2020032614513974400_HYDRO-D-19-00066C49) 2016; 542
(2020032614513974400_HYDRO-D-19-00066C18) 2018; 49
(2020032614513974400_HYDRO-D-19-00066C33) 2018; 9
(2020032614513974400_HYDRO-D-19-00066C23) 2004; 289
(2020032614513974400_HYDRO-D-19-00066C34) 2016; 20
(2020032614513974400_HYDRO-D-19-00066C20) 2011; 18
(2020032614513974400_HYDRO-D-19-00066C7) 2001; 45
(2020032614513974400_HYDRO-D-19-00066C1) 2005; 19
(2020032614513974400_HYDRO-D-19-00066C28) 2010; 46
(2020032614513974400_HYDRO-D-19-00066C52) 2011; 13
(2020032614513974400_HYDRO-D-19-00066C42) 2016; 18
(2020032614513974400_HYDRO-D-19-00066C24) 2017; 9
(2020032614513974400_HYDRO-D-19-00066C19) 2018; 20
(2020032614513974400_HYDRO-D-19-00066C43) 2011; 404
(2020032614513974400_HYDRO-D-19-00066C3) 2016; 18
(2020032614513974400_HYDRO-D-19-00066C14) 2018; 11
(2020032614513974400_HYDRO-D-19-00066C51) 2018; 635
(2020032614513974400_HYDRO-D-19-00066C17) 2016; 540
(2020032614513974400_HYDRO-D-19-00066C39) 2018; 561
(2020032614513974400_HYDRO-D-19-00066C22) 2018; 49
(2020032614513974400_HYDRO-D-19-00066C11) 2018; 20
(2020032614513974400_HYDRO-D-19-00066C48) 2019; 21
(2020032614513974400_HYDRO-D-19-00066C13) 2011; 2
(2020032614513974400_HYDRO-D-19-00066C31) 2016; 20
(2020032614513974400_HYDRO-D-19-00066C12) 1995; 20
(2020032614513974400_HYDRO-D-19-00066C35) 2015
(2020032614513974400_HYDRO-D-19-00066C4) 2016; 52
(2020032614513974400_HYDRO-D-19-00066C50) 2018; 9
(2020032614513974400_HYDRO-D-19-00066C30) 2015; 51
(2020032614513974400_HYDRO-D-19-00066C40) 1999; 10
(2020032614513974400_HYDRO-D-19-00066C10) 2018; 10
(2020032614513974400_HYDRO-D-19-00066C41) 2003; 129
(2020032614513974400_HYDRO-D-19-00066C2) 2001; 127
(2020032614513974400_HYDRO-D-19-00066C37) 2015; 528
(2020032614513974400_HYDRO-D-19-00066C36) 2014; 511
(2020032614513974400_HYDRO-D-19-00066C16) 2017; 19
(2020032614513974400_HYDRO-D-19-00066C21) 2017; 1–2
(2020032614513974400_HYDRO-D-19-00066C44) 2013; 52
(2020032614513974400_HYDRO-D-19-00066C15) 2019; 264
(2020032614513974400_HYDRO-D-19-00066C32) 2002
(2020032614513974400_HYDRO-D-19-00066C26) 2018; 566
(2020032614513974400_HYDRO-D-19-00066C29) 2018; 10
References_xml – volume: 11
  start-page: 949
  issue: 4
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C14
  article-title: Stacking ensemble learning for short-term electricity consumption forecasting
  publication-title: Energies
  doi: 10.3390/en11040949
– volume: 511
  start-page: 254
  issue: 4
  year: 2014
  ident: 2020032614513974400_HYDRO-D-19-00066C36
  article-title: Evaluating influences of seasonal variations and anthropogenic activities on alluvial groundwater hydrochemistry using ensemble learning approaches
  publication-title: Journal of Hydrology
– volume: 19
  start-page: 1511
  issue: 7
  year: 2005
  ident: 2020032614513974400_HYDRO-D-19-00066C1
  article-title: Data mining in hydrology
  publication-title: Hydrological Processes: An International Journal
  doi: 10.1002/hyp.5862
– start-page: 554
  year: 2002
  ident: 2020032614513974400_HYDRO-D-19-00066C32
  article-title: How to make stacking better and faster while also taking care of an unknown weakness
– volume: 20
  start-page: 191
  issue: 1
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C19
  article-title: Comparison of hybrid models for daily streamflow prediction in a forested basin
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2017.189
– volume: 19
  start-page: 586
  issue: 4
  year: 2017
  ident: 2020032614513974400_HYDRO-D-19-00066C16
  article-title: Prediction of groundwater levels using evidence of chaos and support vector machine
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2017.102
– volume: 20
  start-page: 1042
  issue: 5
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C47
  article-title: Exploration and attribution of synergistic gains from joint optimal operation of downstream Jinsha River cascade and Three Gorges cascade reservoirs for hydropower generation
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2018.116
– volume: 24
  start-page: 49
  issue: 1
  year: 1996
  ident: 2020032614513974400_HYDRO-D-19-00066C6
  article-title: Stacked regressions
  publication-title: Machine Learning
  doi: 10.1007/BF00117832
– volume: 49
  start-page: 1513
  issue: 5
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C22
  article-title: Long-term streamflow forecasting using SWAT through the integration of the random forests precipitation generator: case study of Danjiangkou Reservoir
  publication-title: Hydrology Research
  doi: 10.2166/nh.2017.085
– volume: 20
  start-page: 2611
  issue: 7
  year: 2016
  ident: 2020032614513974400_HYDRO-D-19-00066C34
  article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-20-2611-2016
– volume: 13
  start-page: 81
  issue: 1
  year: 2011
  ident: 2020032614513974400_HYDRO-D-19-00066C52
  article-title: Evaluation of precipitation forecasts from NOAA global forecast system in hydropower operation
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2010.005
– volume: 9
  start-page: 251
  issue: 7
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C33
  article-title: Machine learning models coupled with variational mode decomposition: a new approach for modeling daily rainfall-runoff
  publication-title: Atmosphere
  doi: 10.3390/atmos9070251
– volume: 566
  start-page: 668
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C26
  article-title: Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2018.09.055
– volume: 542
  start-page: 603
  year: 2016
  ident: 2020032614513974400_HYDRO-D-19-00066C49
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2016.09.035
– volume: 127
  start-page: 181
  issue: 3
  year: 2001
  ident: 2020032614513974400_HYDRO-D-19-00066C2
  article-title: Neural networks as routine for error updating of numerical models
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)0733-9429(2001)127:3(181)
– volume: 540
  start-page: 623
  year: 2016
  ident: 2020032614513974400_HYDRO-D-19-00066C17
  article-title: A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2016.06.026
– volume: 20
  start-page: 317
  issue: 4
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C11
  article-title: Geographically weighted elastic net logistic regression
  publication-title: Journal of Geographical Systems
  doi: 10.1007/s10109-018-0280-7
– volume: 264
  start-page: 1
  year: 2019
  ident: 2020032614513974400_HYDRO-D-19-00066C15
  article-title: Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2018.09.021
– volume: 18
  start-page: 634
  issue: 4
  year: 2016
  ident: 2020032614513974400_HYDRO-D-19-00066C3
  article-title: Model fusion approach for monthly reservoir inflow forecasting
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2016.141
– volume: 51
  start-page: 1797
  issue: 3
  year: 2015
  ident: 2020032614513974400_HYDRO-D-19-00066C30
  article-title: Model averaging methods to merge operational statistical and dynamic seasonal streamflow forecasts in Australia
  publication-title: Water Resources Research
  doi: 10.1002/2014WR016163
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 2020032614513974400_HYDRO-D-19-00066C7
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 129
  start-page: 511
  issue: 6
  year: 2003
  ident: 2020032614513974400_HYDRO-D-19-00066C41
  article-title: Hybrid approach for modeling wet weather response in wastewater systems
  publication-title: Journal of Water Resources Planning and Management
  doi: 10.1061/(ASCE)0733-9496(2003)129:6(511)
– volume: 52
  start-page: 8238
  issue: 10
  year: 2016
  ident: 2020032614513974400_HYDRO-D-19-00066C4
  article-title: Reliable long-range ensemble streamflow forecasts: combining calibrated climate forecasts with a conceptual runoff model and a staged error model
  publication-title: Water Resources Research
  doi: 10.1002/2016WR019193
– volume: 561
  start-page: 146
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C25
  article-title: Monthly streamflow forecasting based on hidden Markov model and Gaussian mixture regression
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2018.03.057
– volume: 1–2
  start-page: 1
  year: 2017
  ident: 2020032614513974400_HYDRO-D-19-00066C21
  article-title: A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework
  publication-title: Theoretical and Applied Climatology
– volume: 20
  start-page: 4117
  issue: 10
  year: 2016
  ident: 2020032614513974400_HYDRO-D-19-00066C31
  article-title: Optimising seasonal streamflow forecast lead time for operational decision making in Australia
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-20-4117-2016
– volume: 35
  start-page: 41
  issue: 1
  year: 1999
  ident: 2020032614513974400_HYDRO-D-19-00066C45
  article-title: An efficient method to estimate bagging's generalization error
  publication-title: Machine Learning
  doi: 10.1023/A:1007519102914
– volume: 646
  start-page: 625
  year: 2019
  ident: 2020032614513974400_HYDRO-D-19-00066C38
  article-title: Investigating regime shifts and the factors controlling total inorganic nitrogen concentrations in treated wastewater using non-homogeneous Hidden Markov and multinomial logistic regression models
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2018.07.194
– volume: 21
  start-page: 13
  issue: 1
  year: 2019
  ident: 2020032614513974400_HYDRO-D-19-00066C8
  article-title: Review and comparison of performance indices for automatic model induction
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2017.078
– volume: 10
  start-page: 1536
  issue: 11
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C29
  article-title: Flood prediction using machine learning models: literature review
  publication-title: Water
  doi: 10.3390/w10111536
– volume: 2
  start-page: 330
  issue: 3
  year: 2011
  ident: 2020032614513974400_HYDRO-D-19-00066C13
  article-title: Climate variability and its impact on forest hydrology on South Carolina coastal plain, USA
  publication-title: Atmosphere
  doi: 10.3390/atmos2030330
– volume: 289
  start-page: 1
  issue: 1–4
  year: 2004
  ident: 2020032614513974400_HYDRO-D-19-00066C23
  article-title: A non-linear rainfall-runoff model using radial basis function network
  publication-title: Journal of Hydrology
– volume: 89
  start-page: 741
  issue: 2
  year: 2017
  ident: 2020032614513974400_HYDRO-D-19-00066C27
  article-title: An extended STIRPAT model-based methodology for evaluating the driving forces affecting carbon emissions in existing public building sector: evidence from China in 2000–2015
  publication-title: Natural Hazards
  doi: 10.1007/s11069-017-2990-4
– volume: 49
  start-page: 1363
  issue: 5
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C18
  article-title: Rainfall-induced landslide susceptibility assessment using random forest weight at basin scale
  publication-title: Hydrology Research
  doi: 10.2166/nh.2017.044
– volume: 10
  start-page: 271
  year: 1999
  ident: 2020032614513974400_HYDRO-D-19-00066C40
  article-title: Issues in stacked generalization
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.594
– volume: 18
  start-page: 773
  issue: 5
  year: 2016
  ident: 2020032614513974400_HYDRO-D-19-00066C42
  article-title: Application of hybrid Kalman filter for improving water level forecast
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2016.085
– start-page: 785
  year: 2016
  ident: 2020032614513974400_HYDRO-D-19-00066C9
  article-title: Xgboost: a scalable tree boosting system
– volume: 561
  start-page: 636
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C39
  article-title: A stacking ensemble learning framework for annual river ice breakup dates
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2018.04.008
– volume: 46
  start-page: 8
  year: 2010
  ident: 2020032614513974400_HYDRO-D-19-00066C28
  article-title: Toward improved identification of hydrological models: a diagnostic evaluation of the ‘abcd’ monthly water balance model for the conterminous United States
  publication-title: Water Resources Research
– volume: 10
  start-page: 291
  issue: 3
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C46
  article-title: Evaluating consistency between the remotely sensed soil moisture and the hydrological model-simulated soil moisture in the Qujiang catchment of China
  publication-title: Water
  doi: 10.3390/w10030291
– volume: 404
  start-page: 166
  issue: 3–4
  year: 2011
  ident: 2020032614513974400_HYDRO-D-19-00066C43
  article-title: Monthly versus daily water balance models in simulating monthly runoff
  publication-title: Journal of Hydrology
– volume: 18
  start-page: 1426
  issue: 11
  year: 2011
  ident: 2020032614513974400_HYDRO-D-19-00066C20
  article-title: Application of Bayesian model averaging approach to multimodel ensemble hydrologic forecasting
  publication-title: Journal of Hydrologic Engineering
– volume: 21
  start-page: 257
  issue: 2
  year: 2019
  ident: 2020032614513974400_HYDRO-D-19-00066C48
  article-title: The multi-objective operation for cascade reservoirs using MMOSFLA with emphasis on power generation and ecological benefit
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2019.064
– volume: 9
  start-page: 9
  issue: 1
  year: 2017
  ident: 2020032614513974400_HYDRO-D-19-00066C24
  article-title: Long-term streamflow forecasting based on relevance vector machine model
  publication-title: Water
– volume: 635
  start-page: 644
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C51
  article-title: Development of a stacked ensemble model for forecasting and analyzing daily average PM 2.5 concentrations in Beijing, China
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2018.04.040
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 2020032614513974400_HYDRO-D-19-00066C12
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– start-page: 43
  volume-title: Handbook of Research on Organizational Transformations through Big Data Analytics
  year: 2015
  ident: 2020032614513974400_HYDRO-D-19-00066C35
  article-title: A modified stacking ensemble machine learning algorithm using genetic algorithms
  doi: 10.4018/978-1-4666-7272-7.ch004
– volume: 52
  start-page: 656
  issue: 4
  year: 2013
  ident: 2020032614513974400_HYDRO-D-19-00066C44
  article-title: Analysis of precipitable water vapor from GPS measurements in Chengdu region: distribution and evolution characteristics in autumn
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2013.04.005
– volume: 21
  start-page: 6007
  issue: 12
  year: 2017
  ident: 2020032614513974400_HYDRO-D-19-00066C5
  article-title: Assessment of an ensemble seasonal streamflow forecasting system for Australia
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-21-6007-2017
– volume: 528
  start-page: 720
  year: 2015
  ident: 2020032614513974400_HYDRO-D-19-00066C37
  article-title: Modification of input datasets for the Ensemble Streamflow Prediction based on large-scale climatic indices and weather generator
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2015.07.008
– volume: 10
  start-page: 1486
  issue: 10
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C10
  article-title: Monthly streamflow forecasting using EEMD-Lasso-DBN method based on multi-scale predictors selection
  publication-title: Water
  doi: 10.3390/w10101486
– volume: 9
  start-page: 478
  issue: 12
  year: 2018
  ident: 2020032614513974400_HYDRO-D-19-00066C50
  article-title: Contrasting impacts of ENSO on the interannual variations of summer runoff between the upper and mid-lower reaches of the Yangtze River
  publication-title: Atmosphere
  doi: 10.3390/atmos9120478
SSID ssj0021381
Score 2.4095416
Snippet In this study, we evaluate elastic net regression (ENR), support vector regression (SVR), random forest (RF) and eXtreme Gradient Boosting (XGB) models and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 310
SubjectTerms Access
Canyons
Climate prediction
Computer applications
Forecasting
Hydrology
Integration
Learning algorithms
Machine learning
Mathematical models
Methods
Monthly
Precipitation
River basins
Rivers
Simulation
Stacking
Stream discharge
Stream flow
Streamflow forecasting
Support vector machines
Training
Title A multi-model integration method for monthly streamflow prediction: modified stacking ensemble strategy
URI https://www.proquest.com/docview/2385857600
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LTgIxFG0UFroxPiOKpgsTVxVmWjodNwYNhLggxkjCbtJ2WjHhJWDM_L23nYK60PXtYnI6vb2vnoPQVaQ0a2oqiU2sJEwzS9KWlkRZoWlujObas332eW_AHoetYSi4LcNY5donekedz7SrkTdi38FybaS7-TtxqlGuuxokNLZRFVywEBVUve_0n543KVdEvUwpuAM3dciikrYxjjhvjIp84V7_RelN03Mk_riWfntlf9V099FeiBFxu9zUA7RlpodoJ8iVj4oj9NrGfhCQeB0bvKZ8AIhxqQiNIRTF8MWr0bjA7jmInNjx7BPPF64v4xbegjl_sxCAgl1qVzDHkNGaiRobvCwpa4tjNOh2Xh56JCgmEE0TuiJUWSm0hoPJbWwhaeZSKMU0pYoKGad5kuQQn6lmSps6VtQwoShEMJ7FjMucnqDKdDY1pwiL3HCVtKS1KoEUjiquuIEdlK1IWJayGiJrwDId6MSdqsU4g7TCAZx5gDMHcAYA19D1Zv28JNL4c2V9jX8WDtQy-97-s__N52g3dimxHxOro8pq8WEuIG5Yqcvwc3wB9hTGkA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2F9FAuVfmoCC3gQxEnk6zteDdICBVolTQhQqiVcltsr90g5avJomr_FL-RsXc3wKHccra1h-dZzzyP_R7AaaSN6BiuqIudosIIR3tdo6h2ieGZtUaaoPY5lv1rcTnpThrwq34L469V1nti2KizpfFn5G0WOli-jfRhdUu9a5TvrtYWGmVYDG1xh5Rt837wGdf3NWMX51ef-rRyFaCGxzynXDuVGIPBKx1zSCylSrQWhnPNE8V6WRxnWMNopPodwzS3ItEcs3xQ-pIq4_jdB7AnuOywJux9PB9__baleBEPtqi4_fhbjiIqZSJZJGV7WmRr_9ow6r3tBE3Gv9Lgv1kgpLaLQzioalJyVgbRI2jYxWPYr-zRp8UTuDkj4eIhDb45pJaYwCUlpQM1wdKXIEL5dFYQ__xEzd1seUdWa98H8hPf4XD2w2HBi-PK-AN6ggzazvXMkk0pkVs8heudYHkEzcVyYZ8BSTIrddxVzukYKSPXUkuLEaO6UeJET7SA1oClppIv9y4asxRpjAc4DQCnHuAUAW7Bm-38VSncce_Mkxr_tPqBN-mfcHv-_-FXsN-_-jJKR4Px8BgeMk_HwxW1E2jm65_2BdYsuX5ZBQqB77uOzd_8GgMa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTuswEB1BkYDNFU_Re3l4AWJl2sSukyIhxKvipQohkNgF27EpUml72yKUX-PrGDsJjwXsWNvK4vjEM8cenwHYDJTmdc0ktZGVlGtuabOhJVU21iw1Rgvt3T7b4vSWn9817ibgtXwL48oqyz3Rb9RpX7sz8lrob7DcNVLNFmURV8et_cF_6jpIuZvWsp1GTpELk72gfBvtnR3jWm-FYevk5uiUFh0GqGYRG1OmrIy1RiILG1oUmULGSnHNmGKxDJtpFKWYzyiU_XUdKmZ4rBhGfO_6JWTK8LuTMBU5VVSBqcOT9tX1u9wLmG-RiluRq3jkQW4ZGQZC1DpZOnQvD4PmTt37M34KiV8jgg9zrTn4U-Sn5CAn1DxMmN4CzBSt0jvZIjwcEF-ESH0PHVLaTeDykrwbNcE0mCBC4043I-4pinyy3f4LGQzdnZCbuIvD6aPF5BfHpXaH9QTVtHlSXUNGuV1utgS3v4LlMlR6_Z5ZARKnRqioIa1VEcpHpoQSBtkjG0FseZNXgZaAJbqwMncdNboJShoHcOIBThzACQJche33-YPcxOPbmasl_knxM4-SD-r9_Xl4A6aRk8nlWfviH8yGTpn7arVVqIyHz2YN05exWi94QuD-t6n5BqINB08
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-model+integration+method+for+monthly+streamflow+prediction%3A+modified+stacking+ensemble+strategy&rft.jtitle=Journal+of+hydroinformatics&rft.au=Li%2C+Yujie&rft.au=Liang%2C+Zhongmin&rft.au=Hu%2C+Yiming&rft.au=Li%2C+Binquan&rft.date=2020-03-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=22&rft.issue=2&rft.spage=310&rft.epage=326&rft_id=info:doi/10.2166%2Fhydro.2019.066&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2019_066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon