A multi-model integration method for monthly streamflow prediction: modified stacking ensemble strategy
In this study, we evaluate elastic net regression (ENR), support vector regression (SVR), random forest (RF) and eXtreme Gradient Boosting (XGB) models and propose a modified multi-model integration method named a modified stacking ensemble strategy (MSES) for monthly streamflow forecasting. We appl...
Saved in:
Published in | Journal of hydroinformatics Vol. 22; no. 2; pp. 310 - 326 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we evaluate elastic net regression (ENR), support vector regression (SVR), random forest (RF) and eXtreme Gradient Boosting (XGB) models and propose a modified multi-model integration method named a modified stacking ensemble strategy (MSES) for monthly streamflow forecasting. We apply the above methods to the Three Gorges Reservoir in the Yangtze River Basin, and the results show the following: (1) RF and XGB present better and more stable forecast performance than ENR and SVR. It can be concluded that the machine learning-based models have the potential for monthly streamflow forecasting. (2) The MSES can effectively reconstruct the original training data in the first layer and optimize the XGB model in the second layer, improving the forecast performance. We believe that the MSES is a computing framework worthy of development, with simple mathematical structure and low computational cost. (3) The forecast performance mainly depends on the size and distribution characteristics of the monthly streamflow sequence, which is still difficult to predict using only climate indices. |
---|---|
AbstractList | In this study, we evaluate elastic net regression (ENR), support vector regression (SVR), random forest (RF) and eXtreme Gradient Boosting (XGB) models and propose a modified multi-model integration method named a modified stacking ensemble strategy (MSES) for monthly streamflow forecasting. We apply the above methods to the Three Gorges Reservoir in the Yangtze River Basin, and the results show the following: (1) RF and XGB present better and more stable forecast performance than ENR and SVR. It can be concluded that the machine learning-based models have the potential for monthly streamflow forecasting. (2) The MSES can effectively reconstruct the original training data in the first layer and optimize the XGB model in the second layer, improving the forecast performance. We believe that the MSES is a computing framework worthy of development, with simple mathematical structure and low computational cost. (3) The forecast performance mainly depends on the size and distribution characteristics of the monthly streamflow sequence, which is still difficult to predict using only climate indices. |
Author | Xu, Bin Liang, Zhongmin Wang, Dong Hu, Yiming Li, Yujie Li, Binquan |
Author_xml | – sequence: 1 givenname: Yujie surname: Li fullname: Li, Yujie organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China, Department of Infrastructure Engineering, University of Melbourne, Melbourne, VIC 3010, Australia – sequence: 2 givenname: Zhongmin surname: Liang fullname: Liang, Zhongmin organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China – sequence: 3 givenname: Yiming surname: Hu fullname: Hu, Yiming organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China – sequence: 4 givenname: Binquan surname: Li fullname: Li, Binquan organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China – sequence: 5 givenname: Bin surname: Xu fullname: Xu, Bin organization: School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China – sequence: 6 givenname: Dong surname: Wang fullname: Wang, Dong organization: Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan 430010, China |
BookMark | eNp1kElLAzEUx4NUsK1ePQ94npptJlNvpbhBwYueQ7ZpU2eSmqTIfHszrSfB03vwXx7vNwMT550B4BbBBUZ1fb8bdPALDNFyAev6AkwRrasSMUInp52WDFF0BWYx7iHEiDRoCraroj92yZa916YrrEtmG0Sy3hW9STuvi9aHovcu7bqhiCkY0bed_y4OwWirRuNDlrVtrdFZF-rTum1hXDS97MyYELlyuAaXreiiufmdc_Dx9Pi-fik3b8-v69WmVISRVBLZikYpSGHd4tZIXItGSqoIkaQReKkZ0xWrJFwSqLAkhjaSMMwgJSR7NZmDu3PvIfivo4mJ7_0xuHySY9JUTcVqCLNrcXap4GMMpuWHYHsRBo4gH2HyE0w-wuQZZg7QPwFl0wlT_s92_8V-AMIXfkE |
CitedBy_id | crossref_primary_10_1007_s00382_020_05173_x crossref_primary_10_1007_s00521_024_10864_1 crossref_primary_10_1007_s11356_022_18809_8 crossref_primary_10_1016_j_jhydrol_2021_126681 crossref_primary_10_1016_j_jhydrol_2021_126266 crossref_primary_10_1016_j_jhydrol_2024_132565 crossref_primary_10_2166_ws_2021_151 crossref_primary_10_1515_npprj_2024_0066 crossref_primary_10_1002_joc_7988 crossref_primary_10_1016_j_ejrh_2024_101694 crossref_primary_10_3390_w13192737 crossref_primary_10_2166_hydro_2021_142 crossref_primary_10_2166_wst_2023_171 crossref_primary_10_1007_s11269_023_03620_y crossref_primary_10_2166_wcc_2020_365 crossref_primary_10_1016_j_agwat_2023_108604 crossref_primary_10_1007_s11269_022_03292_0 crossref_primary_10_2166_wst_2024_142 crossref_primary_10_3390_atmos13020362 crossref_primary_10_3390_w14030492 crossref_primary_10_1007_s10668_023_03131_1 crossref_primary_10_1007_s00477_022_02367_z crossref_primary_10_1590_2318_0331_282320230118 crossref_primary_10_2166_wcc_2021_223 crossref_primary_10_2166_wpt_2023_144 crossref_primary_10_3390_math10162971 crossref_primary_10_1007_s11269_023_03534_9 crossref_primary_10_1007_s12517_022_10274_4 crossref_primary_10_1016_j_advwatres_2020_103595 crossref_primary_10_1007_s00704_024_04935_5 crossref_primary_10_1109_JSTARS_2025_3528475 crossref_primary_10_3390_rs17060967 crossref_primary_10_1038_s41598_022_07693_4 crossref_primary_10_1080_02626667_2022_2141121 crossref_primary_10_1007_s00477_022_02185_3 crossref_primary_10_1109_JSTARS_2022_3140442 crossref_primary_10_1016_j_catena_2024_107848 crossref_primary_10_1007_s11069_023_06211_7 crossref_primary_10_1007_s11269_023_03566_1 crossref_primary_10_1016_j_agwat_2023_108232 crossref_primary_10_1007_s00477_023_02390_8 |
Cites_doi | 10.3390/en11040949 10.1002/hyp.5862 10.2166/hydro.2017.189 10.2166/hydro.2017.102 10.2166/hydro.2018.116 10.1007/BF00117832 10.2166/nh.2017.085 10.5194/hess-20-2611-2016 10.2166/hydro.2010.005 10.3390/atmos9070251 10.1016/j.jhydrol.2018.09.055 10.1016/j.jhydrol.2016.09.035 10.1061/(ASCE)0733-9429(2001)127:3(181) 10.1016/j.jhydrol.2016.06.026 10.1007/s10109-018-0280-7 10.1016/j.agrformet.2018.09.021 10.2166/hydro.2016.141 10.1002/2014WR016163 10.1023/A:1010933404324 10.1061/(ASCE)0733-9496(2003)129:6(511) 10.1002/2016WR019193 10.1016/j.jhydrol.2018.03.057 10.5194/hess-20-4117-2016 10.1023/A:1007519102914 10.1016/j.scitotenv.2018.07.194 10.2166/hydro.2017.078 10.3390/w10111536 10.3390/atmos2030330 10.1007/s11069-017-2990-4 10.2166/nh.2017.044 10.1613/jair.594 10.2166/hydro.2016.085 10.1016/j.jhydrol.2018.04.008 10.3390/w10030291 10.2166/hydro.2019.064 10.1016/j.scitotenv.2018.04.040 10.1007/BF00994018 10.4018/978-1-4666-7272-7.ch004 10.1016/j.asr.2013.04.005 10.5194/hess-21-6007-2017 10.1016/j.jhydrol.2015.07.008 10.3390/w10101486 10.3390/atmos9120478 |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing Mar 2020 |
Copyright_xml | – notice: Copyright IWA Publishing Mar 2020 |
DBID | AAYXX CITATION 7QH 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY |
DOI | 10.2166/hydro.2019.066 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1465-1734 |
EndPage | 326 |
ExternalDocumentID | 10_2166_hydro_2019_066 |
GroupedDBID | 0R~ 4.4 5GY 7XC 8CJ 8FE 8FH AAJMC AAJVE AAYXX ABFYC ABLGR ACGFO AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION CS3 D1J DU5 EBS GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L7B O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI ~02 7QH 7UA AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c373t-3bfa8cc0406f2feb26a8bb4c33b38a29d77d575b0930c2b3e48b3727043326ad3 |
IEDL.DBID | BENPR |
ISSN | 1464-7141 |
IngestDate | Mon Jun 30 13:28:25 EDT 2025 Thu Apr 24 22:59:01 EDT 2025 Tue Jul 01 04:10:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-3bfa8cc0406f2feb26a8bb4c33b38a29d77d575b0930c2b3e48b3727043326ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iwaponline.com/jh/article-pdf/22/2/310/665574/jh0220310.pdf |
PQID | 2385857600 |
PQPubID | 2044529 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2385857600 crossref_primary_10_2166_hydro_2019_066 crossref_citationtrail_10_2166_hydro_2019_066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of hydroinformatics |
PublicationYear | 2020 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | (2020032614513974400_HYDRO-D-19-00066C6) 1996; 24 (2020032614513974400_HYDRO-D-19-00066C27) 2017; 89 (2020032614513974400_HYDRO-D-19-00066C25) 2018; 561 (2020032614513974400_HYDRO-D-19-00066C38) 2019; 646 (2020032614513974400_HYDRO-D-19-00066C8) 2019; 21 (2020032614513974400_HYDRO-D-19-00066C9) 2016 (2020032614513974400_HYDRO-D-19-00066C47) 2018; 20 (2020032614513974400_HYDRO-D-19-00066C5) 2017; 21 (2020032614513974400_HYDRO-D-19-00066C46) 2018; 10 (2020032614513974400_HYDRO-D-19-00066C45) 1999; 35 (2020032614513974400_HYDRO-D-19-00066C49) 2016; 542 (2020032614513974400_HYDRO-D-19-00066C18) 2018; 49 (2020032614513974400_HYDRO-D-19-00066C33) 2018; 9 (2020032614513974400_HYDRO-D-19-00066C23) 2004; 289 (2020032614513974400_HYDRO-D-19-00066C34) 2016; 20 (2020032614513974400_HYDRO-D-19-00066C20) 2011; 18 (2020032614513974400_HYDRO-D-19-00066C7) 2001; 45 (2020032614513974400_HYDRO-D-19-00066C1) 2005; 19 (2020032614513974400_HYDRO-D-19-00066C28) 2010; 46 (2020032614513974400_HYDRO-D-19-00066C52) 2011; 13 (2020032614513974400_HYDRO-D-19-00066C42) 2016; 18 (2020032614513974400_HYDRO-D-19-00066C24) 2017; 9 (2020032614513974400_HYDRO-D-19-00066C19) 2018; 20 (2020032614513974400_HYDRO-D-19-00066C43) 2011; 404 (2020032614513974400_HYDRO-D-19-00066C3) 2016; 18 (2020032614513974400_HYDRO-D-19-00066C14) 2018; 11 (2020032614513974400_HYDRO-D-19-00066C51) 2018; 635 (2020032614513974400_HYDRO-D-19-00066C17) 2016; 540 (2020032614513974400_HYDRO-D-19-00066C39) 2018; 561 (2020032614513974400_HYDRO-D-19-00066C22) 2018; 49 (2020032614513974400_HYDRO-D-19-00066C11) 2018; 20 (2020032614513974400_HYDRO-D-19-00066C48) 2019; 21 (2020032614513974400_HYDRO-D-19-00066C13) 2011; 2 (2020032614513974400_HYDRO-D-19-00066C31) 2016; 20 (2020032614513974400_HYDRO-D-19-00066C12) 1995; 20 (2020032614513974400_HYDRO-D-19-00066C35) 2015 (2020032614513974400_HYDRO-D-19-00066C4) 2016; 52 (2020032614513974400_HYDRO-D-19-00066C50) 2018; 9 (2020032614513974400_HYDRO-D-19-00066C30) 2015; 51 (2020032614513974400_HYDRO-D-19-00066C40) 1999; 10 (2020032614513974400_HYDRO-D-19-00066C10) 2018; 10 (2020032614513974400_HYDRO-D-19-00066C41) 2003; 129 (2020032614513974400_HYDRO-D-19-00066C2) 2001; 127 (2020032614513974400_HYDRO-D-19-00066C37) 2015; 528 (2020032614513974400_HYDRO-D-19-00066C36) 2014; 511 (2020032614513974400_HYDRO-D-19-00066C16) 2017; 19 (2020032614513974400_HYDRO-D-19-00066C21) 2017; 1–2 (2020032614513974400_HYDRO-D-19-00066C44) 2013; 52 (2020032614513974400_HYDRO-D-19-00066C15) 2019; 264 (2020032614513974400_HYDRO-D-19-00066C32) 2002 (2020032614513974400_HYDRO-D-19-00066C26) 2018; 566 (2020032614513974400_HYDRO-D-19-00066C29) 2018; 10 |
References_xml | – volume: 11 start-page: 949 issue: 4 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C14 article-title: Stacking ensemble learning for short-term electricity consumption forecasting publication-title: Energies doi: 10.3390/en11040949 – volume: 511 start-page: 254 issue: 4 year: 2014 ident: 2020032614513974400_HYDRO-D-19-00066C36 article-title: Evaluating influences of seasonal variations and anthropogenic activities on alluvial groundwater hydrochemistry using ensemble learning approaches publication-title: Journal of Hydrology – volume: 19 start-page: 1511 issue: 7 year: 2005 ident: 2020032614513974400_HYDRO-D-19-00066C1 article-title: Data mining in hydrology publication-title: Hydrological Processes: An International Journal doi: 10.1002/hyp.5862 – start-page: 554 year: 2002 ident: 2020032614513974400_HYDRO-D-19-00066C32 article-title: How to make stacking better and faster while also taking care of an unknown weakness – volume: 20 start-page: 191 issue: 1 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C19 article-title: Comparison of hybrid models for daily streamflow prediction in a forested basin publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2017.189 – volume: 19 start-page: 586 issue: 4 year: 2017 ident: 2020032614513974400_HYDRO-D-19-00066C16 article-title: Prediction of groundwater levels using evidence of chaos and support vector machine publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2017.102 – volume: 20 start-page: 1042 issue: 5 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C47 article-title: Exploration and attribution of synergistic gains from joint optimal operation of downstream Jinsha River cascade and Three Gorges cascade reservoirs for hydropower generation publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2018.116 – volume: 24 start-page: 49 issue: 1 year: 1996 ident: 2020032614513974400_HYDRO-D-19-00066C6 article-title: Stacked regressions publication-title: Machine Learning doi: 10.1007/BF00117832 – volume: 49 start-page: 1513 issue: 5 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C22 article-title: Long-term streamflow forecasting using SWAT through the integration of the random forests precipitation generator: case study of Danjiangkou Reservoir publication-title: Hydrology Research doi: 10.2166/nh.2017.085 – volume: 20 start-page: 2611 issue: 7 year: 2016 ident: 2020032614513974400_HYDRO-D-19-00066C34 article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-20-2611-2016 – volume: 13 start-page: 81 issue: 1 year: 2011 ident: 2020032614513974400_HYDRO-D-19-00066C52 article-title: Evaluation of precipitation forecasts from NOAA global forecast system in hydropower operation publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2010.005 – volume: 9 start-page: 251 issue: 7 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C33 article-title: Machine learning models coupled with variational mode decomposition: a new approach for modeling daily rainfall-runoff publication-title: Atmosphere doi: 10.3390/atmos9070251 – volume: 566 start-page: 668 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C26 article-title: Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2018.09.055 – volume: 542 start-page: 603 year: 2016 ident: 2020032614513974400_HYDRO-D-19-00066C49 article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2016.09.035 – volume: 127 start-page: 181 issue: 3 year: 2001 ident: 2020032614513974400_HYDRO-D-19-00066C2 article-title: Neural networks as routine for error updating of numerical models publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)0733-9429(2001)127:3(181) – volume: 540 start-page: 623 year: 2016 ident: 2020032614513974400_HYDRO-D-19-00066C17 article-title: A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2016.06.026 – volume: 20 start-page: 317 issue: 4 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C11 article-title: Geographically weighted elastic net logistic regression publication-title: Journal of Geographical Systems doi: 10.1007/s10109-018-0280-7 – volume: 264 start-page: 1 year: 2019 ident: 2020032614513974400_HYDRO-D-19-00066C15 article-title: Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2018.09.021 – volume: 18 start-page: 634 issue: 4 year: 2016 ident: 2020032614513974400_HYDRO-D-19-00066C3 article-title: Model fusion approach for monthly reservoir inflow forecasting publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2016.141 – volume: 51 start-page: 1797 issue: 3 year: 2015 ident: 2020032614513974400_HYDRO-D-19-00066C30 article-title: Model averaging methods to merge operational statistical and dynamic seasonal streamflow forecasts in Australia publication-title: Water Resources Research doi: 10.1002/2014WR016163 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 2020032614513974400_HYDRO-D-19-00066C7 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 129 start-page: 511 issue: 6 year: 2003 ident: 2020032614513974400_HYDRO-D-19-00066C41 article-title: Hybrid approach for modeling wet weather response in wastewater systems publication-title: Journal of Water Resources Planning and Management doi: 10.1061/(ASCE)0733-9496(2003)129:6(511) – volume: 52 start-page: 8238 issue: 10 year: 2016 ident: 2020032614513974400_HYDRO-D-19-00066C4 article-title: Reliable long-range ensemble streamflow forecasts: combining calibrated climate forecasts with a conceptual runoff model and a staged error model publication-title: Water Resources Research doi: 10.1002/2016WR019193 – volume: 561 start-page: 146 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C25 article-title: Monthly streamflow forecasting based on hidden Markov model and Gaussian mixture regression publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2018.03.057 – volume: 1–2 start-page: 1 year: 2017 ident: 2020032614513974400_HYDRO-D-19-00066C21 article-title: A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework publication-title: Theoretical and Applied Climatology – volume: 20 start-page: 4117 issue: 10 year: 2016 ident: 2020032614513974400_HYDRO-D-19-00066C31 article-title: Optimising seasonal streamflow forecast lead time for operational decision making in Australia publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-20-4117-2016 – volume: 35 start-page: 41 issue: 1 year: 1999 ident: 2020032614513974400_HYDRO-D-19-00066C45 article-title: An efficient method to estimate bagging's generalization error publication-title: Machine Learning doi: 10.1023/A:1007519102914 – volume: 646 start-page: 625 year: 2019 ident: 2020032614513974400_HYDRO-D-19-00066C38 article-title: Investigating regime shifts and the factors controlling total inorganic nitrogen concentrations in treated wastewater using non-homogeneous Hidden Markov and multinomial logistic regression models publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2018.07.194 – volume: 21 start-page: 13 issue: 1 year: 2019 ident: 2020032614513974400_HYDRO-D-19-00066C8 article-title: Review and comparison of performance indices for automatic model induction publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2017.078 – volume: 10 start-page: 1536 issue: 11 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C29 article-title: Flood prediction using machine learning models: literature review publication-title: Water doi: 10.3390/w10111536 – volume: 2 start-page: 330 issue: 3 year: 2011 ident: 2020032614513974400_HYDRO-D-19-00066C13 article-title: Climate variability and its impact on forest hydrology on South Carolina coastal plain, USA publication-title: Atmosphere doi: 10.3390/atmos2030330 – volume: 289 start-page: 1 issue: 1–4 year: 2004 ident: 2020032614513974400_HYDRO-D-19-00066C23 article-title: A non-linear rainfall-runoff model using radial basis function network publication-title: Journal of Hydrology – volume: 89 start-page: 741 issue: 2 year: 2017 ident: 2020032614513974400_HYDRO-D-19-00066C27 article-title: An extended STIRPAT model-based methodology for evaluating the driving forces affecting carbon emissions in existing public building sector: evidence from China in 2000–2015 publication-title: Natural Hazards doi: 10.1007/s11069-017-2990-4 – volume: 49 start-page: 1363 issue: 5 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C18 article-title: Rainfall-induced landslide susceptibility assessment using random forest weight at basin scale publication-title: Hydrology Research doi: 10.2166/nh.2017.044 – volume: 10 start-page: 271 year: 1999 ident: 2020032614513974400_HYDRO-D-19-00066C40 article-title: Issues in stacked generalization publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.594 – volume: 18 start-page: 773 issue: 5 year: 2016 ident: 2020032614513974400_HYDRO-D-19-00066C42 article-title: Application of hybrid Kalman filter for improving water level forecast publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2016.085 – start-page: 785 year: 2016 ident: 2020032614513974400_HYDRO-D-19-00066C9 article-title: Xgboost: a scalable tree boosting system – volume: 561 start-page: 636 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C39 article-title: A stacking ensemble learning framework for annual river ice breakup dates publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2018.04.008 – volume: 46 start-page: 8 year: 2010 ident: 2020032614513974400_HYDRO-D-19-00066C28 article-title: Toward improved identification of hydrological models: a diagnostic evaluation of the ‘abcd’ monthly water balance model for the conterminous United States publication-title: Water Resources Research – volume: 10 start-page: 291 issue: 3 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C46 article-title: Evaluating consistency between the remotely sensed soil moisture and the hydrological model-simulated soil moisture in the Qujiang catchment of China publication-title: Water doi: 10.3390/w10030291 – volume: 404 start-page: 166 issue: 3–4 year: 2011 ident: 2020032614513974400_HYDRO-D-19-00066C43 article-title: Monthly versus daily water balance models in simulating monthly runoff publication-title: Journal of Hydrology – volume: 18 start-page: 1426 issue: 11 year: 2011 ident: 2020032614513974400_HYDRO-D-19-00066C20 article-title: Application of Bayesian model averaging approach to multimodel ensemble hydrologic forecasting publication-title: Journal of Hydrologic Engineering – volume: 21 start-page: 257 issue: 2 year: 2019 ident: 2020032614513974400_HYDRO-D-19-00066C48 article-title: The multi-objective operation for cascade reservoirs using MMOSFLA with emphasis on power generation and ecological benefit publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2019.064 – volume: 9 start-page: 9 issue: 1 year: 2017 ident: 2020032614513974400_HYDRO-D-19-00066C24 article-title: Long-term streamflow forecasting based on relevance vector machine model publication-title: Water – volume: 635 start-page: 644 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C51 article-title: Development of a stacked ensemble model for forecasting and analyzing daily average PM 2.5 concentrations in Beijing, China publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2018.04.040 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 2020032614513974400_HYDRO-D-19-00066C12 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – start-page: 43 volume-title: Handbook of Research on Organizational Transformations through Big Data Analytics year: 2015 ident: 2020032614513974400_HYDRO-D-19-00066C35 article-title: A modified stacking ensemble machine learning algorithm using genetic algorithms doi: 10.4018/978-1-4666-7272-7.ch004 – volume: 52 start-page: 656 issue: 4 year: 2013 ident: 2020032614513974400_HYDRO-D-19-00066C44 article-title: Analysis of precipitable water vapor from GPS measurements in Chengdu region: distribution and evolution characteristics in autumn publication-title: Advances in Space Research doi: 10.1016/j.asr.2013.04.005 – volume: 21 start-page: 6007 issue: 12 year: 2017 ident: 2020032614513974400_HYDRO-D-19-00066C5 article-title: Assessment of an ensemble seasonal streamflow forecasting system for Australia publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-21-6007-2017 – volume: 528 start-page: 720 year: 2015 ident: 2020032614513974400_HYDRO-D-19-00066C37 article-title: Modification of input datasets for the Ensemble Streamflow Prediction based on large-scale climatic indices and weather generator publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2015.07.008 – volume: 10 start-page: 1486 issue: 10 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C10 article-title: Monthly streamflow forecasting using EEMD-Lasso-DBN method based on multi-scale predictors selection publication-title: Water doi: 10.3390/w10101486 – volume: 9 start-page: 478 issue: 12 year: 2018 ident: 2020032614513974400_HYDRO-D-19-00066C50 article-title: Contrasting impacts of ENSO on the interannual variations of summer runoff between the upper and mid-lower reaches of the Yangtze River publication-title: Atmosphere doi: 10.3390/atmos9120478 |
SSID | ssj0021381 |
Score | 2.4095416 |
Snippet | In this study, we evaluate elastic net regression (ENR), support vector regression (SVR), random forest (RF) and eXtreme Gradient Boosting (XGB) models and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 310 |
SubjectTerms | Access Canyons Climate prediction Computer applications Forecasting Hydrology Integration Learning algorithms Machine learning Mathematical models Methods Monthly Precipitation River basins Rivers Simulation Stacking Stream discharge Stream flow Streamflow forecasting Support vector machines Training |
Title | A multi-model integration method for monthly streamflow prediction: modified stacking ensemble strategy |
URI | https://www.proquest.com/docview/2385857600 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LTgIxFG0UFroxPiOKpgsTVxVmWjodNwYNhLggxkjCbtJ2WjHhJWDM_L23nYK60PXtYnI6vb2vnoPQVaQ0a2oqiU2sJEwzS9KWlkRZoWlujObas332eW_AHoetYSi4LcNY5donekedz7SrkTdi38FybaS7-TtxqlGuuxokNLZRFVywEBVUve_0n543KVdEvUwpuAM3dciikrYxjjhvjIp84V7_RelN03Mk_riWfntlf9V099FeiBFxu9zUA7RlpodoJ8iVj4oj9NrGfhCQeB0bvKZ8AIhxqQiNIRTF8MWr0bjA7jmInNjx7BPPF64v4xbegjl_sxCAgl1qVzDHkNGaiRobvCwpa4tjNOh2Xh56JCgmEE0TuiJUWSm0hoPJbWwhaeZSKMU0pYoKGad5kuQQn6lmSps6VtQwoShEMJ7FjMucnqDKdDY1pwiL3HCVtKS1KoEUjiquuIEdlK1IWJayGiJrwDId6MSdqsU4g7TCAZx5gDMHcAYA19D1Zv28JNL4c2V9jX8WDtQy-97-s__N52g3dimxHxOro8pq8WEuIG5Yqcvwc3wB9hTGkA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2F9FAuVfmoCC3gQxEnk6zteDdICBVolTQhQqiVcltsr90g5avJomr_FL-RsXc3wKHccra1h-dZzzyP_R7AaaSN6BiuqIudosIIR3tdo6h2ieGZtUaaoPY5lv1rcTnpThrwq34L469V1nti2KizpfFn5G0WOli-jfRhdUu9a5TvrtYWGmVYDG1xh5Rt837wGdf3NWMX51ef-rRyFaCGxzynXDuVGIPBKx1zSCylSrQWhnPNE8V6WRxnWMNopPodwzS3ItEcs3xQ-pIq4_jdB7AnuOywJux9PB9__baleBEPtqi4_fhbjiIqZSJZJGV7WmRr_9ow6r3tBE3Gv9Lgv1kgpLaLQzioalJyVgbRI2jYxWPYr-zRp8UTuDkj4eIhDb45pJaYwCUlpQM1wdKXIEL5dFYQ__xEzd1seUdWa98H8hPf4XD2w2HBi-PK-AN6ggzazvXMkk0pkVs8heudYHkEzcVyYZ8BSTIrddxVzukYKSPXUkuLEaO6UeJET7SA1oClppIv9y4asxRpjAc4DQCnHuAUAW7Bm-38VSncce_Mkxr_tPqBN-mfcHv-_-FXsN-_-jJKR4Px8BgeMk_HwxW1E2jm65_2BdYsuX5ZBQqB77uOzd_8GgMa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTuswEB1BkYDNFU_Re3l4AWJl2sSukyIhxKvipQohkNgF27EpUml72yKUX-PrGDsJjwXsWNvK4vjEM8cenwHYDJTmdc0ktZGVlGtuabOhJVU21iw1Rgvt3T7b4vSWn9817ibgtXwL48oqyz3Rb9RpX7sz8lrob7DcNVLNFmURV8et_cF_6jpIuZvWsp1GTpELk72gfBvtnR3jWm-FYevk5uiUFh0GqGYRG1OmrIy1RiILG1oUmULGSnHNmGKxDJtpFKWYzyiU_XUdKmZ4rBhGfO_6JWTK8LuTMBU5VVSBqcOT9tX1u9wLmG-RiluRq3jkQW4ZGQZC1DpZOnQvD4PmTt37M34KiV8jgg9zrTn4U-Sn5CAn1DxMmN4CzBSt0jvZIjwcEF-ESH0PHVLaTeDykrwbNcE0mCBC4043I-4pinyy3f4LGQzdnZCbuIvD6aPF5BfHpXaH9QTVtHlSXUNGuV1utgS3v4LlMlR6_Z5ZARKnRqioIa1VEcpHpoQSBtkjG0FseZNXgZaAJbqwMncdNboJShoHcOIBThzACQJche33-YPcxOPbmasl_knxM4-SD-r9_Xl4A6aRk8nlWfviH8yGTpn7arVVqIyHz2YN05exWi94QuD-t6n5BqINB08 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-model+integration+method+for+monthly+streamflow+prediction%3A+modified+stacking+ensemble+strategy&rft.jtitle=Journal+of+hydroinformatics&rft.au=Li%2C+Yujie&rft.au=Liang%2C+Zhongmin&rft.au=Hu%2C+Yiming&rft.au=Li%2C+Binquan&rft.date=2020-03-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=22&rft.issue=2&rft.spage=310&rft.epage=326&rft_id=info:doi/10.2166%2Fhydro.2019.066&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2019_066 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |