Digital soil mapping of soil organic carbon stocks in Western Ghats, South India
Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the amount and spatial distribution of the carbon stock in soils is crucial in estimating changes in the terrestrial carbon dynamics and managemen...
Saved in:
Published in | Geoderma Regional Vol. 25; p. e00387 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the amount and spatial distribution of the carbon stock in soils is crucial in estimating changes in the terrestrial carbon dynamics and management options for carbon-storing. A study was conducted to map the soil organic carbon stock (SOC) over 56,763 km2 area of Western Ghats of south India using a digital soil mapping approach. Landsat data, terrain attributes, and bioclimatic variables were used as covariates. Equal-area quadratic splines were fitted to soil profile datasets to estimate soil organic carbon stock at six standard soil depths (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm) and Quantile Regression Forest (QRF) algorithm was used to predict the SOC stocks. Prediction of SOC stock was better for surface layer (R2 = 31–43%) and the performance was decreasing with depth (R2 = 7–21%). The modal performance was also compared with SoilGrids products. Although the spatial patterns were similar, the present predicted SOC maps outperformed SoilGrids products in terms of both R2 and RMSE. The predicted total soil organic stock in the Western Ghats ranged from 7.1 kg m−2 to 30.9 kg m−2 and the total estimated SOC was 917 Tg. The present high resolution SOC maps help to assess and monitor the soil health and preparation of proper land use planning.
•SOC stock of Western Ghats was mapped using digital soil mapping approach.•Quantile Regression Forest algorithm was used to predict the SOC stocks and uncertainty.•Prediction performance was better for surface (R2 = 31–43%) than the sub-surface layer.•The predicted total SOC stock in the Western Ghats ranged from 7.1 kg m-2 to 30.9 kg m-2. |
---|---|
AbstractList | Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the amount and spatial distribution of the carbon stock in soils is crucial in estimating changes in the terrestrial carbon dynamics and management options for carbon-storing. A study was conducted to map the soil organic carbon stock (SOC) over 56,763 km² area of Western Ghats of south India using a digital soil mapping approach. Landsat data, terrain attributes, and bioclimatic variables were used as covariates. Equal-area quadratic splines were fitted to soil profile datasets to estimate soil organic carbon stock at six standard soil depths (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm) and Quantile Regression Forest (QRF) algorithm was used to predict the SOC stocks. Prediction of SOC stock was better for surface layer (R² = 31–43%) and the performance was decreasing with depth (R² = 7–21%). The modal performance was also compared with SoilGrids products. Although the spatial patterns were similar, the present predicted SOC maps outperformed SoilGrids products in terms of both R² and RMSE. The predicted total soil organic stock in the Western Ghats ranged from 7.1 kg m⁻² to 30.9 kg m⁻² and the total estimated SOC was 917 Tg. The present high resolution SOC maps help to assess and monitor the soil health and preparation of proper land use planning. Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the amount and spatial distribution of the carbon stock in soils is crucial in estimating changes in the terrestrial carbon dynamics and management options for carbon-storing. A study was conducted to map the soil organic carbon stock (SOC) over 56,763 km2 area of Western Ghats of south India using a digital soil mapping approach. Landsat data, terrain attributes, and bioclimatic variables were used as covariates. Equal-area quadratic splines were fitted to soil profile datasets to estimate soil organic carbon stock at six standard soil depths (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm) and Quantile Regression Forest (QRF) algorithm was used to predict the SOC stocks. Prediction of SOC stock was better for surface layer (R2 = 31–43%) and the performance was decreasing with depth (R2 = 7–21%). The modal performance was also compared with SoilGrids products. Although the spatial patterns were similar, the present predicted SOC maps outperformed SoilGrids products in terms of both R2 and RMSE. The predicted total soil organic stock in the Western Ghats ranged from 7.1 kg m−2 to 30.9 kg m−2 and the total estimated SOC was 917 Tg. The present high resolution SOC maps help to assess and monitor the soil health and preparation of proper land use planning. •SOC stock of Western Ghats was mapped using digital soil mapping approach.•Quantile Regression Forest algorithm was used to predict the SOC stocks and uncertainty.•Prediction performance was better for surface (R2 = 31–43%) than the sub-surface layer.•The predicted total SOC stock in the Western Ghats ranged from 7.1 kg m-2 to 30.9 kg m-2. Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the amount and spatial distribution of the carbon stock in soils is crucial in estimating changes in the terrestrial carbon dynamics and management options for carbon-storing. A study was conducted to map the soil organic carbon stock (SOC) over 56,763 km2 area of Western Ghats of south India using a digital soil mapping approach. Landsat data, terrain attributes, and bioclimatic variables were used as covariates. Equal-area quadratic splines were fitted to soil profile datasets to estimate soil organic carbon stock at six standard soil depths (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm) and Quantile Regression Forest (QRF) algorithm was used to predict the SOC stocks. Prediction of SOC stock was better for surface layer (R2 = 31–43%) and the performance was decreasing with depth (R2 = 7–21%). The modal performance was also compared with SoilGrids products. Although the spatial patterns were similar, the present predicted SOC maps outperformed SoilGrids products in terms of both R2 and RMSE. The predicted total soil organic stock in the Western Ghats ranged from 7.1 kg m−2 to 30.9 kg m−2 and the total estimated SOC was 917 Tg. The present high resolution SOC maps help to assess and monitor the soil health and preparation of proper land use planning. |
ArticleNumber | e00387 |
Author | Dharumarajan, S. Lagacherie, Philippe Kumar, K.S. Anil Vasundhara, R. Hegde, Rajendra Singh, S.K. Lalitha, M. Kalaiselvi, B. Suputhra, Amar Nair, K.M. |
Author_xml | – sequence: 1 givenname: S. surname: Dharumarajan fullname: Dharumarajan, S. email: Dharumarajan.S@icar.gov.in organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India – sequence: 2 givenname: B. surname: Kalaiselvi fullname: Kalaiselvi, B. organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India – sequence: 3 givenname: Amar surname: Suputhra fullname: Suputhra, Amar organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India – sequence: 4 givenname: M. surname: Lalitha fullname: Lalitha, M. organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India – sequence: 5 givenname: R. surname: Vasundhara fullname: Vasundhara, R. organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India – sequence: 6 givenname: K.S. Anil surname: Kumar fullname: Kumar, K.S. Anil organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India – sequence: 7 givenname: K.M. surname: Nair fullname: Nair, K.M. organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India – sequence: 8 givenname: Rajendra surname: Hegde fullname: Hegde, Rajendra organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India – sequence: 9 givenname: S.K. surname: Singh fullname: Singh, S.K. organization: ICAR-National Bureau of Soil Survey and Land Use Planning, Amaravati Road, Nagpur-10, India – sequence: 10 givenname: Philippe surname: Lagacherie fullname: Lagacherie, Philippe organization: LISAH, Univ. Montpellier, INRA, IRD, Montpellier SupAgro, Montpellier, France |
BackLink | https://hal.inrae.fr/hal-03193296$$DView record in HAL |
BookMark | eNqFkE1rGzEQhkVxoYmTf9CDjg3E7kjyfjiHgHEaJ2BoIC09irE0a8tZS44kB_Lvu2ZLCD20J33wPi8zzykb-OCJsc8CxgJE-XU7XlOwMY0lSDEmAFVXH9iJVIUcAUwng3f3T-w8pS0AyGmhqlKesIcbt3YZW56Ca_kO93vn1zw0_TvENXpnuMG4Cp6nHMxT4s7zX5QyRc8XG8zpkj-GQ97we28dnrGPDbaJzv-cQ_bz9tuP-d1o-X1xP58tR0ZVKo-UqGtVCCGVtUC1RKVQTVeqtE0NVdMUFuUKCcF0O0pbVxWKbuqShCgrBKGG7KLv3WCr99HtML7qgE7fzZb6-AdKTFVHvByzX_rsPobnQze63rlkqG3RUzgkLQs5kRMoO2DIJn3UxJBSpOatW4A--tZb3fvWR9-6991hV39hprOaXfA5omv_B1_3MHW-XhxFnYwjb8i6SCZrG9y_C34DUZieRg |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2022_116052 crossref_primary_10_1139_cjss_2022_0012 crossref_primary_10_1007_s10661_024_13216_7 crossref_primary_10_1016_j_geoderma_2024_116952 crossref_primary_10_1007_s12517_023_11670_0 crossref_primary_10_3390_s22072685 crossref_primary_10_1016_j_jenvman_2023_117810 crossref_primary_10_1002_ece3_10986 crossref_primary_10_3390_rs15174241 crossref_primary_10_1016_j_geoderma_2021_115606 crossref_primary_10_1016_j_catena_2022_106381 crossref_primary_10_3390_rs15082017 crossref_primary_10_3390_rs13234772 crossref_primary_10_1016_j_catena_2024_107813 crossref_primary_10_1007_s12145_025_01822_z crossref_primary_10_1111_sum_12966 crossref_primary_10_1038_s41598_024_83551_9 crossref_primary_10_1080_00103624_2025_2449946 crossref_primary_10_1088_1755_1315_1306_1_012021 crossref_primary_10_1007_s12665_024_11834_5 crossref_primary_10_3390_rs16152712 crossref_primary_10_3390_land12071295 crossref_primary_10_1080_00103624_2024_2419994 crossref_primary_10_1016_j_catena_2021_105837 crossref_primary_10_1016_j_geodrs_2025_e00933 crossref_primary_10_1016_j_geoderma_2022_116265 crossref_primary_10_3390_land13070970 crossref_primary_10_3390_su152416853 crossref_primary_10_1080_27669645_2024_2400432 crossref_primary_10_3390_land12101841 crossref_primary_10_1080_00103624_2023_2253840 crossref_primary_10_1111_sum_12995 crossref_primary_10_1371_journal_pone_0268658 |
Cites_doi | 10.5194/bg-12-3993-2015 10.1371/journal.pone.0105519 10.1016/j.geoderma.2016.12.008 10.1016/j.geoderma.2015.08.035 10.1016/S0016-7061(99)00003-8 10.1007/s10021-005-0054-1 10.1016/j.geoderma.2015.07.017 10.1016/B978-0-12-405942-9.00001-3 10.1016/j.ecolind.2018.01.049 10.1016/j.geoderma.2013.07.002 10.1016/j.geoderma.2015.06.023 10.1016/j.foreco.2014.01.003 10.1016/j.geoderma.2009.11.005 10.1097/00010694-193401000-00003 10.3390/rs11050565 10.1007/s12665-018-7374-x 10.2136/sssaj2012.0317 10.2136/sssaj2009.0158 10.1016/j.geoderma.2014.01.005 10.5194/gmd-7-1197-2014 10.1016/j.geodrs.2018.e00192 10.1016/B978-0-12-800137-0.00003-0 10.1111/gcb.12384 10.1007/s11442-016-1257-4 10.1016/j.geoderma.2019.05.031 10.1139/x01-122 10.1371/journal.pone.0169748 10.1016/j.geoderma.2019.114145 10.1016/j.geoderma.2016.02.002 10.1016/j.scitotenv.2019.02.420 10.1016/j.geoderma.2018.09.011 10.1016/j.geodrs.2017.07.005 10.1016/j.geoderma.2009.05.015 10.1111/j.1365-2486.2009.02127.x 10.1016/j.geoderma.2014.03.012 10.1038/srep21842 10.1007/s10661-016-5204-8 10.1016/j.geoderma.2012.05.026 10.1016/j.geoderma.2015.07.016 10.1002/2017GB005678 10.1016/S0016-7061(03)00223-4 10.2136/sssaj2011.0025 10.1016/j.geoderma.2009.10.007 10.1016/j.geoderma.2015.04.008 10.1016/j.geoderma.2016.12.017 10.1016/j.ecolind.2017.02.010 10.1016/j.geoderma.2011.01.010 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC |
DOI | 10.1016/j.geodrs.2021.e00387 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | oai_HAL_hal_03193296v1 10_1016_j_geodrs_2021_e00387 S2352009421000328 |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c373t-3188351123dd0e82a33a39b36df807ff5da2baea0c0162d877a10296e1167a013 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Fri May 09 12:29:38 EDT 2025 Fri Jul 11 03:54:21 EDT 2025 Tue Jul 01 02:07:18 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Fri Feb 23 02:45:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Quantile Regression Forest SOC stock Western Ghats Cross validation Multiple soil classes Digital soil mapping |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-3188351123dd0e82a33a39b36df807ff5da2baea0c0162d877a10296e1167a013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2948-1966 |
PQID | 2524240619 |
PQPubID | 24069 |
ParticipantIDs | hal_primary_oai_HAL_hal_03193296v1 proquest_miscellaneous_2524240619 crossref_primary_10_1016_j_geodrs_2021_e00387 crossref_citationtrail_10_1016_j_geodrs_2021_e00387 elsevier_sciencedirect_doi_10_1016_j_geodrs_2021_e00387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 2021-06 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Adhikari, Owens, Libohova, Miller, Wills, Nemecek (bb0010) 2019; 667 Dharumarajan, Hegde, Janani, Singh (bb0045) 2019 Bonfatti, Hartemink, Giasson, Tornquist, Adhikari (bb0035) 2016; 261 Lamichhane, Kumar, Wilson (bb0115) 2019; 352 Nussbaum, Papritz, Baltensweiler Walthert (bb0210) 2014; 7 Minasny, Malone, McBratney, Wheeler (bb0170) 2013; 118 Grossman, Harms, Kinngsbury, Shaw, Jenkins (bb0070) 2001 Dharumarajan, Hegde, Singh (bb0040) 2017; 10C Kempen, Brus, Stoorvogel (bb0090) 2011; 162 McBratney, Mendonça-Santos, Minasny (bb0145) 2003; 117 Wang, Waters, Orgill, Cowie, Clark, Li Liu, Simpson, McGowen, Sides (bb0270) 2018; 88 Adhikari, Hartemink, Minasny, Bou Kheir, Greve, Greve (bb0005) 2014; 9 Arrouays, Grundy, Hartemink, Hempel, Heuvelink, Hong, Lagacherie, Lelyk, McBratney, McKenzie, Mendonça-Santos, Minasny, Montanarella, Odeh, Sanchez, Thompson, Zhang (bb0015) 2014; 125 Hengl, Mendes de Jesus, Heuvelink, Ruiperez Gonzalez, Kilibarda, Blagotić, Guevara (bb0080) 2017; 12 Odgers, Libohova, Thompson (bb0215) 2012; 189–190 Liu, Zhang, Sun, Zhao, Li (bb0120) 2013; 77 Bawa, Kadur (bb0020) 2005 Rajan, Natarajan, Anil Kumar, Badrinath, Gowda (bb0235) 2010; 99 Mulder, Lacoste, Richer-de-Forges, Martin, Arrouays (bb0195) 2016; 263 Tifafi, Guenet, Hatté (bb0250) 2018; 32 Kempen, Dalsgaard, Kaaya, Chamuya, Ruipérez-González, Pekkarinen, Walsh (bb0095) 2019; 337 Dorji, Odeh, Field, Baillie (bb0055) 2014; 318 Walkley, Black (bb0265) 1934; 37 Martin, Orton, Lacarce, Meersmans, Saby, Paroissien, Jolivet, Boulonne, Arrouays (bb0140) 2014; 223–225 Meersmans, van Wesemael, De Ridder, Van Molle (bb0150) 2009; 152 Bishop, McBratney, Laslett (bb0030) 1999; 91 Prasad, Iverson, Liaw (bb0225) 2006; 9 Were, Singh, Dick (bb0275) 2016; 26 Sreenivas, Dadhwal, Kumar, Harsha, Mitran, Sujatha, Suresh, Fyzee, Ravisankar (bb0245) 2016; 269 Nikhildas (bb0205) 2014 Yang, Zhang, Yang, Zhi, Yang, Liu, Zhao, Li (bb0285) 2016; 6 Meinshausen (bb0160) 2006; 7 Mitran, Mishra, Lal, Ravisankar, Sreenivas (bb0185) 2018 Vaysse, Lagacherie (bb0260) 2017; 291 Gomez, Dharumarajan, Féret, Lagacherie, Ruiz, Sekhar (bb0065) 2019; 11 Malone, Styc, Minasny, McBratney (bb0135) 2017; 290 Nampoothiri, Ramkumar, Pandey (bb0200) 2013; 72 Minasny, McBratney (bb0165) 2016; 264 Kovačevic, Bajat, Gajić (bb0100) 2010; 154 Bhatti, Apps, Tarnocai (bb0025) 2002; 2 Gautham (bb0060) 2012 Song, Wu, Ju, Liu, Yang, Li, Zhao, Yang, Zhang (bb0240) 2020; 363 Mishra, Riley (bb0175) 2015; 12 Dharumarajan, Kalaiselvi, Suputhra, Lalitha, Hegde, Singh, Lagacherie (bb0050) 2020; 20 Grunwald, Thompson, Boettinger (bb0075) 2011; 75 Hinge, Surampalli, Goyal (bb0085) 2018; 77 Krishnan, Bourgeon, Seen, Nair, Prasanna, Srinivas, Muthusankar, Dufy, Ramesh (bb0105) 2007; 93 Ottoy, Bruno De, De Vos, Anicet, Hermy, Van Orshoven (bb0220) 2017; 77 Mosleh, Salehi, Jafari (bb0190) 2016; 188 Mishra, Lal, Liu, van Meirvenne (bb0180) 2010; 74 Priori, Bianconi, Constantini (bb0230) 2014; 226-227 Wiesmeier, Hübner, Spörlein, Geuss, Hangern, Reischl, Schilling, von Lützow, Kögel-Knabner (bb0280) 2014; 20 Vågen, Winowiecki, Tondoh, Desta, Gumbricht (bb0255) 2016; 263 Mehrjardi, Nabiollahi, Minasny, Triantafilis (bb0155) 2015; 253–254 Lacoste, Minasny, McBratney, Michot, Viaud, Walter (bb0110) 2014; 213 Lo Seen, Ramesh, Nair, Martin, Arrouays, Bourgeon (bb0125) 2010; 16 Malone, McBratney, Minasny, Laslett (bb0130) 2009; 154 Malone (10.1016/j.geodrs.2021.e00387_bb0135) 2017; 290 Bhatti (10.1016/j.geodrs.2021.e00387_bb0025) 2002; 2 McBratney (10.1016/j.geodrs.2021.e00387_bb0145) 2003; 117 Liu (10.1016/j.geodrs.2021.e00387_bb0120) 2013; 77 Mosleh (10.1016/j.geodrs.2021.e00387_bb0190) 2016; 188 Mitran (10.1016/j.geodrs.2021.e00387_bb0185) 2018 Adhikari (10.1016/j.geodrs.2021.e00387_bb0010) 2019; 667 Dharumarajan (10.1016/j.geodrs.2021.e00387_bb0040) 2017; 10C Adhikari (10.1016/j.geodrs.2021.e00387_bb0005) 2014; 9 Wang (10.1016/j.geodrs.2021.e00387_bb0270) 2018; 88 Lo Seen (10.1016/j.geodrs.2021.e00387_bb0125) 2010; 16 Wiesmeier (10.1016/j.geodrs.2021.e00387_bb0280) 2014; 20 Priori (10.1016/j.geodrs.2021.e00387_bb0230) 2014; 226-227 Dorji (10.1016/j.geodrs.2021.e00387_bb0055) 2014; 318 Kempen (10.1016/j.geodrs.2021.e00387_bb0095) 2019; 337 Hinge (10.1016/j.geodrs.2021.e00387_bb0085) 2018; 77 Mehrjardi (10.1016/j.geodrs.2021.e00387_bb0155) 2015; 253–254 Krishnan (10.1016/j.geodrs.2021.e00387_bb0105) 2007; 93 Hengl (10.1016/j.geodrs.2021.e00387_bb0080) 2017; 12 Grossman (10.1016/j.geodrs.2021.e00387_bb0070) 2001 Malone (10.1016/j.geodrs.2021.e00387_bb0130) 2009; 154 Ottoy (10.1016/j.geodrs.2021.e00387_bb0220) 2017; 77 Meersmans (10.1016/j.geodrs.2021.e00387_bb0150) 2009; 152 Arrouays (10.1016/j.geodrs.2021.e00387_bb0015) 2014; 125 Yang (10.1016/j.geodrs.2021.e00387_bb0285) 2016; 6 Dharumarajan (10.1016/j.geodrs.2021.e00387_bb0050) 2020; 20 Nussbaum (10.1016/j.geodrs.2021.e00387_bb0210) 2014; 7 Bishop (10.1016/j.geodrs.2021.e00387_bb0030) 1999; 91 Martin (10.1016/j.geodrs.2021.e00387_bb0140) 2014; 223–225 Dharumarajan (10.1016/j.geodrs.2021.e00387_bb0045) 2019 Kempen (10.1016/j.geodrs.2021.e00387_bb0090) 2011; 162 Tifafi (10.1016/j.geodrs.2021.e00387_bb0250) 2018; 32 Rajan (10.1016/j.geodrs.2021.e00387_bb0235) 2010; 99 Prasad (10.1016/j.geodrs.2021.e00387_bb0225) 2006; 9 Kovačevic (10.1016/j.geodrs.2021.e00387_bb0100) 2010; 154 Minasny (10.1016/j.geodrs.2021.e00387_bb0165) 2016; 264 Minasny (10.1016/j.geodrs.2021.e00387_bb0170) 2013; 118 Gomez (10.1016/j.geodrs.2021.e00387_bb0065) 2019; 11 Meinshausen (10.1016/j.geodrs.2021.e00387_bb0160) 2006; 7 Lamichhane (10.1016/j.geodrs.2021.e00387_bb0115) 2019; 352 Sreenivas (10.1016/j.geodrs.2021.e00387_bb0245) 2016; 269 Vågen (10.1016/j.geodrs.2021.e00387_bb0255) 2016; 263 Walkley (10.1016/j.geodrs.2021.e00387_bb0265) 1934; 37 Nikhildas (10.1016/j.geodrs.2021.e00387_bb0205) 2014 Nampoothiri (10.1016/j.geodrs.2021.e00387_bb0200) 2013; 72 Mishra (10.1016/j.geodrs.2021.e00387_bb0175) 2015; 12 Song (10.1016/j.geodrs.2021.e00387_bb0240) 2020; 363 Mishra (10.1016/j.geodrs.2021.e00387_bb0180) 2010; 74 Lacoste (10.1016/j.geodrs.2021.e00387_bb0110) 2014; 213 Were (10.1016/j.geodrs.2021.e00387_bb0275) 2016; 26 Grunwald (10.1016/j.geodrs.2021.e00387_bb0075) 2011; 75 Bawa (10.1016/j.geodrs.2021.e00387_bb0020) 2005 Odgers (10.1016/j.geodrs.2021.e00387_bb0215) 2012; 189–190 Vaysse (10.1016/j.geodrs.2021.e00387_bb0260) 2017; 291 Mulder (10.1016/j.geodrs.2021.e00387_bb0195) 2016; 263 Gautham (10.1016/j.geodrs.2021.e00387_bb0060) 2012 Bonfatti (10.1016/j.geodrs.2021.e00387_bb0035) 2016; 261 |
References_xml | – year: 2005 ident: bb0020 article-title: Sahyadris: India’s Western Ghats—A Vanishing Heritage – volume: 223–225 start-page: 97 year: 2014 end-page: 107 ident: bb0140 article-title: Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale publication-title: Geoderma – volume: 189–190 start-page: 153 year: 2012 end-page: 163 ident: bb0215 article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale publication-title: Geoderma – volume: 74 start-page: 906 year: 2010 end-page: 914 ident: bb0180 article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale publication-title: Soil Sci. Soc. Am. J. – volume: 188 start-page: 195 year: 2016 ident: bb0190 article-title: The effectiveness of digital soil mapping to predict soil properties over low-relief areas publication-title: Environ. Monit. Assess. – volume: 99 start-page: 823 year: 2010 end-page: 827 ident: bb0235 article-title: Soil organic carbon-the most reliable indicator for monitoring land degradation by soil erosion publication-title: Curr. Sci. – volume: 667 start-page: 833 year: 2019 end-page: 845 ident: bb0010 article-title: Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change publication-title: Sci. Total Environ. – volume: 11 start-page: 565 year: 2019 ident: bb0065 article-title: Use of Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture mapping publication-title: Remote Sens. – volume: 20 start-page: 653 year: 2014 end-page: 665 ident: bb0280 article-title: Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation publication-title: Glob. Chang. Biol. – volume: 269 start-page: 160 year: 2016 end-page: 173 ident: bb0245 article-title: Digital mapping of soil organic and inorganic carbon status in India publication-title: Geoderma – volume: 253–254 start-page: 67 year: 2015 end-page: 77 ident: bb0155 article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran publication-title: Geoderma – year: 2012 ident: bb0060 article-title: Molecular Characterization and Pharmacological Activities of Metabolites from STREPTOMYCES spp – volume: 290 start-page: 91 year: 2017 end-page: 99 ident: bb0135 article-title: Digital soil mapping of soil carbon at the farm scale: a spatial downscaling approach in consideration of measured and uncertain data publication-title: Geoderma – volume: 32 start-page: 42 year: 2018 end-page: 56 ident: bb0250 article-title: Large differences in global and regional total soil carbon stock estimates based on SoilGrids, HWSD, and NCSCD: Intercomparison and evaluation based on field data from USA, England, Wales, and France publication-title: Global Biogeochem. Cy – start-page: 87 year: 2001 end-page: 102 ident: bb0070 article-title: Assessment of soil organic carbon using the U.S soil survey publication-title: Assessment Methods for Soil Carbon – volume: 12 start-page: 3993 year: 2015 end-page: 4004 ident: bb0175 article-title: Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks publication-title: Biogeosciences – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: bb0145 article-title: On digital soil mapping publication-title: Geoderma – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: bb0265 article-title: An estimation of the method for determining soil organic matter and a proposed modification of the chromic acid titration method publication-title: Soil Sci. – volume: 7 start-page: 1197 year: 2014 end-page: 1210 ident: bb0210 article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging publication-title: Geosci. Model Dev. – volume: 72 start-page: 617 year: 2013 end-page: 623 ident: bb0200 article-title: Western Ghats of India: rich source of microbial diversity publication-title: J. Sci. Ind. Res. – volume: 9 year: 2014 ident: bb0005 article-title: Digital mapping of soil organic carbon contents and stocks in Denmark publication-title: PLoS One – volume: 9 start-page: 181 year: 2006 end-page: 199 ident: bb0225 article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction publication-title: Ecosystems – volume: 77 start-page: 172 year: 2018 ident: bb0085 article-title: Prediction of soil organic carbon stock using digital mapping approach in humid India publication-title: Environ. Earth Sci. – start-page: 16 year: 2019 ident: bb0045 article-title: The need for digital soil mapping in India publication-title: Geoderma Reg. – volume: 263 start-page: 16 year: 2016 end-page: 34 ident: bb0195 article-title: National versus global modelling the 3D distribution of soil organic carbon in mainland France publication-title: Geoderma – volume: 118 year: 2013 ident: bb0170 article-title: Digital mapping of soil carbon publication-title: Adv. Agron. – volume: 226-227 start-page: 354 year: 2014 end-page: 364 ident: bb0230 article-title: Can γ-radiometrics predict soil textural data and stoniness in different parent materials? A comparison of two machine learning methods publication-title: Geoderma – volume: 10C start-page: 154 year: 2017 end-page: 162 ident: bb0040 article-title: Spatial prediction of major soil properties using random Forest techniques - a case study in semi-arid tropics of South India publication-title: Geoderma Reg. – volume: 12 year: 2017 ident: bb0080 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One – volume: 261 start-page: 204 year: 2016 end-page: 221 ident: bb0035 article-title: Digital mapping of soil carbon in a viticultural region of southern Brazil publication-title: Geoderma – volume: 6 start-page: 21842 year: 2016 ident: bb0285 article-title: Precise estimation of soil organic carbon stocks in the northeast Tibetan plateau publication-title: Sci. Rep. – volume: 93 start-page: 706 year: 2007 end-page: 710 ident: bb0105 article-title: Organic carbon stock map for soils of southern India: a multifactorial approach publication-title: Curr. Sci. – volume: 363 start-page: 114145 year: 2020 ident: bb0240 article-title: Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China publication-title: Geoderma – volume: 152 start-page: 43 year: 2009 end-page: 52 ident: bb0150 article-title: Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (flan-ders, Belgium) publication-title: Geoderma – volume: 26 start-page: 102 year: 2016 end-page: 124 ident: bb0275 article-title: Spatially distributed modelling and mapping of soil organic carbon and total nitrogen stocks in the Eastern Mau Forest Reserve, Kenya publication-title: J. Geogr. Sci. – volume: 352 start-page: 395 year: 2019 end-page: 413 ident: bb0115 article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a review publication-title: Geoderma – volume: 77 start-page: 1241 year: 2013 end-page: 1253 ident: bb0120 article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape publication-title: Soil Sci. Soc. Am. J. – volume: 88 start-page: 425 year: 2018 end-page: 438 ident: bb0270 article-title: Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia publication-title: Ecol. Indic. – volume: 7 start-page: 983 year: 2006 end-page: 999 ident: bb0160 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – year: 2018 ident: bb0185 article-title: Spatial distribution of soil carbon stocks in a semi-arid region of India publication-title: Geoderma Reg. – volume: 2 start-page: 805 year: 2002 end-page: 812 ident: bb0025 article-title: Estimates of soil organic carbon stocks in Central Canada using three different approaches publication-title: Can. J. For. Res. – volume: 162 start-page: 107 year: 2011 end-page: 123 ident: bb0090 article-title: Three-dimensional mapping of soil organic matter content using soil type-specific depth functions publication-title: Geoderma – volume: 91 start-page: 27 year: 1999 end-page: 45 ident: bb0030 article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines publication-title: Geoderma – volume: 213 start-page: 296 year: 2014 end-page: 311 ident: bb0110 article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape publication-title: Geoderma – volume: 263 start-page: 216 year: 2016 end-page: 225 ident: bb0255 article-title: Mapping of soil properties and land degradation risk in Africa using MODIS reflectance publication-title: Geoderma – volume: 75 start-page: 1201 year: 2011 end-page: 1213 ident: bb0075 article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues publication-title: Soil Sci. Soc. Am. J. – volume: 291 start-page: 55 year: 2017 end-page: 64 ident: bb0260 article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products publication-title: Geoderma – year: 2014 ident: bb0205 article-title: Archaeology of the Anjunad Valley, with Special Reference to the Megaliths and Rock Art, Idukki District, Kerala – volume: 20 year: 2020 ident: bb0050 article-title: Digital soil mapping of key GlobalSoilMap properties in northern Karnataka plateau publication-title: Geoderma Reg. – volume: 337 start-page: 164 year: 2019 end-page: 180 ident: bb0095 article-title: Mapping topsoil organic carbon concentrations and stocks for Tanzania publication-title: Geoderma – volume: 154 start-page: 138 year: 2009 end-page: 152 ident: bb0130 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma – volume: 264 start-page: 301 year: 2016 end-page: 311 ident: bb0165 article-title: Digital soil mapping: a brief history and some lessons publication-title: Geoderma – volume: 77 start-page: 139 year: 2017 end-page: 150 ident: bb0220 article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalization publication-title: Ecol. Indic. – volume: 125 start-page: 93 year: 2014 end-page: 134 ident: bb0015 article-title: GlobalSoilMap: towards a fine-resolution global grid of soil properties publication-title: Adv. Agron. – volume: 154 start-page: 340 year: 2010 end-page: 347 ident: bb0100 article-title: Soil type classification and estimation of soil properties using support vector machines publication-title: Geoderma – volume: 16 start-page: 1777 year: 2010 end-page: 1792 ident: bb0125 article-title: Soil carbon stocks, deforestation and landcover changes in the Western Ghats biodiversity hotspot (India) publication-title: Glob. Chang. Biol. – volume: 318 start-page: 91 year: 2014 end-page: 102 ident: bb0055 article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas publication-title: For. Ecol. Manag. – volume: 12 start-page: 3993 year: 2015 ident: 10.1016/j.geodrs.2021.e00387_bb0175 article-title: Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks publication-title: Biogeosciences doi: 10.5194/bg-12-3993-2015 – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.geodrs.2021.e00387_bb0005 article-title: Digital mapping of soil organic carbon contents and stocks in Denmark publication-title: PLoS One doi: 10.1371/journal.pone.0105519 – volume: 290 start-page: 91 year: 2017 ident: 10.1016/j.geodrs.2021.e00387_bb0135 article-title: Digital soil mapping of soil carbon at the farm scale: a spatial downscaling approach in consideration of measured and uncertain data publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.008 – volume: 263 start-page: 16 year: 2016 ident: 10.1016/j.geodrs.2021.e00387_bb0195 article-title: National versus global modelling the 3D distribution of soil organic carbon in mainland France publication-title: Geoderma doi: 10.1016/j.geoderma.2015.08.035 – volume: 91 start-page: 27 issue: 1–2 year: 1999 ident: 10.1016/j.geodrs.2021.e00387_bb0030 article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines publication-title: Geoderma doi: 10.1016/S0016-7061(99)00003-8 – volume: 9 start-page: 181 year: 2006 ident: 10.1016/j.geodrs.2021.e00387_bb0225 article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction publication-title: Ecosystems doi: 10.1007/s10021-005-0054-1 – volume: 264 start-page: 301 year: 2016 ident: 10.1016/j.geodrs.2021.e00387_bb0165 article-title: Digital soil mapping: a brief history and some lessons publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.017 – volume: 118 year: 2013 ident: 10.1016/j.geodrs.2021.e00387_bb0170 article-title: Digital mapping of soil carbon publication-title: Adv. Agron. doi: 10.1016/B978-0-12-405942-9.00001-3 – volume: 88 start-page: 425 year: 2018 ident: 10.1016/j.geodrs.2021.e00387_bb0270 article-title: Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.01.049 – year: 2014 ident: 10.1016/j.geodrs.2021.e00387_bb0205 – volume: 213 start-page: 296 year: 2014 ident: 10.1016/j.geodrs.2021.e00387_bb0110 article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.002 – volume: 20 year: 2020 ident: 10.1016/j.geodrs.2021.e00387_bb0050 article-title: Digital soil mapping of key GlobalSoilMap properties in northern Karnataka plateau publication-title: Geoderma Reg. – volume: 263 start-page: 216 year: 2016 ident: 10.1016/j.geodrs.2021.e00387_bb0255 article-title: Mapping of soil properties and land degradation risk in Africa using MODIS reflectance publication-title: Geoderma doi: 10.1016/j.geoderma.2015.06.023 – volume: 318 start-page: 91 year: 2014 ident: 10.1016/j.geodrs.2021.e00387_bb0055 article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2014.01.003 – start-page: 16 year: 2019 ident: 10.1016/j.geodrs.2021.e00387_bb0045 article-title: The need for digital soil mapping in India publication-title: Geoderma Reg. – volume: 154 start-page: 340 year: 2010 ident: 10.1016/j.geodrs.2021.e00387_bb0100 article-title: Soil type classification and estimation of soil properties using support vector machines publication-title: Geoderma doi: 10.1016/j.geoderma.2009.11.005 – volume: 37 start-page: 29 year: 1934 ident: 10.1016/j.geodrs.2021.e00387_bb0265 article-title: An estimation of the method for determining soil organic matter and a proposed modification of the chromic acid titration method publication-title: Soil Sci. doi: 10.1097/00010694-193401000-00003 – volume: 11 start-page: 565 year: 2019 ident: 10.1016/j.geodrs.2021.e00387_bb0065 article-title: Use of Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture mapping publication-title: Remote Sens. doi: 10.3390/rs11050565 – volume: 77 start-page: 172 year: 2018 ident: 10.1016/j.geodrs.2021.e00387_bb0085 article-title: Prediction of soil organic carbon stock using digital mapping approach in humid India publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7374-x – volume: 77 start-page: 1241 year: 2013 ident: 10.1016/j.geodrs.2021.e00387_bb0120 article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0317 – volume: 7 start-page: 983 year: 2006 ident: 10.1016/j.geodrs.2021.e00387_bb0160 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – volume: 74 start-page: 906 year: 2010 ident: 10.1016/j.geodrs.2021.e00387_bb0180 article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0158 – volume: 223–225 start-page: 97 year: 2014 ident: 10.1016/j.geodrs.2021.e00387_bb0140 article-title: Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale publication-title: Geoderma doi: 10.1016/j.geoderma.2014.01.005 – volume: 7 start-page: 1197 year: 2014 ident: 10.1016/j.geodrs.2021.e00387_bb0210 article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-1197-2014 – start-page: 87 year: 2001 ident: 10.1016/j.geodrs.2021.e00387_bb0070 article-title: Assessment of soil organic carbon using the U.S soil survey – year: 2018 ident: 10.1016/j.geodrs.2021.e00387_bb0185 article-title: Spatial distribution of soil carbon stocks in a semi-arid region of India publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2018.e00192 – volume: 125 start-page: 93 year: 2014 ident: 10.1016/j.geodrs.2021.e00387_bb0015 article-title: GlobalSoilMap: towards a fine-resolution global grid of soil properties publication-title: Adv. Agron. doi: 10.1016/B978-0-12-800137-0.00003-0 – volume: 20 start-page: 653 year: 2014 ident: 10.1016/j.geodrs.2021.e00387_bb0280 article-title: Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12384 – volume: 26 start-page: 102 issue: 1 year: 2016 ident: 10.1016/j.geodrs.2021.e00387_bb0275 article-title: Spatially distributed modelling and mapping of soil organic carbon and total nitrogen stocks in the Eastern Mau Forest Reserve, Kenya publication-title: J. Geogr. Sci. doi: 10.1007/s11442-016-1257-4 – volume: 352 start-page: 395 year: 2019 ident: 10.1016/j.geodrs.2021.e00387_bb0115 article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.031 – volume: 2 start-page: 805 issue: 5 year: 2002 ident: 10.1016/j.geodrs.2021.e00387_bb0025 article-title: Estimates of soil organic carbon stocks in Central Canada using three different approaches publication-title: Can. J. For. Res. doi: 10.1139/x01-122 – year: 2012 ident: 10.1016/j.geodrs.2021.e00387_bb0060 – volume: 12 year: 2017 ident: 10.1016/j.geodrs.2021.e00387_bb0080 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One doi: 10.1371/journal.pone.0169748 – volume: 99 start-page: 823 issue: 6 year: 2010 ident: 10.1016/j.geodrs.2021.e00387_bb0235 article-title: Soil organic carbon-the most reliable indicator for monitoring land degradation by soil erosion publication-title: Curr. Sci. – volume: 363 start-page: 114145 year: 2020 ident: 10.1016/j.geodrs.2021.e00387_bb0240 article-title: Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114145 – volume: 269 start-page: 160 year: 2016 ident: 10.1016/j.geodrs.2021.e00387_bb0245 article-title: Digital mapping of soil organic and inorganic carbon status in India publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.002 – volume: 667 start-page: 833 year: 2019 ident: 10.1016/j.geodrs.2021.e00387_bb0010 article-title: Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.420 – volume: 337 start-page: 164 year: 2019 ident: 10.1016/j.geodrs.2021.e00387_bb0095 article-title: Mapping topsoil organic carbon concentrations and stocks for Tanzania publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.011 – year: 2005 ident: 10.1016/j.geodrs.2021.e00387_bb0020 – volume: 10C start-page: 154 year: 2017 ident: 10.1016/j.geodrs.2021.e00387_bb0040 article-title: Spatial prediction of major soil properties using random Forest techniques - a case study in semi-arid tropics of South India publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2017.07.005 – volume: 93 start-page: 706 issue: 5 year: 2007 ident: 10.1016/j.geodrs.2021.e00387_bb0105 article-title: Organic carbon stock map for soils of southern India: a multifactorial approach publication-title: Curr. Sci. – volume: 152 start-page: 43 year: 2009 ident: 10.1016/j.geodrs.2021.e00387_bb0150 article-title: Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (flan-ders, Belgium) publication-title: Geoderma doi: 10.1016/j.geoderma.2009.05.015 – volume: 16 start-page: 1777 year: 2010 ident: 10.1016/j.geodrs.2021.e00387_bb0125 article-title: Soil carbon stocks, deforestation and landcover changes in the Western Ghats biodiversity hotspot (India) publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2009.02127.x – volume: 226-227 start-page: 354 year: 2014 ident: 10.1016/j.geodrs.2021.e00387_bb0230 article-title: Can γ-radiometrics predict soil textural data and stoniness in different parent materials? A comparison of two machine learning methods publication-title: Geoderma doi: 10.1016/j.geoderma.2014.03.012 – volume: 6 start-page: 21842 year: 2016 ident: 10.1016/j.geodrs.2021.e00387_bb0285 article-title: Precise estimation of soil organic carbon stocks in the northeast Tibetan plateau publication-title: Sci. Rep. doi: 10.1038/srep21842 – volume: 188 start-page: 195 year: 2016 ident: 10.1016/j.geodrs.2021.e00387_bb0190 article-title: The effectiveness of digital soil mapping to predict soil properties over low-relief areas publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5204-8 – volume: 189–190 start-page: 153 year: 2012 ident: 10.1016/j.geodrs.2021.e00387_bb0215 article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale publication-title: Geoderma doi: 10.1016/j.geoderma.2012.05.026 – volume: 261 start-page: 204 year: 2016 ident: 10.1016/j.geodrs.2021.e00387_bb0035 article-title: Digital mapping of soil carbon in a viticultural region of southern Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.016 – volume: 32 start-page: 42 year: 2018 ident: 10.1016/j.geodrs.2021.e00387_bb0250 article-title: Large differences in global and regional total soil carbon stock estimates based on SoilGrids, HWSD, and NCSCD: Intercomparison and evaluation based on field data from USA, England, Wales, and France publication-title: Global Biogeochem. Cy doi: 10.1002/2017GB005678 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.geodrs.2021.e00387_bb0145 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 75 start-page: 1201 year: 2011 ident: 10.1016/j.geodrs.2021.e00387_bb0075 article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0025 – volume: 154 start-page: 138 year: 2009 ident: 10.1016/j.geodrs.2021.e00387_bb0130 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma doi: 10.1016/j.geoderma.2009.10.007 – volume: 72 start-page: 617 year: 2013 ident: 10.1016/j.geodrs.2021.e00387_bb0200 article-title: Western Ghats of India: rich source of microbial diversity publication-title: J. Sci. Ind. Res. – volume: 253–254 start-page: 67 year: 2015 ident: 10.1016/j.geodrs.2021.e00387_bb0155 article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2015.04.008 – volume: 291 start-page: 55 year: 2017 ident: 10.1016/j.geodrs.2021.e00387_bb0260 article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.017 – volume: 77 start-page: 139 year: 2017 ident: 10.1016/j.geodrs.2021.e00387_bb0220 article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalization publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.02.010 – volume: 162 start-page: 107 year: 2011 ident: 10.1016/j.geodrs.2021.e00387_bb0090 article-title: Three-dimensional mapping of soil organic matter content using soil type-specific depth functions publication-title: Geoderma doi: 10.1016/j.geoderma.2011.01.010 |
SSID | ssj0002953762 |
Score | 2.4118037 |
Snippet | Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00387 |
SubjectTerms | Agricultural sciences algorithms carbon sequestration carbon sinks Cross validation data collection Digital soil mapping India Landsat landscapes Life Sciences Multiple soil classes prediction Quantile Regression Forest regression analysis SOC stock soil organic carbon soil profiles soil quality Soil study spatial data Western Ghats |
Title | Digital soil mapping of soil organic carbon stocks in Western Ghats, South India |
URI | https://dx.doi.org/10.1016/j.geodrs.2021.e00387 https://www.proquest.com/docview/2524240619 https://hal.inrae.fr/hal-03193296 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gXLggECDGSwFxpGxL-kiP02AMBgjxENyiNElHebRoG_x-7KadBBJC4lQlatrUTm0ntj8TcqCUCA2oKY-Hcer5WiQeKD3j-YEGgyIRoqMwUfjyKhzc--ePweMc6dW5MBhWWcl-J9NLaV31tCpqtt6zrHXLeAkZ5DM8ouZMzJMFBtq13SAL3bPh4Gp21MJixCxhZZm5gHk4pk6iKyO9RrYwY4TuZp0ji66y6DclNf-E0ZI_hHapifrLZKkyIWnXzXKFzNl8lVwfZyOs_0EnRfZK3xTCLoxokbq2q92kqVbjpMgpGHz6ZUKznD44oAR6-qSmk0NaFtSjZzksmjVy3z-56w28qlqCp3nEp5gGLdAryLgxbSuY4lzxOOGhSUU7StPAKJYoq9rAhJAZEUUKjIs4tOiJUWAJrpNGXuR2g9DUjzRsUA1QxPpKhXGUGNhIaQu9aSf1m4TX5JG6ghLHihavso4Ze5aOqBKJKh1Rm8SbjXp3UBp_3B_VlJffloQEaf_HyH1g1OwliKA96F5I7MOkLQ5f_dlpkr2ajxJ-KfSTqNwWH_CkAHNmwNCJN_89hS2yiC0XVLZNGtPxh90B82Wa7FbLE6_Dm4fhFxRz7ZY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71cYBLBQLEQgsGwY2wu3YezoHDilKy7HaFRCt6M47tbNNHUu1uQfwu_iAzcbISSKgSUo9x4sT5_JixZ-YbgFday9iimApEnBZBaGQeoNCzQRgZVChyKYeaAoUPZ3F2HH46iU424FcXC0Nule3a79f0ZrVuS_otmv2rsux_4aKhDAo5HVELLlvPyon7-QP3bct3433s5NecH3w4ep8FbWqBwIhErChmWJIJjQtrB05yLYQWaS5iW8hBUhSR1TzXTg-wxTG3Mkk0SuI0dmS20Kg24Xs3YZvYsHBabY_Gk2y2PtrhKXGk8CatXcQDamMXtNd4ls1dbRdEFc6Hbx2Z5pJ_CcXNU_LO_EtINJLv4B7stCorG3lU7sOGqx7A5_1yTvlG2LIuL9ilJpqHOasLf-1zRRlm9CKvK4YKpjlfsrJiXz0xA_t4qlfLN6xJ4MfGFQ7Sh3B8KxA-gq2qrtxjYEWYGNwQW0TEhVrHaZJb3LgZh6XFsAh7IDp4lGmpyymDxoXqfNTOlAdVEajKg9qDYF3rylN33PB80iGv_hiCCqXLDTVfYketP0KM3dloqqiMgsQE_vX3YQ9edP2ocAqTXUZXrr7GN0UUo4OKVfrkv5vwHO5kR4dTNR3PJk_hLt3xDm27sLVaXLs9VJ1W-bN2qDL4dtuz4ze5qSdl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+soil+mapping+of+soil+organic+carbon+stocks+in+Western+Ghats%2C+South+India&rft.jtitle=Geoderma+Regional&rft.au=Dharumarajan%2C+S.&rft.au=Kalaiselvi%2C+B.&rft.au=Suputhra%2C+Amar&rft.au=Lalitha%2C+M.&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.volume=25&rft_id=info:doi/10.1016%2Fj.geodrs.2021.e00387&rft.externalDocID=S2352009421000328 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |