Digital soil mapping of soil organic carbon stocks in Western Ghats, South India

Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the amount and spatial distribution of the carbon stock in soils is crucial in estimating changes in the terrestrial carbon dynamics and managemen...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 25; p. e00387
Main Authors Dharumarajan, S., Kalaiselvi, B., Suputhra, Amar, Lalitha, M., Vasundhara, R., Kumar, K.S. Anil, Nair, K.M., Hegde, Rajendra, Singh, S.K., Lagacherie, Philippe
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the amount and spatial distribution of the carbon stock in soils is crucial in estimating changes in the terrestrial carbon dynamics and management options for carbon-storing. A study was conducted to map the soil organic carbon stock (SOC) over 56,763 km2 area of Western Ghats of south India using a digital soil mapping approach. Landsat data, terrain attributes, and bioclimatic variables were used as covariates. Equal-area quadratic splines were fitted to soil profile datasets to estimate soil organic carbon stock at six standard soil depths (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm) and Quantile Regression Forest (QRF) algorithm was used to predict the SOC stocks. Prediction of SOC stock was better for surface layer (R2 = 31–43%) and the performance was decreasing with depth (R2 = 7–21%). The modal performance was also compared with SoilGrids products. Although the spatial patterns were similar, the present predicted SOC maps outperformed SoilGrids products in terms of both R2 and RMSE. The predicted total soil organic stock in the Western Ghats ranged from 7.1 kg m−2 to 30.9 kg m−2 and the total estimated SOC was 917 Tg. The present high resolution SOC maps help to assess and monitor the soil health and preparation of proper land use planning. •SOC stock of Western Ghats was mapped using digital soil mapping approach.•Quantile Regression Forest algorithm was used to predict the SOC stocks and uncertainty.•Prediction performance was better for surface (R2 = 31–43%) than the sub-surface layer.•The predicted total SOC stock in the Western Ghats ranged from 7.1 kg m-2 to 30.9 kg m-2.
AbstractList Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the amount and spatial distribution of the carbon stock in soils is crucial in estimating changes in the terrestrial carbon dynamics and management options for carbon-storing. A study was conducted to map the soil organic carbon stock (SOC) over 56,763 km² area of Western Ghats of south India using a digital soil mapping approach. Landsat data, terrain attributes, and bioclimatic variables were used as covariates. Equal-area quadratic splines were fitted to soil profile datasets to estimate soil organic carbon stock at six standard soil depths (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm) and Quantile Regression Forest (QRF) algorithm was used to predict the SOC stocks. Prediction of SOC stock was better for surface layer (R² = 31–43%) and the performance was decreasing with depth (R² = 7–21%). The modal performance was also compared with SoilGrids products. Although the spatial patterns were similar, the present predicted SOC maps outperformed SoilGrids products in terms of both R² and RMSE. The predicted total soil organic stock in the Western Ghats ranged from 7.1 kg m⁻² to 30.9 kg m⁻² and the total estimated SOC was 917 Tg. The present high resolution SOC maps help to assess and monitor the soil health and preparation of proper land use planning.
Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the amount and spatial distribution of the carbon stock in soils is crucial in estimating changes in the terrestrial carbon dynamics and management options for carbon-storing. A study was conducted to map the soil organic carbon stock (SOC) over 56,763 km2 area of Western Ghats of south India using a digital soil mapping approach. Landsat data, terrain attributes, and bioclimatic variables were used as covariates. Equal-area quadratic splines were fitted to soil profile datasets to estimate soil organic carbon stock at six standard soil depths (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm) and Quantile Regression Forest (QRF) algorithm was used to predict the SOC stocks. Prediction of SOC stock was better for surface layer (R2 = 31–43%) and the performance was decreasing with depth (R2 = 7–21%). The modal performance was also compared with SoilGrids products. Although the spatial patterns were similar, the present predicted SOC maps outperformed SoilGrids products in terms of both R2 and RMSE. The predicted total soil organic stock in the Western Ghats ranged from 7.1 kg m−2 to 30.9 kg m−2 and the total estimated SOC was 917 Tg. The present high resolution SOC maps help to assess and monitor the soil health and preparation of proper land use planning. •SOC stock of Western Ghats was mapped using digital soil mapping approach.•Quantile Regression Forest algorithm was used to predict the SOC stocks and uncertainty.•Prediction performance was better for surface (R2 = 31–43%) than the sub-surface layer.•The predicted total SOC stock in the Western Ghats ranged from 7.1 kg m-2 to 30.9 kg m-2.
Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the amount and spatial distribution of the carbon stock in soils is crucial in estimating changes in the terrestrial carbon dynamics and management options for carbon-storing. A study was conducted to map the soil organic carbon stock (SOC) over 56,763 km2 area of Western Ghats of south India using a digital soil mapping approach. Landsat data, terrain attributes, and bioclimatic variables were used as covariates. Equal-area quadratic splines were fitted to soil profile datasets to estimate soil organic carbon stock at six standard soil depths (0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm) and Quantile Regression Forest (QRF) algorithm was used to predict the SOC stocks. Prediction of SOC stock was better for surface layer (R2 = 31–43%) and the performance was decreasing with depth (R2 = 7–21%). The modal performance was also compared with SoilGrids products. Although the spatial patterns were similar, the present predicted SOC maps outperformed SoilGrids products in terms of both R2 and RMSE. The predicted total soil organic stock in the Western Ghats ranged from 7.1 kg m−2 to 30.9 kg m−2 and the total estimated SOC was 917 Tg. The present high resolution SOC maps help to assess and monitor the soil health and preparation of proper land use planning.
ArticleNumber e00387
Author Dharumarajan, S.
Lagacherie, Philippe
Kumar, K.S. Anil
Vasundhara, R.
Hegde, Rajendra
Singh, S.K.
Lalitha, M.
Kalaiselvi, B.
Suputhra, Amar
Nair, K.M.
Author_xml – sequence: 1
  givenname: S.
  surname: Dharumarajan
  fullname: Dharumarajan, S.
  email: Dharumarajan.S@icar.gov.in
  organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India
– sequence: 2
  givenname: B.
  surname: Kalaiselvi
  fullname: Kalaiselvi, B.
  organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India
– sequence: 3
  givenname: Amar
  surname: Suputhra
  fullname: Suputhra, Amar
  organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India
– sequence: 4
  givenname: M.
  surname: Lalitha
  fullname: Lalitha, M.
  organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India
– sequence: 5
  givenname: R.
  surname: Vasundhara
  fullname: Vasundhara, R.
  organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India
– sequence: 6
  givenname: K.S. Anil
  surname: Kumar
  fullname: Kumar, K.S. Anil
  organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India
– sequence: 7
  givenname: K.M.
  surname: Nair
  fullname: Nair, K.M.
  organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India
– sequence: 8
  givenname: Rajendra
  surname: Hegde
  fullname: Hegde, Rajendra
  organization: ICAR-National Bureau of Soil Survey and Land Use Planning Regional Centre, Hebbal, Bangalore 560024, India
– sequence: 9
  givenname: S.K.
  surname: Singh
  fullname: Singh, S.K.
  organization: ICAR-National Bureau of Soil Survey and Land Use Planning, Amaravati Road, Nagpur-10, India
– sequence: 10
  givenname: Philippe
  surname: Lagacherie
  fullname: Lagacherie, Philippe
  organization: LISAH, Univ. Montpellier, INRA, IRD, Montpellier SupAgro, Montpellier, France
BackLink https://hal.inrae.fr/hal-03193296$$DView record in HAL
BookMark eNqFkE1rGzEQhkVxoYmTf9CDjg3E7kjyfjiHgHEaJ2BoIC09irE0a8tZS44kB_Lvu2ZLCD20J33wPi8zzykb-OCJsc8CxgJE-XU7XlOwMY0lSDEmAFVXH9iJVIUcAUwng3f3T-w8pS0AyGmhqlKesIcbt3YZW56Ca_kO93vn1zw0_TvENXpnuMG4Cp6nHMxT4s7zX5QyRc8XG8zpkj-GQ97we28dnrGPDbaJzv-cQ_bz9tuP-d1o-X1xP58tR0ZVKo-UqGtVCCGVtUC1RKVQTVeqtE0NVdMUFuUKCcF0O0pbVxWKbuqShCgrBKGG7KLv3WCr99HtML7qgE7fzZb6-AdKTFVHvByzX_rsPobnQze63rlkqG3RUzgkLQs5kRMoO2DIJn3UxJBSpOatW4A--tZb3fvWR9-6991hV39hprOaXfA5omv_B1_3MHW-XhxFnYwjb8i6SCZrG9y_C34DUZieRg
CitedBy_id crossref_primary_10_1016_j_geoderma_2022_116052
crossref_primary_10_1139_cjss_2022_0012
crossref_primary_10_1007_s10661_024_13216_7
crossref_primary_10_1016_j_geoderma_2024_116952
crossref_primary_10_1007_s12517_023_11670_0
crossref_primary_10_3390_s22072685
crossref_primary_10_1016_j_jenvman_2023_117810
crossref_primary_10_1002_ece3_10986
crossref_primary_10_3390_rs15174241
crossref_primary_10_1016_j_geoderma_2021_115606
crossref_primary_10_1016_j_catena_2022_106381
crossref_primary_10_3390_rs15082017
crossref_primary_10_3390_rs13234772
crossref_primary_10_1016_j_catena_2024_107813
crossref_primary_10_1007_s12145_025_01822_z
crossref_primary_10_1111_sum_12966
crossref_primary_10_1038_s41598_024_83551_9
crossref_primary_10_1080_00103624_2025_2449946
crossref_primary_10_1088_1755_1315_1306_1_012021
crossref_primary_10_1007_s12665_024_11834_5
crossref_primary_10_3390_rs16152712
crossref_primary_10_3390_land12071295
crossref_primary_10_1080_00103624_2024_2419994
crossref_primary_10_1016_j_catena_2021_105837
crossref_primary_10_1016_j_geodrs_2025_e00933
crossref_primary_10_1016_j_geoderma_2022_116265
crossref_primary_10_3390_land13070970
crossref_primary_10_3390_su152416853
crossref_primary_10_1080_27669645_2024_2400432
crossref_primary_10_3390_land12101841
crossref_primary_10_1080_00103624_2023_2253840
crossref_primary_10_1111_sum_12995
crossref_primary_10_1371_journal_pone_0268658
Cites_doi 10.5194/bg-12-3993-2015
10.1371/journal.pone.0105519
10.1016/j.geoderma.2016.12.008
10.1016/j.geoderma.2015.08.035
10.1016/S0016-7061(99)00003-8
10.1007/s10021-005-0054-1
10.1016/j.geoderma.2015.07.017
10.1016/B978-0-12-405942-9.00001-3
10.1016/j.ecolind.2018.01.049
10.1016/j.geoderma.2013.07.002
10.1016/j.geoderma.2015.06.023
10.1016/j.foreco.2014.01.003
10.1016/j.geoderma.2009.11.005
10.1097/00010694-193401000-00003
10.3390/rs11050565
10.1007/s12665-018-7374-x
10.2136/sssaj2012.0317
10.2136/sssaj2009.0158
10.1016/j.geoderma.2014.01.005
10.5194/gmd-7-1197-2014
10.1016/j.geodrs.2018.e00192
10.1016/B978-0-12-800137-0.00003-0
10.1111/gcb.12384
10.1007/s11442-016-1257-4
10.1016/j.geoderma.2019.05.031
10.1139/x01-122
10.1371/journal.pone.0169748
10.1016/j.geoderma.2019.114145
10.1016/j.geoderma.2016.02.002
10.1016/j.scitotenv.2019.02.420
10.1016/j.geoderma.2018.09.011
10.1016/j.geodrs.2017.07.005
10.1016/j.geoderma.2009.05.015
10.1111/j.1365-2486.2009.02127.x
10.1016/j.geoderma.2014.03.012
10.1038/srep21842
10.1007/s10661-016-5204-8
10.1016/j.geoderma.2012.05.026
10.1016/j.geoderma.2015.07.016
10.1002/2017GB005678
10.1016/S0016-7061(03)00223-4
10.2136/sssaj2011.0025
10.1016/j.geoderma.2009.10.007
10.1016/j.geoderma.2015.04.008
10.1016/j.geoderma.2016.12.017
10.1016/j.ecolind.2017.02.010
10.1016/j.geoderma.2011.01.010
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
DOI 10.1016/j.geodrs.2021.e00387
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID oai_HAL_hal_03193296v1
10_1016_j_geodrs_2021_e00387
S2352009421000328
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
1XC
ID FETCH-LOGICAL-c373t-3188351123dd0e82a33a39b36df807ff5da2baea0c0162d877a10296e1167a013
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Fri May 09 12:29:38 EDT 2025
Fri Jul 11 03:54:21 EDT 2025
Tue Jul 01 02:07:18 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Fri Feb 23 02:45:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quantile Regression Forest
SOC stock
Western Ghats
Cross validation
Multiple soil classes
Digital soil mapping
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-3188351123dd0e82a33a39b36df807ff5da2baea0c0162d877a10296e1167a013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2948-1966
PQID 2524240619
PQPubID 24069
ParticipantIDs hal_primary_oai_HAL_hal_03193296v1
proquest_miscellaneous_2524240619
crossref_primary_10_1016_j_geodrs_2021_e00387
crossref_citationtrail_10_1016_j_geodrs_2021_e00387
elsevier_sciencedirect_doi_10_1016_j_geodrs_2021_e00387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
2021-06
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Adhikari, Owens, Libohova, Miller, Wills, Nemecek (bb0010) 2019; 667
Dharumarajan, Hegde, Janani, Singh (bb0045) 2019
Bonfatti, Hartemink, Giasson, Tornquist, Adhikari (bb0035) 2016; 261
Lamichhane, Kumar, Wilson (bb0115) 2019; 352
Nussbaum, Papritz, Baltensweiler Walthert (bb0210) 2014; 7
Minasny, Malone, McBratney, Wheeler (bb0170) 2013; 118
Grossman, Harms, Kinngsbury, Shaw, Jenkins (bb0070) 2001
Dharumarajan, Hegde, Singh (bb0040) 2017; 10C
Kempen, Brus, Stoorvogel (bb0090) 2011; 162
McBratney, Mendonça-Santos, Minasny (bb0145) 2003; 117
Wang, Waters, Orgill, Cowie, Clark, Li Liu, Simpson, McGowen, Sides (bb0270) 2018; 88
Adhikari, Hartemink, Minasny, Bou Kheir, Greve, Greve (bb0005) 2014; 9
Arrouays, Grundy, Hartemink, Hempel, Heuvelink, Hong, Lagacherie, Lelyk, McBratney, McKenzie, Mendonça-Santos, Minasny, Montanarella, Odeh, Sanchez, Thompson, Zhang (bb0015) 2014; 125
Hengl, Mendes de Jesus, Heuvelink, Ruiperez Gonzalez, Kilibarda, Blagotić, Guevara (bb0080) 2017; 12
Odgers, Libohova, Thompson (bb0215) 2012; 189–190
Liu, Zhang, Sun, Zhao, Li (bb0120) 2013; 77
Bawa, Kadur (bb0020) 2005
Rajan, Natarajan, Anil Kumar, Badrinath, Gowda (bb0235) 2010; 99
Mulder, Lacoste, Richer-de-Forges, Martin, Arrouays (bb0195) 2016; 263
Tifafi, Guenet, Hatté (bb0250) 2018; 32
Kempen, Dalsgaard, Kaaya, Chamuya, Ruipérez-González, Pekkarinen, Walsh (bb0095) 2019; 337
Dorji, Odeh, Field, Baillie (bb0055) 2014; 318
Walkley, Black (bb0265) 1934; 37
Martin, Orton, Lacarce, Meersmans, Saby, Paroissien, Jolivet, Boulonne, Arrouays (bb0140) 2014; 223–225
Meersmans, van Wesemael, De Ridder, Van Molle (bb0150) 2009; 152
Bishop, McBratney, Laslett (bb0030) 1999; 91
Prasad, Iverson, Liaw (bb0225) 2006; 9
Were, Singh, Dick (bb0275) 2016; 26
Sreenivas, Dadhwal, Kumar, Harsha, Mitran, Sujatha, Suresh, Fyzee, Ravisankar (bb0245) 2016; 269
Nikhildas (bb0205) 2014
Yang, Zhang, Yang, Zhi, Yang, Liu, Zhao, Li (bb0285) 2016; 6
Meinshausen (bb0160) 2006; 7
Mitran, Mishra, Lal, Ravisankar, Sreenivas (bb0185) 2018
Vaysse, Lagacherie (bb0260) 2017; 291
Gomez, Dharumarajan, Féret, Lagacherie, Ruiz, Sekhar (bb0065) 2019; 11
Malone, Styc, Minasny, McBratney (bb0135) 2017; 290
Nampoothiri, Ramkumar, Pandey (bb0200) 2013; 72
Minasny, McBratney (bb0165) 2016; 264
Kovačevic, Bajat, Gajić (bb0100) 2010; 154
Bhatti, Apps, Tarnocai (bb0025) 2002; 2
Gautham (bb0060) 2012
Song, Wu, Ju, Liu, Yang, Li, Zhao, Yang, Zhang (bb0240) 2020; 363
Mishra, Riley (bb0175) 2015; 12
Dharumarajan, Kalaiselvi, Suputhra, Lalitha, Hegde, Singh, Lagacherie (bb0050) 2020; 20
Grunwald, Thompson, Boettinger (bb0075) 2011; 75
Hinge, Surampalli, Goyal (bb0085) 2018; 77
Krishnan, Bourgeon, Seen, Nair, Prasanna, Srinivas, Muthusankar, Dufy, Ramesh (bb0105) 2007; 93
Ottoy, Bruno De, De Vos, Anicet, Hermy, Van Orshoven (bb0220) 2017; 77
Mosleh, Salehi, Jafari (bb0190) 2016; 188
Mishra, Lal, Liu, van Meirvenne (bb0180) 2010; 74
Priori, Bianconi, Constantini (bb0230) 2014; 226-227
Wiesmeier, Hübner, Spörlein, Geuss, Hangern, Reischl, Schilling, von Lützow, Kögel-Knabner (bb0280) 2014; 20
Vågen, Winowiecki, Tondoh, Desta, Gumbricht (bb0255) 2016; 263
Mehrjardi, Nabiollahi, Minasny, Triantafilis (bb0155) 2015; 253–254
Lacoste, Minasny, McBratney, Michot, Viaud, Walter (bb0110) 2014; 213
Lo Seen, Ramesh, Nair, Martin, Arrouays, Bourgeon (bb0125) 2010; 16
Malone, McBratney, Minasny, Laslett (bb0130) 2009; 154
Malone (10.1016/j.geodrs.2021.e00387_bb0135) 2017; 290
Bhatti (10.1016/j.geodrs.2021.e00387_bb0025) 2002; 2
McBratney (10.1016/j.geodrs.2021.e00387_bb0145) 2003; 117
Liu (10.1016/j.geodrs.2021.e00387_bb0120) 2013; 77
Mosleh (10.1016/j.geodrs.2021.e00387_bb0190) 2016; 188
Mitran (10.1016/j.geodrs.2021.e00387_bb0185) 2018
Adhikari (10.1016/j.geodrs.2021.e00387_bb0010) 2019; 667
Dharumarajan (10.1016/j.geodrs.2021.e00387_bb0040) 2017; 10C
Adhikari (10.1016/j.geodrs.2021.e00387_bb0005) 2014; 9
Wang (10.1016/j.geodrs.2021.e00387_bb0270) 2018; 88
Lo Seen (10.1016/j.geodrs.2021.e00387_bb0125) 2010; 16
Wiesmeier (10.1016/j.geodrs.2021.e00387_bb0280) 2014; 20
Priori (10.1016/j.geodrs.2021.e00387_bb0230) 2014; 226-227
Dorji (10.1016/j.geodrs.2021.e00387_bb0055) 2014; 318
Kempen (10.1016/j.geodrs.2021.e00387_bb0095) 2019; 337
Hinge (10.1016/j.geodrs.2021.e00387_bb0085) 2018; 77
Mehrjardi (10.1016/j.geodrs.2021.e00387_bb0155) 2015; 253–254
Krishnan (10.1016/j.geodrs.2021.e00387_bb0105) 2007; 93
Hengl (10.1016/j.geodrs.2021.e00387_bb0080) 2017; 12
Grossman (10.1016/j.geodrs.2021.e00387_bb0070) 2001
Malone (10.1016/j.geodrs.2021.e00387_bb0130) 2009; 154
Ottoy (10.1016/j.geodrs.2021.e00387_bb0220) 2017; 77
Meersmans (10.1016/j.geodrs.2021.e00387_bb0150) 2009; 152
Arrouays (10.1016/j.geodrs.2021.e00387_bb0015) 2014; 125
Yang (10.1016/j.geodrs.2021.e00387_bb0285) 2016; 6
Dharumarajan (10.1016/j.geodrs.2021.e00387_bb0050) 2020; 20
Nussbaum (10.1016/j.geodrs.2021.e00387_bb0210) 2014; 7
Bishop (10.1016/j.geodrs.2021.e00387_bb0030) 1999; 91
Martin (10.1016/j.geodrs.2021.e00387_bb0140) 2014; 223–225
Dharumarajan (10.1016/j.geodrs.2021.e00387_bb0045) 2019
Kempen (10.1016/j.geodrs.2021.e00387_bb0090) 2011; 162
Tifafi (10.1016/j.geodrs.2021.e00387_bb0250) 2018; 32
Rajan (10.1016/j.geodrs.2021.e00387_bb0235) 2010; 99
Prasad (10.1016/j.geodrs.2021.e00387_bb0225) 2006; 9
Kovačevic (10.1016/j.geodrs.2021.e00387_bb0100) 2010; 154
Minasny (10.1016/j.geodrs.2021.e00387_bb0165) 2016; 264
Minasny (10.1016/j.geodrs.2021.e00387_bb0170) 2013; 118
Gomez (10.1016/j.geodrs.2021.e00387_bb0065) 2019; 11
Meinshausen (10.1016/j.geodrs.2021.e00387_bb0160) 2006; 7
Lamichhane (10.1016/j.geodrs.2021.e00387_bb0115) 2019; 352
Sreenivas (10.1016/j.geodrs.2021.e00387_bb0245) 2016; 269
Vågen (10.1016/j.geodrs.2021.e00387_bb0255) 2016; 263
Walkley (10.1016/j.geodrs.2021.e00387_bb0265) 1934; 37
Nikhildas (10.1016/j.geodrs.2021.e00387_bb0205) 2014
Nampoothiri (10.1016/j.geodrs.2021.e00387_bb0200) 2013; 72
Mishra (10.1016/j.geodrs.2021.e00387_bb0175) 2015; 12
Song (10.1016/j.geodrs.2021.e00387_bb0240) 2020; 363
Mishra (10.1016/j.geodrs.2021.e00387_bb0180) 2010; 74
Lacoste (10.1016/j.geodrs.2021.e00387_bb0110) 2014; 213
Were (10.1016/j.geodrs.2021.e00387_bb0275) 2016; 26
Grunwald (10.1016/j.geodrs.2021.e00387_bb0075) 2011; 75
Bawa (10.1016/j.geodrs.2021.e00387_bb0020) 2005
Odgers (10.1016/j.geodrs.2021.e00387_bb0215) 2012; 189–190
Vaysse (10.1016/j.geodrs.2021.e00387_bb0260) 2017; 291
Mulder (10.1016/j.geodrs.2021.e00387_bb0195) 2016; 263
Gautham (10.1016/j.geodrs.2021.e00387_bb0060) 2012
Bonfatti (10.1016/j.geodrs.2021.e00387_bb0035) 2016; 261
References_xml – year: 2005
  ident: bb0020
  article-title: Sahyadris: India’s Western Ghats—A Vanishing Heritage
– volume: 223–225
  start-page: 97
  year: 2014
  end-page: 107
  ident: bb0140
  article-title: Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale
  publication-title: Geoderma
– volume: 189–190
  start-page: 153
  year: 2012
  end-page: 163
  ident: bb0215
  article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale
  publication-title: Geoderma
– volume: 74
  start-page: 906
  year: 2010
  end-page: 914
  ident: bb0180
  article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
– volume: 188
  start-page: 195
  year: 2016
  ident: bb0190
  article-title: The effectiveness of digital soil mapping to predict soil properties over low-relief areas
  publication-title: Environ. Monit. Assess.
– volume: 99
  start-page: 823
  year: 2010
  end-page: 827
  ident: bb0235
  article-title: Soil organic carbon-the most reliable indicator for monitoring land degradation by soil erosion
  publication-title: Curr. Sci.
– volume: 667
  start-page: 833
  year: 2019
  end-page: 845
  ident: bb0010
  article-title: Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change
  publication-title: Sci. Total Environ.
– volume: 11
  start-page: 565
  year: 2019
  ident: bb0065
  article-title: Use of Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture mapping
  publication-title: Remote Sens.
– volume: 20
  start-page: 653
  year: 2014
  end-page: 665
  ident: bb0280
  article-title: Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation
  publication-title: Glob. Chang. Biol.
– volume: 269
  start-page: 160
  year: 2016
  end-page: 173
  ident: bb0245
  article-title: Digital mapping of soil organic and inorganic carbon status in India
  publication-title: Geoderma
– volume: 253–254
  start-page: 67
  year: 2015
  end-page: 77
  ident: bb0155
  article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran
  publication-title: Geoderma
– year: 2012
  ident: bb0060
  article-title: Molecular Characterization and Pharmacological Activities of Metabolites from STREPTOMYCES spp
– volume: 290
  start-page: 91
  year: 2017
  end-page: 99
  ident: bb0135
  article-title: Digital soil mapping of soil carbon at the farm scale: a spatial downscaling approach in consideration of measured and uncertain data
  publication-title: Geoderma
– volume: 32
  start-page: 42
  year: 2018
  end-page: 56
  ident: bb0250
  article-title: Large differences in global and regional total soil carbon stock estimates based on SoilGrids, HWSD, and NCSCD: Intercomparison and evaluation based on field data from USA, England, Wales, and France
  publication-title: Global Biogeochem. Cy
– start-page: 87
  year: 2001
  end-page: 102
  ident: bb0070
  article-title: Assessment of soil organic carbon using the U.S soil survey
  publication-title: Assessment Methods for Soil Carbon
– volume: 12
  start-page: 3993
  year: 2015
  end-page: 4004
  ident: bb0175
  article-title: Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
  publication-title: Biogeosciences
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bb0145
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: bb0265
  article-title: An estimation of the method for determining soil organic matter and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
– volume: 7
  start-page: 1197
  year: 2014
  end-page: 1210
  ident: bb0210
  article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging
  publication-title: Geosci. Model Dev.
– volume: 72
  start-page: 617
  year: 2013
  end-page: 623
  ident: bb0200
  article-title: Western Ghats of India: rich source of microbial diversity
  publication-title: J. Sci. Ind. Res.
– volume: 9
  year: 2014
  ident: bb0005
  article-title: Digital mapping of soil organic carbon contents and stocks in Denmark
  publication-title: PLoS One
– volume: 9
  start-page: 181
  year: 2006
  end-page: 199
  ident: bb0225
  article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction
  publication-title: Ecosystems
– volume: 77
  start-page: 172
  year: 2018
  ident: bb0085
  article-title: Prediction of soil organic carbon stock using digital mapping approach in humid India
  publication-title: Environ. Earth Sci.
– start-page: 16
  year: 2019
  ident: bb0045
  article-title: The need for digital soil mapping in India
  publication-title: Geoderma Reg.
– volume: 263
  start-page: 16
  year: 2016
  end-page: 34
  ident: bb0195
  article-title: National versus global modelling the 3D distribution of soil organic carbon in mainland France
  publication-title: Geoderma
– volume: 118
  year: 2013
  ident: bb0170
  article-title: Digital mapping of soil carbon
  publication-title: Adv. Agron.
– volume: 226-227
  start-page: 354
  year: 2014
  end-page: 364
  ident: bb0230
  article-title: Can γ-radiometrics predict soil textural data and stoniness in different parent materials? A comparison of two machine learning methods
  publication-title: Geoderma
– volume: 10C
  start-page: 154
  year: 2017
  end-page: 162
  ident: bb0040
  article-title: Spatial prediction of major soil properties using random Forest techniques - a case study in semi-arid tropics of South India
  publication-title: Geoderma Reg.
– volume: 12
  year: 2017
  ident: bb0080
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
– volume: 261
  start-page: 204
  year: 2016
  end-page: 221
  ident: bb0035
  article-title: Digital mapping of soil carbon in a viticultural region of southern Brazil
  publication-title: Geoderma
– volume: 6
  start-page: 21842
  year: 2016
  ident: bb0285
  article-title: Precise estimation of soil organic carbon stocks in the northeast Tibetan plateau
  publication-title: Sci. Rep.
– volume: 93
  start-page: 706
  year: 2007
  end-page: 710
  ident: bb0105
  article-title: Organic carbon stock map for soils of southern India: a multifactorial approach
  publication-title: Curr. Sci.
– volume: 363
  start-page: 114145
  year: 2020
  ident: bb0240
  article-title: Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China
  publication-title: Geoderma
– volume: 152
  start-page: 43
  year: 2009
  end-page: 52
  ident: bb0150
  article-title: Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (flan-ders, Belgium)
  publication-title: Geoderma
– volume: 26
  start-page: 102
  year: 2016
  end-page: 124
  ident: bb0275
  article-title: Spatially distributed modelling and mapping of soil organic carbon and total nitrogen stocks in the Eastern Mau Forest Reserve, Kenya
  publication-title: J. Geogr. Sci.
– volume: 352
  start-page: 395
  year: 2019
  end-page: 413
  ident: bb0115
  article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a review
  publication-title: Geoderma
– volume: 77
  start-page: 1241
  year: 2013
  end-page: 1253
  ident: bb0120
  article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape
  publication-title: Soil Sci. Soc. Am. J.
– volume: 88
  start-page: 425
  year: 2018
  end-page: 438
  ident: bb0270
  article-title: Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia
  publication-title: Ecol. Indic.
– volume: 7
  start-page: 983
  year: 2006
  end-page: 999
  ident: bb0160
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: bb0185
  article-title: Spatial distribution of soil carbon stocks in a semi-arid region of India
  publication-title: Geoderma Reg.
– volume: 2
  start-page: 805
  year: 2002
  end-page: 812
  ident: bb0025
  article-title: Estimates of soil organic carbon stocks in Central Canada using three different approaches
  publication-title: Can. J. For. Res.
– volume: 162
  start-page: 107
  year: 2011
  end-page: 123
  ident: bb0090
  article-title: Three-dimensional mapping of soil organic matter content using soil type-specific depth functions
  publication-title: Geoderma
– volume: 91
  start-page: 27
  year: 1999
  end-page: 45
  ident: bb0030
  article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines
  publication-title: Geoderma
– volume: 213
  start-page: 296
  year: 2014
  end-page: 311
  ident: bb0110
  article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape
  publication-title: Geoderma
– volume: 263
  start-page: 216
  year: 2016
  end-page: 225
  ident: bb0255
  article-title: Mapping of soil properties and land degradation risk in Africa using MODIS reflectance
  publication-title: Geoderma
– volume: 75
  start-page: 1201
  year: 2011
  end-page: 1213
  ident: bb0075
  article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues
  publication-title: Soil Sci. Soc. Am. J.
– volume: 291
  start-page: 55
  year: 2017
  end-page: 64
  ident: bb0260
  article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products
  publication-title: Geoderma
– year: 2014
  ident: bb0205
  article-title: Archaeology of the Anjunad Valley, with Special Reference to the Megaliths and Rock Art, Idukki District, Kerala
– volume: 20
  year: 2020
  ident: bb0050
  article-title: Digital soil mapping of key GlobalSoilMap properties in northern Karnataka plateau
  publication-title: Geoderma Reg.
– volume: 337
  start-page: 164
  year: 2019
  end-page: 180
  ident: bb0095
  article-title: Mapping topsoil organic carbon concentrations and stocks for Tanzania
  publication-title: Geoderma
– volume: 154
  start-page: 138
  year: 2009
  end-page: 152
  ident: bb0130
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
– volume: 264
  start-page: 301
  year: 2016
  end-page: 311
  ident: bb0165
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
– volume: 77
  start-page: 139
  year: 2017
  end-page: 150
  ident: bb0220
  article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalization
  publication-title: Ecol. Indic.
– volume: 125
  start-page: 93
  year: 2014
  end-page: 134
  ident: bb0015
  article-title: GlobalSoilMap: towards a fine-resolution global grid of soil properties
  publication-title: Adv. Agron.
– volume: 154
  start-page: 340
  year: 2010
  end-page: 347
  ident: bb0100
  article-title: Soil type classification and estimation of soil properties using support vector machines
  publication-title: Geoderma
– volume: 16
  start-page: 1777
  year: 2010
  end-page: 1792
  ident: bb0125
  article-title: Soil carbon stocks, deforestation and landcover changes in the Western Ghats biodiversity hotspot (India)
  publication-title: Glob. Chang. Biol.
– volume: 318
  start-page: 91
  year: 2014
  end-page: 102
  ident: bb0055
  article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas
  publication-title: For. Ecol. Manag.
– volume: 12
  start-page: 3993
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00387_bb0175
  article-title: Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-3993-2015
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00387_bb0005
  article-title: Digital mapping of soil organic carbon contents and stocks in Denmark
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0105519
– volume: 290
  start-page: 91
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00387_bb0135
  article-title: Digital soil mapping of soil carbon at the farm scale: a spatial downscaling approach in consideration of measured and uncertain data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.008
– volume: 263
  start-page: 16
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00387_bb0195
  article-title: National versus global modelling the 3D distribution of soil organic carbon in mainland France
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.08.035
– volume: 91
  start-page: 27
  issue: 1–2
  year: 1999
  ident: 10.1016/j.geodrs.2021.e00387_bb0030
  article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(99)00003-8
– volume: 9
  start-page: 181
  year: 2006
  ident: 10.1016/j.geodrs.2021.e00387_bb0225
  article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction
  publication-title: Ecosystems
  doi: 10.1007/s10021-005-0054-1
– volume: 264
  start-page: 301
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00387_bb0165
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.017
– volume: 118
  year: 2013
  ident: 10.1016/j.geodrs.2021.e00387_bb0170
  article-title: Digital mapping of soil carbon
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-405942-9.00001-3
– volume: 88
  start-page: 425
  year: 2018
  ident: 10.1016/j.geodrs.2021.e00387_bb0270
  article-title: Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.01.049
– year: 2014
  ident: 10.1016/j.geodrs.2021.e00387_bb0205
– volume: 213
  start-page: 296
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00387_bb0110
  article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.002
– volume: 20
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00387_bb0050
  article-title: Digital soil mapping of key GlobalSoilMap properties in northern Karnataka plateau
  publication-title: Geoderma Reg.
– volume: 263
  start-page: 216
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00387_bb0255
  article-title: Mapping of soil properties and land degradation risk in Africa using MODIS reflectance
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.06.023
– volume: 318
  start-page: 91
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00387_bb0055
  article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2014.01.003
– start-page: 16
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00387_bb0045
  article-title: The need for digital soil mapping in India
  publication-title: Geoderma Reg.
– volume: 154
  start-page: 340
  year: 2010
  ident: 10.1016/j.geodrs.2021.e00387_bb0100
  article-title: Soil type classification and estimation of soil properties using support vector machines
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.11.005
– volume: 37
  start-page: 29
  year: 1934
  ident: 10.1016/j.geodrs.2021.e00387_bb0265
  article-title: An estimation of the method for determining soil organic matter and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193401000-00003
– volume: 11
  start-page: 565
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00387_bb0065
  article-title: Use of Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs11050565
– volume: 77
  start-page: 172
  year: 2018
  ident: 10.1016/j.geodrs.2021.e00387_bb0085
  article-title: Prediction of soil organic carbon stock using digital mapping approach in humid India
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7374-x
– volume: 77
  start-page: 1241
  year: 2013
  ident: 10.1016/j.geodrs.2021.e00387_bb0120
  article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0317
– volume: 7
  start-page: 983
  year: 2006
  ident: 10.1016/j.geodrs.2021.e00387_bb0160
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 74
  start-page: 906
  year: 2010
  ident: 10.1016/j.geodrs.2021.e00387_bb0180
  article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0158
– volume: 223–225
  start-page: 97
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00387_bb0140
  article-title: Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.01.005
– volume: 7
  start-page: 1197
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00387_bb0210
  article-title: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1197-2014
– start-page: 87
  year: 2001
  ident: 10.1016/j.geodrs.2021.e00387_bb0070
  article-title: Assessment of soil organic carbon using the U.S soil survey
– year: 2018
  ident: 10.1016/j.geodrs.2021.e00387_bb0185
  article-title: Spatial distribution of soil carbon stocks in a semi-arid region of India
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2018.e00192
– volume: 125
  start-page: 93
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00387_bb0015
  article-title: GlobalSoilMap: towards a fine-resolution global grid of soil properties
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-800137-0.00003-0
– volume: 20
  start-page: 653
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00387_bb0280
  article-title: Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12384
– volume: 26
  start-page: 102
  issue: 1
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00387_bb0275
  article-title: Spatially distributed modelling and mapping of soil organic carbon and total nitrogen stocks in the Eastern Mau Forest Reserve, Kenya
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-016-1257-4
– volume: 352
  start-page: 395
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00387_bb0115
  article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.031
– volume: 2
  start-page: 805
  issue: 5
  year: 2002
  ident: 10.1016/j.geodrs.2021.e00387_bb0025
  article-title: Estimates of soil organic carbon stocks in Central Canada using three different approaches
  publication-title: Can. J. For. Res.
  doi: 10.1139/x01-122
– year: 2012
  ident: 10.1016/j.geodrs.2021.e00387_bb0060
– volume: 12
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00387_bb0080
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169748
– volume: 99
  start-page: 823
  issue: 6
  year: 2010
  ident: 10.1016/j.geodrs.2021.e00387_bb0235
  article-title: Soil organic carbon-the most reliable indicator for monitoring land degradation by soil erosion
  publication-title: Curr. Sci.
– volume: 363
  start-page: 114145
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00387_bb0240
  article-title: Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114145
– volume: 269
  start-page: 160
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00387_bb0245
  article-title: Digital mapping of soil organic and inorganic carbon status in India
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.02.002
– volume: 667
  start-page: 833
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00387_bb0010
  article-title: Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.420
– volume: 337
  start-page: 164
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00387_bb0095
  article-title: Mapping topsoil organic carbon concentrations and stocks for Tanzania
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.011
– year: 2005
  ident: 10.1016/j.geodrs.2021.e00387_bb0020
– volume: 10C
  start-page: 154
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00387_bb0040
  article-title: Spatial prediction of major soil properties using random Forest techniques - a case study in semi-arid tropics of South India
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2017.07.005
– volume: 93
  start-page: 706
  issue: 5
  year: 2007
  ident: 10.1016/j.geodrs.2021.e00387_bb0105
  article-title: Organic carbon stock map for soils of southern India: a multifactorial approach
  publication-title: Curr. Sci.
– volume: 152
  start-page: 43
  year: 2009
  ident: 10.1016/j.geodrs.2021.e00387_bb0150
  article-title: Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (flan-ders, Belgium)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.05.015
– volume: 16
  start-page: 1777
  year: 2010
  ident: 10.1016/j.geodrs.2021.e00387_bb0125
  article-title: Soil carbon stocks, deforestation and landcover changes in the Western Ghats biodiversity hotspot (India)
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2009.02127.x
– volume: 226-227
  start-page: 354
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00387_bb0230
  article-title: Can γ-radiometrics predict soil textural data and stoniness in different parent materials? A comparison of two machine learning methods
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.03.012
– volume: 6
  start-page: 21842
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00387_bb0285
  article-title: Precise estimation of soil organic carbon stocks in the northeast Tibetan plateau
  publication-title: Sci. Rep.
  doi: 10.1038/srep21842
– volume: 188
  start-page: 195
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00387_bb0190
  article-title: The effectiveness of digital soil mapping to predict soil properties over low-relief areas
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5204-8
– volume: 189–190
  start-page: 153
  year: 2012
  ident: 10.1016/j.geodrs.2021.e00387_bb0215
  article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.05.026
– volume: 261
  start-page: 204
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00387_bb0035
  article-title: Digital mapping of soil carbon in a viticultural region of southern Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.016
– volume: 32
  start-page: 42
  year: 2018
  ident: 10.1016/j.geodrs.2021.e00387_bb0250
  article-title: Large differences in global and regional total soil carbon stock estimates based on SoilGrids, HWSD, and NCSCD: Intercomparison and evaluation based on field data from USA, England, Wales, and France
  publication-title: Global Biogeochem. Cy
  doi: 10.1002/2017GB005678
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.geodrs.2021.e00387_bb0145
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 75
  start-page: 1201
  year: 2011
  ident: 10.1016/j.geodrs.2021.e00387_bb0075
  article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0025
– volume: 154
  start-page: 138
  year: 2009
  ident: 10.1016/j.geodrs.2021.e00387_bb0130
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.10.007
– volume: 72
  start-page: 617
  year: 2013
  ident: 10.1016/j.geodrs.2021.e00387_bb0200
  article-title: Western Ghats of India: rich source of microbial diversity
  publication-title: J. Sci. Ind. Res.
– volume: 253–254
  start-page: 67
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00387_bb0155
  article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.04.008
– volume: 291
  start-page: 55
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00387_bb0260
  article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.017
– volume: 77
  start-page: 139
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00387_bb0220
  article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalization
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.02.010
– volume: 162
  start-page: 107
  year: 2011
  ident: 10.1016/j.geodrs.2021.e00387_bb0090
  article-title: Three-dimensional mapping of soil organic matter content using soil type-specific depth functions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.01.010
SSID ssj0002953762
Score 2.4118037
Snippet Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00387
SubjectTerms Agricultural sciences
algorithms
carbon sequestration
carbon sinks
Cross validation
data collection
Digital soil mapping
India
Landsat
landscapes
Life Sciences
Multiple soil classes
prediction
Quantile Regression Forest
regression analysis
SOC stock
soil organic carbon
soil profiles
soil quality
Soil study
spatial data
Western Ghats
Title Digital soil mapping of soil organic carbon stocks in Western Ghats, South India
URI https://dx.doi.org/10.1016/j.geodrs.2021.e00387
https://www.proquest.com/docview/2524240619
https://hal.inrae.fr/hal-03193296
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gXLggECDGSwFxpGxL-kiP02AMBgjxENyiNElHebRoG_x-7KadBBJC4lQlatrUTm0ntj8TcqCUCA2oKY-Hcer5WiQeKD3j-YEGgyIRoqMwUfjyKhzc--ePweMc6dW5MBhWWcl-J9NLaV31tCpqtt6zrHXLeAkZ5DM8ouZMzJMFBtq13SAL3bPh4Gp21MJixCxhZZm5gHk4pk6iKyO9RrYwY4TuZp0ji66y6DclNf-E0ZI_hHapifrLZKkyIWnXzXKFzNl8lVwfZyOs_0EnRfZK3xTCLoxokbq2q92kqVbjpMgpGHz6ZUKznD44oAR6-qSmk0NaFtSjZzksmjVy3z-56w28qlqCp3nEp5gGLdAryLgxbSuY4lzxOOGhSUU7StPAKJYoq9rAhJAZEUUKjIs4tOiJUWAJrpNGXuR2g9DUjzRsUA1QxPpKhXGUGNhIaQu9aSf1m4TX5JG6ghLHihavso4Ze5aOqBKJKh1Rm8SbjXp3UBp_3B_VlJffloQEaf_HyH1g1OwliKA96F5I7MOkLQ5f_dlpkr2ajxJ-KfSTqNwWH_CkAHNmwNCJN_89hS2yiC0XVLZNGtPxh90B82Wa7FbLE6_Dm4fhFxRz7ZY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71cYBLBQLEQgsGwY2wu3YezoHDilKy7HaFRCt6M47tbNNHUu1uQfwu_iAzcbISSKgSUo9x4sT5_JixZ-YbgFday9iimApEnBZBaGQeoNCzQRgZVChyKYeaAoUPZ3F2HH46iU424FcXC0Nule3a79f0ZrVuS_otmv2rsux_4aKhDAo5HVELLlvPyon7-QP3bct3433s5NecH3w4ep8FbWqBwIhErChmWJIJjQtrB05yLYQWaS5iW8hBUhSR1TzXTg-wxTG3Mkk0SuI0dmS20Kg24Xs3YZvYsHBabY_Gk2y2PtrhKXGk8CatXcQDamMXtNd4ls1dbRdEFc6Hbx2Z5pJ_CcXNU_LO_EtINJLv4B7stCorG3lU7sOGqx7A5_1yTvlG2LIuL9ilJpqHOasLf-1zRRlm9CKvK4YKpjlfsrJiXz0xA_t4qlfLN6xJ4MfGFQ7Sh3B8KxA-gq2qrtxjYEWYGNwQW0TEhVrHaZJb3LgZh6XFsAh7IDp4lGmpyymDxoXqfNTOlAdVEajKg9qDYF3rylN33PB80iGv_hiCCqXLDTVfYketP0KM3dloqqiMgsQE_vX3YQ9edP2ocAqTXUZXrr7GN0UUo4OKVfrkv5vwHO5kR4dTNR3PJk_hLt3xDm27sLVaXLs9VJ1W-bN2qDL4dtuz4ze5qSdl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+soil+mapping+of+soil+organic+carbon+stocks+in+Western+Ghats%2C+South+India&rft.jtitle=Geoderma+Regional&rft.au=Dharumarajan%2C+S.&rft.au=Kalaiselvi%2C+B.&rft.au=Suputhra%2C+Amar&rft.au=Lalitha%2C+M.&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.volume=25&rft_id=info:doi/10.1016%2Fj.geodrs.2021.e00387&rft.externalDocID=S2352009421000328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon