An Integrated Method Using a Convolutional Autoencoder, Thresholding Techniques, and a Residual Network for Anomaly Detection on Heritage Roof Surfaces

The roofs of heritage buildings are subject to long-term degradation, resulting in poor heat insulation, heat regulation, and water leakage prevention. Researchers have predominantly employed feature-based traditional machine learning methods or individual deep learning techniques for the detection...

Full description

Saved in:
Bibliographic Details
Published inBuildings (Basel) Vol. 14; no. 9; p. 2828
Main Authors Zhang, Yongcheng, Kong, Liulin, Antwi-Afari, Maxwell Fordjour, Zhang, Qingzhi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The roofs of heritage buildings are subject to long-term degradation, resulting in poor heat insulation, heat regulation, and water leakage prevention. Researchers have predominantly employed feature-based traditional machine learning methods or individual deep learning techniques for the detection of natural deterioration and human-made damage on the surfaces of heritage building roofs for preservation. Despite their success, balancing accuracy, efficiency, timeliness, and cost remains a challenge, hindering practical application. The paper proposes an integrated method that employs a convolutional autoencoder, thresholding techniques, and a residual network to automatically detect anomalies on heritage roof surfaces. Firstly, unmanned aerial vehicles (UAVs) were employed to collect the image data of the heritage building roofs. Subsequently, an artificial intelligence (AI)-based system was developed to detect, extract, and classify anomalies on heritage roof surfaces by integrating a convolutional autoencoder, threshold techniques, and residual networks (ResNets). A heritage building project was selected as a case study. The experiments demonstrate that the proposed approach improved the detection accuracy and efficiency when compared with a single detection method. The proposed method addresses certain limitations of existing approaches, especially the reliance on extensive data labeling. It is anticipated that this approach will provide a basis for the formulation of repair schemes and timely maintenance for preventive conservation, enhancing the actual benefits of heritage building restoration.
AbstractList The roofs of heritage buildings are subject to long-term degradation, resulting in poor heat insulation, heat regulation, and water leakage prevention. Researchers have predominantly employed feature-based traditional machine learning methods or individual deep learning techniques for the detection of natural deterioration and human-made damage on the surfaces of heritage building roofs for preservation. Despite their success, balancing accuracy, efficiency, timeliness, and cost remains a challenge, hindering practical application. The paper proposes an integrated method that employs a convolutional autoencoder, thresholding techniques, and a residual network to automatically detect anomalies on heritage roof surfaces. Firstly, unmanned aerial vehicles (UAVs) were employed to collect the image data of the heritage building roofs. Subsequently, an artificial intelligence (AI)-based system was developed to detect, extract, and classify anomalies on heritage roof surfaces by integrating a convolutional autoencoder, threshold techniques, and residual networks (ResNets). A heritage building project was selected as a case study. The experiments demonstrate that the proposed approach improved the detection accuracy and efficiency when compared with a single detection method. The proposed method addresses certain limitations of existing approaches, especially the reliance on extensive data labeling. It is anticipated that this approach will provide a basis for the formulation of repair schemes and timely maintenance for preventive conservation, enhancing the actual benefits of heritage building restoration.
Audience Academic
Author Antwi-Afari, Maxwell Fordjour
Zhang, Yongcheng
Zhang, Qingzhi
Kong, Liulin
Author_xml – sequence: 1
  givenname: Yongcheng
  orcidid: 0000-0002-4627-3771
  surname: Zhang
  fullname: Zhang, Yongcheng
– sequence: 2
  givenname: Liulin
  orcidid: 0000-0001-7050-8676
  surname: Kong
  fullname: Kong, Liulin
– sequence: 3
  givenname: Maxwell Fordjour
  orcidid: 0000-0002-6812-7839
  surname: Antwi-Afari
  fullname: Antwi-Afari, Maxwell Fordjour
– sequence: 4
  givenname: Qingzhi
  surname: Zhang
  fullname: Zhang, Qingzhi
BookMark eNplkdtu1DAQhiNUJErpA3BnidtusWMnsS-j5dCVCkhlex35MMl6yXqK7YD6JLwu3i5CSNgjjTWa__No_pfVWcAAVfWa0WvOFX1rFj87H6bEBFW1rOWz6rymXbNqOFVn_7xfVJcp7Wk5sqnrRpxXv_pANiHDFHUGRz5B3qEj96nQiCZrDD9wXrLHoGfSLxkhWHQQr8h2FyHt8OlfsgW7C_77AumK6OCK8g6Sd0sRfYb8E-M3MmIkfcCDnh_JO8hgj1BS4gaiz3oCcoc4kq9LHLWF9Kp6Puo5weWffFHdf3i_Xd-sbr983Kz725XlHc8rphS0zljVSiYMgOStlczIBoCbmlOmuKG6aUBwKV3DXG2pZdy0chRt1478otqcuA71fniI_qDj44DaD08FjNOgY_Z2hoG1RhratkoYJzpHlaiFEHUZoNMMpC2sNyfWQ8TjLvKwxyWWzaWBM0ZFCalK1_Wpa9IF6sOIOWpbroODt8XY0Zd6LxmVgvG2KwJ2EtiIKUUY_47J6HD0f_jPf_4b20unaQ
Cites_doi 10.1109/VSMM.2012.6365947
10.1186/s40494-022-00664-y
10.1109/CVPR.2015.7298594
10.1186/s40494-023-01035-x
10.1007/978-3-030-17795-9
10.1186/s40494-024-01185-6
10.1109/CVPR.2018.00474
10.1016/j.autcon.2019.03.003
10.3390/a15080281
10.1088/1755-1315/863/1/012041
10.1109/CVPR.2016.90
10.1109/CVPR.2016.91
10.1016/j.culher.2024.05.009
10.14569/IJACSA.2024.0150558
10.1007/978-3-319-46448-0_2
10.1186/s40494-020-00416-w
10.1016/j.autcon.2021.103606
10.3390/su16114650
10.1109/TPAMI.1986.4767851
10.3390/rs12061005
10.1111/mice.13197
10.1109/ICCV.2015.169
10.1108/SASBE-09-2020-0139
10.1109/SMARTCOMP55677.2022.00063
10.1007/978-3-030-01264-9_8
10.1109/TPAMI.2016.2577031
10.5244/C.2.23
10.1038/s41598-018-22601-5
10.1109/ICCV.2017.322
10.1016/j.culher.2021.01.002
10.1007/978-3-030-74482-3_12
10.1109/MSP.2017.2765202
10.1007/BF00994018
10.1109/CVPR.2014.81
10.1145/3439950
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L.-
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.3390/buildings14092828
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 2075-5309
ExternalDocumentID oai_doaj_org_article_16b8b06694bd47d094244429e67a1e8c
A810841367
10_3390_buildings14092828
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHM
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
TUS
PMFND
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
KR7
L.-
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c373t-199e6dbc96814bee836c81b85ee3b230193b0a55e4388d51d2c0c13b68f4676f3
IEDL.DBID BENPR
ISSN 2075-5309
IngestDate Wed Aug 27 01:28:12 EDT 2025
Fri Jul 25 11:53:04 EDT 2025
Tue Jun 10 21:02:30 EDT 2025
Tue Jul 01 01:45:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-199e6dbc96814bee836c81b85ee3b230193b0a55e4388d51d2c0c13b68f4676f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6812-7839
0000-0001-7050-8676
0000-0002-4627-3771
OpenAccessLink https://www.proquest.com/docview/3110410489?pq-origsite=%requestingapplication%
PQID 3110410489
PQPubID 2032422
ParticipantIDs doaj_primary_oai_doaj_org_article_16b8b06694bd47d094244429e67a1e8c
proquest_journals_3110410489
gale_infotracacademiconefile_A810841367
crossref_primary_10_3390_buildings14092828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Buildings (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ren (ref_18) 2015; 39
Krizhevsky (ref_11) 2012; 25
ref_14
ref_36
ref_13
ref_35
ref_12
ref_34
Cortes (ref_9) 1995; 20
ref_10
ref_31
ref_30
Wang (ref_25) 2019; 103
ref_19
ref_17
ref_39
ref_16
ref_15
ref_37
Pathak (ref_26) 2021; 48
Dais (ref_24) 2021; 125
Yan (ref_29) 2024; 12
Liu (ref_32) 2022; 10
(ref_1) 2020; 8
Mansuri (ref_27) 2022; 11
Chaiyasarn (ref_23) 2018; 15
Canny (ref_6) 1986; 6
ref_44
Braik (ref_5) 2024; 39
ref_21
ref_43
ref_20
ref_42
ref_41
ref_40
ref_2
Ni (ref_38) 2021; 863
Li (ref_3) 2023; 11
Karimi (ref_28) 2024; 68
ref_8
Creswell (ref_22) 2018; 35
ref_4
Pang (ref_33) 2021; 54
ref_7
References_xml – ident: ref_35
  doi: 10.1109/VSMM.2012.6365947
– volume: 10
  start-page: 1
  year: 2022
  ident: ref_32
  article-title: Semantic segmentation and photogrammetry of crowdsourced images to monitor historic facades
  publication-title: Herit. Sci.
  doi: 10.1186/s40494-022-00664-y
– ident: ref_13
  doi: 10.1109/CVPR.2015.7298594
– volume: 11
  start-page: 199
  year: 2023
  ident: ref_3
  article-title: A review of the tools and techniques used in the digital preservation of architectural heritage within disaster cycles
  publication-title: Herit. Sci.
  doi: 10.1186/s40494-023-01035-x
– ident: ref_44
  doi: 10.1007/978-3-030-17795-9
– volume: 12
  start-page: 72
  year: 2024
  ident: ref_29
  article-title: Application of computer vision technology in surface damage detection and analysis of shedthin tiles in China: A case study of the classical gardens of Suzhou
  publication-title: Herit. Sci.
  doi: 10.1186/s40494-024-01185-6
– ident: ref_42
  doi: 10.1109/CVPR.2018.00474
– volume: 103
  start-page: 53
  year: 2019
  ident: ref_25
  article-title: Automatic damage detection of historic masonry buildings based on mobile deep learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.03.003
– ident: ref_30
  doi: 10.3390/a15080281
– ident: ref_39
– ident: ref_40
– volume: 863
  start-page: 012041
  year: 2021
  ident: ref_38
  article-title: Improving energy efficiency while preserving historic buildings with digital twins and artificial intelligence
  publication-title: Proc. Iop Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/863/1/012041
– ident: ref_14
  doi: 10.1109/CVPR.2016.90
– ident: ref_19
  doi: 10.1109/CVPR.2016.91
– volume: 68
  start-page: 86
  year: 2024
  ident: ref_28
  article-title: Deep learning-based automated tile defect detection system for Portuguese cultural heritage buildings
  publication-title: J. Cult. Herit.
  doi: 10.1016/j.culher.2024.05.009
– ident: ref_31
  doi: 10.14569/IJACSA.2024.0150558
– ident: ref_15
  doi: 10.1007/978-3-319-46448-0_2
– volume: 8
  start-page: 70
  year: 2020
  ident: ref_1
  article-title: The semantic conservation of architectural heritage: The missing values
  publication-title: Herit. Sci.
  doi: 10.1186/s40494-020-00416-w
– ident: ref_21
– volume: 125
  start-page: 103606
  year: 2021
  ident: ref_24
  article-title: Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103606
– ident: ref_4
  doi: 10.3390/su16114650
– volume: 6
  start-page: 679
  year: 1986
  ident: ref_6
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– ident: ref_8
– ident: ref_37
  doi: 10.3390/rs12061005
– volume: 39
  start-page: 2389
  year: 2024
  ident: ref_5
  article-title: Automated building damage assessment and large-scale mapping by integrating satellite imagery, GIS, and deep learning
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.13197
– ident: ref_17
  doi: 10.1109/ICCV.2015.169
– volume: 11
  start-page: 622
  year: 2022
  ident: ref_27
  article-title: Artificial intelligence-based automatic visual inspection system for built heritage
  publication-title: Smart Sustain. Built Environ.
  doi: 10.1108/SASBE-09-2020-0139
– ident: ref_36
  doi: 10.1109/SMARTCOMP55677.2022.00063
– ident: ref_12
– ident: ref_41
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref_10
– volume: 39
  start-page: 1137
  year: 2015
  ident: ref_18
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_7
  doi: 10.5244/C.2.23
– volume: 15
  start-page: 240
  year: 2018
  ident: ref_23
  article-title: Crack detection in historical structures based on convolutional neural network
  publication-title: GEOMATE J.
– ident: ref_34
  doi: 10.1038/s41598-018-22601-5
– ident: ref_20
  doi: 10.1109/ICCV.2017.322
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref_11
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 48
  start-page: 74
  year: 2021
  ident: ref_26
  article-title: An object detection approach for detecting damages in heritage sites using 3-D point clouds and 2-D visual data
  publication-title: J. Cult. Herit.
  doi: 10.1016/j.culher.2021.01.002
– ident: ref_43
– ident: ref_2
  doi: 10.1007/978-3-030-74482-3_12
– volume: 35
  start-page: 53
  year: 2018
  ident: ref_22
  article-title: Generative adversarial networks: An overview
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2765202
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_9
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: ref_16
  doi: 10.1109/CVPR.2014.81
– volume: 54
  start-page: 1
  year: 2021
  ident: ref_33
  article-title: Deep learning for anomaly detection: A review
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3439950
SSID ssj0000852254
Score 2.2788048
Snippet The roofs of heritage buildings are subject to long-term degradation, resulting in poor heat insulation, heat regulation, and water leakage prevention....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2828
SubjectTerms Accuracy
Algorithms
Anomalies
Architecture
Artificial intelligence
Buildings
Case studies
Classification
Computer vision
Cracks
Cultural heritage
Damage detection
Damage prevention
Deep learning
detection and evaluation
Drone aircraft
Efficiency
heritage buildings
Historic buildings & sites
Historic preservation
Historical buildings
Insulation
Machine learning
Masonry
Methods
Neural networks
Protection and preservation
Remodeling, restoration, etc
Repair & maintenance
roof damage
Roofing
Roofs
Semantics
UAV
Unmanned aerial vehicles
Vision systems
Water damage
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQmrSl26ZhDoVAiMlq9bD2uM2DTSA5pBvITVjSuFBaO6y9hfyS_N3M2N6yoZReCjoZywh9o3l4Rt8I8TkPE1XKFLJYost0sEXmwrjIjM61Npzoc3zB-erazm_15Z2522j1xTVhPT1wv3HH0gaabO1Uh6TzRNEIGSRSomjzQqKLrH3J5m0EU9_76isSVN2nMRXF9cdh6DLdMMMTxxnPDFHH1_83rdyZmvPX4tXgI8KsX9uOeIHVrni5wRz4RjzOKrhYMz0kuOr6QEOX_4cCTurq1yBS_J1VWzNdZcLlESwIu2ZIOcFiTeDaHEFRJZp5g013Owuu-_JwIJ8WZlX9s_jxAKfYdoVbFdCYI_9W-IZwU9clfF0tSy7ueituz88WJ_Ns6LGQRZWrlutM0KYQCROpA6JTNpIn6wyiIhjJAVQEnTGolXPJyDSJ4yhVIAhJxdpSvRNbVV3hewEhGpKIvJRhHLVMedBRYpJTnNrSlLkaicP1hvv7nkrDUwjC6Pg_0BmJLwzJ7xeZBbt7QLLhB9nw_5KNkThgQD2f1XZZxGK4ckDrZdYrP3Ny7DST1o3E3hpzPxzixityjTQNN_3wP1bzUWxPyCPqC9T2xFa7XOEn8mjasN8J7xMnlfVo
  priority: 102
  providerName: Directory of Open Access Journals
Title An Integrated Method Using a Convolutional Autoencoder, Thresholding Techniques, and a Residual Network for Anomaly Detection on Heritage Roof Surfaces
URI https://www.proquest.com/docview/3110410489
https://doaj.org/article/16b8b06694bd47d094244429e67a1e8c
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB7s9kWFolVxtV3mQRCkoTs7k8nsU0lr11XoIusW-hYyMyd90aQmWcFf4t_tOcmkVkQhT7kR8p059_kOY28SO5OF8DZyBZhIWZ1Hxk7zKFaJUjEV-gxtcL5Y6eWl-nQVX4WEWxPaKged2ClqXznKkR9LtFMKDzM_ufke0dQoqq6GERo7bBdVsDEjtnt6vvq8vsuyoEOBAqv6cqbE-P7YhmnTDTE9Ubzxh0HqePv_pZ07k7N4wvaCr8jTHtyn7AGU--xxei_1v88e3SMUfMZ-pSX_OBBAeH7RjYfmXVsAz_lZVf4Ikkav3bYVsVh6qI_4BiFtQiWKbwZe1-aI56XHJ9fQdJu2-KrvGufo6vK0rL7lX3_y99B2_Vwlx2MJlG24Br6uqoJ_2dYF9Xw9Z5eL883ZMgqjFyInE9lS-wlobx1CJZQFMFI7dHBNDCARXfQLJSIax6CkMT4WfuamTkiLyKLm1YV8wUZlVcJLxq2LUVCSQtipU8InVjkBXsxhrou4SOSYvRv-f3bTM2xkGJkQWNlfYI3ZKSF0dyORY3cnqvo6C2stE9qivGk9V9arxGMAiz4M2l3QSS7AuDF7S_hmtITbOnd52ImA30tkWFlqxNQo4rIbs4NBBLKwtpvstyS--v_l1-zhDF2gviPtgI3aeguH6MK0dsJ2zOLDJEjrpEsE3AIvevYL
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOfCQEBQQCwV8ACGhRo1jx_EeEAotyy7t7qFspd7c-JFeaNImWVB_Cf-C38hMHqUIwa1STskmGu18nhl7Zr4h5FViIp4zZwKbexUII7NAmTALYpEIEWOiT2GD83whp4fi81F8tEZ-Dr0wWFY52MTWULvS4hn5Ngc_JeBS4_dn5wFOjcLs6jBCo4PFnr_4Dlu2-t1sF_T7OoomH5c706CfKhBYnvAGKyu8dMaCFEwY7xWXFmI3FXvPQXAIeTgIG8decKVczFxkQ8u4AaHBqMicw3dvkJuCgyfHzvTJp8szHQhfYHmILnkKz8Nt08-2rpFXCnc3f7i_dkrAv3xB6-Am98m9PjKlaQelB2TNFxvkbnol0bBB7lyhL3xIfqQFnQ10E47O22HUtC1CoBndKYtvPa7xs6umRM5M56stugQA1X3eiy4HFtl6i2aFgzcPfN22iNFFV6NOIbCmaVGeZl8v6K5v2uqxgsI19Xi2ceLpQVnm9MuqyrHC7BE5vBaVPCbrRVn4J4QaGwMsk5yZ0ArmEiMs846N_VjmcZ7wEXk7_P_6rOPz0LAPQmXpv5Q1Ih9QQ5c_RCru9kZZneh-ZWsmDaBbyrEwTiQOtssQMYGX9zLJmFd2RN6gfjUajKbKbNb3PYC8SL2lU8VCJZA5b0Q2Bwjo3pLU-jfun_7_8Utya7qc7-v92WLvGbkdQfDV1cJtkvWmWvnnEDw15kWLWEqOr3uJ_AI78i7h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEKAhKCACBTYAwgJ1Uo2u7bXB1S5TaOE0qgKqdSb8T7cC9gldkD9JfwXfl1n_ChFCG6VfPJjtet578x-A_A61CORcas9kznlSR2kntLD1PNlKKVPiT5FB5yP5sH0RH449U834Fd3FobKKjudWCtqWxjaIx8ItFMSLxUNsrYs4ng82T3_5lEHKcq0du00GhY5dBc_MHwr38_GSOs3o9HkYLk_9doOA54RoaioysIFVhucEZfaOSUCg36c8p0TuAh0fwRO3PedFEpZn9uRGRouNC4AFUyQCRz3FmyGFBX1YHPvYH68uNrhQWcGhUU2qVQhouFAt52uS0KZoljnD2NY9wz4l2Wozd3kAdxv_VQWN4z1EDZcvgX34mtphy24ew3M8BH8jHM268AnLDuqW1OzuiSBpWy_yL-3XE7DrquCEDStW-2wJbJT2WbB2LLDlC13WJpb_HLhyvrAGJs3FesM3WwW58XX9MsFG7uqriXLGV5TRzsdZ44tiiJjn9arjOrNHsPJjRDlCfTyIndPgWnjI5OGGddDI7kNtTTcWR65KMj8LBR9eNf9_-S8QfdIMCoiYiV_EasPe0ShqxcJmLu-UazOklbOEx5o5PUgiKS2MrQYPKP_hDbfBWHKnTJ9eEv0TUh9VKvUpO0pCJwvAXElseJDJQlHrw_bHQskrV4pk99S8Oz_j1_BbRSP5ONsfvgc7ozQE2sK47ahV63W7gV6UpV-2bIsg883LSWXJUI0cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Integrated+Method+Using+a+Convolutional+Autoencoder%2C+Thresholding+Techniques%2C+and+a+Residual+Network+for+Anomaly+Detection+on+Heritage+Roof+Surfaces&rft.jtitle=Buildings+%28Basel%29&rft.au=Zhang%2C+Yongcheng&rft.au=Kong%2C+Liulin&rft.au=Antwi-Afari%2C+Maxwell+djour&rft.au=Zhang%2C+Qingzhi&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2075-5309&rft.volume=14&rft.issue=9&rft.spage=2828&rft_id=info:doi/10.3390%2Fbuildings14092828&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon