An Integrated Method Using a Convolutional Autoencoder, Thresholding Techniques, and a Residual Network for Anomaly Detection on Heritage Roof Surfaces
The roofs of heritage buildings are subject to long-term degradation, resulting in poor heat insulation, heat regulation, and water leakage prevention. Researchers have predominantly employed feature-based traditional machine learning methods or individual deep learning techniques for the detection...
Saved in:
Published in | Buildings (Basel) Vol. 14; no. 9; p. 2828 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The roofs of heritage buildings are subject to long-term degradation, resulting in poor heat insulation, heat regulation, and water leakage prevention. Researchers have predominantly employed feature-based traditional machine learning methods or individual deep learning techniques for the detection of natural deterioration and human-made damage on the surfaces of heritage building roofs for preservation. Despite their success, balancing accuracy, efficiency, timeliness, and cost remains a challenge, hindering practical application. The paper proposes an integrated method that employs a convolutional autoencoder, thresholding techniques, and a residual network to automatically detect anomalies on heritage roof surfaces. Firstly, unmanned aerial vehicles (UAVs) were employed to collect the image data of the heritage building roofs. Subsequently, an artificial intelligence (AI)-based system was developed to detect, extract, and classify anomalies on heritage roof surfaces by integrating a convolutional autoencoder, threshold techniques, and residual networks (ResNets). A heritage building project was selected as a case study. The experiments demonstrate that the proposed approach improved the detection accuracy and efficiency when compared with a single detection method. The proposed method addresses certain limitations of existing approaches, especially the reliance on extensive data labeling. It is anticipated that this approach will provide a basis for the formulation of repair schemes and timely maintenance for preventive conservation, enhancing the actual benefits of heritage building restoration. |
---|---|
AbstractList | The roofs of heritage buildings are subject to long-term degradation, resulting in poor heat insulation, heat regulation, and water leakage prevention. Researchers have predominantly employed feature-based traditional machine learning methods or individual deep learning techniques for the detection of natural deterioration and human-made damage on the surfaces of heritage building roofs for preservation. Despite their success, balancing accuracy, efficiency, timeliness, and cost remains a challenge, hindering practical application. The paper proposes an integrated method that employs a convolutional autoencoder, thresholding techniques, and a residual network to automatically detect anomalies on heritage roof surfaces. Firstly, unmanned aerial vehicles (UAVs) were employed to collect the image data of the heritage building roofs. Subsequently, an artificial intelligence (AI)-based system was developed to detect, extract, and classify anomalies on heritage roof surfaces by integrating a convolutional autoencoder, threshold techniques, and residual networks (ResNets). A heritage building project was selected as a case study. The experiments demonstrate that the proposed approach improved the detection accuracy and efficiency when compared with a single detection method. The proposed method addresses certain limitations of existing approaches, especially the reliance on extensive data labeling. It is anticipated that this approach will provide a basis for the formulation of repair schemes and timely maintenance for preventive conservation, enhancing the actual benefits of heritage building restoration. |
Audience | Academic |
Author | Antwi-Afari, Maxwell Fordjour Zhang, Yongcheng Zhang, Qingzhi Kong, Liulin |
Author_xml | – sequence: 1 givenname: Yongcheng orcidid: 0000-0002-4627-3771 surname: Zhang fullname: Zhang, Yongcheng – sequence: 2 givenname: Liulin orcidid: 0000-0001-7050-8676 surname: Kong fullname: Kong, Liulin – sequence: 3 givenname: Maxwell Fordjour orcidid: 0000-0002-6812-7839 surname: Antwi-Afari fullname: Antwi-Afari, Maxwell Fordjour – sequence: 4 givenname: Qingzhi surname: Zhang fullname: Zhang, Qingzhi |
BookMark | eNplkdtu1DAQhiNUJErpA3BnidtusWMnsS-j5dCVCkhlex35MMl6yXqK7YD6JLwu3i5CSNgjjTWa__No_pfVWcAAVfWa0WvOFX1rFj87H6bEBFW1rOWz6rymXbNqOFVn_7xfVJcp7Wk5sqnrRpxXv_pANiHDFHUGRz5B3qEj96nQiCZrDD9wXrLHoGfSLxkhWHQQr8h2FyHt8OlfsgW7C_77AumK6OCK8g6Sd0sRfYb8E-M3MmIkfcCDnh_JO8hgj1BS4gaiz3oCcoc4kq9LHLWF9Kp6Puo5weWffFHdf3i_Xd-sbr983Kz725XlHc8rphS0zljVSiYMgOStlczIBoCbmlOmuKG6aUBwKV3DXG2pZdy0chRt1478otqcuA71fniI_qDj44DaD08FjNOgY_Z2hoG1RhratkoYJzpHlaiFEHUZoNMMpC2sNyfWQ8TjLvKwxyWWzaWBM0ZFCalK1_Wpa9IF6sOIOWpbroODt8XY0Zd6LxmVgvG2KwJ2EtiIKUUY_47J6HD0f_jPf_4b20unaQ |
Cites_doi | 10.1109/VSMM.2012.6365947 10.1186/s40494-022-00664-y 10.1109/CVPR.2015.7298594 10.1186/s40494-023-01035-x 10.1007/978-3-030-17795-9 10.1186/s40494-024-01185-6 10.1109/CVPR.2018.00474 10.1016/j.autcon.2019.03.003 10.3390/a15080281 10.1088/1755-1315/863/1/012041 10.1109/CVPR.2016.90 10.1109/CVPR.2016.91 10.1016/j.culher.2024.05.009 10.14569/IJACSA.2024.0150558 10.1007/978-3-319-46448-0_2 10.1186/s40494-020-00416-w 10.1016/j.autcon.2021.103606 10.3390/su16114650 10.1109/TPAMI.1986.4767851 10.3390/rs12061005 10.1111/mice.13197 10.1109/ICCV.2015.169 10.1108/SASBE-09-2020-0139 10.1109/SMARTCOMP55677.2022.00063 10.1007/978-3-030-01264-9_8 10.1109/TPAMI.2016.2577031 10.5244/C.2.23 10.1038/s41598-018-22601-5 10.1109/ICCV.2017.322 10.1016/j.culher.2021.01.002 10.1007/978-3-030-74482-3_12 10.1109/MSP.2017.2765202 10.1007/BF00994018 10.1109/CVPR.2014.81 10.1145/3439950 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L.- L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.3390/buildings14092828 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 2075-5309 |
ExternalDocumentID | oai_doaj_org_article_16b8b06694bd47d094244429e67a1e8c A810841367 10_3390_buildings14092828 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | .4S 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHM ITC KQ8 L6V M7S MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PTHSS PYCSY TUS PMFND 8FD ABUWG AZQEC DWQXO FR3 GNUQQ KR7 L.- PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c373t-199e6dbc96814bee836c81b85ee3b230193b0a55e4388d51d2c0c13b68f4676f3 |
IEDL.DBID | BENPR |
ISSN | 2075-5309 |
IngestDate | Wed Aug 27 01:28:12 EDT 2025 Fri Jul 25 11:53:04 EDT 2025 Tue Jun 10 21:02:30 EDT 2025 Tue Jul 01 01:45:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-199e6dbc96814bee836c81b85ee3b230193b0a55e4388d51d2c0c13b68f4676f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6812-7839 0000-0001-7050-8676 0000-0002-4627-3771 |
OpenAccessLink | https://www.proquest.com/docview/3110410489?pq-origsite=%requestingapplication% |
PQID | 3110410489 |
PQPubID | 2032422 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_16b8b06694bd47d094244429e67a1e8c proquest_journals_3110410489 gale_infotracacademiconefile_A810841367 crossref_primary_10_3390_buildings14092828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Buildings (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ren (ref_18) 2015; 39 Krizhevsky (ref_11) 2012; 25 ref_14 ref_36 ref_13 ref_35 ref_12 ref_34 Cortes (ref_9) 1995; 20 ref_10 ref_31 ref_30 Wang (ref_25) 2019; 103 ref_19 ref_17 ref_39 ref_16 ref_15 ref_37 Pathak (ref_26) 2021; 48 Dais (ref_24) 2021; 125 Yan (ref_29) 2024; 12 Liu (ref_32) 2022; 10 (ref_1) 2020; 8 Mansuri (ref_27) 2022; 11 Chaiyasarn (ref_23) 2018; 15 Canny (ref_6) 1986; 6 ref_44 Braik (ref_5) 2024; 39 ref_21 ref_43 ref_20 ref_42 ref_41 ref_40 ref_2 Ni (ref_38) 2021; 863 Li (ref_3) 2023; 11 Karimi (ref_28) 2024; 68 ref_8 Creswell (ref_22) 2018; 35 ref_4 Pang (ref_33) 2021; 54 ref_7 |
References_xml | – ident: ref_35 doi: 10.1109/VSMM.2012.6365947 – volume: 10 start-page: 1 year: 2022 ident: ref_32 article-title: Semantic segmentation and photogrammetry of crowdsourced images to monitor historic facades publication-title: Herit. Sci. doi: 10.1186/s40494-022-00664-y – ident: ref_13 doi: 10.1109/CVPR.2015.7298594 – volume: 11 start-page: 199 year: 2023 ident: ref_3 article-title: A review of the tools and techniques used in the digital preservation of architectural heritage within disaster cycles publication-title: Herit. Sci. doi: 10.1186/s40494-023-01035-x – ident: ref_44 doi: 10.1007/978-3-030-17795-9 – volume: 12 start-page: 72 year: 2024 ident: ref_29 article-title: Application of computer vision technology in surface damage detection and analysis of shedthin tiles in China: A case study of the classical gardens of Suzhou publication-title: Herit. Sci. doi: 10.1186/s40494-024-01185-6 – ident: ref_42 doi: 10.1109/CVPR.2018.00474 – volume: 103 start-page: 53 year: 2019 ident: ref_25 article-title: Automatic damage detection of historic masonry buildings based on mobile deep learning publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.03.003 – ident: ref_30 doi: 10.3390/a15080281 – ident: ref_39 – ident: ref_40 – volume: 863 start-page: 012041 year: 2021 ident: ref_38 article-title: Improving energy efficiency while preserving historic buildings with digital twins and artificial intelligence publication-title: Proc. Iop Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/863/1/012041 – ident: ref_14 doi: 10.1109/CVPR.2016.90 – ident: ref_19 doi: 10.1109/CVPR.2016.91 – volume: 68 start-page: 86 year: 2024 ident: ref_28 article-title: Deep learning-based automated tile defect detection system for Portuguese cultural heritage buildings publication-title: J. Cult. Herit. doi: 10.1016/j.culher.2024.05.009 – ident: ref_31 doi: 10.14569/IJACSA.2024.0150558 – ident: ref_15 doi: 10.1007/978-3-319-46448-0_2 – volume: 8 start-page: 70 year: 2020 ident: ref_1 article-title: The semantic conservation of architectural heritage: The missing values publication-title: Herit. Sci. doi: 10.1186/s40494-020-00416-w – ident: ref_21 – volume: 125 start-page: 103606 year: 2021 ident: ref_24 article-title: Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103606 – ident: ref_4 doi: 10.3390/su16114650 – volume: 6 start-page: 679 year: 1986 ident: ref_6 article-title: A computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – ident: ref_8 – ident: ref_37 doi: 10.3390/rs12061005 – volume: 39 start-page: 2389 year: 2024 ident: ref_5 article-title: Automated building damage assessment and large-scale mapping by integrating satellite imagery, GIS, and deep learning publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.13197 – ident: ref_17 doi: 10.1109/ICCV.2015.169 – volume: 11 start-page: 622 year: 2022 ident: ref_27 article-title: Artificial intelligence-based automatic visual inspection system for built heritage publication-title: Smart Sustain. Built Environ. doi: 10.1108/SASBE-09-2020-0139 – ident: ref_36 doi: 10.1109/SMARTCOMP55677.2022.00063 – ident: ref_12 – ident: ref_41 doi: 10.1007/978-3-030-01264-9_8 – ident: ref_10 – volume: 39 start-page: 1137 year: 2015 ident: ref_18 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_7 doi: 10.5244/C.2.23 – volume: 15 start-page: 240 year: 2018 ident: ref_23 article-title: Crack detection in historical structures based on convolutional neural network publication-title: GEOMATE J. – ident: ref_34 doi: 10.1038/s41598-018-22601-5 – ident: ref_20 doi: 10.1109/ICCV.2017.322 – volume: 25 start-page: 1097 year: 2012 ident: ref_11 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 48 start-page: 74 year: 2021 ident: ref_26 article-title: An object detection approach for detecting damages in heritage sites using 3-D point clouds and 2-D visual data publication-title: J. Cult. Herit. doi: 10.1016/j.culher.2021.01.002 – ident: ref_43 – ident: ref_2 doi: 10.1007/978-3-030-74482-3_12 – volume: 35 start-page: 53 year: 2018 ident: ref_22 article-title: Generative adversarial networks: An overview publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2765202 – volume: 20 start-page: 273 year: 1995 ident: ref_9 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_16 doi: 10.1109/CVPR.2014.81 – volume: 54 start-page: 1 year: 2021 ident: ref_33 article-title: Deep learning for anomaly detection: A review publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3439950 |
SSID | ssj0000852254 |
Score | 2.2788048 |
Snippet | The roofs of heritage buildings are subject to long-term degradation, resulting in poor heat insulation, heat regulation, and water leakage prevention.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 2828 |
SubjectTerms | Accuracy Algorithms Anomalies Architecture Artificial intelligence Buildings Case studies Classification Computer vision Cracks Cultural heritage Damage detection Damage prevention Deep learning detection and evaluation Drone aircraft Efficiency heritage buildings Historic buildings & sites Historic preservation Historical buildings Insulation Machine learning Masonry Methods Neural networks Protection and preservation Remodeling, restoration, etc Repair & maintenance roof damage Roofing Roofs Semantics UAV Unmanned aerial vehicles Vision systems Water damage |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQmrSl26ZhDoVAiMlq9bD2uM2DTSA5pBvITVjSuFBaO6y9hfyS_N3M2N6yoZReCjoZywh9o3l4Rt8I8TkPE1XKFLJYost0sEXmwrjIjM61Npzoc3zB-erazm_15Z2522j1xTVhPT1wv3HH0gaabO1Uh6TzRNEIGSRSomjzQqKLrH3J5m0EU9_76isSVN2nMRXF9cdh6DLdMMMTxxnPDFHH1_83rdyZmvPX4tXgI8KsX9uOeIHVrni5wRz4RjzOKrhYMz0kuOr6QEOX_4cCTurq1yBS_J1VWzNdZcLlESwIu2ZIOcFiTeDaHEFRJZp5g013Owuu-_JwIJ8WZlX9s_jxAKfYdoVbFdCYI_9W-IZwU9clfF0tSy7ueituz88WJ_Ns6LGQRZWrlutM0KYQCROpA6JTNpIn6wyiIhjJAVQEnTGolXPJyDSJ4yhVIAhJxdpSvRNbVV3hewEhGpKIvJRhHLVMedBRYpJTnNrSlLkaicP1hvv7nkrDUwjC6Pg_0BmJLwzJ7xeZBbt7QLLhB9nw_5KNkThgQD2f1XZZxGK4ckDrZdYrP3Ny7DST1o3E3hpzPxzixityjTQNN_3wP1bzUWxPyCPqC9T2xFa7XOEn8mjasN8J7xMnlfVo priority: 102 providerName: Directory of Open Access Journals |
Title | An Integrated Method Using a Convolutional Autoencoder, Thresholding Techniques, and a Residual Network for Anomaly Detection on Heritage Roof Surfaces |
URI | https://www.proquest.com/docview/3110410489 https://doaj.org/article/16b8b06694bd47d094244429e67a1e8c |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB7s9kWFolVxtV3mQRCkoTs7k8nsU0lr11XoIusW-hYyMyd90aQmWcFf4t_tOcmkVkQhT7kR8p059_kOY28SO5OF8DZyBZhIWZ1Hxk7zKFaJUjEV-gxtcL5Y6eWl-nQVX4WEWxPaKged2ClqXznKkR9LtFMKDzM_ufke0dQoqq6GERo7bBdVsDEjtnt6vvq8vsuyoEOBAqv6cqbE-P7YhmnTDTE9Ubzxh0HqePv_pZ07k7N4wvaCr8jTHtyn7AGU--xxei_1v88e3SMUfMZ-pSX_OBBAeH7RjYfmXVsAz_lZVf4Ikkav3bYVsVh6qI_4BiFtQiWKbwZe1-aI56XHJ9fQdJu2-KrvGufo6vK0rL7lX3_y99B2_Vwlx2MJlG24Br6uqoJ_2dYF9Xw9Z5eL883ZMgqjFyInE9lS-wlobx1CJZQFMFI7dHBNDCARXfQLJSIax6CkMT4WfuamTkiLyKLm1YV8wUZlVcJLxq2LUVCSQtipU8InVjkBXsxhrou4SOSYvRv-f3bTM2xkGJkQWNlfYI3ZKSF0dyORY3cnqvo6C2stE9qivGk9V9arxGMAiz4M2l3QSS7AuDF7S_hmtITbOnd52ImA30tkWFlqxNQo4rIbs4NBBLKwtpvstyS--v_l1-zhDF2gviPtgI3aeguH6MK0dsJ2zOLDJEjrpEsE3AIvevYL |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOfCQEBQQCwV8ACGhRo1jx_EeEAotyy7t7qFspd7c-JFeaNImWVB_Cf-C38hMHqUIwa1STskmGu18nhl7Zr4h5FViIp4zZwKbexUII7NAmTALYpEIEWOiT2GD83whp4fi81F8tEZ-Dr0wWFY52MTWULvS4hn5Ngc_JeBS4_dn5wFOjcLs6jBCo4PFnr_4Dlu2-t1sF_T7OoomH5c706CfKhBYnvAGKyu8dMaCFEwY7xWXFmI3FXvPQXAIeTgIG8decKVczFxkQ8u4AaHBqMicw3dvkJuCgyfHzvTJp8szHQhfYHmILnkKz8Nt08-2rpFXCnc3f7i_dkrAv3xB6-Am98m9PjKlaQelB2TNFxvkbnol0bBB7lyhL3xIfqQFnQ10E47O22HUtC1CoBndKYtvPa7xs6umRM5M56stugQA1X3eiy4HFtl6i2aFgzcPfN22iNFFV6NOIbCmaVGeZl8v6K5v2uqxgsI19Xi2ceLpQVnm9MuqyrHC7BE5vBaVPCbrRVn4J4QaGwMsk5yZ0ArmEiMs846N_VjmcZ7wEXk7_P_6rOPz0LAPQmXpv5Q1Ih9QQ5c_RCru9kZZneh-ZWsmDaBbyrEwTiQOtssQMYGX9zLJmFd2RN6gfjUajKbKbNb3PYC8SL2lU8VCJZA5b0Q2Bwjo3pLU-jfun_7_8Utya7qc7-v92WLvGbkdQfDV1cJtkvWmWvnnEDw15kWLWEqOr3uJ_AI78i7h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEKAhKCACBTYAwgJ1Uo2u7bXB1S5TaOE0qgKqdSb8T7cC9gldkD9JfwXfl1n_ChFCG6VfPJjtet578x-A_A61CORcas9kznlSR2kntLD1PNlKKVPiT5FB5yP5sH0RH449U834Fd3FobKKjudWCtqWxjaIx8ItFMSLxUNsrYs4ng82T3_5lEHKcq0du00GhY5dBc_MHwr38_GSOs3o9HkYLk_9doOA54RoaioysIFVhucEZfaOSUCg36c8p0TuAh0fwRO3PedFEpZn9uRGRouNC4AFUyQCRz3FmyGFBX1YHPvYH68uNrhQWcGhUU2qVQhouFAt52uS0KZoljnD2NY9wz4l2Wozd3kAdxv_VQWN4z1EDZcvgX34mtphy24ew3M8BH8jHM268AnLDuqW1OzuiSBpWy_yL-3XE7DrquCEDStW-2wJbJT2WbB2LLDlC13WJpb_HLhyvrAGJs3FesM3WwW58XX9MsFG7uqriXLGV5TRzsdZ44tiiJjn9arjOrNHsPJjRDlCfTyIndPgWnjI5OGGddDI7kNtTTcWR65KMj8LBR9eNf9_-S8QfdIMCoiYiV_EasPe0ShqxcJmLu-UazOklbOEx5o5PUgiKS2MrQYPKP_hDbfBWHKnTJ9eEv0TUh9VKvUpO0pCJwvAXElseJDJQlHrw_bHQskrV4pk99S8Oz_j1_BbRSP5ONsfvgc7ozQE2sK47ahV63W7gV6UpV-2bIsg883LSWXJUI0cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Integrated+Method+Using+a+Convolutional+Autoencoder%2C+Thresholding+Techniques%2C+and+a+Residual+Network+for+Anomaly+Detection+on+Heritage+Roof+Surfaces&rft.jtitle=Buildings+%28Basel%29&rft.au=Zhang%2C+Yongcheng&rft.au=Kong%2C+Liulin&rft.au=Antwi-Afari%2C+Maxwell+djour&rft.au=Zhang%2C+Qingzhi&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2075-5309&rft.volume=14&rft.issue=9&rft.spage=2828&rft_id=info:doi/10.3390%2Fbuildings14092828&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon |