In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization

Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the pepti...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 47; pp. 25128 - 25134
Main Authors Guo, Ruo‐Chen, Zhang, Xue‐Hao, Fan, Peng‐Sheng, Song, Ben‐Li, Li, Zhi‐Xiang, Duan, Zhong‐Yu, Qiao, Zeng‐Ying, Wang, Hao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 15.11.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy. An in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization and anticancer efficacy. KYp self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation and leakage on the cell membrane. The peptide drugs internalization is 2‐fold enhanced compared to non‐responsive peptide nanoparticle.
AbstractList Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy. An in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization and anticancer efficacy. KYp self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation and leakage on the cell membrane. The peptide drugs internalization is 2‐fold enhanced compared to non‐responsive peptide nanoparticle.
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self-assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK] (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self-assembles in situ, which induces the aggregation of ALP and the protein-lipid phase separation on cell membrane. Consequently, KYp internalization is 2-fold enhanced compared to non-responsive peptide, and IC value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self-assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self-assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self-assembles in situ, which induces the aggregation of ALP and the protein-lipid phase separation on cell membrane. Consequently, KYp internalization is 2-fold enhanced compared to non-responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self-assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self-assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self-assembles in situ, which induces the aggregation of ALP and the protein-lipid phase separation on cell membrane. Consequently, KYp internalization is 2-fold enhanced compared to non-responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self-assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK] 2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC 50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
Author Fan, Peng‐Sheng
Zhang, Xue‐Hao
Li, Zhi‐Xiang
Guo, Ruo‐Chen
Qiao, Zeng‐Ying
Song, Ben‐Li
Duan, Zhong‐Yu
Wang, Hao
Author_xml – sequence: 1
  givenname: Ruo‐Chen
  surname: Guo
  fullname: Guo, Ruo‐Chen
  organization: Hebei University of Technology
– sequence: 2
  givenname: Xue‐Hao
  surname: Zhang
  fullname: Zhang, Xue‐Hao
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 3
  givenname: Peng‐Sheng
  surname: Fan
  fullname: Fan, Peng‐Sheng
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 4
  givenname: Ben‐Li
  surname: Song
  fullname: Song, Ben‐Li
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 5
  givenname: Zhi‐Xiang
  surname: Li
  fullname: Li, Zhi‐Xiang
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 6
  givenname: Zhong‐Yu
  surname: Duan
  fullname: Duan, Zhong‐Yu
  organization: Hebei University of Technology
– sequence: 7
  givenname: Zeng‐Ying
  orcidid: 0000-0002-9932-7702
  surname: Qiao
  fullname: Qiao, Zeng‐Ying
  email: qiaozy@nanoctr.cn
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 8
  givenname: Hao
  orcidid: 0000-0002-1961-0787
  surname: Wang
  fullname: Wang, Hao
  email: wanghao@nanoctr.cn
  organization: National Center for Nanoscience and Technology (NCNST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34549872$$D View this record in MEDLINE/PubMed
BookMark eNqFkctO3DAUhq2KqsC02y6RpW66ydTX2FmOhlskWpBKu42c5BiMcpnaCdWw4hF4Rp4EDzOAhIRYHevo-8_5ff5dtNX1HSD0lZIpJYT9MJ2DKSOMUqp59gHtUMlowpXiW_EtOE-UlnQb7YZwFXmtSfoJbXMhRaYV20GXeYf_uuse_4bG3t_ezUKAtmyWOO_qsYIaz6Fp8M_Y86YDfHZpAkR2YbwZXN9h23uctwvfX0f2DBaDqwHv-_EiDhjAd6ZxN4_kZ_TRmibAl02doD-HB-fz4-Tk9Cifz06SiiueJVbIklhWgVVaiFQYW6aCgJSK8oqATevMlKxKuRVMlIynss5Kprg2NS2JIXyCvq_nRk__RghD0bpQxU9E-_0YCiaV5EpryiL67RV61Y8ryysqi9s5EVmk9jbUWLZQFwvvWuOXxdMNIzBdA5XvQ_BgnxFKilVIxSqk4jmkKBCvBJUbHo80eOOat2XZWvbfNbB8Z0kx-5UfvGgfACVLpqs
CitedBy_id crossref_primary_10_1021_jacsau_4c00392
crossref_primary_10_1016_j_cej_2023_143365
crossref_primary_10_1039_D3CC05811E
crossref_primary_10_1016_j_jhazmat_2022_129900
crossref_primary_10_1002_anie_202114267
crossref_primary_10_1002_anie_202419538
crossref_primary_10_3390_pharmaceutics16111468
crossref_primary_10_1021_acs_nanolett_4c01587
crossref_primary_10_1002_advs_202404563
crossref_primary_10_1016_j_intimp_2024_113212
crossref_primary_10_1039_D3MH00592E
crossref_primary_10_1002_adma_202417089
crossref_primary_10_1021_acs_biomac_4c00795
crossref_primary_10_1021_acsnano_3c01452
crossref_primary_10_1002_INMD_20220005
crossref_primary_10_1016_j_jconrel_2023_09_009
crossref_primary_10_1039_D2SC00371F
crossref_primary_10_1016_j_jcis_2023_03_072
crossref_primary_10_1002_adma_202305099
crossref_primary_10_1021_jacs_3c06898
crossref_primary_10_1021_acs_nanolett_3c04371
crossref_primary_10_1002_adhm_202203283
crossref_primary_10_1016_j_jconrel_2025_113637
crossref_primary_10_2174_1389557522666220819103907
crossref_primary_10_1002_ange_202114267
crossref_primary_10_1002_anie_202314368
crossref_primary_10_1002_anie_202422874
crossref_primary_10_1186_s13045_023_01522_5
crossref_primary_10_1002_adma_202302916
crossref_primary_10_1016_j_jconrel_2024_06_033
crossref_primary_10_1016_j_colsurfb_2024_113838
crossref_primary_10_1002_adma_202413571
crossref_primary_10_1002_cnma_202100532
crossref_primary_10_1039_D2TB00348A
crossref_primary_10_1039_D1CC06049J
crossref_primary_10_1002_ange_202422874
crossref_primary_10_1016_j_ccr_2023_215600
crossref_primary_10_1021_jacs_2c11823
crossref_primary_10_1002_cjoc_202200459
crossref_primary_10_1021_acsnano_2c12072
crossref_primary_10_1016_j_ccr_2024_216251
crossref_primary_10_1016_j_ijbiomac_2023_127718
crossref_primary_10_1021_acs_analchem_3c02860
crossref_primary_10_1002_ange_202314368
crossref_primary_10_1360_TB_2023_0802
crossref_primary_10_1073_pnas_2312603120
crossref_primary_10_1002_adhm_202304626
crossref_primary_10_1016_j_bbcan_2024_189242
crossref_primary_10_1021_acs_analchem_2c04872
crossref_primary_10_3390_cancers14235971
crossref_primary_10_1038_s41578_023_00589_3
crossref_primary_10_1021_jacs_2c01025
crossref_primary_10_1016_j_jconrel_2022_03_011
crossref_primary_10_1016_j_bioactmat_2023_09_006
crossref_primary_10_3390_molecules27020419
crossref_primary_10_1016_j_ejmech_2024_116519
crossref_primary_10_1002_advs_202402652
crossref_primary_10_1002_ange_202419538
crossref_primary_10_1002_psc_3466
crossref_primary_10_1002_syst_202200041
crossref_primary_10_3389_fchem_2022_870769
crossref_primary_10_1016_j_ccr_2023_215370
crossref_primary_10_1016_j_cclet_2024_109765
crossref_primary_10_1039_D4NH00371C
crossref_primary_10_1002_cbic_202400452
crossref_primary_10_1016_j_biopha_2024_117448
crossref_primary_10_3390_polym14173580
crossref_primary_10_1016_j_addr_2024_115327
crossref_primary_10_1039_D3TA05013K
crossref_primary_10_1021_acscentsci_4c01249
Cites_doi 10.1007/s12291-013-0408-y
10.1002/ange.202006290
10.1038/s41573-020-0090-8
10.1038/s41557-021-00661-x
10.1146/annurev-biophys-052118-115534
10.1038/s41467-017-01328-3
10.1016/j.cell.2016.05.026
10.1021/acs.biomac.6b01922
10.1016/j.cell.2016.06.010
10.1021/acs.nanolett.8b03174
10.1021/jacs.8b13512
10.1002/ange.202006385
10.1002/ange.201900135
10.1038/s41551-021-00698-w
10.1038/s41578-020-00269-6
10.1021/jacs.8b04641
10.1021/jacs.9b12232
10.1002/anie.201814552
10.1021/acs.chemrev.0c00963
10.1021/acs.nanolett.6b04955
10.1038/nprot.2012.059
10.1016/j.cell.2015.03.048
10.1021/jacs.7b08710
10.1002/ange.202102601
10.1002/anie.201900135
10.1002/anie.202014278
10.1002/ange.202008708
10.1039/D1NR01174J
10.1021/jacs.8b07727
10.1016/j.coph.2019.01.003
10.1021/acs.chemrev.0c00306
10.1002/ange.201814552
10.1021/ac4038653
10.1038/12469
10.1002/anie.202102601
10.1042/bj20031253
10.1021/jacs.1c06435
10.1002/ange.202014278
10.1021/jacs.1c00945
10.1016/j.molcel.2020.08.007
10.1021/acs.chemrev.0c00779
10.1002/anie.202008708
10.1002/advs.202003599
10.1002/adhm.202001211
10.1002/anie.202006385
10.1002/adfm.201804492
10.1002/anie.202006290
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202111839
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 25134
ExternalDocumentID 34549872
10_1002_anie_202111839
ANIE202111839
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31870998 and 51573032
– fundername: National Natural Science Foundation of China
  grantid: 31870998 and 51573032
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3739-f45b0f2cef784464afb640e55713c0ef6d9ab2c63f424b2365d9b2738ad1b0a03
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:42:08 EDT 2025
Fri Jul 25 12:08:10 EDT 2025
Thu Apr 03 07:08:00 EDT 2025
Thu Apr 24 22:52:04 EDT 2025
Tue Jul 01 01:18:09 EDT 2025
Wed Jan 22 16:27:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords self-assembly
peptide
phase separation
cancer
drug delivery
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-f45b0f2cef784464afb640e55713c0ef6d9ab2c63f424b2365d9b2738ad1b0a03
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9932-7702
0000-0002-1961-0787
PMID 34549872
PQID 2594463049
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2575378812
proquest_journals_2594463049
pubmed_primary_34549872
crossref_primary_10_1002_anie_202111839
crossref_citationtrail_10_1002_anie_202111839
wiley_primary_10_1002_anie_202111839_ANIE202111839
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 15, 2021
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: November 15, 2021
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2018; 28
2021; 6
2015; 161
2017; 8
2021; 20
2018; 140
2020; 142
2020; 120
2020; 80
2020 2020; 59 132
2016; 166
2016; 165
2014; 29
2021; 143
2021; 121
1999; 5
2019 2019; 58 131
2017; 139
2014; 86
2021; 13
2018; 18
2021; 10
2004; 377
2021
2017; 17
2019; 48
2019; 47
2019 2019; 141 141
2021 2021; 60 133
2017; 18
2012; 7
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_34_3
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_36_2
e_1_2_6_43_1
e_1_2_6_20_2
e_1_2_6_41_1
e_1_2_6_7_3
e_1_2_6_7_2
e_1_2_6_9_3
e_1_2_6_9_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_22_3
e_1_2_6_3_1
e_1_2_6_22_2
e_1_2_6_20_3
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_47_1
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_31_3
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_40_1
e_1_2_6_8_2
e_1_2_6_8_3
e_1_2_6_4_2
e_1_2_6_4_3
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_25_2
References_xml – volume: 29
  start-page: 269
  year: 2014
  end-page: 278
  publication-title: Indian J. Clin. Biochem.
– volume: 13
  start-page: 10891
  year: 2021
  end-page: 10897
  publication-title: Nanoscale
– volume: 18
  start-page: 1249
  year: 2017
  end-page: 1258
  publication-title: Biomacromolecules
– volume: 142
  start-page: 2490
  year: 2020
  end-page: 2496
  publication-title: J. Am. Chem. Soc.
– volume: 141 141
  start-page: 7235 4406
  year: 2019 2019
  end-page: 7239 4411
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 165
  start-page: 1067
  year: 2016
  end-page: 1079
  publication-title: Cell
– volume: 60 133
  start-page: 12796 12906
  year: 2021 2021
  end-page: 12801 12911
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 465
  year: 2019
  end-page: 494
  publication-title: Annu. Rev. Biophys.
– year: 2021
  publication-title: Chem. Rev.
– volume: 59 132
  start-page: 20582 20763
  year: 2020 2020
  end-page: 20588 20769
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 8121 8202
  year: 2021 2021
  end-page: 8129 8210
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 5127
  year: 2021
  end-page: 5140
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 9994
  year: 2020
  end-page: 10078
  publication-title: Chem. Rev.
– volume: 86
  start-page: 2193
  year: 2014
  end-page: 2199
  publication-title: Anal. Chem.
– volume: 59 132
  start-page: 19136 19298
  year: 2020 2020
  end-page: 19142 19304
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 9566
  year: 2018
  end-page: 9573
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1678
  year: 2017
  end-page: 1684
  publication-title: Nano Lett.
– volume: 13
  start-page: 530
  year: 2021
  end-page: 539
  publication-title: Nat. Chem.
– volume: 20
  start-page: 101
  year: 2021
  end-page: 124
  publication-title: Nat. Rev. Drug Discovery
– volume: 18
  start-page: 6577
  year: 2018
  end-page: 6584
  publication-title: Nano Lett.
– volume: 7
  start-page: 1042
  year: 2012
  end-page: 1051
  publication-title: Nat. Protoc.
– volume: 58 131
  start-page: 10423 10532
  year: 2019 2019
  end-page: 10432 10541
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– year: 2021
  publication-title: Nat. Biomed. Eng.
– volume: 121
  start-page: 1746
  year: 2021
  end-page: 1803
  publication-title: Chem. Rev.
– volume: 139
  start-page: 14792
  year: 2017
  end-page: 14799
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1219
  year: 2017
  end-page: 1228
  publication-title: Nat. Commun.
– volume: 166
  start-page: 651
  year: 2016
  end-page: 663
  publication-title: Cell
– volume: 47
  start-page: 8
  year: 2019
  end-page: 13
  publication-title: Curr. Opin. Pharmacol.
– volume: 80
  start-page: 9
  year: 2020
  end-page: 20
  publication-title: Mol. Cell
– volume: 377
  start-page: 159
  year: 2004
  end-page: 169
  publication-title: Biochem. J.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 58 131
  start-page: 4632 4680
  year: 2019 2019
  end-page: 4637 4685
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 161
  start-page: 581
  year: 2015
  end-page: 594
  publication-title: Cell
– volume: 5
  start-page: 1032
  year: 1999
  end-page: 1038
  publication-title: Nat. Med.
– volume: 6
  start-page: 351
  year: 2021
  end-page: 370
  publication-title: Nat. Rev. Mater.
– volume: 59 132
  start-page: 16445 16587
  year: 2020 2020
  end-page: 16450 16592
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 143
  start-page: 13854
  year: 2021
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_32_2
  doi: 10.1007/s12291-013-0408-y
– ident: e_1_2_6_23_1
– ident: e_1_2_6_4_3
  doi: 10.1002/ange.202006290
– ident: e_1_2_6_13_2
  doi: 10.1038/s41573-020-0090-8
– ident: e_1_2_6_17_2
  doi: 10.1038/s41557-021-00661-x
– ident: e_1_2_6_27_1
  doi: 10.1146/annurev-biophys-052118-115534
– ident: e_1_2_6_29_1
  doi: 10.1038/s41467-017-01328-3
– ident: e_1_2_6_25_2
  doi: 10.1016/j.cell.2016.05.026
– ident: e_1_2_6_44_1
  doi: 10.1021/acs.biomac.6b01922
– ident: e_1_2_6_26_2
  doi: 10.1016/j.cell.2016.06.010
– ident: e_1_2_6_21_2
  doi: 10.1021/acs.nanolett.8b03174
– ident: e_1_2_6_22_3
  doi: 10.1021/jacs.8b13512
– ident: e_1_2_6_8_3
  doi: 10.1002/ange.202006385
– ident: e_1_2_6_20_3
  doi: 10.1002/ange.201900135
– ident: e_1_2_6_12_2
  doi: 10.1038/s41551-021-00698-w
– ident: e_1_2_6_14_2
  doi: 10.1038/s41578-020-00269-6
– ident: e_1_2_6_42_1
  doi: 10.1021/jacs.8b04641
– ident: e_1_2_6_5_2
  doi: 10.1021/jacs.9b12232
– ident: e_1_2_6_31_2
  doi: 10.1002/anie.201814552
– ident: e_1_2_6_2_1
  doi: 10.1021/acs.chemrev.0c00963
– ident: e_1_2_6_3_1
– ident: e_1_2_6_15_1
  doi: 10.1021/acs.nanolett.6b04955
– ident: e_1_2_6_41_1
  doi: 10.1038/nprot.2012.059
– ident: e_1_2_6_28_1
  doi: 10.1016/j.cell.2015.03.048
– ident: e_1_2_6_43_1
  doi: 10.1021/jacs.7b08710
– ident: e_1_2_6_6_1
– ident: e_1_2_6_7_3
  doi: 10.1002/ange.202102601
– ident: e_1_2_6_20_2
  doi: 10.1002/anie.201900135
– ident: e_1_2_6_34_2
  doi: 10.1002/anie.202014278
– ident: e_1_2_6_9_3
  doi: 10.1002/ange.202008708
– ident: e_1_2_6_37_2
  doi: 10.1039/D1NR01174J
– ident: e_1_2_6_22_2
  doi: 10.1021/jacs.8b07727
– ident: e_1_2_6_18_2
  doi: 10.1016/j.coph.2019.01.003
– ident: e_1_2_6_36_2
  doi: 10.1021/acs.chemrev.0c00306
– ident: e_1_2_6_31_3
  doi: 10.1002/ange.201814552
– ident: e_1_2_6_39_1
  doi: 10.1021/ac4038653
– ident: e_1_2_6_11_1
– ident: e_1_2_6_38_1
  doi: 10.1038/12469
– ident: e_1_2_6_7_2
  doi: 10.1002/anie.202102601
– ident: e_1_2_6_45_1
  doi: 10.1042/bj20031253
– ident: e_1_2_6_47_1
  doi: 10.1021/jacs.1c06435
– ident: e_1_2_6_33_1
– ident: e_1_2_6_34_3
  doi: 10.1002/ange.202014278
– ident: e_1_2_6_1_1
  doi: 10.1021/jacs.1c00945
– ident: e_1_2_6_24_2
  doi: 10.1016/j.molcel.2020.08.007
– ident: e_1_2_6_46_1
  doi: 10.1021/acs.chemrev.0c00779
– ident: e_1_2_6_9_2
  doi: 10.1002/anie.202008708
– ident: e_1_2_6_19_1
– ident: e_1_2_6_30_1
– ident: e_1_2_6_16_1
– ident: e_1_2_6_40_1
  doi: 10.1002/advs.202003599
– ident: e_1_2_6_35_2
  doi: 10.1002/adhm.202001211
– ident: e_1_2_6_8_2
  doi: 10.1002/anie.202006385
– ident: e_1_2_6_10_1
  doi: 10.1002/adfm.201804492
– ident: e_1_2_6_4_2
  doi: 10.1002/anie.202006290
SSID ssj0028806
Score 2.6009152
Snippet Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25128
SubjectTerms Alkaline phosphatase
Alkaline Phosphatase - metabolism
Assembly
cancer
Cell Membrane - chemistry
Cell Membrane - metabolism
Cell membranes
Drug delivery
Humans
Internalization
Lipids
Membranes
peptide
Peptides
Peptides - chemistry
Peptides - isolation & purification
Peptides - metabolism
Phase separation
Protein Conformation
self-assembly
Title In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202111839
https://www.ncbi.nlm.nih.gov/pubmed/34549872
https://www.proquest.com/docview/2594463049
https://www.proquest.com/docview/2575378812
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA7ii754H-tFBMGnajdJj32UVVmFFfHCt9KkiSvWruwh6JM_wd_oL3GmaauriKBvbTOhuSYzk8x8Q8iW5BokiwFO87hxQAQAS2nFHROLwDeSJ2HuTdg-8VuX4vjau_4UxW_xIaoDN-SMfL9GBo9lf_cDNBQjsMG-AwMGhTxswuiwhVrRWYUfxWBx2vAizh3MQl-iNrpsd7T6qFT6pmqOaq656DmcJnHZaOtxcrczHMgd9fwFz_E_vZohU4VeSvfsQpolYzqbIxPNMh3cPOkcZfTq9rFLz3Vq3l5e8bb4XqZPFJN_KJ3Qpk5T2oZvIP00Pe2AeARaCy3ezSgox9SeYADtKfrSJJru94Y3tDiUTIuI0AVyeXhw0Ww5RZoGR_GANxwjPOkaprQJQjAuRWykL1zteWD_KlcbP2nEkimfG8GEZDBLSUNiRFCc1KUbu3yRjGfdTC8T6muWwFJpxHUeCNCFJCg3JvSNCgUevLAaccppilSBYY6pNNLIoi-zCMcvqsavRrYr-geL3vEj5Vo561HBxf0ITEPoEF5E1shmVQzjjpcqMJbdIdKAwYeY_NC4Jbtaql9xAdZ3GEAJy-f8lzZEeydHB9Xbyl8qrZJJfMZgybq3RsYHvaFeB61pIDdyzngH2_sNtw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoALj5bSpUBdqVJPgaztPPaIFtAuZVeoBdRbFDt2t2rIVnQXiZ74CfxGfgkzcRK0IFSpPcYZK35N5uGZbwA-KmFQsljktEBYD0UAspTRwrOpjEKrRBaX0YSDYdg7k0ffgjqakHJhHD5E43Ajzij_18Tg5JDefUANpRRsNPDQgiEpPwcvqax3aVV9aRCkOB5Pl2AkhEd16GvcRp_vzvaflUtPlM1Z3bUUPofLoOphu5iTnzvTidrRfx4hOv7XvFZgqVJN2Z47S6vwwhSvYKFbV4R7DaN-wc5_XI3ZV5Pbu5tbujC-UPk1o_of2mSsa_KcDbANBaBhJyOUkEjr0MXHBUP9mDknBtKeUDhNZtj-5fQ7q_ySeZUUugZnhwen3Z5XVWrwtIhEx7MyUL7l2tgoRvtSplaF0jdBgCaw9o0Ns06quA6FlVwqLsIg6yhKCkqztvJTX7yB-WJcmLfAQsMzPC2dtC0iieqQQv3GxqHVsSTfC2-BV-9ToisYc6qmkScOgJkntH5Js34t-NTQ_3IAHs9SbtbbnlSM_DtB6xAnRHeRLfjQvMZ1p3sVXMvxlGjQ5iNYfhzcujsuzaeERAM8jvANLzf9L2NI9ob9g-Zp4186vYeF3ungODnuDz-_g0Vqp9zJdrAJ85PLqdlCJWqitks2uQe11xHS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BJgEvbAPGyjZmJCSesqW246SPU7tqBVZVwNDeotixt4mQTluLBE98hH3GfZLdxUmgIIQEj3HOiv_c5f7Y9zuAl1pY1CwOJS0SLkAVgCJljQhcJmPltMiT6jbh0VgdHsvXJ9HJT1n8Hh-iDbiRZFT_axLwi9zt_QANpQxs9O_QgSElfxeWpQoT4uvBuxZAiiN3-vwiIQIqQ9_ANoZ8b7H_olr6zdZcNF0r3TNcgawZtb9y8ml3PtO75tsvgI7_M61VeFgbpmzfc9Ia3LHlI7jfb-rBPYazUck-nn-Zsve2cDffr-m4-LMuvjKq_mFszvq2KNgRtqH6s2xyhvoRaT22-LRkaB0zH8JA2gldpsktG1zOT1kdlSzqlNAncDw8-NA_DOo6DYERsegFTkY6dNxYFyfoXcrMaSVDG0XoAJvQOpX3Ms2NEk5yqblQUd7TlBKU5V0dZqFYh6VyWtoNYMryHHmll3VFLNEY0mjduEQ5k0iKvPAOBM02paYGMadaGkXq4Zd5SuuXtuvXgVct_YWH7_gj5Vaz62ktxlcp-oY4ITqJ7MCL9jWuO52q4FpO50SDHh-B8uPgnnpuaT8lJLrfSYxveLXnfxlDuj8eHbRPz_6l0w7cmwyG6dvR-M0mPKBmSpzsRluwNLuc2220oGb6eSUkt4cxEIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Self-Assembly+Induced+Cell+Membrane+Phase+Separation+for+Improved+Peptide+Drug+Internalization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Ruo-Chen&rft.au=Zhang%2C+Xue-Hao&rft.au=Fan%2C+Peng-Sheng&rft.au=Song%2C+Ben-Li&rft.date=2021-11-15&rft.eissn=1521-3773&rft.volume=60&rft.issue=47&rft.spage=25128&rft_id=info:doi/10.1002%2Fanie.202111839&rft_id=info%3Apmid%2F34549872&rft.externalDocID=34549872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon