In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the pepti...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 47; pp. 25128 - 25134 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
15.11.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
An in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization and anticancer efficacy. KYp self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation and leakage on the cell membrane. The peptide drugs internalization is 2‐fold enhanced compared to non‐responsive peptide nanoparticle. |
---|---|
AbstractList | Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
An in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization and anticancer efficacy. KYp self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation and leakage on the cell membrane. The peptide drugs internalization is 2‐fold enhanced compared to non‐responsive peptide nanoparticle. Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy. Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self-assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK] (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self-assembles in situ, which induces the aggregation of ALP and the protein-lipid phase separation on cell membrane. Consequently, KYp internalization is 2-fold enhanced compared to non-responsive peptide, and IC value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self-assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy. Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self-assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self-assembles in situ, which induces the aggregation of ALP and the protein-lipid phase separation on cell membrane. Consequently, KYp internalization is 2-fold enhanced compared to non-responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self-assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self-assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self-assembles in situ, which induces the aggregation of ALP and the protein-lipid phase separation on cell membrane. Consequently, KYp internalization is 2-fold enhanced compared to non-responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self-assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy. Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self‐assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK] 2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self‐assembles in situ, which induces the aggregation of ALP and the protein‐lipid phase separation on cell membrane. Consequently, KYp internalization is 2‐fold enhanced compared to non‐responsive peptide, and IC 50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self‐assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy. |
Author | Fan, Peng‐Sheng Zhang, Xue‐Hao Li, Zhi‐Xiang Guo, Ruo‐Chen Qiao, Zeng‐Ying Song, Ben‐Li Duan, Zhong‐Yu Wang, Hao |
Author_xml | – sequence: 1 givenname: Ruo‐Chen surname: Guo fullname: Guo, Ruo‐Chen organization: Hebei University of Technology – sequence: 2 givenname: Xue‐Hao surname: Zhang fullname: Zhang, Xue‐Hao organization: National Center for Nanoscience and Technology (NCNST) – sequence: 3 givenname: Peng‐Sheng surname: Fan fullname: Fan, Peng‐Sheng organization: National Center for Nanoscience and Technology (NCNST) – sequence: 4 givenname: Ben‐Li surname: Song fullname: Song, Ben‐Li organization: National Center for Nanoscience and Technology (NCNST) – sequence: 5 givenname: Zhi‐Xiang surname: Li fullname: Li, Zhi‐Xiang organization: National Center for Nanoscience and Technology (NCNST) – sequence: 6 givenname: Zhong‐Yu surname: Duan fullname: Duan, Zhong‐Yu organization: Hebei University of Technology – sequence: 7 givenname: Zeng‐Ying orcidid: 0000-0002-9932-7702 surname: Qiao fullname: Qiao, Zeng‐Ying email: qiaozy@nanoctr.cn organization: National Center for Nanoscience and Technology (NCNST) – sequence: 8 givenname: Hao orcidid: 0000-0002-1961-0787 surname: Wang fullname: Wang, Hao email: wanghao@nanoctr.cn organization: National Center for Nanoscience and Technology (NCNST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34549872$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctO3DAUhq2KqsC02y6RpW66ydTX2FmOhlskWpBKu42c5BiMcpnaCdWw4hF4Rp4EDzOAhIRYHevo-8_5ff5dtNX1HSD0lZIpJYT9MJ2DKSOMUqp59gHtUMlowpXiW_EtOE-UlnQb7YZwFXmtSfoJbXMhRaYV20GXeYf_uuse_4bG3t_ezUKAtmyWOO_qsYIaz6Fp8M_Y86YDfHZpAkR2YbwZXN9h23uctwvfX0f2DBaDqwHv-_EiDhjAd6ZxN4_kZ_TRmibAl02doD-HB-fz4-Tk9Cifz06SiiueJVbIklhWgVVaiFQYW6aCgJSK8oqATevMlKxKuRVMlIynss5Kprg2NS2JIXyCvq_nRk__RghD0bpQxU9E-_0YCiaV5EpryiL67RV61Y8ryysqi9s5EVmk9jbUWLZQFwvvWuOXxdMNIzBdA5XvQ_BgnxFKilVIxSqk4jmkKBCvBJUbHo80eOOat2XZWvbfNbB8Z0kx-5UfvGgfACVLpqs |
CitedBy_id | crossref_primary_10_1021_jacsau_4c00392 crossref_primary_10_1016_j_cej_2023_143365 crossref_primary_10_1039_D3CC05811E crossref_primary_10_1016_j_jhazmat_2022_129900 crossref_primary_10_1002_anie_202114267 crossref_primary_10_1002_anie_202419538 crossref_primary_10_3390_pharmaceutics16111468 crossref_primary_10_1021_acs_nanolett_4c01587 crossref_primary_10_1002_advs_202404563 crossref_primary_10_1016_j_intimp_2024_113212 crossref_primary_10_1039_D3MH00592E crossref_primary_10_1002_adma_202417089 crossref_primary_10_1021_acs_biomac_4c00795 crossref_primary_10_1021_acsnano_3c01452 crossref_primary_10_1002_INMD_20220005 crossref_primary_10_1016_j_jconrel_2023_09_009 crossref_primary_10_1039_D2SC00371F crossref_primary_10_1016_j_jcis_2023_03_072 crossref_primary_10_1002_adma_202305099 crossref_primary_10_1021_jacs_3c06898 crossref_primary_10_1021_acs_nanolett_3c04371 crossref_primary_10_1002_adhm_202203283 crossref_primary_10_1016_j_jconrel_2025_113637 crossref_primary_10_2174_1389557522666220819103907 crossref_primary_10_1002_ange_202114267 crossref_primary_10_1002_anie_202314368 crossref_primary_10_1002_anie_202422874 crossref_primary_10_1186_s13045_023_01522_5 crossref_primary_10_1002_adma_202302916 crossref_primary_10_1016_j_jconrel_2024_06_033 crossref_primary_10_1016_j_colsurfb_2024_113838 crossref_primary_10_1002_adma_202413571 crossref_primary_10_1002_cnma_202100532 crossref_primary_10_1039_D2TB00348A crossref_primary_10_1039_D1CC06049J crossref_primary_10_1002_ange_202422874 crossref_primary_10_1016_j_ccr_2023_215600 crossref_primary_10_1021_jacs_2c11823 crossref_primary_10_1002_cjoc_202200459 crossref_primary_10_1021_acsnano_2c12072 crossref_primary_10_1016_j_ccr_2024_216251 crossref_primary_10_1016_j_ijbiomac_2023_127718 crossref_primary_10_1021_acs_analchem_3c02860 crossref_primary_10_1002_ange_202314368 crossref_primary_10_1360_TB_2023_0802 crossref_primary_10_1073_pnas_2312603120 crossref_primary_10_1002_adhm_202304626 crossref_primary_10_1016_j_bbcan_2024_189242 crossref_primary_10_1021_acs_analchem_2c04872 crossref_primary_10_3390_cancers14235971 crossref_primary_10_1038_s41578_023_00589_3 crossref_primary_10_1021_jacs_2c01025 crossref_primary_10_1016_j_jconrel_2022_03_011 crossref_primary_10_1016_j_bioactmat_2023_09_006 crossref_primary_10_3390_molecules27020419 crossref_primary_10_1016_j_ejmech_2024_116519 crossref_primary_10_1002_advs_202402652 crossref_primary_10_1002_ange_202419538 crossref_primary_10_1002_psc_3466 crossref_primary_10_1002_syst_202200041 crossref_primary_10_3389_fchem_2022_870769 crossref_primary_10_1016_j_ccr_2023_215370 crossref_primary_10_1016_j_cclet_2024_109765 crossref_primary_10_1039_D4NH00371C crossref_primary_10_1002_cbic_202400452 crossref_primary_10_1016_j_biopha_2024_117448 crossref_primary_10_3390_polym14173580 crossref_primary_10_1016_j_addr_2024_115327 crossref_primary_10_1039_D3TA05013K crossref_primary_10_1021_acscentsci_4c01249 |
Cites_doi | 10.1007/s12291-013-0408-y 10.1002/ange.202006290 10.1038/s41573-020-0090-8 10.1038/s41557-021-00661-x 10.1146/annurev-biophys-052118-115534 10.1038/s41467-017-01328-3 10.1016/j.cell.2016.05.026 10.1021/acs.biomac.6b01922 10.1016/j.cell.2016.06.010 10.1021/acs.nanolett.8b03174 10.1021/jacs.8b13512 10.1002/ange.202006385 10.1002/ange.201900135 10.1038/s41551-021-00698-w 10.1038/s41578-020-00269-6 10.1021/jacs.8b04641 10.1021/jacs.9b12232 10.1002/anie.201814552 10.1021/acs.chemrev.0c00963 10.1021/acs.nanolett.6b04955 10.1038/nprot.2012.059 10.1016/j.cell.2015.03.048 10.1021/jacs.7b08710 10.1002/ange.202102601 10.1002/anie.201900135 10.1002/anie.202014278 10.1002/ange.202008708 10.1039/D1NR01174J 10.1021/jacs.8b07727 10.1016/j.coph.2019.01.003 10.1021/acs.chemrev.0c00306 10.1002/ange.201814552 10.1021/ac4038653 10.1038/12469 10.1002/anie.202102601 10.1042/bj20031253 10.1021/jacs.1c06435 10.1002/ange.202014278 10.1021/jacs.1c00945 10.1016/j.molcel.2020.08.007 10.1021/acs.chemrev.0c00779 10.1002/anie.202008708 10.1002/advs.202003599 10.1002/adhm.202001211 10.1002/anie.202006385 10.1002/adfm.201804492 10.1002/anie.202006290 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202111839 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 25134 |
ExternalDocumentID | 34549872 10_1002_anie_202111839 ANIE202111839 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31870998 and 51573032 – fundername: National Natural Science Foundation of China grantid: 31870998 and 51573032 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3739-f45b0f2cef784464afb640e55713c0ef6d9ab2c63f424b2365d9b2738ad1b0a03 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:42:08 EDT 2025 Fri Jul 25 12:08:10 EDT 2025 Thu Apr 03 07:08:00 EDT 2025 Thu Apr 24 22:52:04 EDT 2025 Tue Jul 01 01:18:09 EDT 2025 Wed Jan 22 16:27:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | self-assembly peptide phase separation cancer drug delivery |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-f45b0f2cef784464afb640e55713c0ef6d9ab2c63f424b2365d9b2738ad1b0a03 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9932-7702 0000-0002-1961-0787 |
PMID | 34549872 |
PQID | 2594463049 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2575378812 proquest_journals_2594463049 pubmed_primary_34549872 crossref_primary_10_1002_anie_202111839 crossref_citationtrail_10_1002_anie_202111839 wiley_primary_10_1002_anie_202111839_ANIE202111839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 15, 2021 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: November 15, 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2018; 28 2021; 6 2015; 161 2017; 8 2021; 20 2018; 140 2020; 142 2020; 120 2020; 80 2020 2020; 59 132 2016; 166 2016; 165 2014; 29 2021; 143 2021; 121 1999; 5 2019 2019; 58 131 2017; 139 2014; 86 2021; 13 2018; 18 2021; 10 2004; 377 2021 2017; 17 2019; 48 2019; 47 2019 2019; 141 141 2021 2021; 60 133 2017; 18 2012; 7 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_34_3 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_36_2 e_1_2_6_43_1 e_1_2_6_20_2 e_1_2_6_41_1 e_1_2_6_7_3 e_1_2_6_7_2 e_1_2_6_9_3 e_1_2_6_9_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_22_3 e_1_2_6_3_1 e_1_2_6_22_2 e_1_2_6_20_3 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_47_1 e_1_2_6_31_2 e_1_2_6_10_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_31_3 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_16_1 e_1_2_6_42_1 e_1_2_6_40_1 e_1_2_6_8_2 e_1_2_6_8_3 e_1_2_6_4_2 e_1_2_6_4_3 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_25_2 |
References_xml | – volume: 29 start-page: 269 year: 2014 end-page: 278 publication-title: Indian J. Clin. Biochem. – volume: 13 start-page: 10891 year: 2021 end-page: 10897 publication-title: Nanoscale – volume: 18 start-page: 1249 year: 2017 end-page: 1258 publication-title: Biomacromolecules – volume: 142 start-page: 2490 year: 2020 end-page: 2496 publication-title: J. Am. Chem. Soc. – volume: 141 141 start-page: 7235 4406 year: 2019 2019 end-page: 7239 4411 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 165 start-page: 1067 year: 2016 end-page: 1079 publication-title: Cell – volume: 60 133 start-page: 12796 12906 year: 2021 2021 end-page: 12801 12911 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 465 year: 2019 end-page: 494 publication-title: Annu. Rev. Biophys. – year: 2021 publication-title: Chem. Rev. – volume: 59 132 start-page: 20582 20763 year: 2020 2020 end-page: 20588 20769 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 8121 8202 year: 2021 2021 end-page: 8129 8210 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 5127 year: 2021 end-page: 5140 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 9994 year: 2020 end-page: 10078 publication-title: Chem. Rev. – volume: 86 start-page: 2193 year: 2014 end-page: 2199 publication-title: Anal. Chem. – volume: 59 132 start-page: 19136 19298 year: 2020 2020 end-page: 19142 19304 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 9566 year: 2018 end-page: 9573 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1678 year: 2017 end-page: 1684 publication-title: Nano Lett. – volume: 13 start-page: 530 year: 2021 end-page: 539 publication-title: Nat. Chem. – volume: 20 start-page: 101 year: 2021 end-page: 124 publication-title: Nat. Rev. Drug Discovery – volume: 18 start-page: 6577 year: 2018 end-page: 6584 publication-title: Nano Lett. – volume: 7 start-page: 1042 year: 2012 end-page: 1051 publication-title: Nat. Protoc. – volume: 58 131 start-page: 10423 10532 year: 2019 2019 end-page: 10432 10541 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – year: 2021 publication-title: Nat. Biomed. Eng. – volume: 121 start-page: 1746 year: 2021 end-page: 1803 publication-title: Chem. Rev. – volume: 139 start-page: 14792 year: 2017 end-page: 14799 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1219 year: 2017 end-page: 1228 publication-title: Nat. Commun. – volume: 166 start-page: 651 year: 2016 end-page: 663 publication-title: Cell – volume: 47 start-page: 8 year: 2019 end-page: 13 publication-title: Curr. Opin. Pharmacol. – volume: 80 start-page: 9 year: 2020 end-page: 20 publication-title: Mol. Cell – volume: 377 start-page: 159 year: 2004 end-page: 169 publication-title: Biochem. J. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 58 131 start-page: 4632 4680 year: 2019 2019 end-page: 4637 4685 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 161 start-page: 581 year: 2015 end-page: 594 publication-title: Cell – volume: 5 start-page: 1032 year: 1999 end-page: 1038 publication-title: Nat. Med. – volume: 6 start-page: 351 year: 2021 end-page: 370 publication-title: Nat. Rev. Mater. – volume: 59 132 start-page: 16445 16587 year: 2020 2020 end-page: 16450 16592 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 143 start-page: 13854 year: 2021 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_32_2 doi: 10.1007/s12291-013-0408-y – ident: e_1_2_6_23_1 – ident: e_1_2_6_4_3 doi: 10.1002/ange.202006290 – ident: e_1_2_6_13_2 doi: 10.1038/s41573-020-0090-8 – ident: e_1_2_6_17_2 doi: 10.1038/s41557-021-00661-x – ident: e_1_2_6_27_1 doi: 10.1146/annurev-biophys-052118-115534 – ident: e_1_2_6_29_1 doi: 10.1038/s41467-017-01328-3 – ident: e_1_2_6_25_2 doi: 10.1016/j.cell.2016.05.026 – ident: e_1_2_6_44_1 doi: 10.1021/acs.biomac.6b01922 – ident: e_1_2_6_26_2 doi: 10.1016/j.cell.2016.06.010 – ident: e_1_2_6_21_2 doi: 10.1021/acs.nanolett.8b03174 – ident: e_1_2_6_22_3 doi: 10.1021/jacs.8b13512 – ident: e_1_2_6_8_3 doi: 10.1002/ange.202006385 – ident: e_1_2_6_20_3 doi: 10.1002/ange.201900135 – ident: e_1_2_6_12_2 doi: 10.1038/s41551-021-00698-w – ident: e_1_2_6_14_2 doi: 10.1038/s41578-020-00269-6 – ident: e_1_2_6_42_1 doi: 10.1021/jacs.8b04641 – ident: e_1_2_6_5_2 doi: 10.1021/jacs.9b12232 – ident: e_1_2_6_31_2 doi: 10.1002/anie.201814552 – ident: e_1_2_6_2_1 doi: 10.1021/acs.chemrev.0c00963 – ident: e_1_2_6_3_1 – ident: e_1_2_6_15_1 doi: 10.1021/acs.nanolett.6b04955 – ident: e_1_2_6_41_1 doi: 10.1038/nprot.2012.059 – ident: e_1_2_6_28_1 doi: 10.1016/j.cell.2015.03.048 – ident: e_1_2_6_43_1 doi: 10.1021/jacs.7b08710 – ident: e_1_2_6_6_1 – ident: e_1_2_6_7_3 doi: 10.1002/ange.202102601 – ident: e_1_2_6_20_2 doi: 10.1002/anie.201900135 – ident: e_1_2_6_34_2 doi: 10.1002/anie.202014278 – ident: e_1_2_6_9_3 doi: 10.1002/ange.202008708 – ident: e_1_2_6_37_2 doi: 10.1039/D1NR01174J – ident: e_1_2_6_22_2 doi: 10.1021/jacs.8b07727 – ident: e_1_2_6_18_2 doi: 10.1016/j.coph.2019.01.003 – ident: e_1_2_6_36_2 doi: 10.1021/acs.chemrev.0c00306 – ident: e_1_2_6_31_3 doi: 10.1002/ange.201814552 – ident: e_1_2_6_39_1 doi: 10.1021/ac4038653 – ident: e_1_2_6_11_1 – ident: e_1_2_6_38_1 doi: 10.1038/12469 – ident: e_1_2_6_7_2 doi: 10.1002/anie.202102601 – ident: e_1_2_6_45_1 doi: 10.1042/bj20031253 – ident: e_1_2_6_47_1 doi: 10.1021/jacs.1c06435 – ident: e_1_2_6_33_1 – ident: e_1_2_6_34_3 doi: 10.1002/ange.202014278 – ident: e_1_2_6_1_1 doi: 10.1021/jacs.1c00945 – ident: e_1_2_6_24_2 doi: 10.1016/j.molcel.2020.08.007 – ident: e_1_2_6_46_1 doi: 10.1021/acs.chemrev.0c00779 – ident: e_1_2_6_9_2 doi: 10.1002/anie.202008708 – ident: e_1_2_6_19_1 – ident: e_1_2_6_30_1 – ident: e_1_2_6_16_1 – ident: e_1_2_6_40_1 doi: 10.1002/advs.202003599 – ident: e_1_2_6_35_2 doi: 10.1002/adhm.202001211 – ident: e_1_2_6_8_2 doi: 10.1002/anie.202006385 – ident: e_1_2_6_10_1 doi: 10.1002/adfm.201804492 – ident: e_1_2_6_4_2 doi: 10.1002/anie.202006290 |
SSID | ssj0028806 |
Score | 2.6009152 |
Snippet | Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 25128 |
SubjectTerms | Alkaline phosphatase Alkaline Phosphatase - metabolism Assembly cancer Cell Membrane - chemistry Cell Membrane - metabolism Cell membranes Drug delivery Humans Internalization Lipids Membranes peptide Peptides Peptides - chemistry Peptides - isolation & purification Peptides - metabolism Phase separation Protein Conformation self-assembly |
Title | In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202111839 https://www.ncbi.nlm.nih.gov/pubmed/34549872 https://www.proquest.com/docview/2594463049 https://www.proquest.com/docview/2575378812 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA7ii754H-tFBMGnajdJj32UVVmFFfHCt9KkiSvWruwh6JM_wd_oL3GmaauriKBvbTOhuSYzk8x8Q8iW5BokiwFO87hxQAQAS2nFHROLwDeSJ2HuTdg-8VuX4vjau_4UxW_xIaoDN-SMfL9GBo9lf_cDNBQjsMG-AwMGhTxswuiwhVrRWYUfxWBx2vAizh3MQl-iNrpsd7T6qFT6pmqOaq656DmcJnHZaOtxcrczHMgd9fwFz_E_vZohU4VeSvfsQpolYzqbIxPNMh3cPOkcZfTq9rFLz3Vq3l5e8bb4XqZPFJN_KJ3Qpk5T2oZvIP00Pe2AeARaCy3ezSgox9SeYADtKfrSJJru94Y3tDiUTIuI0AVyeXhw0Ww5RZoGR_GANxwjPOkaprQJQjAuRWykL1zteWD_KlcbP2nEkimfG8GEZDBLSUNiRFCc1KUbu3yRjGfdTC8T6muWwFJpxHUeCNCFJCg3JvSNCgUevLAaccppilSBYY6pNNLIoi-zCMcvqsavRrYr-geL3vEj5Vo561HBxf0ITEPoEF5E1shmVQzjjpcqMJbdIdKAwYeY_NC4Jbtaql9xAdZ3GEAJy-f8lzZEeydHB9Xbyl8qrZJJfMZgybq3RsYHvaFeB61pIDdyzngH2_sNtw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoALj5bSpUBdqVJPgaztPPaIFtAuZVeoBdRbFDt2t2rIVnQXiZ74CfxGfgkzcRK0IFSpPcYZK35N5uGZbwA-KmFQsljktEBYD0UAspTRwrOpjEKrRBaX0YSDYdg7k0ffgjqakHJhHD5E43Ajzij_18Tg5JDefUANpRRsNPDQgiEpPwcvqax3aVV9aRCkOB5Pl2AkhEd16GvcRp_vzvaflUtPlM1Z3bUUPofLoOphu5iTnzvTidrRfx4hOv7XvFZgqVJN2Z47S6vwwhSvYKFbV4R7DaN-wc5_XI3ZV5Pbu5tbujC-UPk1o_of2mSsa_KcDbANBaBhJyOUkEjr0MXHBUP9mDknBtKeUDhNZtj-5fQ7q_ySeZUUugZnhwen3Z5XVWrwtIhEx7MyUL7l2tgoRvtSplaF0jdBgCaw9o0Ns06quA6FlVwqLsIg6yhKCkqztvJTX7yB-WJcmLfAQsMzPC2dtC0iieqQQv3GxqHVsSTfC2-BV-9ToisYc6qmkScOgJkntH5Js34t-NTQ_3IAHs9SbtbbnlSM_DtB6xAnRHeRLfjQvMZ1p3sVXMvxlGjQ5iNYfhzcujsuzaeERAM8jvANLzf9L2NI9ob9g-Zp4186vYeF3ungODnuDz-_g0Vqp9zJdrAJ85PLqdlCJWqitks2uQe11xHS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BJgEvbAPGyjZmJCSesqW246SPU7tqBVZVwNDeotixt4mQTluLBE98hH3GfZLdxUmgIIQEj3HOiv_c5f7Y9zuAl1pY1CwOJS0SLkAVgCJljQhcJmPltMiT6jbh0VgdHsvXJ9HJT1n8Hh-iDbiRZFT_axLwi9zt_QANpQxs9O_QgSElfxeWpQoT4uvBuxZAiiN3-vwiIQIqQ9_ANoZ8b7H_olr6zdZcNF0r3TNcgawZtb9y8ml3PtO75tsvgI7_M61VeFgbpmzfc9Ia3LHlI7jfb-rBPYazUck-nn-Zsve2cDffr-m4-LMuvjKq_mFszvq2KNgRtqH6s2xyhvoRaT22-LRkaB0zH8JA2gldpsktG1zOT1kdlSzqlNAncDw8-NA_DOo6DYERsegFTkY6dNxYFyfoXcrMaSVDG0XoAJvQOpX3Ms2NEk5yqblQUd7TlBKU5V0dZqFYh6VyWtoNYMryHHmll3VFLNEY0mjduEQ5k0iKvPAOBM02paYGMadaGkXq4Zd5SuuXtuvXgVct_YWH7_gj5Vaz62ktxlcp-oY4ITqJ7MCL9jWuO52q4FpO50SDHh-B8uPgnnpuaT8lJLrfSYxveLXnfxlDuj8eHbRPz_6l0w7cmwyG6dvR-M0mPKBmSpzsRluwNLuc2220oGb6eSUkt4cxEIo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Self-Assembly+Induced+Cell+Membrane+Phase+Separation+for+Improved+Peptide+Drug+Internalization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Ruo-Chen&rft.au=Zhang%2C+Xue-Hao&rft.au=Fan%2C+Peng-Sheng&rft.au=Song%2C+Ben-Li&rft.date=2021-11-15&rft.eissn=1521-3773&rft.volume=60&rft.issue=47&rft.spage=25128&rft_id=info:doi/10.1002%2Fanie.202111839&rft_id=info%3Apmid%2F34549872&rft.externalDocID=34549872 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |