Perovskite Films with Reduced Interfacial Strains via a Molecular‐Level Flexible Interlayer for Photovoltaic Application

Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA‐B...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 38; pp. e2001479 - n/a
Main Authors Zhang, Cong‐Cong, Yuan, Shuai, Lou, Yan‐Hui, Liu, Qing‐Wei, Li, Meng, Okada, Hiroyuki, Wang, Zhao‐Kui
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA‐Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well‐matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under‐coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA‐Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular‐level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application. A protonated amino silane coupling agent as an interlayer is exploited on rigid and flexible substrates, which not only sets up well‐matched growth underlay but also serves as a structural component of the lattice units, leading to less‐distorted perovskite films, resulting in an obvious advance in device performance, stability, and mechanical tolerance in the corresponding flexible device.
AbstractList Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA‐Br) interlayer between TiO 2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well‐matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under‐coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA‐Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular‐level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application.
Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA-Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well-matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under-coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA-Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular-level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application.Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA-Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well-matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under-coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA-Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular-level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application.
Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA‐Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well‐matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under‐coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA‐Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular‐level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application.
Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA‐Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well‐matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under‐coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA‐Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular‐level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application. A protonated amino silane coupling agent as an interlayer is exploited on rigid and flexible substrates, which not only sets up well‐matched growth underlay but also serves as a structural component of the lattice units, leading to less‐distorted perovskite films, resulting in an obvious advance in device performance, stability, and mechanical tolerance in the corresponding flexible device.
Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA-Br) interlayer between TiO and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well-matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under-coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA-Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular-level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application.
Author Liu, Qing‐Wei
Wang, Zhao‐Kui
Zhang, Cong‐Cong
Li, Meng
Okada, Hiroyuki
Yuan, Shuai
Lou, Yan‐Hui
Author_xml – sequence: 1
  givenname: Cong‐Cong
  surname: Zhang
  fullname: Zhang, Cong‐Cong
  organization: University of Toyama
– sequence: 2
  givenname: Shuai
  surname: Yuan
  fullname: Yuan, Shuai
  organization: Soochow University
– sequence: 3
  givenname: Yan‐Hui
  surname: Lou
  fullname: Lou, Yan‐Hui
  organization: Soochow University
– sequence: 4
  givenname: Qing‐Wei
  surname: Liu
  fullname: Liu, Qing‐Wei
  organization: Soochow University
– sequence: 5
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  organization: Soochow University
– sequence: 6
  givenname: Hiroyuki
  surname: Okada
  fullname: Okada, Hiroyuki
  organization: University of Toyama
– sequence: 7
  givenname: Zhao‐Kui
  orcidid: 0000-0003-1707-499X
  surname: Wang
  fullname: Wang, Zhao‐Kui
  email: zkwang@suda.edu.cn
  organization: Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32776388$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URKeFLUtkiQ2bDL4ltpejwkClqVpxWUeOc6K6OPFgO1OGFY_AM_IkzXRKK1VCrM7m-845-v8jdDCEARB6ScmcEsLemrY3c0YYIVRI_QTNaMloIYguD9CMaF4WuhLqEB2ldEUI0RWpnqFDzqSsuFIz9PMCYtikby4DXjrfJ3zt8iX-BO1oocWnQ4bYGeuMx59zNG5IeOMMNvgseLCjN_HPr98r2IDHSw8_XONhL3mzhYi7EPHFZchhE3w2zuLFeu2dNdmF4Tl62hmf4MXdPEZfl--_nHwsVucfTk8Wq8JyyXUBuqNNyTvNK96IhhredlKBFQ3ITnIBympgkivGpG6pAV0KboFK0Za2axp-jN7s965j-D5CynXvkgXvzQBhTDUTnKlSKSUm9PUj9CqMcZi-mygheCkJ31Gv7qix6aGt19H1Jm7rv6lOwHwP2BhSitDdI5TUu9rqXW31fW2TIB4J1uXbkHaZ-39req9dOw_b_xypF-_OFg_uDU6arp4
CitedBy_id crossref_primary_10_1002_aenm_202104030
crossref_primary_10_1016_j_mtener_2020_100601
crossref_primary_10_1002_aenm_202002004
crossref_primary_10_1002_adma_202406872
crossref_primary_10_1021_acsnano_4c06396
crossref_primary_10_1002_adfm_202419067
crossref_primary_10_3389_fmats_2021_634353
crossref_primary_10_1002_solr_202000672
crossref_primary_10_1063_5_0100567
crossref_primary_10_1002_ange_202405878
crossref_primary_10_1021_acsenergylett_1c00999
crossref_primary_10_1021_acs_jpcc_3c00791
crossref_primary_10_1039_D1TC02657G
crossref_primary_10_1016_j_cej_2021_133209
crossref_primary_10_1016_j_surfin_2024_104176
crossref_primary_10_1016_j_mtchem_2021_100721
crossref_primary_10_1002_aenm_202101291
crossref_primary_10_1021_acs_jpcc_2c01399
crossref_primary_10_1002_adfm_202201193
crossref_primary_10_1039_D2CS00278G
crossref_primary_10_1021_acsenergylett_1c02768
crossref_primary_10_1002_smll_202400356
crossref_primary_10_1016_j_solener_2021_11_075
crossref_primary_10_1021_acs_cgd_0c01631
crossref_primary_10_1002_adma_202302839
crossref_primary_10_1039_D2MH01287A
crossref_primary_10_1002_adma_202100625
crossref_primary_10_1002_anie_202318133
crossref_primary_10_1016_j_microc_2024_110792
crossref_primary_10_1002_smll_202307645
crossref_primary_10_1016_j_cej_2021_133832
crossref_primary_10_1039_D2EE02218D
crossref_primary_10_1002_ange_202212268
crossref_primary_10_1039_D3NR05264H
crossref_primary_10_1016_j_cej_2021_132869
crossref_primary_10_1007_s10854_023_11822_8
crossref_primary_10_1021_acssuschemeng_2c05801
crossref_primary_10_1002_aenm_202201274
crossref_primary_10_1063_5_0069697
crossref_primary_10_1038_s41377_025_01768_3
crossref_primary_10_1021_acsami_1c22877
crossref_primary_10_1021_acsami_4c13156
crossref_primary_10_1002_smll_202302585
crossref_primary_10_1039_D2EE02227C
crossref_primary_10_1088_2516_1083_adbaab
crossref_primary_10_1039_D3TA00750B
crossref_primary_10_3390_mi15080972
crossref_primary_10_1002_adfm_202300089
crossref_primary_10_1002_smll_202201716
crossref_primary_10_1002_solr_202300438
crossref_primary_10_1021_acsaem_4c00029
crossref_primary_10_1063_5_0197899
crossref_primary_10_1002_smll_202410601
crossref_primary_10_1002_adfm_202415547
crossref_primary_10_1016_j_cej_2024_152210
crossref_primary_10_1002_smll_202107556
crossref_primary_10_1039_D3TA02692B
crossref_primary_10_1002_ange_202112673
crossref_primary_10_1002_lpor_202200641
crossref_primary_10_1021_acsami_4c13287
crossref_primary_10_1002_adfm_202304848
crossref_primary_10_1002_advs_202304733
crossref_primary_10_1002_adfm_202206412
crossref_primary_10_1016_j_cej_2023_148464
crossref_primary_10_1021_acsami_4c02559
crossref_primary_10_1007_s12598_024_02956_7
crossref_primary_10_1002_adom_202201672
crossref_primary_10_1002_smll_202204733
crossref_primary_10_1016_j_ccr_2023_215502
crossref_primary_10_1038_s41578_025_00781_7
crossref_primary_10_1002_solr_202300766
crossref_primary_10_1039_D2MH00970F
crossref_primary_10_1002_adfm_202213661
crossref_primary_10_1002_adma_202205338
crossref_primary_10_1021_acsami_5c01522
crossref_primary_10_1002_smll_202302443
crossref_primary_10_1016_j_apsusc_2022_152943
crossref_primary_10_1007_s40820_023_01130_5
crossref_primary_10_1002_solr_202400245
crossref_primary_10_1021_acsnano_2c11091
crossref_primary_10_1002_anie_202112673
crossref_primary_10_1002_aenm_202103674
crossref_primary_10_1002_solr_202200497
crossref_primary_10_1021_acsaem_5c00233
crossref_primary_10_1039_D2NR06290A
crossref_primary_10_1016_j_cej_2022_135671
crossref_primary_10_1002_adma_202200320
crossref_primary_10_1002_solr_202200097
crossref_primary_10_34133_energymatadv_0002
crossref_primary_10_1002_adma_202210878
crossref_primary_10_1016_j_cej_2024_153121
crossref_primary_10_1002_anie_202405878
crossref_primary_10_1016_j_joule_2022_06_031
crossref_primary_10_1002_adma_202311970
crossref_primary_10_1002_aenm_202102730
crossref_primary_10_1002_adom_202200566
crossref_primary_10_3390_en16135015
crossref_primary_10_1002_adma_202211324
crossref_primary_10_1039_D2TA07593H
crossref_primary_10_1039_D3TC04312F
crossref_primary_10_1016_j_cej_2023_143790
crossref_primary_10_1002_admi_202002078
crossref_primary_10_1002_adma_202408036
crossref_primary_10_1002_eem2_12680
crossref_primary_10_1002_aesr_202200123
crossref_primary_10_1016_j_jmmm_2022_170300
crossref_primary_10_1038_s41563_021_01097_x
crossref_primary_10_1002_adma_202306724
crossref_primary_10_1038_s41467_023_36938_7
crossref_primary_10_1002_inf2_12559
crossref_primary_10_1002_smll_202205604
crossref_primary_10_1002_aenm_202100690
crossref_primary_10_1002_adma_202312054
crossref_primary_10_1002_aenm_202101538
crossref_primary_10_1002_anie_202212268
crossref_primary_10_1063_5_0038073
crossref_primary_10_1002_ange_202318133
crossref_primary_10_1016_j_cej_2021_134235
crossref_primary_10_1002_admi_202200992
crossref_primary_10_1002_adfm_202410621
crossref_primary_10_1039_D3TC01380D
crossref_primary_10_1002_advs_202400275
crossref_primary_10_1039_D1TC03775G
crossref_primary_10_1039_D0TA12612H
crossref_primary_10_1021_acsnano_4c06587
crossref_primary_10_1002_adma_202106380
crossref_primary_10_1002_ente_202301316
crossref_primary_10_1002_adma_202312041
crossref_primary_10_1002_adma_202205301
crossref_primary_10_1002_adma_202311473
crossref_primary_10_3390_nano12183125
crossref_primary_10_1002_aenm_202202298
crossref_primary_10_1016_j_joule_2022_12_006
crossref_primary_10_1002_adma_202417150
crossref_primary_10_1002_admi_202202266
crossref_primary_10_1016_j_ceramint_2024_05_187
crossref_primary_10_1002_smll_202007543
Cites_doi 10.1039/C5EE03874J
10.1002/adfm.201703061
10.1039/C6TA08783C
10.1002/adma.201902222
10.1039/C6TA08970D
10.1038/s41467-019-08507-4
10.1002/ange.201405176
10.1002/adma.201706126
10.1126/science.aap8671
10.1038/ncomms6784
10.1039/C6EE01969B
10.1038/s41467-017-00588-3
10.1002/adma.201401685
10.1038/s41586-019-1868-x
10.1021/la063284v
10.1126/science.aay9698
10.1021/acsami.7b10773
10.1002/adfm.201902346
10.1039/C7TA08204E
10.1126/science.aaa0472
10.1002/aenm.201501803
10.1002/adma.201703737
10.1021/ja5125594
10.1002/adma.201901519
10.1021/acsenergylett.6b00457
10.1126/sciadv.aay5394
10.1002/adma.201306271
10.1039/C8EE00162F
10.1063/1.4864638
10.1002/adfm.201705875
10.1021/acs.accounts.5b00440
10.1126/science.aaa5760
10.1038/s41467-020-15338-1
10.1016/j.nanoen.2016.11.028
10.1002/adma.201604545
10.1038/nenergy.2016.177
10.1021/la902888y
10.1038/nphoton.2013.374
10.1039/C8EE02751J
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202001479
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32776388
10_1002_adma_202001479
ADMA202001479
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20170059
– fundername: State Key Laboratory of Integrated Optoelectronics
  funderid: IOSKL2018KF07
– fundername: China Postdoctoral Science Foundation
  funderid: 2015M580460
– fundername: Natural Science Foundation of China
  funderid: 61674109; 91733301
– fundername: National Key R&D Program of China
  funderid: 2016YFA0202402
– fundername: China Postdoctoral Science Foundation
  grantid: 2015M580460
– fundername: State Key Laboratory of Integrated Optoelectronics
  grantid: IOSKL2018KF07
– fundername: Natural Science Foundation of China
  grantid: 91733301
– fundername: Natural Science Foundation of China
  grantid: 61674109
– fundername: National Key R&D Program of China
  grantid: 2016YFA0202402
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20170059
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3739-e9f1b53f9363b4b1a3df78ec4be7f734e8c9e27382279d1ae9543ce174d5cfbb3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 12:44:38 EDT 2025
Fri Jul 25 08:04:10 EDT 2025
Wed Feb 19 02:29:00 EST 2025
Tue Jul 01 02:32:51 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Wed Jan 22 16:32:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords strain
lattice distortion
interfacial engineering
silane coupling agents
perovskite solar cells
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-e9f1b53f9363b4b1a3df78ec4be7f734e8c9e27382279d1ae9543ce174d5cfbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1707-499X
PMID 32776388
PQID 2444357034
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2432858884
proquest_journals_2444357034
pubmed_primary_32776388
crossref_primary_10_1002_adma_202001479
crossref_citationtrail_10_1002_adma_202001479
wiley_primary_10_1002_adma_202001479_ADMA202001479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2018; 28
2017; 8
2017; 2
2018; 360
2019; 31
2015; 347
2019; 10
2017; 27
2019; 12
2014; 26
2019; 366
2017; 29
2020; 11
2017; 9
2018; 6
2020; 6
2017; 31
2014; 105
2016; 6
2014; 5
2010; 26
2016; 1
2015; 137
2020
2020; 577
2019; 29
2018; 30
2014; 8
2018; 11
2016; 49
2007; 23
2014; 126
2016; 9
2014; 104
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
You J. (e_1_2_5_36_1) 2014; 105
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 12
  start-page: 596
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 26
  start-page: 6503
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1514
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 9
  start-page: 2892
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 3423
  year: 2010
  publication-title: Langmuir
– volume: 8
  start-page: 613
  year: 2017
  publication-title: Nat. Commun.
– volume: 366
  start-page: 1509
  year: 2019
  publication-title: Science
– volume: 126
  year: 2014
  publication-title: Angew. Chem.
– volume: 104
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 347
  start-page: 522
  year: 2015
  publication-title: Science
– volume: 6
  start-page: 1161
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 1989
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 577
  start-page: 209
  year: 2020
  publication-title: Nature
– volume: 137
  start-page: 1790
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 6645
  year: 2007
  publication-title: Langmuir
– volume: 31
  start-page: 462
  year: 2017
  publication-title: Nano Energy
– volume: 49
  start-page: 311
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 26
  start-page: 4309
  year: 2014
  publication-title: Adv. Mater.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 815
  year: 2019
  publication-title: Nat. Commun.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 1014
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 250
  year: 2014
  publication-title: Nat. Photonics
– volume: 11
  start-page: 1742
  year: 2018
  publication-title: Energy Environ. Sci.
– year: 2020
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 5
  start-page: 2572
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 105
  start-page: 945
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 360
  start-page: 67
  year: 2018
  publication-title: Science
– volume: 5
  start-page: 1658
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 5784
  year: 2014
  publication-title: Nat. Commun.
– ident: e_1_2_5_22_1
  doi: 10.1039/C5EE03874J
– ident: e_1_2_5_1_1
– ident: e_1_2_5_38_1
  doi: 10.1002/adfm.201703061
– ident: e_1_2_5_14_1
  doi: 10.1039/C6TA08783C
– ident: e_1_2_5_30_1
  doi: 10.1002/adma.201902222
– ident: e_1_2_5_2_1
  doi: 10.1039/C6TA08970D
– ident: e_1_2_5_25_1
  doi: 10.1038/s41467-019-08507-4
– ident: e_1_2_5_9_1
  doi: 10.1002/ange.201405176
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.201706126
– ident: e_1_2_5_23_1
  doi: 10.1126/science.aap8671
– ident: e_1_2_5_28_1
  doi: 10.1038/ncomms6784
– volume: 105
  start-page: 945
  year: 2014
  ident: e_1_2_5_36_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_5_26_1
  doi: 10.1039/C6EE01969B
– ident: e_1_2_5_33_1
  doi: 10.1038/s41467-017-00588-3
– ident: e_1_2_5_29_1
  doi: 10.1002/adma.201401685
– ident: e_1_2_5_10_1
  doi: 10.1038/s41586-019-1868-x
– ident: e_1_2_5_17_1
  doi: 10.1021/la063284v
– ident: e_1_2_5_8_1
  doi: 10.1126/science.aay9698
– ident: e_1_2_5_11_1
  doi: 10.1021/acsami.7b10773
– ident: e_1_2_5_24_1
  doi: 10.1002/adfm.201902346
– ident: e_1_2_5_3_1
  doi: 10.1039/C7TA08204E
– ident: e_1_2_5_27_1
  doi: 10.1126/science.aaa0472
– ident: e_1_2_5_39_1
  doi: 10.1002/aenm.201501803
– ident: e_1_2_5_7_1
  doi: 10.1002/adma.201703737
– ident: e_1_2_5_13_1
  doi: 10.1021/ja5125594
– ident: e_1_2_5_5_1
  doi: 10.1002/adma.201901519
– ident: e_1_2_5_40_1
  doi: 10.1021/acsenergylett.6b00457
– ident: e_1_2_5_15_1
  doi: 10.1126/sciadv.aay5394
– ident: e_1_2_5_6_1
  doi: 10.1002/adma.201306271
– ident: e_1_2_5_34_1
  doi: 10.1039/C8EE00162F
– ident: e_1_2_5_37_1
  doi: 10.1063/1.4864638
– ident: e_1_2_5_4_1
  doi: 10.1002/adfm.201705875
– ident: e_1_2_5_20_1
  doi: 10.1021/acs.accounts.5b00440
– ident: e_1_2_5_35_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_5_12_1
  doi: 10.1038/s41467-020-15338-1
– ident: e_1_2_5_16_1
  doi: 10.1016/j.nanoen.2016.11.028
– ident: e_1_2_5_19_1
  doi: 10.1002/adma.201604545
– ident: e_1_2_5_41_1
  doi: 10.1038/nenergy.2016.177
– ident: e_1_2_5_18_1
  doi: 10.1021/la902888y
– ident: e_1_2_5_31_1
  doi: 10.1038/nphoton.2013.374
– ident: e_1_2_5_32_1
  doi: 10.1039/C8EE02751J
SSID ssj0009606
Score 2.6481261
Snippet Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2001479
SubjectTerms Ammonium bromides
Buffer layers
Chemical compatibility
Coupling (molecular)
Coupling agents
Crystallization
Distortion
interfacial engineering
Interlayers
lattice distortion
Lattice vacancies
Materials science
Organic materials
perovskite solar cells
Perovskites
Photovoltaic cells
Semiconductor devices
silane coupling agents
Solar cells
strain
Titanium dioxide
Title Perovskite Films with Reduced Interfacial Strains via a Molecular‐Level Flexible Interlayer for Photovoltaic Application
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202001479
https://www.ncbi.nlm.nih.gov/pubmed/32776388
https://www.proquest.com/docview/2444357034
https://www.proquest.com/docview/2432858884
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqTvTAoy-20MqVKvVkYG0ncY4r6AqhboVokbhFfozFimVTkSwHTv0J_Y38EjzOJssWoUr0lihjJbZnxl_G428I-ayFS_su80xCapk0PmGaG85sxm3ilVD7sWrJ6Ht6dCaPz5PzB6f4G36ILuCGlhH9NRq4NtXegjRUu8gbhDlBMsMTfJiwhajodMEfhfA8ku2JhOWpVC1r4z7fW26-vCo9gprLyDUuPcN1otuPbjJOLndntdm1t3_xOf5PrzbI2hyX0kGjSJvkBUxfkZcP2Apfk9sTuC5vKgz30uF4clVRDOLSUyR_BUdjbNFrDMHTH7HyREVvxppqOmpL8N79_vMNk5ToEGk4zQSaRhMdcD8N6JmeXJR1GRxmrceWDhZ762_I2fDrz4MjNi_dwKzIRM4g932TCJ-LVBhp-kElfKbASgOZz4QEZXPAU0FIYOj6GvJECgvh98gl1hsj3pKVaTmFLUKR_yfAsFxCLqULk-h0yn3AiYhfwPkeYe3UFXbOa46dnBQNIzMvcEyLbkx75Esn_6th9HhScqfVhGJu2VUR4FBAmMFPyh751D0ONokbLXoK5QxlBFeJUirIvGs0qHuV4Flw6Ur1CI968I9vKAaHo0F39_45jbbJKl43iXE7ZKW-nsGHgKRq8zFayz1KkhZl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOUAPvFsCBYyExMltY3t37WMERAGSqiqtxG3lp4gIWdRseuiJn8Bv5Jfg8WY3BISQ4Li7Y60fM_bn8fgbgOeau7zvikCFzy0VJmRUM8OoLZjNguTyMGUtmRzlozPx9kPWRhPiXZiGH6JzuKFlpPkaDRwd0gdr1lDtEnEQBgWJQl2Fa5jWO-2qTtYMUgjQE90ez6jKhWx5Gw_ZwWb5zXXpN7C5iV3T4jO8BaatdhNz8ml_WZt9e_kLo-N_tes23FxBUzJodOkOXPHzu7D9E2HhPbg89ufVxQI9vmQ4nX1eEPTjkhPkf_WOJPdi0OiFJ-9T8okFuZhqosmkzcL7_eu3McYpkSEycZqZbwrNdIT-JAJocvyxqqs4Z9Z6aslgfbx-H86Gr09fjugqewO1vOCKehX6JuNB8ZwbYfpRK0IhvRXGF6HgwkurPF4MQg5D19deZYJbH3dILrPBGL4DW_Nq7h8AQQqgiMSU8EoIF0fR6ZyFCBURwngXekDbsSvtitocGzkrG1JmVmKfll2f9uBFJ_-lIfX4o-ReqwrlyrgXZUREEWTGqVL04Fn3OZolnrXoua-WKMOZzKSUUWa3UaHuV5wVcVaXsgcsKcJf6lAOXk0G3dPDfyn0FK6PTifjcvzm6N0juIHvmzi5Pdiqz5f-cQRWtXmSTOcHpTkagA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRA98H4sFDASEie3u7aT2McVS1SgW60KlXqL_BQrtpuqm-2hJ34Cv5FfgifZZLsghATHJGMltmfGX8bjbwBea-7SgcsCFT61VJiQUM0MozZjNgmSy35dtWR8mO4fiw8nycmVU_wNP0QXcEPLqP01GviZC3tr0lDtat4gzAkSmboON0Tal6jXo6M1gRTi85ptjydUpUK2tI19trfZfnNZ-g1rbkLXeu3J74Buv7pJOfm6u6zMrr38hdDxf7p1F26vgCkZNpp0D675-X3YvkJX-AAuJ_68vFhgvJfk09npgmAUlxwh-6t3pA4uBo0xePKpLj2xIBdTTTQZtzV4f3z7foBZSiRHHk4z802jmY7An0T4TCZfyqqMHrPSU0uG6831h3Ccv_v8dp-uajdQyzOuqFdhYBIeFE-5EWYQdSJk0lthfBYyLry0yuOxIGQwdAPtVSK49fH_yCU2GMMfwda8nPsnQJAAKOIwJbwSwsVJdDplIQJFBDDehR7QduoKuyI2x07OioaSmRU4pkU3pj1408mfNZQef5TcaTWhWJn2ooh4KELM6ChFD151j6NR4k6LnvtyiTKcyURKGWUeNxrUvYqzLPp0KXvAaj34yzcUw9F42F09_ZdGL-HmZJQXB-8PPz6DW3i7SZLbga3qfOmfR1RVmRe14fwEWuEZOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+Films+with+Reduced+Interfacial+Strains+via+a+Molecular%E2%80%90Level+Flexible+Interlayer+for+Photovoltaic+Application&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Cong%E2%80%90Cong&rft.au=Yuan%2C+Shuai&rft.au=Lou%2C+Yan%E2%80%90Hui&rft.au=Liu%2C+Qing%E2%80%90Wei&rft.date=2020-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202001479&rft.externalDBID=10.1002%252Fadma.202001479&rft.externalDocID=ADMA202001479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon