Perovskite Films with Reduced Interfacial Strains via a Molecular‐Level Flexible Interlayer for Photovoltaic Application
Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA‐B...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 38; pp. e2001479 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA‐Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well‐matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under‐coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA‐Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular‐level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application.
A protonated amino silane coupling agent as an interlayer is exploited on rigid and flexible substrates, which not only sets up well‐matched growth underlay but also serves as a structural component of the lattice units, leading to less‐distorted perovskite films, resulting in an obvious advance in device performance, stability, and mechanical tolerance in the corresponding flexible device. |
---|---|
AbstractList | Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA‐Br) interlayer between TiO
2
and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well‐matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under‐coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA‐Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular‐level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application. Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA-Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well-matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under-coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA-Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular-level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application.Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA-Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well-matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under-coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA-Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular-level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application. Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA‐Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well‐matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under‐coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA‐Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular‐level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application. Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA‐Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well‐matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under‐coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA‐Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular‐level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application. A protonated amino silane coupling agent as an interlayer is exploited on rigid and flexible substrates, which not only sets up well‐matched growth underlay but also serves as a structural component of the lattice units, leading to less‐distorted perovskite films, resulting in an obvious advance in device performance, stability, and mechanical tolerance in the corresponding flexible device. Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA-Br) interlayer between TiO and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well-matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under-coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA-Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular-level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application. |
Author | Liu, Qing‐Wei Wang, Zhao‐Kui Zhang, Cong‐Cong Li, Meng Okada, Hiroyuki Yuan, Shuai Lou, Yan‐Hui |
Author_xml | – sequence: 1 givenname: Cong‐Cong surname: Zhang fullname: Zhang, Cong‐Cong organization: University of Toyama – sequence: 2 givenname: Shuai surname: Yuan fullname: Yuan, Shuai organization: Soochow University – sequence: 3 givenname: Yan‐Hui surname: Lou fullname: Lou, Yan‐Hui organization: Soochow University – sequence: 4 givenname: Qing‐Wei surname: Liu fullname: Liu, Qing‐Wei organization: Soochow University – sequence: 5 givenname: Meng surname: Li fullname: Li, Meng organization: Soochow University – sequence: 6 givenname: Hiroyuki surname: Okada fullname: Okada, Hiroyuki organization: University of Toyama – sequence: 7 givenname: Zhao‐Kui orcidid: 0000-0003-1707-499X surname: Wang fullname: Wang, Zhao‐Kui email: zkwang@suda.edu.cn organization: Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32776388$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URKeFLUtkiQ2bDL4ltpejwkClqVpxWUeOc6K6OPFgO1OGFY_AM_IkzXRKK1VCrM7m-845-v8jdDCEARB6ScmcEsLemrY3c0YYIVRI_QTNaMloIYguD9CMaF4WuhLqEB2ldEUI0RWpnqFDzqSsuFIz9PMCYtikby4DXjrfJ3zt8iX-BO1oocWnQ4bYGeuMx59zNG5IeOMMNvgseLCjN_HPr98r2IDHSw8_XONhL3mzhYi7EPHFZchhE3w2zuLFeu2dNdmF4Tl62hmf4MXdPEZfl--_nHwsVucfTk8Wq8JyyXUBuqNNyTvNK96IhhredlKBFQ3ITnIBympgkivGpG6pAV0KboFK0Za2axp-jN7s965j-D5CynXvkgXvzQBhTDUTnKlSKSUm9PUj9CqMcZi-mygheCkJ31Gv7qix6aGt19H1Jm7rv6lOwHwP2BhSitDdI5TUu9rqXW31fW2TIB4J1uXbkHaZ-39req9dOw_b_xypF-_OFg_uDU6arp4 |
CitedBy_id | crossref_primary_10_1002_aenm_202104030 crossref_primary_10_1016_j_mtener_2020_100601 crossref_primary_10_1002_aenm_202002004 crossref_primary_10_1002_adma_202406872 crossref_primary_10_1021_acsnano_4c06396 crossref_primary_10_1002_adfm_202419067 crossref_primary_10_3389_fmats_2021_634353 crossref_primary_10_1002_solr_202000672 crossref_primary_10_1063_5_0100567 crossref_primary_10_1002_ange_202405878 crossref_primary_10_1021_acsenergylett_1c00999 crossref_primary_10_1021_acs_jpcc_3c00791 crossref_primary_10_1039_D1TC02657G crossref_primary_10_1016_j_cej_2021_133209 crossref_primary_10_1016_j_surfin_2024_104176 crossref_primary_10_1016_j_mtchem_2021_100721 crossref_primary_10_1002_aenm_202101291 crossref_primary_10_1021_acs_jpcc_2c01399 crossref_primary_10_1002_adfm_202201193 crossref_primary_10_1039_D2CS00278G crossref_primary_10_1021_acsenergylett_1c02768 crossref_primary_10_1002_smll_202400356 crossref_primary_10_1016_j_solener_2021_11_075 crossref_primary_10_1021_acs_cgd_0c01631 crossref_primary_10_1002_adma_202302839 crossref_primary_10_1039_D2MH01287A crossref_primary_10_1002_adma_202100625 crossref_primary_10_1002_anie_202318133 crossref_primary_10_1016_j_microc_2024_110792 crossref_primary_10_1002_smll_202307645 crossref_primary_10_1016_j_cej_2021_133832 crossref_primary_10_1039_D2EE02218D crossref_primary_10_1002_ange_202212268 crossref_primary_10_1039_D3NR05264H crossref_primary_10_1016_j_cej_2021_132869 crossref_primary_10_1007_s10854_023_11822_8 crossref_primary_10_1021_acssuschemeng_2c05801 crossref_primary_10_1002_aenm_202201274 crossref_primary_10_1063_5_0069697 crossref_primary_10_1038_s41377_025_01768_3 crossref_primary_10_1021_acsami_1c22877 crossref_primary_10_1021_acsami_4c13156 crossref_primary_10_1002_smll_202302585 crossref_primary_10_1039_D2EE02227C crossref_primary_10_1088_2516_1083_adbaab crossref_primary_10_1039_D3TA00750B crossref_primary_10_3390_mi15080972 crossref_primary_10_1002_adfm_202300089 crossref_primary_10_1002_smll_202201716 crossref_primary_10_1002_solr_202300438 crossref_primary_10_1021_acsaem_4c00029 crossref_primary_10_1063_5_0197899 crossref_primary_10_1002_smll_202410601 crossref_primary_10_1002_adfm_202415547 crossref_primary_10_1016_j_cej_2024_152210 crossref_primary_10_1002_smll_202107556 crossref_primary_10_1039_D3TA02692B crossref_primary_10_1002_ange_202112673 crossref_primary_10_1002_lpor_202200641 crossref_primary_10_1021_acsami_4c13287 crossref_primary_10_1002_adfm_202304848 crossref_primary_10_1002_advs_202304733 crossref_primary_10_1002_adfm_202206412 crossref_primary_10_1016_j_cej_2023_148464 crossref_primary_10_1021_acsami_4c02559 crossref_primary_10_1007_s12598_024_02956_7 crossref_primary_10_1002_adom_202201672 crossref_primary_10_1002_smll_202204733 crossref_primary_10_1016_j_ccr_2023_215502 crossref_primary_10_1038_s41578_025_00781_7 crossref_primary_10_1002_solr_202300766 crossref_primary_10_1039_D2MH00970F crossref_primary_10_1002_adfm_202213661 crossref_primary_10_1002_adma_202205338 crossref_primary_10_1021_acsami_5c01522 crossref_primary_10_1002_smll_202302443 crossref_primary_10_1016_j_apsusc_2022_152943 crossref_primary_10_1007_s40820_023_01130_5 crossref_primary_10_1002_solr_202400245 crossref_primary_10_1021_acsnano_2c11091 crossref_primary_10_1002_anie_202112673 crossref_primary_10_1002_aenm_202103674 crossref_primary_10_1002_solr_202200497 crossref_primary_10_1021_acsaem_5c00233 crossref_primary_10_1039_D2NR06290A crossref_primary_10_1016_j_cej_2022_135671 crossref_primary_10_1002_adma_202200320 crossref_primary_10_1002_solr_202200097 crossref_primary_10_34133_energymatadv_0002 crossref_primary_10_1002_adma_202210878 crossref_primary_10_1016_j_cej_2024_153121 crossref_primary_10_1002_anie_202405878 crossref_primary_10_1016_j_joule_2022_06_031 crossref_primary_10_1002_adma_202311970 crossref_primary_10_1002_aenm_202102730 crossref_primary_10_1002_adom_202200566 crossref_primary_10_3390_en16135015 crossref_primary_10_1002_adma_202211324 crossref_primary_10_1039_D2TA07593H crossref_primary_10_1039_D3TC04312F crossref_primary_10_1016_j_cej_2023_143790 crossref_primary_10_1002_admi_202002078 crossref_primary_10_1002_adma_202408036 crossref_primary_10_1002_eem2_12680 crossref_primary_10_1002_aesr_202200123 crossref_primary_10_1016_j_jmmm_2022_170300 crossref_primary_10_1038_s41563_021_01097_x crossref_primary_10_1002_adma_202306724 crossref_primary_10_1038_s41467_023_36938_7 crossref_primary_10_1002_inf2_12559 crossref_primary_10_1002_smll_202205604 crossref_primary_10_1002_aenm_202100690 crossref_primary_10_1002_adma_202312054 crossref_primary_10_1002_aenm_202101538 crossref_primary_10_1002_anie_202212268 crossref_primary_10_1063_5_0038073 crossref_primary_10_1002_ange_202318133 crossref_primary_10_1016_j_cej_2021_134235 crossref_primary_10_1002_admi_202200992 crossref_primary_10_1002_adfm_202410621 crossref_primary_10_1039_D3TC01380D crossref_primary_10_1002_advs_202400275 crossref_primary_10_1039_D1TC03775G crossref_primary_10_1039_D0TA12612H crossref_primary_10_1021_acsnano_4c06587 crossref_primary_10_1002_adma_202106380 crossref_primary_10_1002_ente_202301316 crossref_primary_10_1002_adma_202312041 crossref_primary_10_1002_adma_202205301 crossref_primary_10_1002_adma_202311473 crossref_primary_10_3390_nano12183125 crossref_primary_10_1002_aenm_202202298 crossref_primary_10_1016_j_joule_2022_12_006 crossref_primary_10_1002_adma_202417150 crossref_primary_10_1002_admi_202202266 crossref_primary_10_1016_j_ceramint_2024_05_187 crossref_primary_10_1002_smll_202007543 |
Cites_doi | 10.1039/C5EE03874J 10.1002/adfm.201703061 10.1039/C6TA08783C 10.1002/adma.201902222 10.1039/C6TA08970D 10.1038/s41467-019-08507-4 10.1002/ange.201405176 10.1002/adma.201706126 10.1126/science.aap8671 10.1038/ncomms6784 10.1039/C6EE01969B 10.1038/s41467-017-00588-3 10.1002/adma.201401685 10.1038/s41586-019-1868-x 10.1021/la063284v 10.1126/science.aay9698 10.1021/acsami.7b10773 10.1002/adfm.201902346 10.1039/C7TA08204E 10.1126/science.aaa0472 10.1002/aenm.201501803 10.1002/adma.201703737 10.1021/ja5125594 10.1002/adma.201901519 10.1021/acsenergylett.6b00457 10.1126/sciadv.aay5394 10.1002/adma.201306271 10.1039/C8EE00162F 10.1063/1.4864638 10.1002/adfm.201705875 10.1021/acs.accounts.5b00440 10.1126/science.aaa5760 10.1038/s41467-020-15338-1 10.1016/j.nanoen.2016.11.028 10.1002/adma.201604545 10.1038/nenergy.2016.177 10.1021/la902888y 10.1038/nphoton.2013.374 10.1039/C8EE02751J |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202001479 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32776388 10_1002_adma_202001479 ADMA202001479 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20170059 – fundername: State Key Laboratory of Integrated Optoelectronics funderid: IOSKL2018KF07 – fundername: China Postdoctoral Science Foundation funderid: 2015M580460 – fundername: Natural Science Foundation of China funderid: 61674109; 91733301 – fundername: National Key R&D Program of China funderid: 2016YFA0202402 – fundername: China Postdoctoral Science Foundation grantid: 2015M580460 – fundername: State Key Laboratory of Integrated Optoelectronics grantid: IOSKL2018KF07 – fundername: Natural Science Foundation of China grantid: 91733301 – fundername: Natural Science Foundation of China grantid: 61674109 – fundername: National Key R&D Program of China grantid: 2016YFA0202402 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20170059 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3739-e9f1b53f9363b4b1a3df78ec4be7f734e8c9e27382279d1ae9543ce174d5cfbb3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 12:44:38 EDT 2025 Fri Jul 25 08:04:10 EDT 2025 Wed Feb 19 02:29:00 EST 2025 Tue Jul 01 02:32:51 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Wed Jan 22 16:32:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | strain lattice distortion interfacial engineering silane coupling agents perovskite solar cells |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-e9f1b53f9363b4b1a3df78ec4be7f734e8c9e27382279d1ae9543ce174d5cfbb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1707-499X |
PMID | 32776388 |
PQID | 2444357034 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2432858884 proquest_journals_2444357034 pubmed_primary_32776388 crossref_primary_10_1002_adma_202001479 crossref_citationtrail_10_1002_adma_202001479 wiley_primary_10_1002_adma_202001479_ADMA202001479 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2018; 28 2017; 8 2017; 2 2018; 360 2019; 31 2015; 347 2019; 10 2017; 27 2019; 12 2014; 26 2019; 366 2017; 29 2020; 11 2017; 9 2018; 6 2020; 6 2017; 31 2014; 105 2016; 6 2014; 5 2010; 26 2016; 1 2015; 137 2020 2020; 577 2019; 29 2018; 30 2014; 8 2018; 11 2016; 49 2007; 23 2014; 126 2016; 9 2014; 104 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 You J. (e_1_2_5_36_1) 2014; 105 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 12 start-page: 596 year: 2019 publication-title: Energy Environ. Sci. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 26 start-page: 6503 year: 2014 publication-title: Adv. Mater. – volume: 11 start-page: 1514 year: 2020 publication-title: Nat. Commun. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 9 start-page: 2892 year: 2016 publication-title: Energy Environ. Sci. – volume: 26 start-page: 3423 year: 2010 publication-title: Langmuir – volume: 8 start-page: 613 year: 2017 publication-title: Nat. Commun. – volume: 366 start-page: 1509 year: 2019 publication-title: Science – volume: 126 year: 2014 publication-title: Angew. Chem. – volume: 104 year: 2014 publication-title: Appl. Phys. Lett. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 347 start-page: 522 year: 2015 publication-title: Science – volume: 6 start-page: 1161 year: 2018 publication-title: J. Mater. Chem. A – volume: 9 start-page: 1989 year: 2016 publication-title: Energy Environ. Sci. – volume: 577 start-page: 209 year: 2020 publication-title: Nature – volume: 137 start-page: 1790 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 6645 year: 2007 publication-title: Langmuir – volume: 31 start-page: 462 year: 2017 publication-title: Nano Energy – volume: 49 start-page: 311 year: 2016 publication-title: Acc. Chem. Res. – volume: 26 start-page: 4309 year: 2014 publication-title: Adv. Mater. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 815 year: 2019 publication-title: Nat. Commun. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 1014 year: 2016 publication-title: ACS Energy Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 8 start-page: 250 year: 2014 publication-title: Nat. Photonics – volume: 11 start-page: 1742 year: 2018 publication-title: Energy Environ. Sci. – year: 2020 – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 5 start-page: 2572 year: 2017 publication-title: J. Mater. Chem. A – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 105 start-page: 945 year: 2014 publication-title: Appl. Phys. Lett. – volume: 360 start-page: 67 year: 2018 publication-title: Science – volume: 5 start-page: 1658 year: 2017 publication-title: J. Mater. Chem. A – volume: 5 start-page: 5784 year: 2014 publication-title: Nat. Commun. – ident: e_1_2_5_22_1 doi: 10.1039/C5EE03874J – ident: e_1_2_5_1_1 – ident: e_1_2_5_38_1 doi: 10.1002/adfm.201703061 – ident: e_1_2_5_14_1 doi: 10.1039/C6TA08783C – ident: e_1_2_5_30_1 doi: 10.1002/adma.201902222 – ident: e_1_2_5_2_1 doi: 10.1039/C6TA08970D – ident: e_1_2_5_25_1 doi: 10.1038/s41467-019-08507-4 – ident: e_1_2_5_9_1 doi: 10.1002/ange.201405176 – ident: e_1_2_5_21_1 doi: 10.1002/adma.201706126 – ident: e_1_2_5_23_1 doi: 10.1126/science.aap8671 – ident: e_1_2_5_28_1 doi: 10.1038/ncomms6784 – volume: 105 start-page: 945 year: 2014 ident: e_1_2_5_36_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_5_26_1 doi: 10.1039/C6EE01969B – ident: e_1_2_5_33_1 doi: 10.1038/s41467-017-00588-3 – ident: e_1_2_5_29_1 doi: 10.1002/adma.201401685 – ident: e_1_2_5_10_1 doi: 10.1038/s41586-019-1868-x – ident: e_1_2_5_17_1 doi: 10.1021/la063284v – ident: e_1_2_5_8_1 doi: 10.1126/science.aay9698 – ident: e_1_2_5_11_1 doi: 10.1021/acsami.7b10773 – ident: e_1_2_5_24_1 doi: 10.1002/adfm.201902346 – ident: e_1_2_5_3_1 doi: 10.1039/C7TA08204E – ident: e_1_2_5_27_1 doi: 10.1126/science.aaa0472 – ident: e_1_2_5_39_1 doi: 10.1002/aenm.201501803 – ident: e_1_2_5_7_1 doi: 10.1002/adma.201703737 – ident: e_1_2_5_13_1 doi: 10.1021/ja5125594 – ident: e_1_2_5_5_1 doi: 10.1002/adma.201901519 – ident: e_1_2_5_40_1 doi: 10.1021/acsenergylett.6b00457 – ident: e_1_2_5_15_1 doi: 10.1126/sciadv.aay5394 – ident: e_1_2_5_6_1 doi: 10.1002/adma.201306271 – ident: e_1_2_5_34_1 doi: 10.1039/C8EE00162F – ident: e_1_2_5_37_1 doi: 10.1063/1.4864638 – ident: e_1_2_5_4_1 doi: 10.1002/adfm.201705875 – ident: e_1_2_5_20_1 doi: 10.1021/acs.accounts.5b00440 – ident: e_1_2_5_35_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_5_12_1 doi: 10.1038/s41467-020-15338-1 – ident: e_1_2_5_16_1 doi: 10.1016/j.nanoen.2016.11.028 – ident: e_1_2_5_19_1 doi: 10.1002/adma.201604545 – ident: e_1_2_5_41_1 doi: 10.1038/nenergy.2016.177 – ident: e_1_2_5_18_1 doi: 10.1021/la902888y – ident: e_1_2_5_31_1 doi: 10.1038/nphoton.2013.374 – ident: e_1_2_5_32_1 doi: 10.1039/C8EE02751J |
SSID | ssj0009606 |
Score | 2.6481261 |
Snippet | Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2001479 |
SubjectTerms | Ammonium bromides Buffer layers Chemical compatibility Coupling (molecular) Coupling agents Crystallization Distortion interfacial engineering Interlayers lattice distortion Lattice vacancies Materials science Organic materials perovskite solar cells Perovskites Photovoltaic cells Semiconductor devices silane coupling agents Solar cells strain Titanium dioxide |
Title | Perovskite Films with Reduced Interfacial Strains via a Molecular‐Level Flexible Interlayer for Photovoltaic Application |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202001479 https://www.ncbi.nlm.nih.gov/pubmed/32776388 https://www.proquest.com/docview/2444357034 https://www.proquest.com/docview/2432858884 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqTvTAoy-20MqVKvVkYG0ncY4r6AqhboVokbhFfozFimVTkSwHTv0J_Y38EjzOJssWoUr0lihjJbZnxl_G428I-ayFS_su80xCapk0PmGaG85sxm3ilVD7sWrJ6Ht6dCaPz5PzB6f4G36ILuCGlhH9NRq4NtXegjRUu8gbhDlBMsMTfJiwhajodMEfhfA8ku2JhOWpVC1r4z7fW26-vCo9gprLyDUuPcN1otuPbjJOLndntdm1t3_xOf5PrzbI2hyX0kGjSJvkBUxfkZcP2Apfk9sTuC5vKgz30uF4clVRDOLSUyR_BUdjbNFrDMHTH7HyREVvxppqOmpL8N79_vMNk5ToEGk4zQSaRhMdcD8N6JmeXJR1GRxmrceWDhZ762_I2fDrz4MjNi_dwKzIRM4g932TCJ-LVBhp-kElfKbASgOZz4QEZXPAU0FIYOj6GvJECgvh98gl1hsj3pKVaTmFLUKR_yfAsFxCLqULk-h0yn3AiYhfwPkeYe3UFXbOa46dnBQNIzMvcEyLbkx75Esn_6th9HhScqfVhGJu2VUR4FBAmMFPyh751D0ONokbLXoK5QxlBFeJUirIvGs0qHuV4Flw6Ur1CI968I9vKAaHo0F39_45jbbJKl43iXE7ZKW-nsGHgKRq8zFayz1KkhZl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOUAPvFsCBYyExMltY3t37WMERAGSqiqtxG3lp4gIWdRseuiJn8Bv5Jfg8WY3BISQ4Li7Y60fM_bn8fgbgOeau7zvikCFzy0VJmRUM8OoLZjNguTyMGUtmRzlozPx9kPWRhPiXZiGH6JzuKFlpPkaDRwd0gdr1lDtEnEQBgWJQl2Fa5jWO-2qTtYMUgjQE90ez6jKhWx5Gw_ZwWb5zXXpN7C5iV3T4jO8BaatdhNz8ml_WZt9e_kLo-N_tes23FxBUzJodOkOXPHzu7D9E2HhPbg89ufVxQI9vmQ4nX1eEPTjkhPkf_WOJPdi0OiFJ-9T8okFuZhqosmkzcL7_eu3McYpkSEycZqZbwrNdIT-JAJocvyxqqs4Z9Z6aslgfbx-H86Gr09fjugqewO1vOCKehX6JuNB8ZwbYfpRK0IhvRXGF6HgwkurPF4MQg5D19deZYJbH3dILrPBGL4DW_Nq7h8AQQqgiMSU8EoIF0fR6ZyFCBURwngXekDbsSvtitocGzkrG1JmVmKfll2f9uBFJ_-lIfX4o-ReqwrlyrgXZUREEWTGqVL04Fn3OZolnrXoua-WKMOZzKSUUWa3UaHuV5wVcVaXsgcsKcJf6lAOXk0G3dPDfyn0FK6PTifjcvzm6N0juIHvmzi5Pdiqz5f-cQRWtXmSTOcHpTkagA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRA98H4sFDASEie3u7aT2McVS1SgW60KlXqL_BQrtpuqm-2hJ34Cv5FfgifZZLsghATHJGMltmfGX8bjbwBea-7SgcsCFT61VJiQUM0MozZjNgmSy35dtWR8mO4fiw8nycmVU_wNP0QXcEPLqP01GviZC3tr0lDtat4gzAkSmboON0Tal6jXo6M1gRTi85ptjydUpUK2tI19trfZfnNZ-g1rbkLXeu3J74Buv7pJOfm6u6zMrr38hdDxf7p1F26vgCkZNpp0D675-X3YvkJX-AAuJ_68vFhgvJfk09npgmAUlxwh-6t3pA4uBo0xePKpLj2xIBdTTTQZtzV4f3z7foBZSiRHHk4z802jmY7An0T4TCZfyqqMHrPSU0uG6831h3Ccv_v8dp-uajdQyzOuqFdhYBIeFE-5EWYQdSJk0lthfBYyLry0yuOxIGQwdAPtVSK49fH_yCU2GMMfwda8nPsnQJAAKOIwJbwSwsVJdDplIQJFBDDehR7QduoKuyI2x07OioaSmRU4pkU3pj1408mfNZQef5TcaTWhWJn2ooh4KELM6ChFD151j6NR4k6LnvtyiTKcyURKGWUeNxrUvYqzLPp0KXvAaj34yzcUw9F42F09_ZdGL-HmZJQXB-8PPz6DW3i7SZLbga3qfOmfR1RVmRe14fwEWuEZOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+Films+with+Reduced+Interfacial+Strains+via+a+Molecular%E2%80%90Level+Flexible+Interlayer+for+Photovoltaic+Application&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Cong%E2%80%90Cong&rft.au=Yuan%2C+Shuai&rft.au=Lou%2C+Yan%E2%80%90Hui&rft.au=Liu%2C+Qing%E2%80%90Wei&rft.date=2020-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202001479&rft.externalDBID=10.1002%252Fadma.202001479&rft.externalDocID=ADMA202001479 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |