Rigidity‐Flexibility Regulation and Hard‐Soft Donor Combination: Dual Strategies in Covalent Organic Frameworks Construction for Actinides/lanthanides Separation

Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 37; no. 6; pp. e2414659 - n/a
Main Authors Cao, Run‐Jian, Zhou, Heng‐Yi, Wu, Qun‐Yan, Xiao, Zhe, Xiu, Tao‐Yuan, Li, Jie, Tang, Hong‐Bin, Yuan, Li‐Yong, Wu, Wang‐Suo, Shi, Wei‐Qun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO3 solution, the as‐synthesized DAPhen‐COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO3. DAPhen‐COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid‐phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides. A dual strategy for the design of covalent organic frameworks integrates molecular rigidity–flexibility regulation with hard–soft atom incorporation. The synthesized DAPhen‐COF achieves over 95% removal of Np(V), Pu(IV), and Am(III), with a separation factor exceeding 5000 for Np/Gd. This study marks the first application of covalent organic frameworks in separating various transuraniums from lanthanides.
AbstractList Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO solution, the as-synthesized DAPhen-COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO . DAPhen-COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid-phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides.
Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO3 solution, the as‐synthesized DAPhen‐COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO3. DAPhen‐COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid‐phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides.
Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5  m HNO 3 solution, the as‐synthesized DAPhen‐COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01  m HNO 3 . DAPhen‐COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid‐phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides.
Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO3 solution, the as-synthesized DAPhen-COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO3. DAPhen-COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid-phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides.Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO3 solution, the as-synthesized DAPhen-COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO3. DAPhen-COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid-phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides.
Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO3 solution, the as‐synthesized DAPhen‐COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO3. DAPhen‐COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid‐phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides. A dual strategy for the design of covalent organic frameworks integrates molecular rigidity–flexibility regulation with hard–soft atom incorporation. The synthesized DAPhen‐COF achieves over 95% removal of Np(V), Pu(IV), and Am(III), with a separation factor exceeding 5000 for Np/Gd. This study marks the first application of covalent organic frameworks in separating various transuraniums from lanthanides.
Author Xiu, Tao‐Yuan
Shi, Wei‐Qun
Cao, Run‐Jian
Xiao, Zhe
Li, Jie
Wu, Qun‐Yan
Yuan, Li‐Yong
Wu, Wang‐Suo
Zhou, Heng‐Yi
Tang, Hong‐Bin
Author_xml – sequence: 1
  givenname: Run‐Jian
  surname: Cao
  fullname: Cao, Run‐Jian
  organization: Lanzhou University
– sequence: 2
  givenname: Heng‐Yi
  surname: Zhou
  fullname: Zhou, Heng‐Yi
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Qun‐Yan
  surname: Wu
  fullname: Wu, Qun‐Yan
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Zhe
  surname: Xiao
  fullname: Xiao, Zhe
  organization: China Institute of Atomic Energy
– sequence: 5
  givenname: Tao‐Yuan
  surname: Xiu
  fullname: Xiu, Tao‐Yuan
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Hong‐Bin
  surname: Tang
  fullname: Tang, Hong‐Bin
  organization: China Institute of Atomic Energy
– sequence: 8
  givenname: Li‐Yong
  surname: Yuan
  fullname: Yuan, Li‐Yong
  email: yuanly@ihep.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Wang‐Suo
  surname: Wu
  fullname: Wu, Wang‐Suo
  organization: Lanzhou University
– sequence: 10
  givenname: Wei‐Qun
  orcidid: 0000-0001-9929-9732
  surname: Shi
  fullname: Shi, Wei‐Qun
  email: shiwq@ihep.ac.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39663728$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFK0dkiQuXbB07cWJuq12WIhVV6sI5GsfO4pLYi-1Q9sYj8BK8GE-Cmy1FqoQ4eaz5_vlH85-gI-usRuh5TuY5IfQM1ABzSmiRF7wUj9AsL2meFUSUR2hGBCszwYv6GJ2EcE0IEZzwJ-iYCc5ZResZ-nlltkaZuP_1_ce619-MNH364Su9HXuIxlkMVuFz8CoRG9dFvHLWebx0gzR2Il7j1Qg93kQPUW-NDtjY1P8KvbYRX_otWNPitYdB3zj_OaSeDdGP7TS-S8MWqbRG6XDWg42fYKrxRu_ATw5P0eMO-qCf3b2n6OP6zYfleXZx-fbdcnGRtaxiIlO1lBWjVOZAmGIlIVBTymlNqJIArGBSiU5LJRktgetOi47kkgktuKwKxk7Rq8PcnXdfRh1iM5jQ6j5tpd0YGpauzEta8zqhLx-g1270Nm2XKF5WFU3-iXpxR41y0KrZeTOA3zd_AkjA_AC03oXgdXeP5KS5Tbi5Tbi5TzgJigeC1sTpSOn8pv-3TBxkN6bX-_-YNIvV-8Vf7W-EN7_I
CitedBy_id crossref_primary_10_1016_j_cjsc_2025_100562
Cites_doi 10.1016/0003-2670(93)85194-O
10.1039/D1DT00186H
10.1007/s10967-012-1631-3
10.1039/C5CC10408D
10.1021/jacs.2c08468
10.1016/j.chemosphere.2023.140086
10.1016/j.cej.2023.142408
10.1002/adma.202304511
10.1016/j.jhazmat.2016.07.027
10.1002/adma.201705454
10.1021/jacs.3c13172
10.1021/jacs.8b10334
10.1016/B978-0-08-099362-1.00006-0
10.1016/0003-2670(95)00144-O
10.1007/s10967-021-08116-w
10.1134/S1066362214020027
10.1021/jacs.6b08377
10.1021/acs.inorgchem.3c04173
10.1016/j.cej.2023.141742
10.1002/adma.202005565
10.1002/anie.201411262
10.1002/anie.201208514
10.1021/jacs.7b01523
10.1021/acs.inorgchem.8b03592
10.1021/ic402784c
10.1021/jacs.6b07714
10.1002/adma.202306345
10.1016/j.carbpol.2021.117666
10.1002/chem.201501206
10.1021/jacs.5b04300
10.1016/j.supmat.2023.100043
10.1023/B:JRNC.0000034858.26483.ae
10.1038/s41467-023-35942-1
10.1039/C6RA07986E
10.1002/adfm.201870229
10.1016/j.cclet.2023.108440
10.1021/jacs.2c11926
10.1016/j.pnucene.2021.104080
10.1039/D2QI01153K
10.1021/jacs.5b10754
10.1016/j.seppur.2024.127307
10.1016/j.seppur.2021.119627
10.1016/j.jenvrad.2020.106254
10.1021/acsami.3c15170
10.1016/S1381-5148(97)00013-8
10.1016/j.gca.2015.11.029
10.1126/science.1120411
10.1016/j.cej.2019.03.087
10.1039/C4SC02593H
10.1557/mrs2010.712
10.1016/j.cclet.2022.02.011
10.1021/ja206846p
10.1002/adma.202405744
10.1021/jacs.0c13090
10.1039/D0CS00620C
10.1021/jacs.2c02173
10.1016/j.ccr.2021.213994
10.1021/jacs.9b00485
10.1039/C6RA17773E
10.1016/j.jece.2017.05.055
10.1002/anie.200900881
10.1016/j.radphyschem.2004.05.050
10.1039/C2CS35072F
10.31635/ccschem.019.20190005
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202414659
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 39663728
10_1002_adma_202414659
ADMA202414659
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U2067212
– fundername: National Science Fund for Distinguished Young Scholars
  funderid: 21925603
– fundername: National Natural Science Foundation of China
  grantid: U2067212
– fundername: National Science Fund for Distinguished Young Scholars
  grantid: 21925603
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
53G
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
LH4
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3739-d8bb7322b1a03d3500a82262802dbaa343bd9febdb325a6efe9f01b39e96b7433
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 05:45:56 EDT 2025
Fri Jul 25 22:10:35 EDT 2025
Thu Feb 13 03:15:46 EST 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 00:55:00 EDT 2025
Thu Feb 13 09:32:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords covalent organic frameworks
actinides/lanthanides separation
spent fuel reprocessing
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-d8bb7322b1a03d3500a82262802dbaa343bd9febdb325a6efe9f01b39e96b7433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9929-9732
PMID 39663728
PQID 3165772350
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_3146652868
proquest_journals_3165772350
pubmed_primary_39663728
crossref_primary_10_1002_adma_202414659
crossref_citationtrail_10_1002_adma_202414659
wiley_primary_10_1002_adma_202414659_ADMA202414659
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 144
2021 2023 2022 2021; 279 341 331 257
2022; 143
2023; 14
2016 2024 2023 2023 2023; 138 146 15 463 460
2010; 35
2021 2014; 445 56
2016; 318
2009 2013 2014; 48 52 5
2011 2016 2017 2019 2022; 133 138 139 141 144
2023; 145
2012 2015 2005; 292 303 72
2016 2015 2015 2015; 52 21 54 137
2019 2021; 1 50
2020 2016 2024 2019; 218 175 345 369
2016; 138
1993 1995 1997 2004; 281 310 33 261
2022; 33
2021; 143
2016 2016 2017; 6 6 5
2005 2021 2013 2018 2019 2020 2024 2017 2024 2023 2023; 310 50 42 28 141 32 36 30 36 35 2
2014 2019 2022 2023 2024 2024 2013 2015; 53 58 9 34 63 9
e_1_2_7_9_11
e_1_2_7_5_1
e_1_2_7_9_10
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_15_4
e_1_2_7_13_5
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_13_4
e_1_2_7_15_2
e_1_2_7_13_3
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
Afsar A. (e_1_2_7_15_8) 2015
e_1_2_7_9_6
e_1_2_7_9_5
e_1_2_7_9_4
e_1_2_7_9_3
e_1_2_7_9_9
e_1_2_7_9_8
Xiu T. (e_1_2_7_15_5) 2024
e_1_2_7_9_7
Ning S. (e_1_2_7_5_2) 2015; 303
Wu J. (e_1_2_7_20_3) 2022; 331
e_1_2_7_21_4
e_1_2_7_21_3
e_1_2_7_21_2
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_12_5
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_14_2
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
Hudson M. J. (e_1_2_7_15_7) 2013; 9
Yusov A. B. (e_1_2_7_22_2) 2014; 56
Wu R. (e_1_2_7_21_1) 2020; 218
Liu F. (e_1_2_7_15_6) 2024; 63
e_1_2_7_20_4
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 145
  start-page: 1359
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 143
  year: 2022
  publication-title: Prog. Nucl. Energy
– volume: 35
  start-page: 859
  year: 2010
  publication-title: MRS Bull.
– volume: 33
  start-page: 3429
  year: 2022
  publication-title: Chin. Chem. Lett.
– volume: 318
  start-page: 266
  year: 2016
  publication-title: J. Hazard. Mater.
– volume: 6 6 5
  start-page: 3058
  year: 2016 2016 2017
  publication-title: RSC Adv. RSC Adv. J. Environ. Chem. Eng.
– volume: 281 310 33 261
  start-page: 361 63 25 269
  year: 1993 1995 1997 2004
  publication-title: Anal. Chim. Acta. Anal. Chim. Acta. React. Funct. Polym. J. Radioanal. Nucl. Chem.
– volume: 48 52 5
  start-page: 5439 2920 4693
  year: 2009 2013 2014
  publication-title: Angew Chem Int Ed Engl Angew. Chem., Int. Ed. Chem. Sci.
– volume: 143
  start-page: 5003
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 52 21 54 137
  start-page: 2843 2986 7079
  year: 2016 2015 2015 2015
  publication-title: Chem. Commun. Chemistry – A European Journal Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 133 138 139 141 144
  start-page: 6042 2920 6594
  year: 2011 2016 2017 2019 2022
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 14
  start-page: 261
  year: 2023
  publication-title: Nat. Commun.
– volume: 138 146 15 463 460
  start-page: 3031 4822
  year: 2016 2024 2023 2023 2023
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. ACS Appl. Mater. Interfaces Chem. Eng. J. Chem. Eng. J.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 310 50 42 28 141 32 36 30 36 35 2
  start-page: 1166 120 548 1807
  year: 2005 2021 2013 2018 2019 2020 2024 2017 2024 2023 2023
  publication-title: Science Chem. Soc. Rev. Chem. Soc. Rev. Adv. Funct. Mater. J. Am. Chem. Soc. Adv. Mater. Adv. Mater. Adv. Mater. Adv. Mater. Adv. Mater. Supramolecular Materials
– volume: 1 50
  start-page: 286 3792
  year: 2019 2021
  publication-title: CCS Chemistry Dalton Trans.
– volume: 279 341 331 257
  start-page: 469
  year: 2021 2023 2022 2021
  publication-title: Sep. Purif. Technol. Chemosphere J. Radioanal. Nucl. Chem. Carbohydr. Polym.
– volume: 218 175 345 369
  start-page: 86 736
  year: 2020 2016 2024 2019
  publication-title: J. Environ. Radioact. Geochim. Cosmochim. Acta Sep. Purif. Technol. Chem. Eng. J.
– volume: 292 303 72
  start-page: 537 2011 669
  year: 2012 2015 2005
  publication-title: J. Radioanal. Nucl. Chem. J. Radioanal. Nucl. Chem. Radiat. Phys. Chem.
– volume: 53 58 9 34 63 9
  start-page: 1712 4420 4671 465 3859 177
  year: 2014 2019 2022 2023 2024 2024 2013 2015
  publication-title: Inorg. Chem. Inorg. Chem. Inorg. Chem. Front. Chin. Chem. Lett. J. Hazard. Mater. Inorg. Chem. Strategies and Tactics in Organic Synthesis
– volume: 445 56
  start-page: 134
  year: 2021 2014
  publication-title: Coord. Chem. Rev. Radiochemistry
– ident: e_1_2_7_4_1
  doi: 10.1016/0003-2670(93)85194-O
– ident: e_1_2_7_14_2
  doi: 10.1039/D1DT00186H
– ident: e_1_2_7_5_1
  doi: 10.1007/s10967-012-1631-3
– ident: e_1_2_7_10_1
  doi: 10.1039/C5CC10408D
– ident: e_1_2_7_18_1
  doi: 10.1021/jacs.2c08468
– ident: e_1_2_7_20_2
  doi: 10.1016/j.chemosphere.2023.140086
– ident: e_1_2_7_12_4
  doi: 10.1016/j.cej.2023.142408
– ident: e_1_2_7_9_10
  doi: 10.1002/adma.202304511
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jhazmat.2016.07.027
– ident: e_1_2_7_9_8
  doi: 10.1002/adma.201705454
– ident: e_1_2_7_12_2
  doi: 10.1021/jacs.3c13172
– ident: e_1_2_7_9_5
  doi: 10.1021/jacs.8b10334
– volume: 9
  start-page: 177
  year: 2013
  ident: e_1_2_7_15_7
  publication-title: Strategies and Tactics in Organic Synthesis
  doi: 10.1016/B978-0-08-099362-1.00006-0
– ident: e_1_2_7_4_2
  doi: 10.1016/0003-2670(95)00144-O
– volume: 331
  start-page: 469
  year: 2022
  ident: e_1_2_7_20_3
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-021-08116-w
– volume: 56
  start-page: 134
  year: 2014
  ident: e_1_2_7_22_2
  publication-title: Radiochemistry
  doi: 10.1134/S1066362214020027
– ident: e_1_2_7_16_1
  doi: 10.1021/jacs.6b08377
– volume: 63
  start-page: 3859
  year: 2024
  ident: e_1_2_7_15_6
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c04173
– ident: e_1_2_7_12_5
  doi: 10.1016/j.cej.2023.141742
– ident: e_1_2_7_9_6
  doi: 10.1002/adma.202005565
– ident: e_1_2_7_10_3
  doi: 10.1002/anie.201411262
– ident: e_1_2_7_11_2
  doi: 10.1002/anie.201208514
– ident: e_1_2_7_13_3
  doi: 10.1021/jacs.7b01523
– ident: e_1_2_7_15_2
  doi: 10.1021/acs.inorgchem.8b03592
– ident: e_1_2_7_15_1
  doi: 10.1021/ic402784c
– ident: e_1_2_7_13_2
  doi: 10.1021/jacs.6b07714
– ident: e_1_2_7_9_7
  doi: 10.1002/adma.202306345
– ident: e_1_2_7_20_4
  doi: 10.1016/j.carbpol.2021.117666
– ident: e_1_2_7_10_2
  doi: 10.1002/chem.201501206
– ident: e_1_2_7_10_4
  doi: 10.1021/jacs.5b04300
– ident: e_1_2_7_9_11
  doi: 10.1016/j.supmat.2023.100043
– volume: 303
  start-page: 2011
  year: 2015
  ident: e_1_2_7_5_2
  publication-title: J. Radioanal. Nucl. Chem.
– ident: e_1_2_7_4_4
  doi: 10.1023/B:JRNC.0000034858.26483.ae
– ident: e_1_2_7_7_1
  doi: 10.1038/s41467-023-35942-1
– ident: e_1_2_7_6_1
  doi: 10.1039/C6RA07986E
– ident: e_1_2_7_9_4
  doi: 10.1002/adfm.201870229
– ident: e_1_2_7_15_4
  doi: 10.1016/j.cclet.2023.108440
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.2c11926
– ident: e_1_2_7_1_1
  doi: 10.1016/j.pnucene.2021.104080
– ident: e_1_2_7_15_3
  doi: 10.1039/D2QI01153K
– ident: e_1_2_7_12_1
  doi: 10.1021/jacs.5b10754
– ident: e_1_2_7_21_3
  doi: 10.1016/j.seppur.2024.127307
– ident: e_1_2_7_20_1
  doi: 10.1016/j.seppur.2021.119627
– volume-title: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering
  year: 2015
  ident: e_1_2_7_15_8
– start-page: 465
  year: 2024
  ident: e_1_2_7_15_5
  publication-title: J. Hazard. Mater.
– volume: 218
  year: 2020
  ident: e_1_2_7_21_1
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2020.106254
– ident: e_1_2_7_12_3
  doi: 10.1021/acsami.3c15170
– ident: e_1_2_7_4_3
  doi: 10.1016/S1381-5148(97)00013-8
– ident: e_1_2_7_21_2
  doi: 10.1016/j.gca.2015.11.029
– ident: e_1_2_7_9_1
  doi: 10.1126/science.1120411
– ident: e_1_2_7_21_4
  doi: 10.1016/j.cej.2019.03.087
– ident: e_1_2_7_11_3
  doi: 10.1039/C4SC02593H
– ident: e_1_2_7_2_1
  doi: 10.1557/mrs2010.712
– ident: e_1_2_7_8_1
  doi: 10.1016/j.cclet.2022.02.011
– ident: e_1_2_7_13_1
  doi: 10.1021/ja206846p
– ident: e_1_2_7_9_9
  doi: 10.1002/adma.202405744
– ident: e_1_2_7_17_1
  doi: 10.1021/jacs.0c13090
– ident: e_1_2_7_9_2
  doi: 10.1039/D0CS00620C
– ident: e_1_2_7_13_5
  doi: 10.1021/jacs.2c02173
– ident: e_1_2_7_22_1
  doi: 10.1016/j.ccr.2021.213994
– ident: e_1_2_7_13_4
  doi: 10.1021/jacs.9b00485
– ident: e_1_2_7_6_2
  doi: 10.1039/C6RA17773E
– ident: e_1_2_7_6_3
  doi: 10.1016/j.jece.2017.05.055
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.200900881
– ident: e_1_2_7_5_3
  doi: 10.1016/j.radphyschem.2004.05.050
– ident: e_1_2_7_9_3
  doi: 10.1039/C2CS35072F
– ident: e_1_2_7_14_1
  doi: 10.31635/ccschem.019.20190005
SSID ssj0009606
Score 2.4910955
Snippet Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2414659
SubjectTerms Acidic oxides
Actinides
actinides/lanthanides separation
Aqueous solutions
Chemical synthesis
covalent organic frameworks
Flexibility
Gadolinium
Lanthanides
Ligands
Neptunium
Nuclear reactor components
Oxidation
Plutonium
Radioactive wastes
Rigidity
Separation
spent fuel reprocessing
Transuranium elements
Title Rigidity‐Flexibility Regulation and Hard‐Soft Donor Combination: Dual Strategies in Covalent Organic Frameworks Construction for Actinides/lanthanides Separation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202414659
https://www.ncbi.nlm.nih.gov/pubmed/39663728
https://www.proquest.com/docview/3165772350
https://www.proquest.com/docview/3146652868
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT-UAlJ-y0CIjVeKUbmLHTsJt1WW1QiqHbVfqLfJvWXXlVGT3ACcegZfgxXgSxvYm7YKqSnBz5LEc2-PxN8n4G4SOKqFLplKVAJQHB8UUNpGalIky1nLBcl6Gi7Snn_h0nn-8YBe3bvFHfoj-g5vfGcFe-w0uZDu8IQ0VOvAGwQmUc-Zv8PmALY-KZjf8UR6eB7I9ypKK52XH2piS4Xbz7VPpL6i5jVzD0TN5jET30jHi5Op4vZLH6tsffI7_M6on6NEGl-JRVKQ99MC4p-jhLbbCZ-jnbHG50IDaf33_MfE8miGu9iuexXT2sMBYOI19LABInIF9x-PGNV8w2Bzwv4PEezxeQzcdJ65p8cJBPag7HH44XgxVeNJFjLXYJxTtKG4xAGw8gqJbaNMOl6AUn0Uo4zMTOcwb9xzNJx_OT6bJJstDomhBq0SXUhZgVmQmUqopS1MBoIWTMiVaCkFzKnVljdSSEia4saayaSZpZSouAf_QF2jHNc68RBh8J0aVUjbXNBcVEwBvjaakyCzXmU0HKOlWuVYbCnSfiWNZR_JmUvvpr_vpH6B3vfx1JP-4U_KgU5p6YwTammacgfMCQxqgt301bF__T0Y406y9TM45IyUvB2g_KlvfFQVXlBYEakhQmXveoR6NT0f906t_afQa7RKf3zhEpR-gHVhfcwigayXfhI31GysPKGM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHIAD_z8LBYyExCndxI6dmNuKZbVAt4dtK3GL_EtXrRzEdg9w4hF4CV6sT9KxvUlZEEKCWyJPlNieGX_jjL9B6IWQpmY61xlAeQhQbOUyZUidaescl6zkdTxIO9vj08Py3QfWZROGszCJH6LfcAuWEf11MPCwIT28YA2VJhIHwRJUciYuoyuhrHeMquYXDFIBoEe6Pcoywcu6423MyXDz-c116TewuYld4-IzuYlU99kp5-R4Z3WqdvTXXxgd_6tft9CNNTTFo6RLt9El6--g6z8RFt5FP-aLjwsDwP3s2_dJoNKMqbVf8DxVtIc5xtIbHNIBQGIfXDwet779jMHtQAgeJV7h8Qpe09Hi2iVeeGgHjYf1D6ezoRpPuqSxJQ41RTuWWwwYG4_g0i-MXQ5PQC-OZLzG-zbRmLf-HjqcvDl4Pc3WhR4yTSsqMlMrVYFnUYXMqaEszyXgFk7qnBglJS2pMsJZZRQlTHLrrHB5oaiwgiuAQPQ-2vKttw8RhvCJUa21Kw0tpWASEK41lFSF46Zw-QBl3TQ3es2CHopxnDSJv5k0YfibfvgH6GUv_ynxf_xRcrvTmmbtB5YNLTiD-AW6NEDP-2aw4PBbRnrbroJMyTkjNa8H6EHStv5VFKJRWhFoIVFn_vINzWg8G_V3j_7loWfo6vRgttvsvt17_xhdI6HccUxS30ZbMNf2CWCwU_U0Wtk5kWYsfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgeyrssFDASEqd0E78Sc1sRovJohbZU6i3yk65aJRXbPZQTP4E_wR_jlzB2NmkXhJDg5shjObbH42-S8TcIPZfKFtykJgEoDw6Ky32iLSkS47wXijNRxIu0u3ti54C9PeSHl27xd_wQwwe3sDOivQ4b_NT68QVpqLKRNwhOICa4vIquMZEWQa_L6QWBVMDnkW2P8kQKVvS0jSkZr7ZfPZZ-w5qr0DWePdVNpPq37kJOjrcXZ3rbfPmF0PF_hnULbSyBKZ50mnQbXXHNHbR-ia7wLvo-nX2aWYDtP75-qwKRZgysPcfTLp89rDBWjcUhGAAk9sHA47Jt2s8YjA444FHiJS4X0E1PiuvmeNZAPeg7nH64uxlqcNWHjM1xyCjac9xiQNh4AsVmZt18fAJacaRiGe-7jsS8be6hg-r1x1c7yTLNQ2JoTmViC61zsCs6Uym1lKepAtQiSJESq5WijGorvdNWU8KVcN5Jn2aaSieFBgBE76O1pm3cA4TBeeLUGOOZpUxJrgDfOktJnnlhM5-OUNKvcm2WHOghFcdJ3bE3kzpMfz1M_wi9GORPO_aPP0pu9UpTL63AvKaZ4OC9wJBG6NlQDfs3_JRRjWsXQYYJwUkhihHa7JRt6IqCL0pzAjUkqsxf3qGelLuT4enhvzR6iq5_KKv6_Zu9d4_QDRJyHccI9S20BkvtHgMAO9NP4h77CQ0mKzY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rigidity%E2%80%90Flexibility+Regulation+and+Hard%E2%80%90Soft+Donor+Combination%3A+Dual+Strategies+in+Covalent+Organic+Frameworks+Construction+for+Actinides%2Flanthanides+Separation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Run%E2%80%90Jian+Cao&rft.au=Heng%E2%80%90Yi+Zhou&rft.au=Qun%E2%80%90Yan+Wu&rft.au=Xiao%2C+Zhe&rft.date=2025-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=6&rft_id=info:doi/10.1002%2Fadma.202414659&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon