Rigidity‐Flexibility Regulation and Hard‐Soft Donor Combination: Dual Strategies in Covalent Organic Frameworks Construction for Actinides/lanthanides Separation
Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 37; no. 6; pp. e2414659 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO3 solution, the as‐synthesized DAPhen‐COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO3. DAPhen‐COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid‐phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides.
A dual strategy for the design of covalent organic frameworks integrates molecular rigidity–flexibility regulation with hard–soft atom incorporation. The synthesized DAPhen‐COF achieves over 95% removal of Np(V), Pu(IV), and Am(III), with a separation factor exceeding 5000 for Np/Gd. This study marks the first application of covalent organic frameworks in separating various transuraniums from lanthanides. |
---|---|
AbstractList | Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO
solution, the as-synthesized DAPhen-COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO
. DAPhen-COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid-phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides. Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO3 solution, the as‐synthesized DAPhen‐COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO3. DAPhen‐COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid‐phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides. Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO 3 solution, the as‐synthesized DAPhen‐COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO 3 . DAPhen‐COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid‐phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides. Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO3 solution, the as-synthesized DAPhen-COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO3. DAPhen-COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid-phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides.Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO3 solution, the as-synthesized DAPhen-COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO3. DAPhen-COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid-phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides. Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO3 solution, the as‐synthesized DAPhen‐COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO3. DAPhen‐COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid‐phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides. A dual strategy for the design of covalent organic frameworks integrates molecular rigidity–flexibility regulation with hard–soft atom incorporation. The synthesized DAPhen‐COF achieves over 95% removal of Np(V), Pu(IV), and Am(III), with a separation factor exceeding 5000 for Np/Gd. This study marks the first application of covalent organic frameworks in separating various transuraniums from lanthanides. |
Author | Xiu, Tao‐Yuan Shi, Wei‐Qun Cao, Run‐Jian Xiao, Zhe Li, Jie Wu, Qun‐Yan Yuan, Li‐Yong Wu, Wang‐Suo Zhou, Heng‐Yi Tang, Hong‐Bin |
Author_xml | – sequence: 1 givenname: Run‐Jian surname: Cao fullname: Cao, Run‐Jian organization: Lanzhou University – sequence: 2 givenname: Heng‐Yi surname: Zhou fullname: Zhou, Heng‐Yi organization: Chinese Academy of Sciences – sequence: 3 givenname: Qun‐Yan surname: Wu fullname: Wu, Qun‐Yan organization: Chinese Academy of Sciences – sequence: 4 givenname: Zhe surname: Xiao fullname: Xiao, Zhe organization: China Institute of Atomic Energy – sequence: 5 givenname: Tao‐Yuan surname: Xiu fullname: Xiu, Tao‐Yuan organization: Chinese Academy of Sciences – sequence: 6 givenname: Jie surname: Li fullname: Li, Jie organization: Chinese Academy of Sciences – sequence: 7 givenname: Hong‐Bin surname: Tang fullname: Tang, Hong‐Bin organization: China Institute of Atomic Energy – sequence: 8 givenname: Li‐Yong surname: Yuan fullname: Yuan, Li‐Yong email: yuanly@ihep.ac.cn organization: Chinese Academy of Sciences – sequence: 9 givenname: Wang‐Suo surname: Wu fullname: Wu, Wang‐Suo organization: Lanzhou University – sequence: 10 givenname: Wei‐Qun orcidid: 0000-0001-9929-9732 surname: Shi fullname: Shi, Wei‐Qun email: shiwq@ihep.ac.cn organization: Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39663728$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFK0dkiQuXbB07cWJuq12WIhVV6sI5GsfO4pLYi-1Q9sYj8BK8GE-Cmy1FqoQ4eaz5_vlH85-gI-usRuh5TuY5IfQM1ABzSmiRF7wUj9AsL2meFUSUR2hGBCszwYv6GJ2EcE0IEZzwJ-iYCc5ZResZ-nlltkaZuP_1_ce619-MNH364Su9HXuIxlkMVuFz8CoRG9dFvHLWebx0gzR2Il7j1Qg93kQPUW-NDtjY1P8KvbYRX_otWNPitYdB3zj_OaSeDdGP7TS-S8MWqbRG6XDWg42fYKrxRu_ATw5P0eMO-qCf3b2n6OP6zYfleXZx-fbdcnGRtaxiIlO1lBWjVOZAmGIlIVBTymlNqJIArGBSiU5LJRktgetOi47kkgktuKwKxk7Rq8PcnXdfRh1iM5jQ6j5tpd0YGpauzEta8zqhLx-g1270Nm2XKF5WFU3-iXpxR41y0KrZeTOA3zd_AkjA_AC03oXgdXeP5KS5Tbi5Tbi5TzgJigeC1sTpSOn8pv-3TBxkN6bX-_-YNIvV-8Vf7W-EN7_I |
CitedBy_id | crossref_primary_10_1016_j_cjsc_2025_100562 |
Cites_doi | 10.1016/0003-2670(93)85194-O 10.1039/D1DT00186H 10.1007/s10967-012-1631-3 10.1039/C5CC10408D 10.1021/jacs.2c08468 10.1016/j.chemosphere.2023.140086 10.1016/j.cej.2023.142408 10.1002/adma.202304511 10.1016/j.jhazmat.2016.07.027 10.1002/adma.201705454 10.1021/jacs.3c13172 10.1021/jacs.8b10334 10.1016/B978-0-08-099362-1.00006-0 10.1016/0003-2670(95)00144-O 10.1007/s10967-021-08116-w 10.1134/S1066362214020027 10.1021/jacs.6b08377 10.1021/acs.inorgchem.3c04173 10.1016/j.cej.2023.141742 10.1002/adma.202005565 10.1002/anie.201411262 10.1002/anie.201208514 10.1021/jacs.7b01523 10.1021/acs.inorgchem.8b03592 10.1021/ic402784c 10.1021/jacs.6b07714 10.1002/adma.202306345 10.1016/j.carbpol.2021.117666 10.1002/chem.201501206 10.1021/jacs.5b04300 10.1016/j.supmat.2023.100043 10.1023/B:JRNC.0000034858.26483.ae 10.1038/s41467-023-35942-1 10.1039/C6RA07986E 10.1002/adfm.201870229 10.1016/j.cclet.2023.108440 10.1021/jacs.2c11926 10.1016/j.pnucene.2021.104080 10.1039/D2QI01153K 10.1021/jacs.5b10754 10.1016/j.seppur.2024.127307 10.1016/j.seppur.2021.119627 10.1016/j.jenvrad.2020.106254 10.1021/acsami.3c15170 10.1016/S1381-5148(97)00013-8 10.1016/j.gca.2015.11.029 10.1126/science.1120411 10.1016/j.cej.2019.03.087 10.1039/C4SC02593H 10.1557/mrs2010.712 10.1016/j.cclet.2022.02.011 10.1021/ja206846p 10.1002/adma.202405744 10.1021/jacs.0c13090 10.1039/D0CS00620C 10.1021/jacs.2c02173 10.1016/j.ccr.2021.213994 10.1021/jacs.9b00485 10.1039/C6RA17773E 10.1016/j.jece.2017.05.055 10.1002/anie.200900881 10.1016/j.radphyschem.2004.05.050 10.1039/C2CS35072F 10.31635/ccschem.019.20190005 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202414659 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 39663728 10_1002_adma_202414659 ADMA202414659 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U2067212 – fundername: National Science Fund for Distinguished Young Scholars funderid: 21925603 – fundername: National Natural Science Foundation of China grantid: U2067212 – fundername: National Science Fund for Distinguished Young Scholars grantid: 21925603 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 53G AAYXX AEYWJ AGHNM AGYGG CITATION LH4 .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK ABEML ABTAH ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3739-d8bb7322b1a03d3500a82262802dbaa343bd9febdb325a6efe9f01b39e96b7433 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:45:56 EDT 2025 Fri Jul 25 22:10:35 EDT 2025 Thu Feb 13 03:15:46 EST 2025 Thu Apr 24 22:54:43 EDT 2025 Tue Jul 01 00:55:00 EDT 2025 Thu Feb 13 09:32:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | covalent organic frameworks actinides/lanthanides separation spent fuel reprocessing |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-d8bb7322b1a03d3500a82262802dbaa343bd9febdb325a6efe9f01b39e96b7433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9929-9732 |
PMID | 39663728 |
PQID | 3165772350 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3146652868 proquest_journals_3165772350 pubmed_primary_39663728 crossref_primary_10_1002_adma_202414659 crossref_citationtrail_10_1002_adma_202414659 wiley_primary_10_1002_adma_202414659_ADMA202414659 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 144 2021 2023 2022 2021; 279 341 331 257 2022; 143 2023; 14 2016 2024 2023 2023 2023; 138 146 15 463 460 2010; 35 2021 2014; 445 56 2016; 318 2009 2013 2014; 48 52 5 2011 2016 2017 2019 2022; 133 138 139 141 144 2023; 145 2012 2015 2005; 292 303 72 2016 2015 2015 2015; 52 21 54 137 2019 2021; 1 50 2020 2016 2024 2019; 218 175 345 369 2016; 138 1993 1995 1997 2004; 281 310 33 261 2022; 33 2021; 143 2016 2016 2017; 6 6 5 2005 2021 2013 2018 2019 2020 2024 2017 2024 2023 2023; 310 50 42 28 141 32 36 30 36 35 2 2014 2019 2022 2023 2024 2024 2013 2015; 53 58 9 34 63 9 e_1_2_7_9_11 e_1_2_7_5_1 e_1_2_7_9_10 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_15_4 e_1_2_7_13_5 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_13_4 e_1_2_7_15_2 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 Afsar A. (e_1_2_7_15_8) 2015 e_1_2_7_9_6 e_1_2_7_9_5 e_1_2_7_9_4 e_1_2_7_9_3 e_1_2_7_9_9 e_1_2_7_9_8 Xiu T. (e_1_2_7_15_5) 2024 e_1_2_7_9_7 Ning S. (e_1_2_7_5_2) 2015; 303 Wu J. (e_1_2_7_20_3) 2022; 331 e_1_2_7_21_4 e_1_2_7_21_3 e_1_2_7_21_2 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_12_5 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_14_2 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_12_2 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 Hudson M. J. (e_1_2_7_15_7) 2013; 9 Yusov A. B. (e_1_2_7_22_2) 2014; 56 Wu R. (e_1_2_7_21_1) 2020; 218 Liu F. (e_1_2_7_15_6) 2024; 63 e_1_2_7_20_4 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 145 start-page: 1359 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 143 year: 2022 publication-title: Prog. Nucl. Energy – volume: 35 start-page: 859 year: 2010 publication-title: MRS Bull. – volume: 33 start-page: 3429 year: 2022 publication-title: Chin. Chem. Lett. – volume: 318 start-page: 266 year: 2016 publication-title: J. Hazard. Mater. – volume: 6 6 5 start-page: 3058 year: 2016 2016 2017 publication-title: RSC Adv. RSC Adv. J. Environ. Chem. Eng. – volume: 281 310 33 261 start-page: 361 63 25 269 year: 1993 1995 1997 2004 publication-title: Anal. Chim. Acta. Anal. Chim. Acta. React. Funct. Polym. J. Radioanal. Nucl. Chem. – volume: 48 52 5 start-page: 5439 2920 4693 year: 2009 2013 2014 publication-title: Angew Chem Int Ed Engl Angew. Chem., Int. Ed. Chem. Sci. – volume: 143 start-page: 5003 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 52 21 54 137 start-page: 2843 2986 7079 year: 2016 2015 2015 2015 publication-title: Chem. Commun. Chemistry – A European Journal Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 133 138 139 141 144 start-page: 6042 2920 6594 year: 2011 2016 2017 2019 2022 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 14 start-page: 261 year: 2023 publication-title: Nat. Commun. – volume: 138 146 15 463 460 start-page: 3031 4822 year: 2016 2024 2023 2023 2023 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. ACS Appl. Mater. Interfaces Chem. Eng. J. Chem. Eng. J. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 310 50 42 28 141 32 36 30 36 35 2 start-page: 1166 120 548 1807 year: 2005 2021 2013 2018 2019 2020 2024 2017 2024 2023 2023 publication-title: Science Chem. Soc. Rev. Chem. Soc. Rev. Adv. Funct. Mater. J. Am. Chem. Soc. Adv. Mater. Adv. Mater. Adv. Mater. Adv. Mater. Adv. Mater. Supramolecular Materials – volume: 1 50 start-page: 286 3792 year: 2019 2021 publication-title: CCS Chemistry Dalton Trans. – volume: 279 341 331 257 start-page: 469 year: 2021 2023 2022 2021 publication-title: Sep. Purif. Technol. Chemosphere J. Radioanal. Nucl. Chem. Carbohydr. Polym. – volume: 218 175 345 369 start-page: 86 736 year: 2020 2016 2024 2019 publication-title: J. Environ. Radioact. Geochim. Cosmochim. Acta Sep. Purif. Technol. Chem. Eng. J. – volume: 292 303 72 start-page: 537 2011 669 year: 2012 2015 2005 publication-title: J. Radioanal. Nucl. Chem. J. Radioanal. Nucl. Chem. Radiat. Phys. Chem. – volume: 53 58 9 34 63 9 start-page: 1712 4420 4671 465 3859 177 year: 2014 2019 2022 2023 2024 2024 2013 2015 publication-title: Inorg. Chem. Inorg. Chem. Inorg. Chem. Front. Chin. Chem. Lett. J. Hazard. Mater. Inorg. Chem. Strategies and Tactics in Organic Synthesis – volume: 445 56 start-page: 134 year: 2021 2014 publication-title: Coord. Chem. Rev. Radiochemistry – ident: e_1_2_7_4_1 doi: 10.1016/0003-2670(93)85194-O – ident: e_1_2_7_14_2 doi: 10.1039/D1DT00186H – ident: e_1_2_7_5_1 doi: 10.1007/s10967-012-1631-3 – ident: e_1_2_7_10_1 doi: 10.1039/C5CC10408D – ident: e_1_2_7_18_1 doi: 10.1021/jacs.2c08468 – ident: e_1_2_7_20_2 doi: 10.1016/j.chemosphere.2023.140086 – ident: e_1_2_7_12_4 doi: 10.1016/j.cej.2023.142408 – ident: e_1_2_7_9_10 doi: 10.1002/adma.202304511 – ident: e_1_2_7_3_1 doi: 10.1016/j.jhazmat.2016.07.027 – ident: e_1_2_7_9_8 doi: 10.1002/adma.201705454 – ident: e_1_2_7_12_2 doi: 10.1021/jacs.3c13172 – ident: e_1_2_7_9_5 doi: 10.1021/jacs.8b10334 – volume: 9 start-page: 177 year: 2013 ident: e_1_2_7_15_7 publication-title: Strategies and Tactics in Organic Synthesis doi: 10.1016/B978-0-08-099362-1.00006-0 – ident: e_1_2_7_4_2 doi: 10.1016/0003-2670(95)00144-O – volume: 331 start-page: 469 year: 2022 ident: e_1_2_7_20_3 publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-021-08116-w – volume: 56 start-page: 134 year: 2014 ident: e_1_2_7_22_2 publication-title: Radiochemistry doi: 10.1134/S1066362214020027 – ident: e_1_2_7_16_1 doi: 10.1021/jacs.6b08377 – volume: 63 start-page: 3859 year: 2024 ident: e_1_2_7_15_6 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c04173 – ident: e_1_2_7_12_5 doi: 10.1016/j.cej.2023.141742 – ident: e_1_2_7_9_6 doi: 10.1002/adma.202005565 – ident: e_1_2_7_10_3 doi: 10.1002/anie.201411262 – ident: e_1_2_7_11_2 doi: 10.1002/anie.201208514 – ident: e_1_2_7_13_3 doi: 10.1021/jacs.7b01523 – ident: e_1_2_7_15_2 doi: 10.1021/acs.inorgchem.8b03592 – ident: e_1_2_7_15_1 doi: 10.1021/ic402784c – ident: e_1_2_7_13_2 doi: 10.1021/jacs.6b07714 – ident: e_1_2_7_9_7 doi: 10.1002/adma.202306345 – ident: e_1_2_7_20_4 doi: 10.1016/j.carbpol.2021.117666 – ident: e_1_2_7_10_2 doi: 10.1002/chem.201501206 – ident: e_1_2_7_10_4 doi: 10.1021/jacs.5b04300 – ident: e_1_2_7_9_11 doi: 10.1016/j.supmat.2023.100043 – volume: 303 start-page: 2011 year: 2015 ident: e_1_2_7_5_2 publication-title: J. Radioanal. Nucl. Chem. – ident: e_1_2_7_4_4 doi: 10.1023/B:JRNC.0000034858.26483.ae – ident: e_1_2_7_7_1 doi: 10.1038/s41467-023-35942-1 – ident: e_1_2_7_6_1 doi: 10.1039/C6RA07986E – ident: e_1_2_7_9_4 doi: 10.1002/adfm.201870229 – ident: e_1_2_7_15_4 doi: 10.1016/j.cclet.2023.108440 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.2c11926 – ident: e_1_2_7_1_1 doi: 10.1016/j.pnucene.2021.104080 – ident: e_1_2_7_15_3 doi: 10.1039/D2QI01153K – ident: e_1_2_7_12_1 doi: 10.1021/jacs.5b10754 – ident: e_1_2_7_21_3 doi: 10.1016/j.seppur.2024.127307 – ident: e_1_2_7_20_1 doi: 10.1016/j.seppur.2021.119627 – volume-title: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering year: 2015 ident: e_1_2_7_15_8 – start-page: 465 year: 2024 ident: e_1_2_7_15_5 publication-title: J. Hazard. Mater. – volume: 218 year: 2020 ident: e_1_2_7_21_1 publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2020.106254 – ident: e_1_2_7_12_3 doi: 10.1021/acsami.3c15170 – ident: e_1_2_7_4_3 doi: 10.1016/S1381-5148(97)00013-8 – ident: e_1_2_7_21_2 doi: 10.1016/j.gca.2015.11.029 – ident: e_1_2_7_9_1 doi: 10.1126/science.1120411 – ident: e_1_2_7_21_4 doi: 10.1016/j.cej.2019.03.087 – ident: e_1_2_7_11_3 doi: 10.1039/C4SC02593H – ident: e_1_2_7_2_1 doi: 10.1557/mrs2010.712 – ident: e_1_2_7_8_1 doi: 10.1016/j.cclet.2022.02.011 – ident: e_1_2_7_13_1 doi: 10.1021/ja206846p – ident: e_1_2_7_9_9 doi: 10.1002/adma.202405744 – ident: e_1_2_7_17_1 doi: 10.1021/jacs.0c13090 – ident: e_1_2_7_9_2 doi: 10.1039/D0CS00620C – ident: e_1_2_7_13_5 doi: 10.1021/jacs.2c02173 – ident: e_1_2_7_22_1 doi: 10.1016/j.ccr.2021.213994 – ident: e_1_2_7_13_4 doi: 10.1021/jacs.9b00485 – ident: e_1_2_7_6_2 doi: 10.1039/C6RA17773E – ident: e_1_2_7_6_3 doi: 10.1016/j.jece.2017.05.055 – ident: e_1_2_7_11_1 doi: 10.1002/anie.200900881 – ident: e_1_2_7_5_3 doi: 10.1016/j.radphyschem.2004.05.050 – ident: e_1_2_7_9_3 doi: 10.1039/C2CS35072F – ident: e_1_2_7_14_1 doi: 10.31635/ccschem.019.20190005 |
SSID | ssj0009606 |
Score | 2.4910955 |
Snippet | Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2414659 |
SubjectTerms | Acidic oxides Actinides actinides/lanthanides separation Aqueous solutions Chemical synthesis covalent organic frameworks Flexibility Gadolinium Lanthanides Ligands Neptunium Nuclear reactor components Oxidation Plutonium Radioactive wastes Rigidity Separation spent fuel reprocessing Transuranium elements |
Title | Rigidity‐Flexibility Regulation and Hard‐Soft Donor Combination: Dual Strategies in Covalent Organic Frameworks Construction for Actinides/lanthanides Separation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202414659 https://www.ncbi.nlm.nih.gov/pubmed/39663728 https://www.proquest.com/docview/3165772350 https://www.proquest.com/docview/3146652868 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT-UAlJ-y0CIjVeKUbmLHTsJt1WW1QiqHbVfqLfJvWXXlVGT3ACcegZfgxXgSxvYm7YKqSnBz5LEc2-PxN8n4G4SOKqFLplKVAJQHB8UUNpGalIky1nLBcl6Gi7Snn_h0nn-8YBe3bvFHfoj-g5vfGcFe-w0uZDu8IQ0VOvAGwQmUc-Zv8PmALY-KZjf8UR6eB7I9ypKK52XH2piS4Xbz7VPpL6i5jVzD0TN5jET30jHi5Op4vZLH6tsffI7_M6on6NEGl-JRVKQ99MC4p-jhLbbCZ-jnbHG50IDaf33_MfE8miGu9iuexXT2sMBYOI19LABInIF9x-PGNV8w2Bzwv4PEezxeQzcdJ65p8cJBPag7HH44XgxVeNJFjLXYJxTtKG4xAGw8gqJbaNMOl6AUn0Uo4zMTOcwb9xzNJx_OT6bJJstDomhBq0SXUhZgVmQmUqopS1MBoIWTMiVaCkFzKnVljdSSEia4saayaSZpZSouAf_QF2jHNc68RBh8J0aVUjbXNBcVEwBvjaakyCzXmU0HKOlWuVYbCnSfiWNZR_JmUvvpr_vpH6B3vfx1JP-4U_KgU5p6YwTammacgfMCQxqgt301bF__T0Y406y9TM45IyUvB2g_KlvfFQVXlBYEakhQmXveoR6NT0f906t_afQa7RKf3zhEpR-gHVhfcwigayXfhI31GysPKGM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHIAD_z8LBYyExCndxI6dmNuKZbVAt4dtK3GL_EtXrRzEdg9w4hF4CV6sT9KxvUlZEEKCWyJPlNieGX_jjL9B6IWQpmY61xlAeQhQbOUyZUidaescl6zkdTxIO9vj08Py3QfWZROGszCJH6LfcAuWEf11MPCwIT28YA2VJhIHwRJUciYuoyuhrHeMquYXDFIBoEe6Pcoywcu6423MyXDz-c116TewuYld4-IzuYlU99kp5-R4Z3WqdvTXXxgd_6tft9CNNTTFo6RLt9El6--g6z8RFt5FP-aLjwsDwP3s2_dJoNKMqbVf8DxVtIc5xtIbHNIBQGIfXDwet779jMHtQAgeJV7h8Qpe09Hi2iVeeGgHjYf1D6ezoRpPuqSxJQ41RTuWWwwYG4_g0i-MXQ5PQC-OZLzG-zbRmLf-HjqcvDl4Pc3WhR4yTSsqMlMrVYFnUYXMqaEszyXgFk7qnBglJS2pMsJZZRQlTHLrrHB5oaiwgiuAQPQ-2vKttw8RhvCJUa21Kw0tpWASEK41lFSF46Zw-QBl3TQ3es2CHopxnDSJv5k0YfibfvgH6GUv_ynxf_xRcrvTmmbtB5YNLTiD-AW6NEDP-2aw4PBbRnrbroJMyTkjNa8H6EHStv5VFKJRWhFoIVFn_vINzWg8G_V3j_7loWfo6vRgttvsvt17_xhdI6HccUxS30ZbMNf2CWCwU_U0Wtk5kWYsfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgeyrssFDASEqd0E78Sc1sRovJohbZU6i3yk65aJRXbPZQTP4E_wR_jlzB2NmkXhJDg5shjObbH42-S8TcIPZfKFtykJgEoDw6Ky32iLSkS47wXijNRxIu0u3ti54C9PeSHl27xd_wQwwe3sDOivQ4b_NT68QVpqLKRNwhOICa4vIquMZEWQa_L6QWBVMDnkW2P8kQKVvS0jSkZr7ZfPZZ-w5qr0DWePdVNpPq37kJOjrcXZ3rbfPmF0PF_hnULbSyBKZ50mnQbXXHNHbR-ia7wLvo-nX2aWYDtP75-qwKRZgysPcfTLp89rDBWjcUhGAAk9sHA47Jt2s8YjA444FHiJS4X0E1PiuvmeNZAPeg7nH64uxlqcNWHjM1xyCjac9xiQNh4AsVmZt18fAJacaRiGe-7jsS8be6hg-r1x1c7yTLNQ2JoTmViC61zsCs6Uym1lKepAtQiSJESq5WijGorvdNWU8KVcN5Jn2aaSieFBgBE76O1pm3cA4TBeeLUGOOZpUxJrgDfOktJnnlhM5-OUNKvcm2WHOghFcdJ3bE3kzpMfz1M_wi9GORPO_aPP0pu9UpTL63AvKaZ4OC9wJBG6NlQDfs3_JRRjWsXQYYJwUkhihHa7JRt6IqCL0pzAjUkqsxf3qGelLuT4enhvzR6iq5_KKv6_Zu9d4_QDRJyHccI9S20BkvtHgMAO9NP4h77CQ0mKzY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rigidity%E2%80%90Flexibility+Regulation+and+Hard%E2%80%90Soft+Donor+Combination%3A+Dual+Strategies+in+Covalent+Organic+Frameworks+Construction+for+Actinides%2Flanthanides+Separation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Run%E2%80%90Jian+Cao&rft.au=Heng%E2%80%90Yi+Zhou&rft.au=Qun%E2%80%90Yan+Wu&rft.au=Xiao%2C+Zhe&rft.date=2025-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=6&rft_id=info:doi/10.1002%2Fadma.202414659&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |