Segregated Array Tailoring Charge‐Transfer Degree of Organic Cocrystal for the Efficient Near‐Infrared Emission beyond 760 nm
Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 11; pp. e2107169 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) CT organic complex is designed and fabricated via the supramolecular self‐assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP‐F4TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F4TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self‐assembled TP‐F4TCNQ single‐crystalline organic microwires display an ultralow optical‐loss coefficient of 0.060 dB µm−1. This work holds considerable insights for the exploration of novel NIR‐emissive organic materials via an universal “cocrystal engineering” strategy.
Through changing mixed stacking into segregated stacking mode, triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) charge‐transfer (CT) complex demonstrates a low CT degree and a small counter pitch angle between TP and F4TCNQ molecules, benefiting for breaking the forbidden electronic transitions of CT state for realizing the near‐infrared emission with a maximum peak of 770 nm and a photoluminescence quantum yield of 5.4%. |
---|---|
AbstractList | Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F
4
TCNQ) CT organic complex is designed and fabricated via the supramolecular self‐assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP‐F
4
TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F
4
TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self‐assembled TP‐F
4
TCNQ single‐crystalline organic microwires display an ultralow optical‐loss coefficient of 0.060 dB µm
−1
. This work holds considerable insights for the exploration of novel NIR‐emissive organic materials via an universal “cocrystal engineering” strategy. Harvesting the narrow bandgap excitons of charge-transfer (CT) complexes for the achievement of near-infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)-2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F TCNQ) CT organic complex is designed and fabricated via the supramolecular self-assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP-F TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self-assembled TP-F TCNQ single-crystalline organic microwires display an ultralow optical-loss coefficient of 0.060 dB µm . This work holds considerable insights for the exploration of novel NIR-emissive organic materials via an universal "cocrystal engineering" strategy. Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) CT organic complex is designed and fabricated via the supramolecular self‐assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP‐F4TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F4TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self‐assembled TP‐F4TCNQ single‐crystalline organic microwires display an ultralow optical‐loss coefficient of 0.060 dB µm−1. This work holds considerable insights for the exploration of novel NIR‐emissive organic materials via an universal “cocrystal engineering” strategy. Through changing mixed stacking into segregated stacking mode, triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) charge‐transfer (CT) complex demonstrates a low CT degree and a small counter pitch angle between TP and F4TCNQ molecules, benefiting for breaking the forbidden electronic transitions of CT state for realizing the near‐infrared emission with a maximum peak of 770 nm and a photoluminescence quantum yield of 5.4%. Harvesting the narrow bandgap excitons of charge-transfer (CT) complexes for the achievement of near-infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)-2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4 TCNQ) CT organic complex is designed and fabricated via the supramolecular self-assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP-F4 TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F4 TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self-assembled TP-F4 TCNQ single-crystalline organic microwires display an ultralow optical-loss coefficient of 0.060 dB µm-1 . This work holds considerable insights for the exploration of novel NIR-emissive organic materials via an universal "cocrystal engineering" strategy.Harvesting the narrow bandgap excitons of charge-transfer (CT) complexes for the achievement of near-infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)-2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4 TCNQ) CT organic complex is designed and fabricated via the supramolecular self-assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP-F4 TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F4 TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self-assembled TP-F4 TCNQ single-crystalline organic microwires display an ultralow optical-loss coefficient of 0.060 dB µm-1 . This work holds considerable insights for the exploration of novel NIR-emissive organic materials via an universal "cocrystal engineering" strategy. Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) CT organic complex is designed and fabricated via the supramolecular self‐assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP‐F4TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F4TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self‐assembled TP‐F4TCNQ single‐crystalline organic microwires display an ultralow optical‐loss coefficient of 0.060 dB µm−1. This work holds considerable insights for the exploration of novel NIR‐emissive organic materials via an universal “cocrystal engineering” strategy. |
Author | Feng, Zi‐Qi Li, Ming‐De Wang, Xue‐Dong Liao, Liang‐Sheng Zhuo, Ming‐Peng Chen, Ye‐Tao Yuan, Yi Su, Yang Li, Yang Hu, Bing‐Wen Chen, Song Qu, Yang‐Kun |
Author_xml | – sequence: 1 givenname: Ming‐Peng orcidid: 0000-0003-2399-8160 surname: Zhuo fullname: Zhuo, Ming‐Peng organization: Soochow University – sequence: 2 givenname: Yi surname: Yuan fullname: Yuan, Yi organization: Soochow University – sequence: 3 givenname: Yang surname: Su fullname: Su, Yang organization: Soochow University – sequence: 4 givenname: Song surname: Chen fullname: Chen, Song organization: Soochow University – sequence: 5 givenname: Ye‐Tao surname: Chen fullname: Chen, Ye‐Tao organization: Shantou University – sequence: 6 givenname: Zi‐Qi surname: Feng fullname: Feng, Zi‐Qi organization: Soochow University – sequence: 7 givenname: Yang‐Kun surname: Qu fullname: Qu, Yang‐Kun organization: Soochow University – sequence: 8 givenname: Ming‐De surname: Li fullname: Li, Ming‐De organization: Shantou University – sequence: 9 givenname: Yang surname: Li fullname: Li, Yang organization: East China Normal University – sequence: 10 givenname: Bing‐Wen surname: Hu fullname: Hu, Bing‐Wen organization: East China Normal University – sequence: 11 givenname: Xue‐Dong orcidid: 0000-0003-0935-0835 surname: Wang fullname: Wang, Xue‐Dong email: wangxuedong@suda.edu.cn organization: Soochow University – sequence: 12 givenname: Liang‐Sheng surname: Liao fullname: Liao, Liang‐Sheng email: lsliao@suda.edu.cn organization: Macau University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35029001$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFK0dkiQuXLGMncdbH1XYLlQo9sJytiWOnrrJ2sbNCuSGeoI_As_AoPAlebQtSJcTJc_i-X-P5T8iRD94Q8pLBnAHwt9htcc6BM2iYkE_IjNWcFRXI-ojMQJZ1IUW1OCYnKd0AgBQgnpHjsgYuAdiMfP9k-mh6HE1HlzHiRDfohhCd7-nqGmNvfn2720T0yZpIz_awocHSq9ijd5qugo5TGnGgNkQ6Xhu6ttZpZ_xIPxqM2b7wNmLM-eutS8kFT1szBd_RRsDPH377nDy1OCTz4v49JZ_P15vV--Ly6t3FanlZ6LIpZaGxKrFubFfZGvLciCr_p61QW5SNrbmFTradEMhwYUHLkjMGrFo0ZStBt-UpeXPIvY3hy86kUeV9tBkG9CbskuKCAzQSuMjo60foTdhFn7fLVCllJQWrMvXqntq1W9Op2-i2GCf1cN0MVAdAx5BSNFZpN-KYTzDGfGXFQO1LVPsS1Z8SszZ_pD0k_1OQB-GrG8z0H1otzz4s_7q_ASpGsOg |
CitedBy_id | crossref_primary_10_1021_jacs_3c10206 crossref_primary_10_1007_s40843_023_2767_6 crossref_primary_10_1016_j_dyepig_2024_112344 crossref_primary_10_1021_acsami_4c09071 crossref_primary_10_1016_j_jlumin_2022_119252 crossref_primary_10_1016_j_dyepig_2023_111899 crossref_primary_10_1002_admt_202200320 crossref_primary_10_1002_ange_202214214 crossref_primary_10_1038_s41467_023_42017_8 crossref_primary_10_1002_adfm_202412267 crossref_primary_10_1039_D4RA00002A crossref_primary_10_1021_acsnano_2c05721 crossref_primary_10_1002_adma_202306541 crossref_primary_10_1002_adom_202200852 crossref_primary_10_1039_D3TC02277C crossref_primary_10_1021_jacs_4c00090 crossref_primary_10_1039_D2CC04064F crossref_primary_10_1021_acs_cgd_2c00855 crossref_primary_10_1038_s41467_024_45262_7 crossref_primary_10_1002_adom_202400747 crossref_primary_10_1002_advs_202403249 crossref_primary_10_1002_ange_202311348 crossref_primary_10_1002_agt2_626 crossref_primary_10_1002_ange_202416181 crossref_primary_10_1021_acs_jpclett_3c00417 crossref_primary_10_1016_j_jlumin_2022_118950 crossref_primary_10_1002_anie_202402175 crossref_primary_10_1002_ange_202402175 crossref_primary_10_1002_smsc_202200029 crossref_primary_10_1002_solr_202300262 crossref_primary_10_1039_D3EE03550F crossref_primary_10_1016_j_dyepig_2022_110572 crossref_primary_10_1002_adom_202301112 crossref_primary_10_1021_acsnano_2c06064 crossref_primary_10_1002_ange_202309913 crossref_primary_10_1039_D3CE01208E crossref_primary_10_1002_anie_202413295 crossref_primary_10_1002_adom_202402334 crossref_primary_10_1021_jacs_2c11425 crossref_primary_10_1088_1742_6596_2610_1_012054 crossref_primary_10_1002_anie_202311348 crossref_primary_10_1021_acs_cgd_2c00313 crossref_primary_10_1021_jacs_4c18682 crossref_primary_10_1021_acs_jpclett_3c02787 crossref_primary_10_1039_D3CE01021J crossref_primary_10_1039_D3TB01475D crossref_primary_10_1016_j_talanta_2024_125919 crossref_primary_10_1360_nso_20230016 crossref_primary_10_1021_acs_jpclett_4c01663 crossref_primary_10_1038_s41467_024_46869_6 crossref_primary_10_1002_adma_202414719 crossref_primary_10_1002_advs_202206830 crossref_primary_10_1002_cjoc_202300738 crossref_primary_10_1016_j_cej_2024_158128 crossref_primary_10_1016_j_cej_2022_138516 crossref_primary_10_1002_adfm_202204129 crossref_primary_10_1126_sciadv_adh8917 crossref_primary_10_1002_adfm_202312478 crossref_primary_10_1002_adom_202201644 crossref_primary_10_1021_acs_jpclett_3c03366 crossref_primary_10_1002_adom_202402321 crossref_primary_10_1002_ange_202413295 crossref_primary_10_1002_smll_202205833 crossref_primary_10_1002_smll_202308470 crossref_primary_10_1002_anie_202309913 crossref_primary_10_1002_adma_202204749 crossref_primary_10_1002_adfm_202208082 crossref_primary_10_1002_adma_202206272 crossref_primary_10_1021_acs_jpcc_3c03787 crossref_primary_10_1016_j_dyepig_2025_112632 crossref_primary_10_1021_jacs_4c00648 crossref_primary_10_1016_j_chempr_2025_102497 crossref_primary_10_1021_acs_cgd_4c00446 crossref_primary_10_1016_j_dyepig_2022_110428 crossref_primary_10_1039_D3TC03109H crossref_primary_10_1007_s11426_024_2110_9 crossref_primary_10_1021_acs_cgd_3c01260 crossref_primary_10_1002_smll_202406352 crossref_primary_10_1021_acsanm_2c02467 crossref_primary_10_1002_anie_202416181 crossref_primary_10_1039_D4CE00701H crossref_primary_10_1016_j_matt_2023_10_034 crossref_primary_10_1007_s40843_024_3140_4 crossref_primary_10_1021_acs_cgd_3c00776 crossref_primary_10_1021_jacs_3c09226 crossref_primary_10_1002_anie_202214214 |
Cites_doi | 10.1063/1.450086 10.1002/anie.201712949 10.1002/adfm.201807623 10.1002/adma.201600280 10.1021/acsami.8b22317 10.1038/s41586-018-0695-9 10.1021/jacs.7b10334 10.1002/anie.201900501 10.1021/acs.cgd.5b01675 10.1002/anie.202006197 10.1002/jcc.22885 10.1002/adom.202002264 10.1021/ja210284s 10.1002/adma.201201493 10.1002/chem.202100906 10.1002/anie.201106652 10.1038/s41566-020-0653-6 10.1021/cg401841n 10.1002/anie.201609667 10.1002/adma.201000731 10.1002/anie.202101406 10.1038/nphoton.2016.230 10.1038/nature12339 10.1021/ja00876a029 10.1021/ja100936w 10.1107/S0567740874003669 10.1021/acsphotonics.8b00815 10.1038/s41467-018-03505-4 10.1002/anie.202016786 10.1021/nn901567z 10.1038/nmat3910 10.1016/j.matt.2020.01.023 10.1002/ange.201806149 10.1002/adma.201808242 10.1002/anie.201508210 10.1002/anie.201904427 10.1021/ja00399a066 10.1002/adfm.201304027 10.31635/ccschem.021.202100771 10.1021/ja312197b 10.1039/C5CS00543D 10.1021/acs.jpcc.6b12936 10.1186/s43074-021-00024-2 10.1103/PhysRevLett.105.067401 10.1038/s41467-020-18431-7 10.1038/nmat1298 10.1038/nmat1279 10.1021/jacs.8b07609 10.1039/C7TC04982J 10.1021/cm100798q 10.1021/ja310098k 10.1002/adma.202003885 10.1021/nn200027x |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202107169 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35029001 10_1002_adma_202107169 ADMA202107169 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Postdoctoral Science Foundation Funded Project funderid: 2020M681706 – fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology (CIC‐Nano) – fundername: National Natural Science Foundation of China funderid: 52173177; 21971185; 51821002 – fundername: National Postdoctoral Program for Innovative Talents funderid: BX20190228 – fundername: The State Administration of Foreign Experts Affairs of China. – fundername: National Natural Science Foundation of China grantid: 21971185 – fundername: National Natural Science Foundation of China grantid: 51821002 – fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology (CIC-Nano) – fundername: National Postdoctoral Program for Innovative Talents grantid: BX20190228 – fundername: Postdoctoral Science Foundation Funded Project grantid: 2020M681706 – fundername: National Natural Science Foundation of China grantid: 52173177 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3739-ca43a57fd4f50a43764009b4acfa97f52f0d9bd66a1a8f0c93211014873b90cb3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:28:19 EDT 2025 Fri Jul 25 03:10:19 EDT 2025 Wed Feb 19 02:25:57 EST 2025 Thu Apr 24 22:57:59 EDT 2025 Tue Jul 01 02:33:12 EDT 2025 Wed Jan 22 16:25:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | organic cocrystals photon transportation near-infrared emitters segregated stacking modes charge-transfer interactions |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-ca43a57fd4f50a43764009b4acfa97f52f0d9bd66a1a8f0c93211014873b90cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0935-0835 0000-0003-2399-8160 |
PMID | 35029001 |
PQID | 2639949614 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2620079026 proquest_journals_2639949614 pubmed_primary_35029001 crossref_citationtrail_10_1002_adma_202107169 crossref_primary_10_1002_adma_202107169 wiley_primary_10_1002_adma_202107169_ADMA202107169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 27 2018; 140 2021; 3 2012 2018; 51 5 1981; 103 2013; 500 2010 2005; 105 4 2019; 58 1974 2016; 30 16 2020; 11 2016; 55 2010 2020 2012; 132 32 33 2018; 6 2018; 130 2010; 22 2018; 9 2021 2021; 2 9 2012; 134 2020; 2 1986; 84 2016 2020 2018 2018; 11 14 104 563 2021 2020; 60 2 2017; 56 2005; 4 2011 2014 2010 2010 2019; 5 24 4 22 11 2014; 14 2014; 13 2019; 29 2017; 121 2012; 24 2016; 28 2021 2018; 60 57 1962; 84 2016; 45 2020 2019; 59 31 2013 2013; 135 135 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_28_2 Zhuo M.‐P. (e_1_2_7_22_1) 2020; 2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_31_2 e_1_2_7_23_1 e_1_2_7_31_3 e_1_2_7_33_1 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_37_1 e_1_2_7_37_2 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_36_2 e_1_2_7_36_3 e_1_2_7_36_4 e_1_2_7_36_5 |
References_xml | – volume: 14 start-page: 1338 year: 2014 publication-title: Cryst. Growth Des. – volume: 2 start-page: 413 year: 2020 publication-title: CCS Chem. – volume: 58 start-page: 9696 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 59 31 year: 2020 2019 publication-title: Angew. Chem., Int. Ed. Adv. Mater. – volume: 11 start-page: 4633 year: 2020 publication-title: Nat. Commun. – volume: 9 start-page: 1171 year: 2018 publication-title: Nat. Commun. – volume: 140 start-page: 1715 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 130 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 45 start-page: 169 year: 2016 publication-title: Chem. Soc. Rev. – volume: 84 start-page: 3374 year: 1962 publication-title: J. Am. Chem. Soc. – volume: 135 135 start-page: 4757 558 year: 2013 2013 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 132 32 33 start-page: 6498 580 year: 2010 2020 2012 publication-title: J. Am. Chem. Soc. Adv. Mater. J. Comput. Chem. – volume: 134 start-page: 2340 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 5954 year: 2016 publication-title: Adv. Mater. – volume: 105 4 start-page: 81 year: 2010 2005 publication-title: Phys. Rev. Lett. Nat. Mater. – volume: 2 9 start-page: 2 year: 2021 2021 publication-title: PhotoniX Adv. Opt. Mater. – volume: 103 start-page: 2442 year: 1981 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 163 year: 2005 publication-title: Nat. Mater. – volume: 51 5 start-page: 3556 3763 year: 2012 2018 publication-title: Angew. Chem., Int. Ed. ACS Photonics – volume: 121 start-page: 8579 year: 2017 publication-title: J. Phys. Chem. C – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 56 start-page: 198 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 60 57 start-page: 3963 year: 2021 2018 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 55 start-page: 203 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 1884 year: 2018 publication-title: J. Mater. Chem. C – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 3735 year: 2010 publication-title: Chem. Mater. – volume: 84 start-page: 4149 year: 1986 publication-title: J. Chem. Phys. – volume: 24 start-page: 5345 year: 2012 publication-title: Adv. Mater. – volume: 30 16 start-page: 763 3019 year: 1974 2016 publication-title: Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. Cryst. Growth Des. – volume: 500 start-page: 435 year: 2013 publication-title: Nature – volume: 11 14 104 563 start-page: 63 570 536 year: 2016 2020 2018 2018 publication-title: Nat. Photonics Nat. Photonics J. Am. Chem. Soc. Nature – volume: 60 2 start-page: 9114 1233 year: 2021 2020 publication-title: Angew. Chem., Int. Ed. Matter – volume: 3 start-page: 678 year: 2021 publication-title: CCS Chem. – volume: 27 start-page: 9535 year: 2021 publication-title: Chem. ‐ Eur. J. – volume: 13 start-page: 382 year: 2014 publication-title: Nat. Mater. – volume: 5 24 4 22 11 start-page: 2923 4250 1630 3661 5298 year: 2011 2014 2010 2010 2019 publication-title: ACS Nano Adv. Funct. Mater. ACS Nano Adv. Mater. ACS Appl. Mater. Interfaces – ident: e_1_2_7_29_1 doi: 10.1063/1.450086 – ident: e_1_2_7_14_2 doi: 10.1002/anie.201712949 – ident: e_1_2_7_6_1 doi: 10.1002/adfm.201807623 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201600280 – ident: e_1_2_7_36_5 doi: 10.1021/acsami.8b22317 – ident: e_1_2_7_1_4 doi: 10.1038/s41586-018-0695-9 – ident: e_1_2_7_7_1 doi: 10.1021/jacs.7b10334 – ident: e_1_2_7_11_1 doi: 10.1002/anie.201900501 – ident: e_1_2_7_28_2 doi: 10.1021/acs.cgd.5b01675 – ident: e_1_2_7_10_1 doi: 10.1002/anie.202006197 – ident: e_1_2_7_31_3 doi: 10.1002/jcc.22885 – ident: e_1_2_7_33_2 doi: 10.1002/adom.202002264 – ident: e_1_2_7_19_1 doi: 10.1021/ja210284s – ident: e_1_2_7_16_1 doi: 10.1002/adma.201201493 – ident: e_1_2_7_9_1 doi: 10.1002/chem.202100906 – ident: e_1_2_7_35_1 doi: 10.1002/anie.201106652 – ident: e_1_2_7_1_2 doi: 10.1038/s41566-020-0653-6 – ident: e_1_2_7_30_1 doi: 10.1021/cg401841n – ident: e_1_2_7_15_1 doi: 10.1002/anie.201609667 – ident: e_1_2_7_36_4 doi: 10.1002/adma.201000731 – ident: e_1_2_7_14_1 doi: 10.1002/anie.202101406 – volume: 2 start-page: 413 year: 2020 ident: e_1_2_7_22_1 publication-title: CCS Chem. – ident: e_1_2_7_1_1 doi: 10.1038/nphoton.2016.230 – ident: e_1_2_7_18_1 doi: 10.1038/nature12339 – ident: e_1_2_7_23_1 doi: 10.1021/ja00876a029 – ident: e_1_2_7_31_1 doi: 10.1021/ja100936w – ident: e_1_2_7_28_1 doi: 10.1107/S0567740874003669 – ident: e_1_2_7_35_2 doi: 10.1021/acsphotonics.8b00815 – ident: e_1_2_7_2_1 doi: 10.1038/s41467-018-03505-4 – ident: e_1_2_7_3_1 doi: 10.1002/anie.202016786 – ident: e_1_2_7_36_3 doi: 10.1021/nn901567z – ident: e_1_2_7_4_1 doi: 10.1038/nmat3910 – ident: e_1_2_7_3_2 doi: 10.1016/j.matt.2020.01.023 – ident: e_1_2_7_32_1 doi: 10.1002/ange.201806149 – ident: e_1_2_7_10_2 doi: 10.1002/adma.201808242 – ident: e_1_2_7_21_1 doi: 10.1002/anie.201508210 – ident: e_1_2_7_25_1 doi: 10.1002/anie.201904427 – ident: e_1_2_7_27_1 doi: 10.1021/ja00399a066 – ident: e_1_2_7_36_2 doi: 10.1002/adfm.201304027 – ident: e_1_2_7_8_1 doi: 10.31635/ccschem.021.202100771 – ident: e_1_2_7_13_1 doi: 10.1021/ja312197b – ident: e_1_2_7_5_1 doi: 10.1039/C5CS00543D – ident: e_1_2_7_24_1 doi: 10.1021/acs.jpcc.6b12936 – ident: e_1_2_7_33_1 doi: 10.1186/s43074-021-00024-2 – ident: e_1_2_7_37_1 doi: 10.1103/PhysRevLett.105.067401 – ident: e_1_2_7_17_1 doi: 10.1038/s41467-020-18431-7 – ident: e_1_2_7_12_1 doi: 10.1038/nmat1298 – ident: e_1_2_7_37_2 doi: 10.1038/nmat1279 – ident: e_1_2_7_1_3 doi: 10.1021/jacs.8b07609 – ident: e_1_2_7_26_1 doi: 10.1039/C7TC04982J – ident: e_1_2_7_34_1 doi: 10.1021/cm100798q – ident: e_1_2_7_13_2 doi: 10.1021/ja310098k – ident: e_1_2_7_31_2 doi: 10.1002/adma.202003885 – ident: e_1_2_7_36_1 doi: 10.1021/nn200027x |
SSID | ssj0009606 |
Score | 2.6182005 |
Snippet | Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention... Harvesting the narrow bandgap excitons of charge-transfer (CT) complexes for the achievement of near-infrared (NIR) emission has attracted intensive attention... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2107169 |
SubjectTerms | Charge transfer charge‐transfer interactions Electron transitions Excitons Materials science Near infrared radiation near‐infrared emitters Optical waveguides organic cocrystals Organic materials Photoluminescence photon transportation Pitch (inclination) segregated stacking modes Tetracyanoquinodimethane |
Title | Segregated Array Tailoring Charge‐Transfer Degree of Organic Cocrystal for the Efficient Near‐Infrared Emission beyond 760 nm |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107169 https://www.ncbi.nlm.nih.gov/pubmed/35029001 https://www.proquest.com/docview/2639949614 https://www.proquest.com/docview/2620079026 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hnuDA_0-gICMhcUrrdRxnfVy1WxWk9gCt1FtkO2OEaLMo3T2UE-IJeASehUfhSZhxdtMuCCHBLVHGiuPMz2d7_A3AC6UNmipgnnZaNdpR7tCPc-0pXFhUKqaifQeHZv9Yvz4pT66c4u_5IYYFN7aM5K_ZwJ0_374kDXVN4g2iKQsTvpAT5oQtRkVvLvmjGJ4nsr2izK3R4xVro1Tb683Xo9JvUHMduabQs3cL3KrTfcbJh63F3G-FT7_wOf7PV92Gm0tcKia9It2Ba9jehRtX2ArvwZe3SJNzXnZrSK5zF-LIve8T-ATv2r_DH5-_ptgXsRO7LIxiFkV_3DOInVnoLgiMngoCyoKAp5gm_goKe-KQDI5av2pjxxnxYkrqx-t4wqcTNqIy8vu39uw-HO9Nj3b282UJhzwUVWHz4HThyio2OpaSritDPsN67UJ0toqlirKxvjHGjdw4ykBocsTVg8dV4a0MvngAG-2sxUcgtGlK66pSGx8I9WgrrULyTigDOlQyg3z1C-uw5DfnMhundc_MrGoe23oY2wxeDvIfe2aPP0purjSiXlr4ea0Y2mlL6CaD58NjGhzecHEtzhYswyvBlqa5GTzsNWl4VVFKZQkjZKCSPvylD_Vk92Ay3D3-l0ZP4LrisxspgW4TNubdAp8Sopr7Z8lqfgK7vxhl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB7BcgAO_P8EFjASEqfsuo7j1Mdqt6subHuArsQtsh0bIZYUhfawnBBPwCPwLDwKT8KM02QpCCHBLVHGiuPMeD6Px98APBFSeVU4n8adVun1IDXeDlNp0V1oL0SIRfumMzU5ls9e5V02IZ2Fafkh-oAbWUacr8nAKSC9e8YaaqpIHIRrFmJ8OQ8XqKx3XFW9OGOQIoAe6fayPNVKDjveRi52N9tv-qXfwOYmdo3O5-Aq2K7bbc7J253V0u64j78wOv7Xd12DK2toykatLl2Hc76-AZd_Iiy8CZ9felyfU-StQrnGnLK5edPm8DHauH_tv3_6Et1f8A3bJ2HPFoG1Jz4d21u45hTx6AlDrMwQe7JxpLBAz8dmaHPY-rAODSXFszFqIIXymI2HbFih-Lev9btbcHwwnu9N0nUVh9RlRaZTZ2Rm8iJUMuQcrwuF04a20rhgdBFyEXilbaWUGZhh4A4B5YAKCA-LzGrubHYbtupF7e8Ck6rKtSlyqaxD4CM118LjBOW588YLnkDa_cPSrSnOqdLGSdmSM4uSxrbsxzaBp738-5bc44-S251KlGsj_1AKQndSI8BJ4HH_GAeH9lxM7RcrkqFgsMaVbgJ3WlXqX5XlXGiECQmIqBB_6UM52p-O-rt7_9LoEVyczKdH5dHh7Pl9uCToKEfMp9uGrWWz8g8QYC3tw2hCPwA2bhyA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAc-C8NFDASEqe0Xsdx1sdVd1ct0BWCVuotsh0bIUq2SncP5YR4Ah6BZ-FReBJmnN20C0JIcEuUseI4M57PY883AM-EVF4Vzqdxp1V63UuNt_1UWnQX2gsRYtG-_YnaPZQvjvKjC1n8LT9EF3Ajy4jzNRn4SRW2z0lDTRV5g3DJQoQvl-GKVLxPej18c04gRfg8su1leaqV7C9pG7nYXm2_6pZ-w5qr0DX6nvFNMMtet0dOPmzNZ3bLffqF0PF_PusW3FgAUzZoNek2XPL1Hbh-ga7wLnx563F1TnG3CuUac8YOzPv2BB-jbft3_sfnr9H5Bd-wIQl7Ng2szfd0bGfqmjNEo8cMkTJD5MlGkcAC_R6boMVh6706NHQkno1Q_yiQx2xMsWGF4t-_1R_vweF4dLCzmy5qOKQuKzKdOiMzkxehkiHneF0onDS0lcYFo4uQi8ArbSulTM_0A3cIJ3tUPrhfZFZzZ7N1WKuntd8AJlWVa1PkUlmHsEdqroXH6clz540XPIF0-QtLtyA4pzobx2VLzSxKGtuyG9sEnnfyJy21xx8lN5caUS5M_LQUhO2kRniTwNPuMQ4O7biY2k_nJEOhYI3r3ATut5rUvSrLudAIEhIQUR_-0odyMNwfdHcP_qXRE7j6ejguX-1NXj6Ea4LyOOJhuk1YmzVz_wjR1cw-jgb0E-PNGzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segregated+Array+Tailoring+Charge-Transfer+Degree+of+Organic+Cocrystal+for+the+Efficient+Near-Infrared+Emission+beyond+760+nm&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhuo%2C+Ming-Peng&rft.au=Yuan%2C+Yi&rft.au=Su%2C+Yang&rft.au=Chen%2C+Song&rft.date=2022-03-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=11&rft.spage=e2107169&rft_id=info:doi/10.1002%2Fadma.202107169&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |