Segregated Array Tailoring Charge‐Transfer Degree of Organic Cocrystal for the Efficient Near‐Infrared Emission beyond 760 nm

Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 11; pp. e2107169 - n/a
Main Authors Zhuo, Ming‐Peng, Yuan, Yi, Su, Yang, Chen, Song, Chen, Ye‐Tao, Feng, Zi‐Qi, Qu, Yang‐Kun, Li, Ming‐De, Li, Yang, Hu, Bing‐Wen, Wang, Xue‐Dong, Liao, Liang‐Sheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) CT organic complex is designed and fabricated via the supramolecular self‐assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP‐F4TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F4TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self‐assembled TP‐F4TCNQ single‐crystalline organic microwires display an ultralow optical‐loss coefficient of 0.060 dB µm−1. This work holds considerable insights for the exploration of novel NIR‐emissive organic materials via an universal “cocrystal engineering” strategy. Through changing mixed stacking into segregated stacking mode, triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) charge‐transfer (CT) complex demonstrates a low CT degree and a small counter pitch angle between TP and F4TCNQ molecules, benefiting for breaking the forbidden electronic transitions of CT state for realizing the near‐infrared emission with a maximum peak of 770 nm and a photoluminescence quantum yield of 5.4%.
AbstractList Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F 4 TCNQ) CT organic complex is designed and fabricated via the supramolecular self‐assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP‐F 4 TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F 4 TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self‐assembled TP‐F 4 TCNQ single‐crystalline organic microwires display an ultralow optical‐loss coefficient of 0.060 dB µm −1 . This work holds considerable insights for the exploration of novel NIR‐emissive organic materials via an universal “cocrystal engineering” strategy.
Harvesting the narrow bandgap excitons of charge-transfer (CT) complexes for the achievement of near-infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)-2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F TCNQ) CT organic complex is designed and fabricated via the supramolecular self-assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP-F TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self-assembled TP-F TCNQ single-crystalline organic microwires display an ultralow optical-loss coefficient of 0.060 dB µm . This work holds considerable insights for the exploration of novel NIR-emissive organic materials via an universal "cocrystal engineering" strategy.
Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) CT organic complex is designed and fabricated via the supramolecular self‐assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP‐F4TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F4TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self‐assembled TP‐F4TCNQ single‐crystalline organic microwires display an ultralow optical‐loss coefficient of 0.060 dB µm−1. This work holds considerable insights for the exploration of novel NIR‐emissive organic materials via an universal “cocrystal engineering” strategy. Through changing mixed stacking into segregated stacking mode, triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) charge‐transfer (CT) complex demonstrates a low CT degree and a small counter pitch angle between TP and F4TCNQ molecules, benefiting for breaking the forbidden electronic transitions of CT state for realizing the near‐infrared emission with a maximum peak of 770 nm and a photoluminescence quantum yield of 5.4%.
Harvesting the narrow bandgap excitons of charge-transfer (CT) complexes for the achievement of near-infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)-2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4 TCNQ) CT organic complex is designed and fabricated via the supramolecular self-assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP-F4 TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F4 TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self-assembled TP-F4 TCNQ single-crystalline organic microwires display an ultralow optical-loss coefficient of 0.060 dB µm-1 . This work holds considerable insights for the exploration of novel NIR-emissive organic materials via an universal "cocrystal engineering" strategy.Harvesting the narrow bandgap excitons of charge-transfer (CT) complexes for the achievement of near-infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)-2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4 TCNQ) CT organic complex is designed and fabricated via the supramolecular self-assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP-F4 TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F4 TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self-assembled TP-F4 TCNQ single-crystalline organic microwires display an ultralow optical-loss coefficient of 0.060 dB µm-1 . This work holds considerable insights for the exploration of novel NIR-emissive organic materials via an universal "cocrystal engineering" strategy.
Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)‐2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) CT organic complex is designed and fabricated via the supramolecular self‐assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP‐F4TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F4TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self‐assembled TP‐F4TCNQ single‐crystalline organic microwires display an ultralow optical‐loss coefficient of 0.060 dB µm−1. This work holds considerable insights for the exploration of novel NIR‐emissive organic materials via an universal “cocrystal engineering” strategy.
Author Feng, Zi‐Qi
Li, Ming‐De
Wang, Xue‐Dong
Liao, Liang‐Sheng
Zhuo, Ming‐Peng
Chen, Ye‐Tao
Yuan, Yi
Su, Yang
Li, Yang
Hu, Bing‐Wen
Chen, Song
Qu, Yang‐Kun
Author_xml – sequence: 1
  givenname: Ming‐Peng
  orcidid: 0000-0003-2399-8160
  surname: Zhuo
  fullname: Zhuo, Ming‐Peng
  organization: Soochow University
– sequence: 2
  givenname: Yi
  surname: Yuan
  fullname: Yuan, Yi
  organization: Soochow University
– sequence: 3
  givenname: Yang
  surname: Su
  fullname: Su, Yang
  organization: Soochow University
– sequence: 4
  givenname: Song
  surname: Chen
  fullname: Chen, Song
  organization: Soochow University
– sequence: 5
  givenname: Ye‐Tao
  surname: Chen
  fullname: Chen, Ye‐Tao
  organization: Shantou University
– sequence: 6
  givenname: Zi‐Qi
  surname: Feng
  fullname: Feng, Zi‐Qi
  organization: Soochow University
– sequence: 7
  givenname: Yang‐Kun
  surname: Qu
  fullname: Qu, Yang‐Kun
  organization: Soochow University
– sequence: 8
  givenname: Ming‐De
  surname: Li
  fullname: Li, Ming‐De
  organization: Shantou University
– sequence: 9
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: East China Normal University
– sequence: 10
  givenname: Bing‐Wen
  surname: Hu
  fullname: Hu, Bing‐Wen
  organization: East China Normal University
– sequence: 11
  givenname: Xue‐Dong
  orcidid: 0000-0003-0935-0835
  surname: Wang
  fullname: Wang, Xue‐Dong
  email: wangxuedong@suda.edu.cn
  organization: Soochow University
– sequence: 12
  givenname: Liang‐Sheng
  surname: Liao
  fullname: Liao, Liang‐Sheng
  email: lsliao@suda.edu.cn
  organization: Macau University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35029001$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFK0dkiQuXLGMncdbH1XYLlQo9sJytiWOnrrJ2sbNCuSGeoI_As_AoPAlebQtSJcTJc_i-X-P5T8iRD94Q8pLBnAHwt9htcc6BM2iYkE_IjNWcFRXI-ojMQJZ1IUW1OCYnKd0AgBQgnpHjsgYuAdiMfP9k-mh6HE1HlzHiRDfohhCd7-nqGmNvfn2720T0yZpIz_awocHSq9ijd5qugo5TGnGgNkQ6Xhu6ttZpZ_xIPxqM2b7wNmLM-eutS8kFT1szBd_RRsDPH377nDy1OCTz4v49JZ_P15vV--Ly6t3FanlZ6LIpZaGxKrFubFfZGvLciCr_p61QW5SNrbmFTradEMhwYUHLkjMGrFo0ZStBt-UpeXPIvY3hy86kUeV9tBkG9CbskuKCAzQSuMjo60foTdhFn7fLVCllJQWrMvXqntq1W9Op2-i2GCf1cN0MVAdAx5BSNFZpN-KYTzDGfGXFQO1LVPsS1Z8SszZ_pD0k_1OQB-GrG8z0H1otzz4s_7q_ASpGsOg
CitedBy_id crossref_primary_10_1021_jacs_3c10206
crossref_primary_10_1007_s40843_023_2767_6
crossref_primary_10_1016_j_dyepig_2024_112344
crossref_primary_10_1021_acsami_4c09071
crossref_primary_10_1016_j_jlumin_2022_119252
crossref_primary_10_1016_j_dyepig_2023_111899
crossref_primary_10_1002_admt_202200320
crossref_primary_10_1002_ange_202214214
crossref_primary_10_1038_s41467_023_42017_8
crossref_primary_10_1002_adfm_202412267
crossref_primary_10_1039_D4RA00002A
crossref_primary_10_1021_acsnano_2c05721
crossref_primary_10_1002_adma_202306541
crossref_primary_10_1002_adom_202200852
crossref_primary_10_1039_D3TC02277C
crossref_primary_10_1021_jacs_4c00090
crossref_primary_10_1039_D2CC04064F
crossref_primary_10_1021_acs_cgd_2c00855
crossref_primary_10_1038_s41467_024_45262_7
crossref_primary_10_1002_adom_202400747
crossref_primary_10_1002_advs_202403249
crossref_primary_10_1002_ange_202311348
crossref_primary_10_1002_agt2_626
crossref_primary_10_1002_ange_202416181
crossref_primary_10_1021_acs_jpclett_3c00417
crossref_primary_10_1016_j_jlumin_2022_118950
crossref_primary_10_1002_anie_202402175
crossref_primary_10_1002_ange_202402175
crossref_primary_10_1002_smsc_202200029
crossref_primary_10_1002_solr_202300262
crossref_primary_10_1039_D3EE03550F
crossref_primary_10_1016_j_dyepig_2022_110572
crossref_primary_10_1002_adom_202301112
crossref_primary_10_1021_acsnano_2c06064
crossref_primary_10_1002_ange_202309913
crossref_primary_10_1039_D3CE01208E
crossref_primary_10_1002_anie_202413295
crossref_primary_10_1002_adom_202402334
crossref_primary_10_1021_jacs_2c11425
crossref_primary_10_1088_1742_6596_2610_1_012054
crossref_primary_10_1002_anie_202311348
crossref_primary_10_1021_acs_cgd_2c00313
crossref_primary_10_1021_jacs_4c18682
crossref_primary_10_1021_acs_jpclett_3c02787
crossref_primary_10_1039_D3CE01021J
crossref_primary_10_1039_D3TB01475D
crossref_primary_10_1016_j_talanta_2024_125919
crossref_primary_10_1360_nso_20230016
crossref_primary_10_1021_acs_jpclett_4c01663
crossref_primary_10_1038_s41467_024_46869_6
crossref_primary_10_1002_adma_202414719
crossref_primary_10_1002_advs_202206830
crossref_primary_10_1002_cjoc_202300738
crossref_primary_10_1016_j_cej_2024_158128
crossref_primary_10_1016_j_cej_2022_138516
crossref_primary_10_1002_adfm_202204129
crossref_primary_10_1126_sciadv_adh8917
crossref_primary_10_1002_adfm_202312478
crossref_primary_10_1002_adom_202201644
crossref_primary_10_1021_acs_jpclett_3c03366
crossref_primary_10_1002_adom_202402321
crossref_primary_10_1002_ange_202413295
crossref_primary_10_1002_smll_202205833
crossref_primary_10_1002_smll_202308470
crossref_primary_10_1002_anie_202309913
crossref_primary_10_1002_adma_202204749
crossref_primary_10_1002_adfm_202208082
crossref_primary_10_1002_adma_202206272
crossref_primary_10_1021_acs_jpcc_3c03787
crossref_primary_10_1016_j_dyepig_2025_112632
crossref_primary_10_1021_jacs_4c00648
crossref_primary_10_1016_j_chempr_2025_102497
crossref_primary_10_1021_acs_cgd_4c00446
crossref_primary_10_1016_j_dyepig_2022_110428
crossref_primary_10_1039_D3TC03109H
crossref_primary_10_1007_s11426_024_2110_9
crossref_primary_10_1021_acs_cgd_3c01260
crossref_primary_10_1002_smll_202406352
crossref_primary_10_1021_acsanm_2c02467
crossref_primary_10_1002_anie_202416181
crossref_primary_10_1039_D4CE00701H
crossref_primary_10_1016_j_matt_2023_10_034
crossref_primary_10_1007_s40843_024_3140_4
crossref_primary_10_1021_acs_cgd_3c00776
crossref_primary_10_1021_jacs_3c09226
crossref_primary_10_1002_anie_202214214
Cites_doi 10.1063/1.450086
10.1002/anie.201712949
10.1002/adfm.201807623
10.1002/adma.201600280
10.1021/acsami.8b22317
10.1038/s41586-018-0695-9
10.1021/jacs.7b10334
10.1002/anie.201900501
10.1021/acs.cgd.5b01675
10.1002/anie.202006197
10.1002/jcc.22885
10.1002/adom.202002264
10.1021/ja210284s
10.1002/adma.201201493
10.1002/chem.202100906
10.1002/anie.201106652
10.1038/s41566-020-0653-6
10.1021/cg401841n
10.1002/anie.201609667
10.1002/adma.201000731
10.1002/anie.202101406
10.1038/nphoton.2016.230
10.1038/nature12339
10.1021/ja00876a029
10.1021/ja100936w
10.1107/S0567740874003669
10.1021/acsphotonics.8b00815
10.1038/s41467-018-03505-4
10.1002/anie.202016786
10.1021/nn901567z
10.1038/nmat3910
10.1016/j.matt.2020.01.023
10.1002/ange.201806149
10.1002/adma.201808242
10.1002/anie.201508210
10.1002/anie.201904427
10.1021/ja00399a066
10.1002/adfm.201304027
10.31635/ccschem.021.202100771
10.1021/ja312197b
10.1039/C5CS00543D
10.1021/acs.jpcc.6b12936
10.1186/s43074-021-00024-2
10.1103/PhysRevLett.105.067401
10.1038/s41467-020-18431-7
10.1038/nmat1298
10.1038/nmat1279
10.1021/jacs.8b07609
10.1039/C7TC04982J
10.1021/cm100798q
10.1021/ja310098k
10.1002/adma.202003885
10.1021/nn200027x
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202107169
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35029001
10_1002_adma_202107169
ADMA202107169
Genre article
Journal Article
GrantInformation_xml – fundername: Postdoctoral Science Foundation Funded Project
  funderid: 2020M681706
– fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology (CIC‐Nano)
– fundername: National Natural Science Foundation of China
  funderid: 52173177; 21971185; 51821002
– fundername: National Postdoctoral Program for Innovative Talents
  funderid: BX20190228
– fundername: The State Administration of Foreign Experts Affairs of China.
– fundername: National Natural Science Foundation of China
  grantid: 21971185
– fundername: National Natural Science Foundation of China
  grantid: 51821002
– fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology (CIC-Nano)
– fundername: National Postdoctoral Program for Innovative Talents
  grantid: BX20190228
– fundername: Postdoctoral Science Foundation Funded Project
  grantid: 2020M681706
– fundername: National Natural Science Foundation of China
  grantid: 52173177
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3739-ca43a57fd4f50a43764009b4acfa97f52f0d9bd66a1a8f0c93211014873b90cb3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 05:28:19 EDT 2025
Fri Jul 25 03:10:19 EDT 2025
Wed Feb 19 02:25:57 EST 2025
Thu Apr 24 22:57:59 EDT 2025
Tue Jul 01 02:33:12 EDT 2025
Wed Jan 22 16:25:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords organic cocrystals
photon transportation
near-infrared emitters
segregated stacking modes
charge-transfer interactions
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-ca43a57fd4f50a43764009b4acfa97f52f0d9bd66a1a8f0c93211014873b90cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0935-0835
0000-0003-2399-8160
PMID 35029001
PQID 2639949614
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2620079026
proquest_journals_2639949614
pubmed_primary_35029001
crossref_citationtrail_10_1002_adma_202107169
crossref_primary_10_1002_adma_202107169
wiley_primary_10_1002_adma_202107169_ADMA202107169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 27
2018; 140
2021; 3
2012 2018; 51 5
1981; 103
2013; 500
2010 2005; 105 4
2019; 58
1974 2016; 30 16
2020; 11
2016; 55
2010 2020 2012; 132 32 33
2018; 6
2018; 130
2010; 22
2018; 9
2021 2021; 2 9
2012; 134
2020; 2
1986; 84
2016 2020 2018 2018; 11 14 104 563
2021 2020; 60 2
2017; 56
2005; 4
2011 2014 2010 2010 2019; 5 24 4 22 11
2014; 14
2014; 13
2019; 29
2017; 121
2012; 24
2016; 28
2021 2018; 60 57
1962; 84
2016; 45
2020 2019; 59 31
2013 2013; 135 135
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_28_2
Zhuo M.‐P. (e_1_2_7_22_1) 2020; 2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_31_2
e_1_2_7_23_1
e_1_2_7_31_3
e_1_2_7_33_1
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_35_2
e_1_2_7_37_1
e_1_2_7_37_2
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_36_2
e_1_2_7_36_3
e_1_2_7_36_4
e_1_2_7_36_5
References_xml – volume: 14
  start-page: 1338
  year: 2014
  publication-title: Cryst. Growth Des.
– volume: 2
  start-page: 413
  year: 2020
  publication-title: CCS Chem.
– volume: 58
  start-page: 9696
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 59 31
  year: 2020 2019
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 11
  start-page: 4633
  year: 2020
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1171
  year: 2018
  publication-title: Nat. Commun.
– volume: 140
  start-page: 1715
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 130
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 45
  start-page: 169
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 84
  start-page: 3374
  year: 1962
  publication-title: J. Am. Chem. Soc.
– volume: 135 135
  start-page: 4757 558
  year: 2013 2013
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 132 32 33
  start-page: 6498 580
  year: 2010 2020 2012
  publication-title: J. Am. Chem. Soc. Adv. Mater. J. Comput. Chem.
– volume: 134
  start-page: 2340
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 5954
  year: 2016
  publication-title: Adv. Mater.
– volume: 105 4
  start-page: 81
  year: 2010 2005
  publication-title: Phys. Rev. Lett. Nat. Mater.
– volume: 2 9
  start-page: 2
  year: 2021 2021
  publication-title: PhotoniX Adv. Opt. Mater.
– volume: 103
  start-page: 2442
  year: 1981
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 163
  year: 2005
  publication-title: Nat. Mater.
– volume: 51 5
  start-page: 3556 3763
  year: 2012 2018
  publication-title: Angew. Chem., Int. Ed. ACS Photonics
– volume: 121
  start-page: 8579
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 56
  start-page: 198
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 60 57
  start-page: 3963
  year: 2021 2018
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 55
  start-page: 203
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 1884
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 3735
  year: 2010
  publication-title: Chem. Mater.
– volume: 84
  start-page: 4149
  year: 1986
  publication-title: J. Chem. Phys.
– volume: 24
  start-page: 5345
  year: 2012
  publication-title: Adv. Mater.
– volume: 30 16
  start-page: 763 3019
  year: 1974 2016
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. Cryst. Growth Des.
– volume: 500
  start-page: 435
  year: 2013
  publication-title: Nature
– volume: 11 14 104 563
  start-page: 63 570 536
  year: 2016 2020 2018 2018
  publication-title: Nat. Photonics Nat. Photonics J. Am. Chem. Soc. Nature
– volume: 60 2
  start-page: 9114 1233
  year: 2021 2020
  publication-title: Angew. Chem., Int. Ed. Matter
– volume: 3
  start-page: 678
  year: 2021
  publication-title: CCS Chem.
– volume: 27
  start-page: 9535
  year: 2021
  publication-title: Chem. ‐ Eur. J.
– volume: 13
  start-page: 382
  year: 2014
  publication-title: Nat. Mater.
– volume: 5 24 4 22 11
  start-page: 2923 4250 1630 3661 5298
  year: 2011 2014 2010 2010 2019
  publication-title: ACS Nano Adv. Funct. Mater. ACS Nano Adv. Mater. ACS Appl. Mater. Interfaces
– ident: e_1_2_7_29_1
  doi: 10.1063/1.450086
– ident: e_1_2_7_14_2
  doi: 10.1002/anie.201712949
– ident: e_1_2_7_6_1
  doi: 10.1002/adfm.201807623
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201600280
– ident: e_1_2_7_36_5
  doi: 10.1021/acsami.8b22317
– ident: e_1_2_7_1_4
  doi: 10.1038/s41586-018-0695-9
– ident: e_1_2_7_7_1
  doi: 10.1021/jacs.7b10334
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.201900501
– ident: e_1_2_7_28_2
  doi: 10.1021/acs.cgd.5b01675
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.202006197
– ident: e_1_2_7_31_3
  doi: 10.1002/jcc.22885
– ident: e_1_2_7_33_2
  doi: 10.1002/adom.202002264
– ident: e_1_2_7_19_1
  doi: 10.1021/ja210284s
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201201493
– ident: e_1_2_7_9_1
  doi: 10.1002/chem.202100906
– ident: e_1_2_7_35_1
  doi: 10.1002/anie.201106652
– ident: e_1_2_7_1_2
  doi: 10.1038/s41566-020-0653-6
– ident: e_1_2_7_30_1
  doi: 10.1021/cg401841n
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.201609667
– ident: e_1_2_7_36_4
  doi: 10.1002/adma.201000731
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.202101406
– volume: 2
  start-page: 413
  year: 2020
  ident: e_1_2_7_22_1
  publication-title: CCS Chem.
– ident: e_1_2_7_1_1
  doi: 10.1038/nphoton.2016.230
– ident: e_1_2_7_18_1
  doi: 10.1038/nature12339
– ident: e_1_2_7_23_1
  doi: 10.1021/ja00876a029
– ident: e_1_2_7_31_1
  doi: 10.1021/ja100936w
– ident: e_1_2_7_28_1
  doi: 10.1107/S0567740874003669
– ident: e_1_2_7_35_2
  doi: 10.1021/acsphotonics.8b00815
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467-018-03505-4
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.202016786
– ident: e_1_2_7_36_3
  doi: 10.1021/nn901567z
– ident: e_1_2_7_4_1
  doi: 10.1038/nmat3910
– ident: e_1_2_7_3_2
  doi: 10.1016/j.matt.2020.01.023
– ident: e_1_2_7_32_1
  doi: 10.1002/ange.201806149
– ident: e_1_2_7_10_2
  doi: 10.1002/adma.201808242
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.201508210
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.201904427
– ident: e_1_2_7_27_1
  doi: 10.1021/ja00399a066
– ident: e_1_2_7_36_2
  doi: 10.1002/adfm.201304027
– ident: e_1_2_7_8_1
  doi: 10.31635/ccschem.021.202100771
– ident: e_1_2_7_13_1
  doi: 10.1021/ja312197b
– ident: e_1_2_7_5_1
  doi: 10.1039/C5CS00543D
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.jpcc.6b12936
– ident: e_1_2_7_33_1
  doi: 10.1186/s43074-021-00024-2
– ident: e_1_2_7_37_1
  doi: 10.1103/PhysRevLett.105.067401
– ident: e_1_2_7_17_1
  doi: 10.1038/s41467-020-18431-7
– ident: e_1_2_7_12_1
  doi: 10.1038/nmat1298
– ident: e_1_2_7_37_2
  doi: 10.1038/nmat1279
– ident: e_1_2_7_1_3
  doi: 10.1021/jacs.8b07609
– ident: e_1_2_7_26_1
  doi: 10.1039/C7TC04982J
– ident: e_1_2_7_34_1
  doi: 10.1021/cm100798q
– ident: e_1_2_7_13_2
  doi: 10.1021/ja310098k
– ident: e_1_2_7_31_2
  doi: 10.1002/adma.202003885
– ident: e_1_2_7_36_1
  doi: 10.1021/nn200027x
SSID ssj0009606
Score 2.6182005
Snippet Harvesting the narrow bandgap excitons of charge‐transfer (CT) complexes for the achievement of near‐infrared (NIR) emission has attracted intensive attention...
Harvesting the narrow bandgap excitons of charge-transfer (CT) complexes for the achievement of near-infrared (NIR) emission has attracted intensive attention...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2107169
SubjectTerms Charge transfer
charge‐transfer interactions
Electron transitions
Excitons
Materials science
Near infrared radiation
near‐infrared emitters
Optical waveguides
organic cocrystals
Organic materials
Photoluminescence
photon transportation
Pitch (inclination)
segregated stacking modes
Tetracyanoquinodimethane
Title Segregated Array Tailoring Charge‐Transfer Degree of Organic Cocrystal for the Efficient Near‐Infrared Emission beyond 760 nm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107169
https://www.ncbi.nlm.nih.gov/pubmed/35029001
https://www.proquest.com/docview/2639949614
https://www.proquest.com/docview/2620079026
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hnuDA_0-gICMhcUrrdRxnfVy1WxWk9gCt1FtkO2OEaLMo3T2UE-IJeASehUfhSZhxdtMuCCHBLVHGiuPMz2d7_A3AC6UNmipgnnZaNdpR7tCPc-0pXFhUKqaifQeHZv9Yvz4pT66c4u_5IYYFN7aM5K_ZwJ0_374kDXVN4g2iKQsTvpAT5oQtRkVvLvmjGJ4nsr2izK3R4xVro1Tb683Xo9JvUHMduabQs3cL3KrTfcbJh63F3G-FT7_wOf7PV92Gm0tcKia9It2Ba9jehRtX2ArvwZe3SJNzXnZrSK5zF-LIve8T-ATv2r_DH5-_ptgXsRO7LIxiFkV_3DOInVnoLgiMngoCyoKAp5gm_goKe-KQDI5av2pjxxnxYkrqx-t4wqcTNqIy8vu39uw-HO9Nj3b282UJhzwUVWHz4HThyio2OpaSritDPsN67UJ0toqlirKxvjHGjdw4ykBocsTVg8dV4a0MvngAG-2sxUcgtGlK66pSGx8I9WgrrULyTigDOlQyg3z1C-uw5DfnMhundc_MrGoe23oY2wxeDvIfe2aPP0purjSiXlr4ea0Y2mlL6CaD58NjGhzecHEtzhYswyvBlqa5GTzsNWl4VVFKZQkjZKCSPvylD_Vk92Ay3D3-l0ZP4LrisxspgW4TNubdAp8Sopr7Z8lqfgK7vxhl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB7BcgAO_P8EFjASEqfsuo7j1Mdqt6subHuArsQtsh0bIZYUhfawnBBPwCPwLDwKT8KM02QpCCHBLVHGiuPMeD6Px98APBFSeVU4n8adVun1IDXeDlNp0V1oL0SIRfumMzU5ls9e5V02IZ2Fafkh-oAbWUacr8nAKSC9e8YaaqpIHIRrFmJ8OQ8XqKx3XFW9OGOQIoAe6fayPNVKDjveRi52N9tv-qXfwOYmdo3O5-Aq2K7bbc7J253V0u64j78wOv7Xd12DK2toykatLl2Hc76-AZd_Iiy8CZ9felyfU-StQrnGnLK5edPm8DHauH_tv3_6Et1f8A3bJ2HPFoG1Jz4d21u45hTx6AlDrMwQe7JxpLBAz8dmaHPY-rAODSXFszFqIIXymI2HbFih-Lev9btbcHwwnu9N0nUVh9RlRaZTZ2Rm8iJUMuQcrwuF04a20rhgdBFyEXilbaWUGZhh4A4B5YAKCA-LzGrubHYbtupF7e8Ck6rKtSlyqaxD4CM118LjBOW588YLnkDa_cPSrSnOqdLGSdmSM4uSxrbsxzaBp738-5bc44-S251KlGsj_1AKQndSI8BJ4HH_GAeH9lxM7RcrkqFgsMaVbgJ3WlXqX5XlXGiECQmIqBB_6UM52p-O-rt7_9LoEVyczKdH5dHh7Pl9uCToKEfMp9uGrWWz8g8QYC3tw2hCPwA2bhyA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAc-C8NFDASEqe0Xsdx1sdVd1ct0BWCVuotsh0bIUq2SncP5YR4Ah6BZ-FReBJmnN20C0JIcEuUseI4M57PY883AM-EVF4Vzqdxp1V63UuNt_1UWnQX2gsRYtG-_YnaPZQvjvKjC1n8LT9EF3Ajy4jzNRn4SRW2z0lDTRV5g3DJQoQvl-GKVLxPej18c04gRfg8su1leaqV7C9pG7nYXm2_6pZ-w5qr0DX6nvFNMMtet0dOPmzNZ3bLffqF0PF_PusW3FgAUzZoNek2XPL1Hbh-ga7wLnx563F1TnG3CuUac8YOzPv2BB-jbft3_sfnr9H5Bd-wIQl7Ng2szfd0bGfqmjNEo8cMkTJD5MlGkcAC_R6boMVh6706NHQkno1Q_yiQx2xMsWGF4t-_1R_vweF4dLCzmy5qOKQuKzKdOiMzkxehkiHneF0onDS0lcYFo4uQi8ArbSulTM_0A3cIJ3tUPrhfZFZzZ7N1WKuntd8AJlWVa1PkUlmHsEdqroXH6clz540XPIF0-QtLtyA4pzobx2VLzSxKGtuyG9sEnnfyJy21xx8lN5caUS5M_LQUhO2kRniTwNPuMQ4O7biY2k_nJEOhYI3r3ATut5rUvSrLudAIEhIQUR_-0odyMNwfdHcP_qXRE7j6ejguX-1NXj6Ea4LyOOJhuk1YmzVz_wjR1cw-jgb0E-PNGzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segregated+Array+Tailoring+Charge-Transfer+Degree+of+Organic+Cocrystal+for+the+Efficient+Near-Infrared+Emission+beyond+760+nm&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhuo%2C+Ming-Peng&rft.au=Yuan%2C+Yi&rft.au=Su%2C+Yang&rft.au=Chen%2C+Song&rft.date=2022-03-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=11&rft.spage=e2107169&rft_id=info:doi/10.1002%2Fadma.202107169&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon