Cross‐class pest and disease vegetation detection based on small sample registration
This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal images for each class during training. So far, studies on FSAD have been carried out according to each model, and there is no discussion of common...
Saved in:
Published in | IET image processing Vol. 17; no. 8; pp. 2299 - 2308 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-9659 1751-9667 |
DOI | 10.1049/ipr2.12779 |
Cover
Loading…
Abstract | This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal images for each class during training. So far, studies on FSAD have been carried out according to each model, and there is no discussion of commonalities between different types. Depending on how people detect unusual lies, the problematic images are compared to the normal ones. The image alignment method based on different classifications is used to train the target detection model independent of classification, and performed ablation experiments on the pest and disease datasets in different environments for verification. This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters. The experimental results show that the application of AUC based on vegetation disease data set and vegetation pest data set in FSAD algorithm is improved by 19.5% compared with the existing algorithm.
This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters. |
---|---|
AbstractList | Abstract This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal images for each class during training. So far, studies on FSAD have been carried out according to each model, and there is no discussion of commonalities between different types. Depending on how people detect unusual lies, the problematic images are compared to the normal ones. The image alignment method based on different classifications is used to train the target detection model independent of classification, and performed ablation experiments on the pest and disease datasets in different environments for verification. This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters. The experimental results show that the application of AUC based on vegetation disease data set and vegetation pest data set in FSAD algorithm is improved by 19.5% compared with the existing algorithm. This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal images for each class during training. So far, studies on FSAD have been carried out according to each model, and there is no discussion of commonalities between different types. Depending on how people detect unusual lies, the problematic images are compared to the normal ones. The image alignment method based on different classifications is used to train the target detection model independent of classification, and performed ablation experiments on the pest and disease datasets in different environments for verification. This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters. The experimental results show that the application of AUC based on vegetation disease data set and vegetation pest data set in FSAD algorithm is improved by 19.5% compared with the existing algorithm. This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters. This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal images for each class during training. So far, studies on FSAD have been carried out according to each model, and there is no discussion of commonalities between different types. Depending on how people detect unusual lies, the problematic images are compared to the normal ones. The image alignment method based on different classifications is used to train the target detection model independent of classification, and performed ablation experiments on the pest and disease datasets in different environments for verification. This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters. The experimental results show that the application of AUC based on vegetation disease data set and vegetation pest data set in FSAD algorithm is improved by 19.5% compared with the existing algorithm. |
Author | MingMing, An Wenfei, Jiang Jiayao, Liu Yunsheng, Wang Shipu, Xu Linfeng, Wang |
Author_xml | – sequence: 1 givenname: Liu surname: Jiayao fullname: Jiayao, Liu email: xushipu@sass.sh.cn organization: Shanghai Academy of Agricultural Sciences – sequence: 2 givenname: Wang orcidid: 0000-0002-0701-833X surname: Linfeng fullname: Linfeng, Wang organization: Shanghai Institute of Technology – sequence: 3 givenname: Wang surname: Yunsheng fullname: Yunsheng, Wang email: 216151115@mail.sit.edu.cn organization: Shanghai Academy of Agricultural Sciences – sequence: 4 givenname: An surname: MingMing fullname: MingMing, An email: anmingming@sass.sh.cn organization: Shanghai Academy of Agricultural Sciences – sequence: 5 givenname: Jiang surname: Wenfei fullname: Wenfei, Jiang email: jiangwenfei@sass.sh.cn organization: Shanghai Academy of Agricultural Sciences – sequence: 6 givenname: Xu surname: Shipu fullname: Shipu, Xu email: 216151119@mail.sit.edu.cn organization: Shanghai Academy of Agricultural Sciences |
BookMark | eNp9kNFKwzAUhoNMcJve-AS5FjqTtGmSSxnqBgNF1NuQJqcjo2tLUpTd-Qg-o09i18ouvTof53znv_hnaFI3NSB0TcmCkkzd-jawBWVCqDM0pYLTROW5mJyYqws0i3FHCFdE8il6X4Ymxp-vb1uZGHELscOmdtj5CCYC_oAtdKbzTY0ddGAHKvqLwz3EvakqHM2-rQAH2PrYhUG-ROelqSJc_c05enu4f12uks3T43p5t0lsKlKVFBZY4Zg0qkiVtUyS3PCSKelEySkHYXpiNnOE0NzRLM8YlVnvKFmygtJ0jtZjrmvMTrfB70046MZ4PSyasNUmdN5WoDlxypScc-AicyJXIqNcMlnQnDtuoc-6GbPssZIA5SmPEn1sVx_b1UO7vUxH-dNXcPjH1OvnFzb-_AIemn9M |
Cites_doi | 10.1109/CVPR46437.2021.01549 10.1109/WACV48630.2021.00195 10.1038/nmeth.1602 10.1109/ICASSP.2014.6853873 10.3390/s19051058 10.1109/CVPR.2016.90 10.1109/WACV51458.2022.00188 10.1007/s11263-015-0816-y 10.3390/rs70809705 10.1109/TMM.2020.3046884 10.1016/j.compenvurbsys.2012.01.003 10.1109/ICCV.2015.177 10.1109/CVPR46437.2021.01466 10.1109/CVPR52688.2022.01392 10.1109/IGARSS.2017.8128169 10.3390/s22052012 10.1109/CVPR.2018.00175 10.1016/j.compag.2020.105542 10.3390/rs71114680 10.1080/01431161.2018.1433343 10.1109/TMI.2020.3040950 10.1614/0043-1745(2003)051[0271:KNAATE]2.0.CO;2 10.1109/IJCNN.2018.8489169 10.1111/exsy.12746 10.1109/TVCG.2007.70515 10.1109/CVPR46437.2021.00954 10.1016/j.compag.2018.04.023 10.1007/978-3-030-68799-1_35 10.1109/ICCV48922.2021.00838 10.1109/ICME52920.2022.9859925 10.3390/electronics10080978 10.1016/j.compag.2018.02.016 10.1109/TGRS.2010.2047021 10.1145/1553374.1553453 10.1002/pra2.16 10.1109/LGRS.2017.2752750 10.1038/s41586-019-0912-1 10.1109/ICCV48922.2021.00433 10.3390/s22041597 10.1016/j.compag.2020.105828 10.1006/cviu.1996.0520 10.1162/089976601750264965 10.1109/MGRS.2017.2762307 10.1007/978-3-030-20893-6_39 10.1109/TGRS.2018.2871782 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/ipr2.12779 |
DatabaseName | Wiley Online Library Open Access CrossRef Directory of Open Access Journals (DOAJ) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1751-9667 |
EndPage | 2308 |
ExternalDocumentID | oai_doaj_org_article_50d9af555e574d7697415828b165d5ce 10_1049_ipr2_12779 IPR212779 |
Genre | article |
GrantInformation_xml | – fundername: Shanghai Science and Technology Committee Program funderid: 21N51900300 |
GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK 8VB AAHHS AAHJG AAJGR ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS ESX GROUPED_DOAJ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G LAI MCNEO MS~ O9- OCL OK1 P2P QWB RIE RNS ROL RUI ZL0 4.4 8FE 8FG AAMMB AAYXX ABJCF AEFGJ AFKRA AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ IDLOA L6V M43 M7S P62 PHGZM PHGZT PQGLB PTHSS S0W WIN |
ID | FETCH-LOGICAL-c3739-bce2bd28a9b39cc2806a5f298d7f515e7a8d72c4d0016d146421846a598f2b113 |
IEDL.DBID | DOA |
ISSN | 1751-9659 |
IngestDate | Wed Aug 27 01:21:33 EDT 2025 Tue Aug 05 12:10:15 EDT 2025 Wed Jan 22 16:21:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-bce2bd28a9b39cc2806a5f298d7f515e7a8d72c4d0016d146421846a598f2b113 |
ORCID | 0000-0002-0701-833X |
OpenAccessLink | https://doaj.org/article/50d9af555e574d7697415828b165d5ce |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_50d9af555e574d7697415828b165d5ce crossref_primary_10_1049_ipr2_12779 wiley_primary_10_1049_ipr2_12779_IPR212779 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IET image processing |
PublicationYear | 2023 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2017; 5 2019; 56 2018; 147 1997; 67 2009 2019; 566 2022; 24 2019; 19 1993 2022; 22 2012; 36 2003; 51 2015; 7 2011; 8 2007; 13 2021; 38 2018; 39 2021; 10 2010; 48 2018; 150 2015; 115 2000 2017; 14 2022 2021 2020; 175 2019 2014; 37 2018 2017 2016 2015 2014 2020; 179 2001; 13 2021; 40 2018; 57 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Cheng M.M. (e_1_2_8_51_1) 2014; 37 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 Jaderberg M. (e_1_2_8_53_1) 2015 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_38_1 e_1_2_8_57_1 Snell J. (e_1_2_8_48_1) 2017 Golan I. (e_1_2_8_15_1) 2018 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Bromley J. (e_1_2_8_54_1) 1993 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 51 start-page: 271 issue: 2 year: 2003 end-page: 277 article-title: Knowledge networks: An avenue to ecological management of invasive weeds publication-title: Weed Sci. – volume: 179 year: 2020 article-title: Zero‐and few‐shot learning for diseases recognition of Citrus aurantium L. using conditional adversarial autoencoders[J] publication-title: Comput Electron Agric – start-page: 30 year: 2017 article-title: Prototypical networks for few‐shot learning[J] publication-title: Advances in Neural Information Processing Systems – volume: 175 issue: 1 year: 2020 article-title: Few‐shot learning approach for plant disease classification using images taken in the field publication-title: Comput. Electron. Agric. – start-page: 1511 year: 2015 end-page: 1519 – volume: 13 start-page: 1443 issue: 7 year: 2001 end-page: 1471 article-title: Estimating the support of a high‐dimensional distribution publication-title: Neural Comput. – volume: 10 start-page: 978 issue: 8 year: 2021 article-title: Few‐shot learning with a novel voronoi tessellation‐based image augmentation method for facial palsy detection publication-title: Electronics – start-page: 31 year: 2018 article-title: Deep anomaly detection using geometric transformations publication-title: Advances in Neural Information Processing Systems – start-page: 9664 year: 2021 end-page: 9674 – volume: 22 start-page: 2012 issue: 5 year: 2022 article-title: A new statistical features based approach for bearing fault diagnosis using vibration signals publication-title: Sensors – start-page: 14318 year: 2022 end-page: 14328 article-title: Towards total recall in industrial anomaly detection – start-page: 28 year: 2015 article-title: Spatial transformer networks[J] publication-title: Advances in Neural Information Processing Systems – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – volume: 24 start-page: 116 year: 2022 end-page: 127 article-title: Attribute restoration frame‐work for anomaly detection publication-title: IEEE Trans. Multimedia – start-page: 609 year: 2009 end-page: 616 – volume: 14 start-page: 2092 issue: 11 year: 2017 end-page: 2096 article-title: MARTA GANs: Unsupervised representation learning for remote sensing image classification publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 1 year: 2018 end-page: 8 article-title: Anomaly machine component detection by deep generative model with unregularized score – volume: 40 start-page: 879 issue: 3 year: 2021 end-page: 890 article-title: Viral pneumonia screening on chest X‐ray images using confidence‐aware anomaly detection publication-title: IEEE Trans. Med. Imaging – volume: 150 start-page: 220 year: 2018 end-page: 234 article-title: Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection publication-title: Comput Electron Agric – volume: 22 start-page: 1597 issue: 4 year: 2022 article-title: Fault diagnostics and tolerance analysis of a microgrid system using Hamilton–Jacobi–Isaacs equation and game theoretic estimations in sliding mode observers publication-title: Sensors – volume: 48 start-page: 3471 issue: 9 year: 2010 end-page: 3481 article-title: Feature‐driven multilayer visualization for remotely sensed hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 5 start-page: 8 issue: 4 year: 2017 end-page: 36 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. – start-page: 4369 year: 2021 end-page: 4378 article-title: Learning unsupervised metaformer for anomaly detection – volume: 147 start-page: 70 year: 2018 end-page: 90 article-title: Deep learning in agriculture: A survey publication-title: Comput. Electron. Agric. – start-page: 5585 year: 2017 end-page: 5595 article-title: Gradient descent GAN optimization is locally stable – volume: 56 start-page: 186 issue: 1 year: 2019 end-page: 195 article-title: Bi‐LSTM+CRF‐based named entity recognition in scientific papers in the field of ecological restoration technology publication-title: Proc. Assoc. Inf. Sci. Technol. – volume: 8 start-page: 493 issue: 6 year: 2011 end-page: 498 article-title: Brainaligner: 3D registration atlases of drosophila brains publication-title: Nature Methods – year: 2019 – start-page: 1625 year: 2018 end-page: 1634 article-title: Robust physical‐world attacks on deep learning visual classification[C] – start-page: 1907 year: 2021 end-page: 1916 article-title: Same same but differnet: Semi‐supervised defect detection with normalizing flows[C] – volume: 13 start-page: 1224 issue: 6 year: 2007 end-page: 1231 article-title: Toward a deeper understanding of the role of interaction in information visualization publication-title: IEEE Trans. Visual Comput. Graphics – volume: 67 start-page: 161 issue: 2 year: 1997 end-page: 185 article-title: Knowledge‐based image understanding systems: A survey publication-title: Comput. Vision Image Understanding – start-page: 14902 year: 2021 end-page: 14912 – start-page: 5181 year: 2017 end-page: 5184 – volume: 7 start-page: 9705 issue: 8 year: 2015 end-page: 9726 article-title: Identification of forested landslides using lidar data, object‐based image analysis, and machine learning algorithms publication-title: Remote Sens – year: 2000 – start-page: 15750 year: 2021 end-page: 15758 article-title: Exploring simple Siamese representation learning – volume: 115 start-page: 211 issue: 3 year: 2015 end-page: 252 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vision – year: 2016 – volume: 36 start-page: 470 issue: 5 year: 2012 end-page: 480 article-title: Knowledge‐based region labeling for remote sensing image interpretation publication-title: Comput. Environ. Urban Syst. – start-page: 6 year: 1993 article-title: Signature verification using a “siamese” time delay neural network[J] publication-title: Advances in Neural Information Processing Systems – start-page: 622 year: 2018 end-page: 637 article-title: Ganomaly: Semi‐supervised anomaly detection via adversarial training – volume: 39 start-page: 2784 issue: 9 year: 2018 end-page: 2817 article-title: Implementation of machine‐learning classification in remote sensing: An applied review publication-title: Int. J. Remote Sens. – volume: 38 issue: 7 year: 2021 article-title: Cassava disease recognition from low‐quality images using enhanced data augmentation model and deep learning[J] publication-title: Expert Systems – start-page: 8495 year: 2021 end-page: 8504 article-title: A hierarchical transformation‐discriminating generative model for few shot anomaly detection – start-page: 1626 year: 2014 end-page: 1630 – volume: 37 start-page: 569 issue: 8 year: 2014 end-page: 582 article-title: Global contrast‐based salient region detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2017 article-title: Optimization as a model for few‐shot learning – volume: 19 start-page: 1058 issue: 5 year: 2019 article-title: Cropdeep: The crop vision dataset for deep‐learning‐based classification and detection in precision agriculture publication-title: Sensors – volume: 57 start-page: 2145 issue: 4 year: 2018 end-page: 2160 article-title: Capsule networks for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2017 – start-page: 98 year: 2022 end-page: 107 article-title: Cflow‐ad: Real‐time unsupervised anomaly detection with localization via conditional normalizing flows – start-page: 475 year: 2021 end-page: 489 article-title: Padim: a patch distribution modeling framework for anomaly detection and localization[C] – year: 2018 article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection – volume: 7 start-page: 14680 issue: 11 year: 2015 end-page: 14707 article-title: Transferring deep convolutional neural networks for the scene classification of high‐resolution remote sensing imagery publication-title: Remote Sens – volume: 566 start-page: 195 issue: 7743 year: 2019 end-page: 204 article-title: Deep learning and process understanding for data‐driven earth system science publication-title: Nature – ident: e_1_2_8_55_1 doi: 10.1109/CVPR46437.2021.01549 – ident: e_1_2_8_9_1 doi: 10.1109/WACV48630.2021.00195 – ident: e_1_2_8_10_1 doi: 10.1038/nmeth.1602 – ident: e_1_2_8_26_1 doi: 10.1109/ICASSP.2014.6853873 – ident: e_1_2_8_20_1 doi: 10.3390/s19051058 – ident: e_1_2_8_52_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_8_58_1 doi: 10.1109/WACV51458.2022.00188 – ident: e_1_2_8_18_1 doi: 10.1007/s11263-015-0816-y – ident: e_1_2_8_47_1 doi: 10.3390/rs70809705 – ident: e_1_2_8_16_1 doi: 10.1109/TMM.2020.3046884 – ident: e_1_2_8_46_1 doi: 10.1016/j.compenvurbsys.2012.01.003 – start-page: 6 year: 1993 ident: e_1_2_8_54_1 article-title: Signature verification using a “siamese” time delay neural network[J] publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_13_1 doi: 10.1109/ICCV.2015.177 – ident: e_1_2_8_28_1 – ident: e_1_2_8_14_1 doi: 10.1109/CVPR46437.2021.01466 – ident: e_1_2_8_57_1 doi: 10.1109/CVPR52688.2022.01392 – ident: e_1_2_8_32_1 doi: 10.1109/IGARSS.2017.8128169 – ident: e_1_2_8_44_1 doi: 10.3390/s22052012 – ident: e_1_2_8_4_1 doi: 10.1109/CVPR.2018.00175 – start-page: 30 year: 2017 ident: e_1_2_8_48_1 article-title: Prototypical networks for few‐shot learning[J] publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_27_1 doi: 10.1016/j.compag.2020.105542 – ident: e_1_2_8_31_1 doi: 10.3390/rs71114680 – ident: e_1_2_8_38_1 doi: 10.1080/01431161.2018.1433343 – ident: e_1_2_8_12_1 – ident: e_1_2_8_29_1 – ident: e_1_2_8_42_1 – ident: e_1_2_8_3_1 doi: 10.1109/TMI.2020.3040950 – ident: e_1_2_8_22_1 doi: 10.1614/0043-1745(2003)051[0271:KNAATE]2.0.CO;2 – ident: e_1_2_8_2_1 doi: 10.1109/IJCNN.2018.8489169 – ident: e_1_2_8_34_1 doi: 10.1111/exsy.12746 – start-page: 31 year: 2018 ident: e_1_2_8_15_1 article-title: Deep anomaly detection using geometric transformations publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_6_1 – start-page: 28 year: 2015 ident: e_1_2_8_53_1 article-title: Spatial transformer networks[J] publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_33_1 doi: 10.1109/TVCG.2007.70515 – ident: e_1_2_8_17_1 doi: 10.1109/CVPR46437.2021.00954 – ident: e_1_2_8_21_1 doi: 10.1016/j.compag.2018.04.023 – ident: e_1_2_8_11_1 doi: 10.1007/978-3-030-68799-1_35 – ident: e_1_2_8_8_1 doi: 10.1109/ICCV48922.2021.00838 – ident: e_1_2_8_7_1 doi: 10.1109/ICME52920.2022.9859925 – ident: e_1_2_8_24_1 doi: 10.3390/electronics10080978 – ident: e_1_2_8_19_1 doi: 10.1016/j.compag.2018.02.016 – ident: e_1_2_8_36_1 doi: 10.1109/TGRS.2010.2047021 – ident: e_1_2_8_25_1 doi: 10.1145/1553374.1553453 – ident: e_1_2_8_23_1 doi: 10.1002/pra2.16 – ident: e_1_2_8_39_1 doi: 10.1109/LGRS.2017.2752750 – ident: e_1_2_8_30_1 doi: 10.1038/s41586-019-0912-1 – ident: e_1_2_8_50_1 doi: 10.1109/ICCV48922.2021.00433 – volume: 37 start-page: 569 issue: 8 year: 2014 ident: e_1_2_8_51_1 article-title: Global contrast‐based salient region detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: e_1_2_8_41_1 – ident: e_1_2_8_43_1 doi: 10.3390/s22041597 – ident: e_1_2_8_35_1 doi: 10.1016/j.compag.2020.105828 – ident: e_1_2_8_45_1 doi: 10.1006/cviu.1996.0520 – ident: e_1_2_8_5_1 doi: 10.1162/089976601750264965 – ident: e_1_2_8_37_1 doi: 10.1109/MGRS.2017.2762307 – ident: e_1_2_8_49_1 – ident: e_1_2_8_56_1 doi: 10.1007/978-3-030-20893-6_39 – ident: e_1_2_8_40_1 doi: 10.1109/TGRS.2018.2871782 |
SSID | ssj0059085 |
Score | 2.2813578 |
Snippet | This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal... Abstract This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
StartPage | 2299 |
SubjectTerms | cross‐training set few‐shot learning pest detection |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61Xrz4FuuLgJ6E1W6abDbgRYulCkoRFW9LXlsEXUtbPfsT_I3-Emeyu5VeBG_DMpuFSWbmyybzDSFHMnZtr72MXJzziNs0jpTyAORSwOaW-9wYrEa-uU36D_z6STw1yFldC1PyQ8x-uKFnhHiNDq5N2YUEQC1M4vNozE5iJqVaIItYW4urnPFBHYexmbcI5ZDYSD4RqiYn5er09925dBRY--dRakgzvVWyXOFDel5O6Bpp-GKdrFRYkVaeONkgj10c7_vzyyL8pSMI7lQXjlYHLvTDD6uLhNT5abhvVVBMWY6CMHnVLy90opEamGJvhpo9d5M89C7vu_2o6pEQ2Y7sqMhYz4xjqVamo6zFc1ItcqZSJ3OAKl5qkJjlDrGdAytx3NOBjkpzZuK4s0WaxVvhtwllwhhhecq8SziowpiQ3kGTS_Brr1rksDZVNiqpMLJwhM1VhgbNgkFb5AKtONNA-urw4G08zCpvyETbKZ0LIbyQ3MlEIa6BvZ-JE-GE9S1yHObgj-9kV4M7FqSd_yjvkiVsGF9e9tojzen43e8DrJiag7B6fgDtCsf7 priority: 102 providerName: Wiley-Blackwell |
Title | Cross‐class pest and disease vegetation detection based on small sample registration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12779 https://doaj.org/article/50d9af555e574d7697415828b165d5ce |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aL158i_VRAnoS1nazyWZzrMWiglLEluJl2TxWhLqWtnr2J_gb_SXOZLdSL3rxFpYhWWaSmW_I5BtCTmRoWy5zMrBhzgNukjBQygGQSwCbG-5yrfE18s1tfNnn10MxXGj1hTVhJT1wqbimaFmV5UIIJyS3MlYYAiFN0GEsrDAOvS_EvHkyVfpgbOQt_FNIbCIfCzUnJuWq-TSesLOQSSzeWghFnrH_J0L1Iaa7QdYqbEjb5T9tkiVXbJH1CifS6hROt8mgg_N9vn8YhL50DI6dZoWl1WULfXOPVREhtW7ma60KiuHKUhhMn7PRiE4zpAWm2Jdhzpy7Q_rdi_vOZVD1RwhMJCMVaOOYtizJlI6UMXhHmomcqcTKHGCKkxmMmOEWcZ0Fl8gxnwMZleRMh2G0S2rFS-H2CGVCa2F4wpyNOYjCnBDaQZJLONNO1cnxXFXpuKTBSP31NVcpKjT1Cq2Tc9TitwRSV_sPYNC0Mmj6l0Hr5NTb4Jd10qveHfOj_f9Y8YCsYhP5sgDskNRmk1d3BFBjphtkmfFeg6y0B_2HfsPvsS_dktFC |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHODCGzGekeCEVFjTpGmOMDFtsE0T2tBuVfPohDS6aRuc-Qn8Rn4JcdoOcUHiFlVuKjm1_SV2PiN0yX1dM4nhnvZT6lEV-Z4QxgK5yGJzRU0qJdxG7nTD5oA-DNmwqM2BuzA5P8TywA0sw_lrMHA4kM43nBRIMl-mM3LtE87FKlqjIeHQuYHQXumIoZs3c_choZN8yETJTkrFzc-7v-KRo-3_DVNdnGlso80CIOLbfEV30IrJdtFWARZxYYrzPfRch_m-Pj4V4F88td4dJ5nGRcYFv5tRUUmItVm4gqsMQ8zS2A7mr8l4jOcJcANjaM5Q0ufuo0Hjvl9vekWTBE8FPBCeVIZITaJEyEAoBYnShKVERJqnFqsYntgRUVQDuNPWL1LY1FkZEaVE-n5wgCrZJDOHCBMmJVM0IkaH1IraOW18t5KUW8M2ooouSlXF05wLI3Y5bCpiUGjsFFpFd6DFpQTwV7sHk9koLswhZjUtkpQxZhinmocCgI3d_Ek_ZJopU0VXbg3--E7c6j0RNzr6j_A5Wm_2O-243eo-HqMN6B6fV36doMpi9mZOLcZYyDP3J30Dx_DLZw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50BfHiW1yfAT0JVZtNmga86Ori-lgWccVbaR5dBK3L7urZn-Bv9JeYSVtlL4K3UKYpTDIzXzqTbwD2RWiObWpFYMKMBUzHYSCldUAudthcM5sphbeRbzvRZY9dPfLHKTip7sIU_BA_P9zQMry_RgMfmKw4bzLkyHwaDOlhSIWQ0zCD2T7c35R1Kz-Mzby5vw6JjeQjLityUiaPft-dCEeetX8Spfow01qE-RIfktNiQZdgyubLsFBiRVJa4mgFHpo439fHp0b4SwbOuZM0N6RMuJB32y8LCYmxY19vlRMMWYa4weglfX4moxSpgQn2ZqjYc1eh17q4b14GZY-EQDdEQwZKW6oMjVOpGlJrzJOmPKMyNiJzUMWK1I2oZgaxnXFukeGZzsnIOKMqDBtrUMtfc7sOhHKluGYxtSZiTtTN6cK7k2TC2bWVddirVJUMCiqMxKewmUxQoYlXaB3OUIs_Ekhf7R-8DvtJaQ0JPzYyzTjnlgtmRCQR17iznwojbri2dTjwa_DHd5J294760cZ_hHdhtnveSm7anetNmMPe8UXd1xbUxsM3u-0Qxljt-I30DcUxypk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross%E2%80%90class+pest+and+disease+vegetation+detection+based+on+small+sample+registration&rft.jtitle=IET+image+processing&rft.au=Liu+Jiayao&rft.au=Wang+Linfeng&rft.au=Wang+Yunsheng&rft.au=An+MingMing&rft.date=2023-06-01&rft.pub=Wiley&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=17&rft.issue=8&rft.spage=2299&rft.epage=2308&rft_id=info:doi/10.1049%2Fipr2.12779&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_50d9af555e574d7697415828b165d5ce |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |