Cross‐class pest and disease vegetation detection based on small sample registration

This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal images for each class during training. So far, studies on FSAD have been carried out according to each model, and there is no discussion of common...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 17; no. 8; pp. 2299 - 2308
Main Authors Jiayao, Liu, Linfeng, Wang, Yunsheng, Wang, MingMing, An, Wenfei, Jiang, Shipu, Xu
Format Journal Article
LanguageEnglish
Published Wiley 01.06.2023
Subjects
Online AccessGet full text
ISSN1751-9659
1751-9667
DOI10.1049/ipr2.12779

Cover

Loading…
Abstract This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal images for each class during training. So far, studies on FSAD have been carried out according to each model, and there is no discussion of commonalities between different types. Depending on how people detect unusual lies, the problematic images are compared to the normal ones. The image alignment method based on different classifications is used to train the target detection model independent of classification, and performed ablation experiments on the pest and disease datasets in different environments for verification. This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters. The experimental results show that the application of AUC based on vegetation disease data set and vegetation pest data set in FSAD algorithm is improved by 19.5% compared with the existing algorithm. This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters.
AbstractList Abstract This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal images for each class during training. So far, studies on FSAD have been carried out according to each model, and there is no discussion of commonalities between different types. Depending on how people detect unusual lies, the problematic images are compared to the normal ones. The image alignment method based on different classifications is used to train the target detection model independent of classification, and performed ablation experiments on the pest and disease datasets in different environments for verification. This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters. The experimental results show that the application of AUC based on vegetation disease data set and vegetation pest data set in FSAD algorithm is improved by 19.5% compared with the existing algorithm.
This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal images for each class during training. So far, studies on FSAD have been carried out according to each model, and there is no discussion of commonalities between different types. Depending on how people detect unusual lies, the problematic images are compared to the normal ones. The image alignment method based on different classifications is used to train the target detection model independent of classification, and performed ablation experiments on the pest and disease datasets in different environments for verification. This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters. The experimental results show that the application of AUC based on vegetation disease data set and vegetation pest data set in FSAD algorithm is improved by 19.5% compared with the existing algorithm. This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters.
This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal images for each class during training. So far, studies on FSAD have been carried out according to each model, and there is no discussion of commonalities between different types. Depending on how people detect unusual lies, the problematic images are compared to the normal ones. The image alignment method based on different classifications is used to train the target detection model independent of classification, and performed ablation experiments on the pest and disease datasets in different environments for verification. This is the first time the FSAD method has been used to train a single scalable model without the need to train new classifications or adjust parameters. The experimental results show that the application of AUC based on vegetation disease data set and vegetation pest data set in FSAD algorithm is improved by 19.5% compared with the existing algorithm.
Author MingMing, An
Wenfei, Jiang
Jiayao, Liu
Yunsheng, Wang
Shipu, Xu
Linfeng, Wang
Author_xml – sequence: 1
  givenname: Liu
  surname: Jiayao
  fullname: Jiayao, Liu
  email: xushipu@sass.sh.cn
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 2
  givenname: Wang
  orcidid: 0000-0002-0701-833X
  surname: Linfeng
  fullname: Linfeng, Wang
  organization: Shanghai Institute of Technology
– sequence: 3
  givenname: Wang
  surname: Yunsheng
  fullname: Yunsheng, Wang
  email: 216151115@mail.sit.edu.cn
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 4
  givenname: An
  surname: MingMing
  fullname: MingMing, An
  email: anmingming@sass.sh.cn
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 5
  givenname: Jiang
  surname: Wenfei
  fullname: Wenfei, Jiang
  email: jiangwenfei@sass.sh.cn
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 6
  givenname: Xu
  surname: Shipu
  fullname: Shipu, Xu
  email: 216151119@mail.sit.edu.cn
  organization: Shanghai Academy of Agricultural Sciences
BookMark eNp9kNFKwzAUhoNMcJve-AS5FjqTtGmSSxnqBgNF1NuQJqcjo2tLUpTd-Qg-o09i18ouvTof53znv_hnaFI3NSB0TcmCkkzd-jawBWVCqDM0pYLTROW5mJyYqws0i3FHCFdE8il6X4Ymxp-vb1uZGHELscOmdtj5CCYC_oAtdKbzTY0ddGAHKvqLwz3EvakqHM2-rQAH2PrYhUG-ROelqSJc_c05enu4f12uks3T43p5t0lsKlKVFBZY4Zg0qkiVtUyS3PCSKelEySkHYXpiNnOE0NzRLM8YlVnvKFmygtJ0jtZjrmvMTrfB70046MZ4PSyasNUmdN5WoDlxypScc-AicyJXIqNcMlnQnDtuoc-6GbPssZIA5SmPEn1sVx_b1UO7vUxH-dNXcPjH1OvnFzb-_AIemn9M
Cites_doi 10.1109/CVPR46437.2021.01549
10.1109/WACV48630.2021.00195
10.1038/nmeth.1602
10.1109/ICASSP.2014.6853873
10.3390/s19051058
10.1109/CVPR.2016.90
10.1109/WACV51458.2022.00188
10.1007/s11263-015-0816-y
10.3390/rs70809705
10.1109/TMM.2020.3046884
10.1016/j.compenvurbsys.2012.01.003
10.1109/ICCV.2015.177
10.1109/CVPR46437.2021.01466
10.1109/CVPR52688.2022.01392
10.1109/IGARSS.2017.8128169
10.3390/s22052012
10.1109/CVPR.2018.00175
10.1016/j.compag.2020.105542
10.3390/rs71114680
10.1080/01431161.2018.1433343
10.1109/TMI.2020.3040950
10.1614/0043-1745(2003)051[0271:KNAATE]2.0.CO;2
10.1109/IJCNN.2018.8489169
10.1111/exsy.12746
10.1109/TVCG.2007.70515
10.1109/CVPR46437.2021.00954
10.1016/j.compag.2018.04.023
10.1007/978-3-030-68799-1_35
10.1109/ICCV48922.2021.00838
10.1109/ICME52920.2022.9859925
10.3390/electronics10080978
10.1016/j.compag.2018.02.016
10.1109/TGRS.2010.2047021
10.1145/1553374.1553453
10.1002/pra2.16
10.1109/LGRS.2017.2752750
10.1038/s41586-019-0912-1
10.1109/ICCV48922.2021.00433
10.3390/s22041597
10.1016/j.compag.2020.105828
10.1006/cviu.1996.0520
10.1162/089976601750264965
10.1109/MGRS.2017.2762307
10.1007/978-3-030-20893-6_39
10.1109/TGRS.2018.2871782
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.12779
DatabaseName Wiley Online Library Open Access
CrossRef
Directory of Open Access Journals (DOAJ) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 2308
ExternalDocumentID oai_doaj_org_article_50d9af555e574d7697415828b165d5ce
10_1049_ipr2_12779
IPR212779
Genre article
GrantInformation_xml – fundername: Shanghai Science and Technology Committee Program
  funderid: 21N51900300
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
8VB
AAHHS
AAHJG
AAJGR
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
ESX
GROUPED_DOAJ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
LAI
MCNEO
MS~
O9-
OCL
OK1
P2P
QWB
RIE
RNS
ROL
RUI
ZL0
4.4
8FE
8FG
AAMMB
AAYXX
ABJCF
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
IDLOA
L6V
M43
M7S
P62
PHGZM
PHGZT
PQGLB
PTHSS
S0W
WIN
ID FETCH-LOGICAL-c3739-bce2bd28a9b39cc2806a5f298d7f515e7a8d72c4d0016d146421846a598f2b113
IEDL.DBID DOA
ISSN 1751-9659
IngestDate Wed Aug 27 01:21:33 EDT 2025
Tue Aug 05 12:10:15 EDT 2025
Wed Jan 22 16:21:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-bce2bd28a9b39cc2806a5f298d7f515e7a8d72c4d0016d146421846a598f2b113
ORCID 0000-0002-0701-833X
OpenAccessLink https://doaj.org/article/50d9af555e574d7697415828b165d5ce
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_50d9af555e574d7697415828b165d5ce
crossref_primary_10_1049_ipr2_12779
wiley_primary_10_1049_ipr2_12779_IPR212779
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2023
Publisher Wiley
Publisher_xml – name: Wiley
References 2017; 5
2019; 56
2018; 147
1997; 67
2009
2019; 566
2022; 24
2019; 19
1993
2022; 22
2012; 36
2003; 51
2015; 7
2011; 8
2007; 13
2021; 38
2018; 39
2021; 10
2010; 48
2018; 150
2015; 115
2000
2017; 14
2022
2021
2020; 175
2019
2014; 37
2018
2017
2016
2015
2014
2020; 179
2001; 13
2021; 40
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Cheng M.M. (e_1_2_8_51_1) 2014; 37
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
Jaderberg M. (e_1_2_8_53_1) 2015
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_38_1
e_1_2_8_57_1
Snell J. (e_1_2_8_48_1) 2017
Golan I. (e_1_2_8_15_1) 2018
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Bromley J. (e_1_2_8_54_1) 1993
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 51
  start-page: 271
  issue: 2
  year: 2003
  end-page: 277
  article-title: Knowledge networks: An avenue to ecological management of invasive weeds
  publication-title: Weed Sci.
– volume: 179
  year: 2020
  article-title: Zero‐and few‐shot learning for diseases recognition of Citrus aurantium L. using conditional adversarial autoencoders[J]
  publication-title: Comput Electron Agric
– start-page: 30
  year: 2017
  article-title: Prototypical networks for few‐shot learning[J]
  publication-title: Advances in Neural Information Processing Systems
– volume: 175
  issue: 1
  year: 2020
  article-title: Few‐shot learning approach for plant disease classification using images taken in the field
  publication-title: Comput. Electron. Agric.
– start-page: 1511
  year: 2015
  end-page: 1519
– volume: 13
  start-page: 1443
  issue: 7
  year: 2001
  end-page: 1471
  article-title: Estimating the support of a high‐dimensional distribution
  publication-title: Neural Comput.
– volume: 10
  start-page: 978
  issue: 8
  year: 2021
  article-title: Few‐shot learning with a novel voronoi tessellation‐based image augmentation method for facial palsy detection
  publication-title: Electronics
– start-page: 31
  year: 2018
  article-title: Deep anomaly detection using geometric transformations
  publication-title: Advances in Neural Information Processing Systems
– start-page: 9664
  year: 2021
  end-page: 9674
– volume: 22
  start-page: 2012
  issue: 5
  year: 2022
  article-title: A new statistical features based approach for bearing fault diagnosis using vibration signals
  publication-title: Sensors
– start-page: 14318
  year: 2022
  end-page: 14328
  article-title: Towards total recall in industrial anomaly detection
– start-page: 28
  year: 2015
  article-title: Spatial transformer networks[J]
  publication-title: Advances in Neural Information Processing Systems
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
– volume: 24
  start-page: 116
  year: 2022
  end-page: 127
  article-title: Attribute restoration frame‐work for anomaly detection
  publication-title: IEEE Trans. Multimedia
– start-page: 609
  year: 2009
  end-page: 616
– volume: 14
  start-page: 2092
  issue: 11
  year: 2017
  end-page: 2096
  article-title: MARTA GANs: Unsupervised representation learning for remote sensing image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 1
  year: 2018
  end-page: 8
  article-title: Anomaly machine component detection by deep generative model with unregularized score
– volume: 40
  start-page: 879
  issue: 3
  year: 2021
  end-page: 890
  article-title: Viral pneumonia screening on chest X‐ray images using confidence‐aware anomaly detection
  publication-title: IEEE Trans. Med. Imaging
– volume: 150
  start-page: 220
  year: 2018
  end-page: 234
  article-title: Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection
  publication-title: Comput Electron Agric
– volume: 22
  start-page: 1597
  issue: 4
  year: 2022
  article-title: Fault diagnostics and tolerance analysis of a microgrid system using Hamilton–Jacobi–Isaacs equation and game theoretic estimations in sliding mode observers
  publication-title: Sensors
– volume: 48
  start-page: 3471
  issue: 9
  year: 2010
  end-page: 3481
  article-title: Feature‐driven multilayer visualization for remotely sensed hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 5
  start-page: 8
  issue: 4
  year: 2017
  end-page: 36
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
– start-page: 4369
  year: 2021
  end-page: 4378
  article-title: Learning unsupervised metaformer for anomaly detection
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  article-title: Deep learning in agriculture: A survey
  publication-title: Comput. Electron. Agric.
– start-page: 5585
  year: 2017
  end-page: 5595
  article-title: Gradient descent GAN optimization is locally stable
– volume: 56
  start-page: 186
  issue: 1
  year: 2019
  end-page: 195
  article-title: Bi‐LSTM+CRF‐based named entity recognition in scientific papers in the field of ecological restoration technology
  publication-title: Proc. Assoc. Inf. Sci. Technol.
– volume: 8
  start-page: 493
  issue: 6
  year: 2011
  end-page: 498
  article-title: Brainaligner: 3D registration atlases of drosophila brains
  publication-title: Nature Methods
– year: 2019
– start-page: 1625
  year: 2018
  end-page: 1634
  article-title: Robust physical‐world attacks on deep learning visual classification[C]
– start-page: 1907
  year: 2021
  end-page: 1916
  article-title: Same same but differnet: Semi‐supervised defect detection with normalizing flows[C]
– volume: 13
  start-page: 1224
  issue: 6
  year: 2007
  end-page: 1231
  article-title: Toward a deeper understanding of the role of interaction in information visualization
  publication-title: IEEE Trans. Visual Comput. Graphics
– volume: 67
  start-page: 161
  issue: 2
  year: 1997
  end-page: 185
  article-title: Knowledge‐based image understanding systems: A survey
  publication-title: Comput. Vision Image Understanding
– start-page: 14902
  year: 2021
  end-page: 14912
– start-page: 5181
  year: 2017
  end-page: 5184
– volume: 7
  start-page: 9705
  issue: 8
  year: 2015
  end-page: 9726
  article-title: Identification of forested landslides using lidar data, object‐based image analysis, and machine learning algorithms
  publication-title: Remote Sens
– year: 2000
– start-page: 15750
  year: 2021
  end-page: 15758
  article-title: Exploring simple Siamese representation learning
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  end-page: 252
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vision
– year: 2016
– volume: 36
  start-page: 470
  issue: 5
  year: 2012
  end-page: 480
  article-title: Knowledge‐based region labeling for remote sensing image interpretation
  publication-title: Comput. Environ. Urban Syst.
– start-page: 6
  year: 1993
  article-title: Signature verification using a “siamese” time delay neural network[J]
  publication-title: Advances in Neural Information Processing Systems
– start-page: 622
  year: 2018
  end-page: 637
  article-title: Ganomaly: Semi‐supervised anomaly detection via adversarial training
– volume: 39
  start-page: 2784
  issue: 9
  year: 2018
  end-page: 2817
  article-title: Implementation of machine‐learning classification in remote sensing: An applied review
  publication-title: Int. J. Remote Sens.
– volume: 38
  issue: 7
  year: 2021
  article-title: Cassava disease recognition from low‐quality images using enhanced data augmentation model and deep learning[J]
  publication-title: Expert Systems
– start-page: 8495
  year: 2021
  end-page: 8504
  article-title: A hierarchical transformation‐discriminating generative model for few shot anomaly detection
– start-page: 1626
  year: 2014
  end-page: 1630
– volume: 37
  start-page: 569
  issue: 8
  year: 2014
  end-page: 582
  article-title: Global contrast‐based salient region detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2017
  article-title: Optimization as a model for few‐shot learning
– volume: 19
  start-page: 1058
  issue: 5
  year: 2019
  article-title: Cropdeep: The crop vision dataset for deep‐learning‐based classification and detection in precision agriculture
  publication-title: Sensors
– volume: 57
  start-page: 2145
  issue: 4
  year: 2018
  end-page: 2160
  article-title: Capsule networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2017
– start-page: 98
  year: 2022
  end-page: 107
  article-title: Cflow‐ad: Real‐time unsupervised anomaly detection with localization via conditional normalizing flows
– start-page: 475
  year: 2021
  end-page: 489
  article-title: Padim: a patch distribution modeling framework for anomaly detection and localization[C]
– year: 2018
  article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection
– volume: 7
  start-page: 14680
  issue: 11
  year: 2015
  end-page: 14707
  article-title: Transferring deep convolutional neural networks for the scene classification of high‐resolution remote sensing imagery
  publication-title: Remote Sens
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  end-page: 204
  article-title: Deep learning and process understanding for data‐driven earth system science
  publication-title: Nature
– ident: e_1_2_8_55_1
  doi: 10.1109/CVPR46437.2021.01549
– ident: e_1_2_8_9_1
  doi: 10.1109/WACV48630.2021.00195
– ident: e_1_2_8_10_1
  doi: 10.1038/nmeth.1602
– ident: e_1_2_8_26_1
  doi: 10.1109/ICASSP.2014.6853873
– ident: e_1_2_8_20_1
  doi: 10.3390/s19051058
– ident: e_1_2_8_52_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_8_58_1
  doi: 10.1109/WACV51458.2022.00188
– ident: e_1_2_8_18_1
  doi: 10.1007/s11263-015-0816-y
– ident: e_1_2_8_47_1
  doi: 10.3390/rs70809705
– ident: e_1_2_8_16_1
  doi: 10.1109/TMM.2020.3046884
– ident: e_1_2_8_46_1
  doi: 10.1016/j.compenvurbsys.2012.01.003
– start-page: 6
  year: 1993
  ident: e_1_2_8_54_1
  article-title: Signature verification using a “siamese” time delay neural network[J]
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_13_1
  doi: 10.1109/ICCV.2015.177
– ident: e_1_2_8_28_1
– ident: e_1_2_8_14_1
  doi: 10.1109/CVPR46437.2021.01466
– ident: e_1_2_8_57_1
  doi: 10.1109/CVPR52688.2022.01392
– ident: e_1_2_8_32_1
  doi: 10.1109/IGARSS.2017.8128169
– ident: e_1_2_8_44_1
  doi: 10.3390/s22052012
– ident: e_1_2_8_4_1
  doi: 10.1109/CVPR.2018.00175
– start-page: 30
  year: 2017
  ident: e_1_2_8_48_1
  article-title: Prototypical networks for few‐shot learning[J]
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_27_1
  doi: 10.1016/j.compag.2020.105542
– ident: e_1_2_8_31_1
  doi: 10.3390/rs71114680
– ident: e_1_2_8_38_1
  doi: 10.1080/01431161.2018.1433343
– ident: e_1_2_8_12_1
– ident: e_1_2_8_29_1
– ident: e_1_2_8_42_1
– ident: e_1_2_8_3_1
  doi: 10.1109/TMI.2020.3040950
– ident: e_1_2_8_22_1
  doi: 10.1614/0043-1745(2003)051[0271:KNAATE]2.0.CO;2
– ident: e_1_2_8_2_1
  doi: 10.1109/IJCNN.2018.8489169
– ident: e_1_2_8_34_1
  doi: 10.1111/exsy.12746
– start-page: 31
  year: 2018
  ident: e_1_2_8_15_1
  article-title: Deep anomaly detection using geometric transformations
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_6_1
– start-page: 28
  year: 2015
  ident: e_1_2_8_53_1
  article-title: Spatial transformer networks[J]
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_33_1
  doi: 10.1109/TVCG.2007.70515
– ident: e_1_2_8_17_1
  doi: 10.1109/CVPR46437.2021.00954
– ident: e_1_2_8_21_1
  doi: 10.1016/j.compag.2018.04.023
– ident: e_1_2_8_11_1
  doi: 10.1007/978-3-030-68799-1_35
– ident: e_1_2_8_8_1
  doi: 10.1109/ICCV48922.2021.00838
– ident: e_1_2_8_7_1
  doi: 10.1109/ICME52920.2022.9859925
– ident: e_1_2_8_24_1
  doi: 10.3390/electronics10080978
– ident: e_1_2_8_19_1
  doi: 10.1016/j.compag.2018.02.016
– ident: e_1_2_8_36_1
  doi: 10.1109/TGRS.2010.2047021
– ident: e_1_2_8_25_1
  doi: 10.1145/1553374.1553453
– ident: e_1_2_8_23_1
  doi: 10.1002/pra2.16
– ident: e_1_2_8_39_1
  doi: 10.1109/LGRS.2017.2752750
– ident: e_1_2_8_30_1
  doi: 10.1038/s41586-019-0912-1
– ident: e_1_2_8_50_1
  doi: 10.1109/ICCV48922.2021.00433
– volume: 37
  start-page: 569
  issue: 8
  year: 2014
  ident: e_1_2_8_51_1
  article-title: Global contrast‐based salient region detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: e_1_2_8_41_1
– ident: e_1_2_8_43_1
  doi: 10.3390/s22041597
– ident: e_1_2_8_35_1
  doi: 10.1016/j.compag.2020.105828
– ident: e_1_2_8_45_1
  doi: 10.1006/cviu.1996.0520
– ident: e_1_2_8_5_1
  doi: 10.1162/089976601750264965
– ident: e_1_2_8_37_1
  doi: 10.1109/MGRS.2017.2762307
– ident: e_1_2_8_49_1
– ident: e_1_2_8_56_1
  doi: 10.1007/978-3-030-20893-6_39
– ident: e_1_2_8_40_1
  doi: 10.1109/TGRS.2018.2871782
SSID ssj0059085
Score 2.2813578
Snippet This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of normal...
Abstract This paper introduces few‐shot anomaly detection (FSAD), a practical and less anomaly detection (AD) method, which can provide a limited number of...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
StartPage 2299
SubjectTerms cross‐training set
few‐shot learning
pest detection
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61Xrz4FuuLgJ6E1W6abDbgRYulCkoRFW9LXlsEXUtbPfsT_I3-Emeyu5VeBG_DMpuFSWbmyybzDSFHMnZtr72MXJzziNs0jpTyAORSwOaW-9wYrEa-uU36D_z6STw1yFldC1PyQ8x-uKFnhHiNDq5N2YUEQC1M4vNozE5iJqVaIItYW4urnPFBHYexmbcI5ZDYSD4RqiYn5er09925dBRY--dRakgzvVWyXOFDel5O6Bpp-GKdrFRYkVaeONkgj10c7_vzyyL8pSMI7lQXjlYHLvTDD6uLhNT5abhvVVBMWY6CMHnVLy90opEamGJvhpo9d5M89C7vu_2o6pEQ2Y7sqMhYz4xjqVamo6zFc1ItcqZSJ3OAKl5qkJjlDrGdAytx3NOBjkpzZuK4s0WaxVvhtwllwhhhecq8SziowpiQ3kGTS_Brr1rksDZVNiqpMLJwhM1VhgbNgkFb5AKtONNA-urw4G08zCpvyETbKZ0LIbyQ3MlEIa6BvZ-JE-GE9S1yHObgj-9kV4M7FqSd_yjvkiVsGF9e9tojzen43e8DrJiag7B6fgDtCsf7
  priority: 102
  providerName: Wiley-Blackwell
Title Cross‐class pest and disease vegetation detection based on small sample registration
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12779
https://doaj.org/article/50d9af555e574d7697415828b165d5ce
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aL158i_VRAnoS1nazyWZzrMWiglLEluJl2TxWhLqWtnr2J_gb_SXOZLdSL3rxFpYhWWaSmW_I5BtCTmRoWy5zMrBhzgNukjBQygGQSwCbG-5yrfE18s1tfNnn10MxXGj1hTVhJT1wqbimaFmV5UIIJyS3MlYYAiFN0GEsrDAOvS_EvHkyVfpgbOQt_FNIbCIfCzUnJuWq-TSesLOQSSzeWghFnrH_J0L1Iaa7QdYqbEjb5T9tkiVXbJH1CifS6hROt8mgg_N9vn8YhL50DI6dZoWl1WULfXOPVREhtW7ma60KiuHKUhhMn7PRiE4zpAWm2Jdhzpy7Q_rdi_vOZVD1RwhMJCMVaOOYtizJlI6UMXhHmomcqcTKHGCKkxmMmOEWcZ0Fl8gxnwMZleRMh2G0S2rFS-H2CGVCa2F4wpyNOYjCnBDaQZJLONNO1cnxXFXpuKTBSP31NVcpKjT1Cq2Tc9TitwRSV_sPYNC0Mmj6l0Hr5NTb4Jd10qveHfOj_f9Y8YCsYhP5sgDskNRmk1d3BFBjphtkmfFeg6y0B_2HfsPvsS_dktFC
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHODCGzGekeCEVFjTpGmOMDFtsE0T2tBuVfPohDS6aRuc-Qn8Rn4JcdoOcUHiFlVuKjm1_SV2PiN0yX1dM4nhnvZT6lEV-Z4QxgK5yGJzRU0qJdxG7nTD5oA-DNmwqM2BuzA5P8TywA0sw_lrMHA4kM43nBRIMl-mM3LtE87FKlqjIeHQuYHQXumIoZs3c_choZN8yETJTkrFzc-7v-KRo-3_DVNdnGlso80CIOLbfEV30IrJdtFWARZxYYrzPfRch_m-Pj4V4F88td4dJ5nGRcYFv5tRUUmItVm4gqsMQ8zS2A7mr8l4jOcJcANjaM5Q0ufuo0Hjvl9vekWTBE8FPBCeVIZITaJEyEAoBYnShKVERJqnFqsYntgRUVQDuNPWL1LY1FkZEaVE-n5wgCrZJDOHCBMmJVM0IkaH1IraOW18t5KUW8M2ooouSlXF05wLI3Y5bCpiUGjsFFpFd6DFpQTwV7sHk9koLswhZjUtkpQxZhinmocCgI3d_Ek_ZJopU0VXbg3--E7c6j0RNzr6j_A5Wm_2O-243eo-HqMN6B6fV36doMpi9mZOLcZYyDP3J30Dx_DLZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50BfHiW1yfAT0JVZtNmga86Ori-lgWccVbaR5dBK3L7urZn-Bv9JeYSVtlL4K3UKYpTDIzXzqTbwD2RWiObWpFYMKMBUzHYSCldUAudthcM5sphbeRbzvRZY9dPfLHKTip7sIU_BA_P9zQMry_RgMfmKw4bzLkyHwaDOlhSIWQ0zCD2T7c35R1Kz-Mzby5vw6JjeQjLityUiaPft-dCEeetX8Spfow01qE-RIfktNiQZdgyubLsFBiRVJa4mgFHpo439fHp0b4SwbOuZM0N6RMuJB32y8LCYmxY19vlRMMWYa4weglfX4moxSpgQn2ZqjYc1eh17q4b14GZY-EQDdEQwZKW6oMjVOpGlJrzJOmPKMyNiJzUMWK1I2oZgaxnXFukeGZzsnIOKMqDBtrUMtfc7sOhHKluGYxtSZiTtTN6cK7k2TC2bWVddirVJUMCiqMxKewmUxQoYlXaB3OUIs_Ekhf7R-8DvtJaQ0JPzYyzTjnlgtmRCQR17iznwojbri2dTjwa_DHd5J294760cZ_hHdhtnveSm7anetNmMPe8UXd1xbUxsM3u-0Qxljt-I30DcUxypk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross%E2%80%90class+pest+and+disease+vegetation+detection+based+on+small+sample+registration&rft.jtitle=IET+image+processing&rft.au=Liu+Jiayao&rft.au=Wang+Linfeng&rft.au=Wang+Yunsheng&rft.au=An+MingMing&rft.date=2023-06-01&rft.pub=Wiley&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=17&rft.issue=8&rft.spage=2299&rft.epage=2308&rft_id=info:doi/10.1049%2Fipr2.12779&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_50d9af555e574d7697415828b165d5ce
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon