Ni and Co Active Site Transition and Competition in Fluorine‐Doped NiCo(OH)2 LDH Electrocatalysts for Oxygen Evolution Reaction
The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 31; pp. e2400139 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F‐atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F‐atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2g to e1g, and subsequently to e0g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F‐NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm−2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F‐NiCo LDH catalysts but also establishes a foundation for the design of high‐performance catalysts.
The active center competitive mechanism in F‐NiCo LDH for OER from the points of view of both eg orbital and the valence. |
---|---|
AbstractList | The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F-atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F-atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2 g to e1 g, and subsequently to e0 g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F-NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm-2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F-NiCo LDH catalysts but also establishes a foundation for the design of high-performance catalysts.The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F-atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F-atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2 g to e1 g, and subsequently to e0 g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F-NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm-2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F-NiCo LDH catalysts but also establishes a foundation for the design of high-performance catalysts. The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F-atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F-atoms are progressively aggregate, the e orbitals of Ni and Co transition from e to e , and subsequently to e . The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F-NiCo LDH catalysts are synthesized to verify the e orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm , respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F-NiCo LDH catalysts but also establishes a foundation for the design of high-performance catalysts. The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F‐atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F‐atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2g to e1g, and subsequently to e0g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F‐NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm−2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F‐NiCo LDH catalysts but also establishes a foundation for the design of high‐performance catalysts. The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F‐atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F‐atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2g to e1g, and subsequently to e0g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F‐NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm−2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F‐NiCo LDH catalysts but also establishes a foundation for the design of high‐performance catalysts. The active center competitive mechanism in F‐NiCo LDH for OER from the points of view of both eg orbital and the valence. The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F‐atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F‐atoms are progressively aggregate, the e g orbitals of Ni and Co transition from e 2 g to e 1 g , and subsequently to e 0 g . The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F‐NiCo LDH catalysts are synthesized to verify the e g orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm −2 , respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F‐NiCo LDH catalysts but also establishes a foundation for the design of high‐performance catalysts. |
Author | Liu, Yao Gao, Xiang Chen, Jia‐Cheng Yan, Wei Zhang, Jiujun Pei, Mao‐Jun Shuai, Yan‐Kang |
Author_xml | – sequence: 1 givenname: Mao‐Jun surname: Pei fullname: Pei, Mao‐Jun organization: Fuzhou University – sequence: 2 givenname: Yan‐Kang surname: Shuai fullname: Shuai, Yan‐Kang organization: Fuzhou University – sequence: 3 givenname: Xiang surname: Gao fullname: Gao, Xiang organization: Fuzhou University – sequence: 4 givenname: Jia‐Cheng surname: Chen fullname: Chen, Jia‐Cheng organization: Fuzhou University – sequence: 5 givenname: Yao surname: Liu fullname: Liu, Yao email: yaoliu@fzu.edu.cn organization: Fuzhou University – sequence: 6 givenname: Wei surname: Yan fullname: Yan, Wei email: weiyan@fzu.edu.cn organization: Fuzhou University – sequence: 7 givenname: Jiujun orcidid: 0000-0001-8357-3696 surname: Zhang fullname: Zhang, Jiujun email: jiujun.zhang@fzu.edu.cn organization: Fuzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38497843$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URC-wZYkssSmLBF_m4llWaUqQhkaiZW15PGeQK48dbE9LdvAGPCNPwgwJQaqEWPnY5_vPsf7_FB057wChl5TMKSHsbeytnTPCMkIor56gE1pQPisEq44ONSXH6DTGO0I4ZVn5DB1zkVWlyPgJ-n5tsHItXnh8oZO5B3xjEuDboFw0yXi37_YbSLu7cfjKDj4YBz-__bj0G2jxtVn48_XqDcP15QovLegUvFZJ2W1MEXc-4PXX7WdweHnv7fB7zkdQeiqeo6edshFe7M8z9OlqebtYzer1u_eLi3qmecmrWVOByHPVataUDVUEGuAKcmi7plRTgzRZpaEbXynXihSiLAuhBLRMqIxqfobOd3M3wX8ZICbZm6jBWuXAD1GyqihJLrgQI_r6EXrnh-DG30lOxGio4Hk5Uq_21ND00MpNML0KW_nH3BGY7wAdfIwBugNCiZzSk1N68pDeKMgeCbRJajIpBWXsv2XVTvZgLGz_s0TefKjrv9pfyU6wwg |
CitedBy_id | crossref_primary_10_1002_slct_202404610 crossref_primary_10_1002_adfm_202410816 crossref_primary_10_1155_2024_3149906 crossref_primary_10_1016_j_jcis_2024_10_064 crossref_primary_10_1016_j_mser_2025_100978 crossref_primary_10_1002_adfm_202423965 crossref_primary_10_1016_j_jcis_2025_01_103 crossref_primary_10_1016_j_electacta_2024_144678 crossref_primary_10_1039_D4TA06767C crossref_primary_10_1021_acs_inorgchem_4c04351 crossref_primary_10_1016_j_ijhydene_2024_09_114 crossref_primary_10_3390_catal15030219 crossref_primary_10_1002_adfm_202414449 |
Cites_doi | 10.1002/aenm.202002731 10.1038/s41467-019-13415-8 10.1021/acs.chemrev.1c00686 10.1126/science.1127180 10.1021/acscatal.0c01273 10.1038/nmat4778 10.1039/C9CC00555B 10.1002/ange.201903200 10.1038/s41929-021-00732-9 10.1002/anie.201802923 10.1002/smll.202104323 10.1021/acs.jpcc.6b09141 10.1016/j.cej.2020.124713 10.21236/ADA196638 10.1038/s41467-023-37091-x 10.1021/jacs.3c08697 10.1016/j.cej.2020.125500 10.1002/aenm.201401880 10.1039/D1CS00186H 10.1021/acscatal.2c05624 10.1021/acscatal.3c03804 10.1002/adma.202306097 10.1002/anie.202112447 10.1007/s41918-022-00137-7 10.1002/aenm.202203609 10.1002/aenm.202301391 10.1126/science.aad4998 10.1016/j.nanoen.2021.106079 10.1002/ange.202216477 10.1021/acsami.0c03823 10.1021/acs.nanolett.0c03950 10.1039/D0CS00013B 10.1021/ic50001a022 10.1126/science.1212858 10.1007/s41918-022-00144-8 10.1002/adfm.202302621 10.1039/D0CS00575D 10.1002/adma.201806296 10.1039/C9TA03882E 10.1149/1945-7111/acc555 10.1007/s40820-022-01004-2 10.1126/sciadv.abl9271 10.1021/acscatal.0c00304 10.1007/s41918-022-00131-z 10.1039/D0CS01079K 10.1016/j.jcat.2014.12.033 10.1016/j.apcatb.2020.119165 10.1021/acs.chemrev.2c00515 10.1007/s41918-022-00162-6 10.1038/s41467-022-28260-5 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202400139 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38497843 10_1002_smll_202400139 SMLL202400139 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22250710676 – fundername: National Key R&D Program funderid: 2022YFB4004100) – fundername: National Key R&D Program grantid: 2022YFB4004100) – fundername: National Natural Science Foundation of China grantid: 22250710676 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3739-b9e855adc2b7b1a0ebe3ae5edfb7a55ad0b49cefe3a13ca0687768a8ed28a41c3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 03:43:13 EDT 2025 Wed Aug 13 11:30:16 EDT 2025 Mon Jul 21 05:48:47 EDT 2025 Tue Jul 01 02:55:01 EDT 2025 Thu Apr 24 23:05:50 EDT 2025 Wed Jan 22 17:17:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | competitive mechanism eg orbital occupancy dehydrogenation valence state F-NiCo LDH electrocatalyst |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-b9e855adc2b7b1a0ebe3ae5edfb7a55ad0b49cefe3a13ca0687768a8ed28a41c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8357-3696 |
PMID | 38497843 |
PQID | 3086818357 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2967058388 proquest_journals_3086818357 pubmed_primary_38497843 crossref_primary_10_1002_smll_202400139 crossref_citationtrail_10_1002_smll_202400139 wiley_primary_10_1002_smll_202400139_SMLL202400139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 1, 2024 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 1, 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2011; 334 2023; 13 2023; 35 2023; 14 2015; 5 2021; 86 2023; 33 2019; 31 2019; 55 2023; 15 2019; 10 2022; 51 2023; 123 2023; 145 1962; 1 2019; 58 2020; 12 2015; 328 2020; 10 2021; 50 2017; 355 2016; 120 2006; 312 2022; 122 2023; 170 2021; 11 2020; 393 2022; 5 2017; 16 2023; 135 2022; 8 2020; 49 2022; 13 2020; 397 2020; 276 2020; 21 2021; 60 2019; 131 2022; 18 1988 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 5 start-page: 16 year: 2022 publication-title: Electrochem. Energy Rev. – volume: 18 year: 2022 publication-title: Small – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 15 start-page: 32 year: 2023 publication-title: Nano‐Micro Lett. – volume: 123 start-page: 6257 year: 2023 publication-title: Chem. Rev. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 13 start-page: 605 year: 2022 publication-title: Nat. Commun. – volume: 312 start-page: 1322 year: 2006 publication-title: Science – volume: 13 year: 2023 publication-title: ACS Catal. – volume: 393 year: 2020 publication-title: Chem. Eng. J. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 70 year: 2017 publication-title: Nat. Mater. – volume: 51 start-page: 4583 year: 2022 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 109 year: 2022 publication-title: Nat. Catal. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 276 year: 2020 publication-title: Appl. Catal. B – volume: 131 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 86 year: 2021 publication-title: Nano Energy – volume: 355 year: 2017 publication-title: Science – volume: 49 start-page: 9154 year: 2020 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 14 year: 2022 publication-title: Electrochem. Energy Rev. – volume: 10 start-page: 6254 year: 2020 publication-title: ACS Catal. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 start-page: 20 year: 2022 publication-title: Electrochem. Energy Rev. – volume: 13 start-page: 2771 year: 2023 publication-title: ACS Catal. – volume: 135 year: 2023 publication-title: Angew. Chem. – volume: 1 start-page: 111 year: 1962 publication-title: Inorg. Chem. – volume: 122 start-page: 4204 year: 2022 publication-title: Chem. Rev. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 397 year: 2020 publication-title: Chem. Eng. J. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 5 start-page: 17 year: 2022 publication-title: Electrochem. Energy Rev. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 50 start-page: 8790 year: 2021 publication-title: Chem. Soc. Rev. – volume: 58 start-page: 1252 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 3072 year: 2020 publication-title: Chem. Soc. Rev. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 55 start-page: 3406 year: 2019 publication-title: Chem. Commun. – volume: 21 start-page: 492 year: 2020 publication-title: Nano Lett. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – year: 1988 – volume: 10 start-page: 9086 year: 2020 publication-title: ACS Catal. – volume: 14 start-page: 1873 year: 2023 publication-title: Nat. Commun. – volume: 10 start-page: 5599 year: 2019 publication-title: Nat. Commun. – volume: 328 start-page: 36 year: 2015 publication-title: J. Catal. – volume: 170 year: 2023 publication-title: J. Electrochem. Soc. – volume: 334 start-page: 1383 year: 2011 publication-title: Science – ident: e_1_2_7_49_1 doi: 10.1002/aenm.202002731 – ident: e_1_2_7_7_1 doi: 10.1038/s41467-019-13415-8 – ident: e_1_2_7_9_1 doi: 10.1021/acs.chemrev.1c00686 – ident: e_1_2_7_8_1 doi: 10.1126/science.1127180 – ident: e_1_2_7_42_1 doi: 10.1021/acscatal.0c01273 – ident: e_1_2_7_19_1 doi: 10.1038/nmat4778 – ident: e_1_2_7_31_1 doi: 10.1039/C9CC00555B – ident: e_1_2_7_35_1 doi: 10.1002/ange.201903200 – ident: e_1_2_7_16_1 doi: 10.1038/s41929-021-00732-9 – ident: e_1_2_7_14_1 doi: 10.1002/anie.201802923 – ident: e_1_2_7_45_1 doi: 10.1002/smll.202104323 – ident: e_1_2_7_13_1 doi: 10.1021/acs.jpcc.6b09141 – ident: e_1_2_7_50_1 doi: 10.1016/j.cej.2020.124713 – ident: e_1_2_7_39_1 doi: 10.21236/ADA196638 – ident: e_1_2_7_1_1 doi: 10.1038/s41467-023-37091-x – ident: e_1_2_7_40_1 doi: 10.1021/jacs.3c08697 – ident: e_1_2_7_27_1 doi: 10.1016/j.cej.2020.125500 – ident: e_1_2_7_34_1 doi: 10.1002/aenm.201401880 – ident: e_1_2_7_41_1 doi: 10.1039/D1CS00186H – ident: e_1_2_7_30_1 doi: 10.1021/acscatal.2c05624 – ident: e_1_2_7_25_1 doi: 10.1021/acscatal.3c03804 – ident: e_1_2_7_29_1 doi: 10.1002/adma.202306097 – ident: e_1_2_7_15_1 doi: 10.1002/anie.202112447 – ident: e_1_2_7_4_1 doi: 10.1007/s41918-022-00137-7 – ident: e_1_2_7_2_1 doi: 10.1002/aenm.202203609 – ident: e_1_2_7_38_1 doi: 10.1002/aenm.202301391 – ident: e_1_2_7_12_1 doi: 10.1126/science.aad4998 – ident: e_1_2_7_48_1 doi: 10.1016/j.nanoen.2021.106079 – ident: e_1_2_7_24_1 doi: 10.1002/ange.202216477 – ident: e_1_2_7_26_1 doi: 10.1021/acsami.0c03823 – ident: e_1_2_7_32_1 doi: 10.1021/acs.nanolett.0c03950 – ident: e_1_2_7_10_1 doi: 10.1039/D0CS00013B – ident: e_1_2_7_37_1 doi: 10.1021/ic50001a022 – ident: e_1_2_7_36_1 doi: 10.1126/science.1212858 – ident: e_1_2_7_6_1 doi: 10.1007/s41918-022-00144-8 – ident: e_1_2_7_22_1 doi: 10.1002/adfm.202302621 – ident: e_1_2_7_23_1 doi: 10.1039/D0CS00575D – ident: e_1_2_7_20_1 doi: 10.1002/adma.201806296 – ident: e_1_2_7_33_1 doi: 10.1039/C9TA03882E – ident: e_1_2_7_46_1 doi: 10.1149/1945-7111/acc555 – ident: e_1_2_7_47_1 doi: 10.1007/s40820-022-01004-2 – ident: e_1_2_7_21_1 doi: 10.1126/sciadv.abl9271 – ident: e_1_2_7_43_1 doi: 10.1021/acscatal.0c00304 – ident: e_1_2_7_3_1 doi: 10.1007/s41918-022-00131-z – ident: e_1_2_7_11_1 doi: 10.1039/D0CS01079K – ident: e_1_2_7_44_1 doi: 10.1016/j.jcat.2014.12.033 – ident: e_1_2_7_28_1 doi: 10.1016/j.apcatb.2020.119165 – ident: e_1_2_7_18_1 doi: 10.1021/acs.chemrev.2c00515 – ident: e_1_2_7_5_1 doi: 10.1007/s41918-022-00162-6 – ident: e_1_2_7_17_1 doi: 10.1038/s41467-022-28260-5 |
SSID | ssj0031247 |
Score | 2.536379 |
Snippet | The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2400139 |
SubjectTerms | Catalysts Chemical synthesis competitive mechanism Dehydrogenation eg orbital occupancy Electrocatalysts Fluorine F‐NiCo LDH electrocatalyst Intermetallic compounds Molecular orbitals Oxygen evolution reactions Valence valence state |
Title | Ni and Co Active Site Transition and Competition in Fluorine‐Doped NiCo(OH)2 LDH Electrocatalysts for Oxygen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202400139 https://www.ncbi.nlm.nih.gov/pubmed/38497843 https://www.proquest.com/docview/3086818357 https://www.proquest.com/docview/2967058388 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hPcEDGzBYRkGehDR4yJbacf48Tl2rauo6aaNS3yLbcaSKkkxLO9E9jW_AZ-ST4LPTsIIQErzZsa38u_P9zj7_DuCdFjwpVKR9qrlxUEzZR44YHx2gkIZRoeyC_vk4Gk7CsymfPjjF7_gh2gU31Aw7X6OCC1kf_yQNrT_PcesAYyANijGTMAZsISq6bPmjmDFeNruKsVk-Em-tWRsDerw5fNMq_QY1N5GrNT2DbRDrh3YRJ5-Olgt5pO5-4XP8n7fagacNLiUnTpCewSNdPocnD9gKX8DX8YyIMie9ipzYWZJcGbxKrLWzgV9NKwJxV5-VZDBfYoif_n7_7bS61jkZz3rV-4vhB0pGp0PSd1l47CLSql7UxGBocvFlZcSa9G8btSCX2h2_2IXJoP-xN_SbDA6-YjFLfZnqhHORKypj2RWBkRgmNNd5IWOBDYEMU6ULc7XLlAiiJDbuj0h0ThMRdhV7CVtlVeo9IJKja8bjPIrSUAahxDOzgUgKzJceU-2Bv_6DmWrozTHLxjxzxMw0w0-btZ_Wg8O2_7Uj9vhjz85aILJGweuMGVfQYB3GYw8O2majmrjfIkpdLeuMplEc4LZ04sErJ0jtrViCqf1C5gG14vCXZ8iuzkejtrb_L4New2Msu-DFDmwtbpb6jQFUC_nWKs0PZRYYPQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BcgAOvBcCCxgJCThkN7XjPI6rbqsAaVfah8Qtsh1HqijJirSI5QT_gN_IL8FjJ4GCEBLcEjtRnGTG8814_A3AUy14UqlI-1Rz46CYYx85Ynx0gEIaRpWyAf3ZPMpOw1dveJ9NiHthHD_EEHBDzbDzNSo4BqT3frCGtu-WuHaASZAGxlyES1jW23pVRwODFDPmy9ZXMVbLR-qtnrcxoHub92_apd_A5iZ2tcZneh1kP2yXc_J2d72Su-rTL4yO__VeN-BaB03JvpOlm3BB17fg6k-Ehbfhy3xBRF2ScUP27URJjg1kJdbg2dyvrhexuDtf1GS6XGOWn_72-etBc6ZLMl-Mm-eH2QtK8oOMTFwhHhtHOm9XLTEwmhx-PDeSTSYfOs0gR9rtwLgDp9PJyTjzuyIOvmIxS32Z6oRzUSoqYzkSgREaJjTXZSVjgR2BDFOlK9M6YkoEURIbD0gkuqSJCEeKbcNW3dT6HhDJ0TvjcRlFaSiDUOK22UAkFZZMj6n2wO9_YaE6hnMstLEsHDczLfDTFsOn9eDZcP2Z4_b445U7vUQUnY63BTPeoIE7jMcePBm6jXbikouodbNuC5pGcYAr04kHd50kDY9iCVb3C5kH1MrDX8ZQHM_yfDi7_y83PYbL2cksL_KX89cP4Aq2u1zGHdhavV_rhwZfreQjq0HfAdzRHFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAc-C8EChgJCTikzdpO4hyr_dEC2y1qqdRbZDuOtGJJVmQXUU7wBjwjT4LHzoYuCCHBLY5txXFmMt_Y428AnhoZi1InJqQmtg6KvQ6RIyZEB4hTnpTaLegfTJPxCX91Gp-eO8Xv-SG6BTfUDPe_RgVfFOXeT9LQ5v0ctw4wBtKimItwiSeRQLkeHHUEUsxaL5dexRqtEJm31rSNEd3b7L9pln7DmpvQ1dme0XWQ61H7kJN3u6ul2tWffyF0_J_XugHXWmBK9r0k3YQLproFV8_RFd6Gr9MZkVVB-jXZd79JcmwBK3HmzkV-tbWIxH15VpHRfIUxfub7l2-DemEKMp316-eH4xeUTAZjMvRpeNwq0lmzbIgF0eTw05mVazL82OoFOTL-_MUdOBkN3_bHYZvCIdQsZVmoMiPiWBaaqlT1ZGRFhkkTm6JUqcSKSPFMm9Le7TEto0Sk1v-RwhRUSN7TbBu2qroy94CoGH2zOC2SJOMq4goPzUZSlJgwPaUmgHD9BXPd8ptjmo157pmZaY5Tm3dTG8Czrv3CM3v8seXOWiDyVsObnFlf0IIdFqcBPOmqrW7ihousTL1qcpolaYT70iKAu16Qukcxgbn9OAuAOnH4yxjy44PJpCvd_5dOj-Hym8Eon7ycvn4AV_C2D2Tcga3lh5V5aMHVUj1y-vMDiwwbEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ni+and+Co+Active+Site+Transition+and+Competition+in+Fluorine%E2%80%90Doped+NiCo%28OH%292+LDH+Electrocatalysts+for+Oxygen+Evolution+Reaction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Mao%E2%80%90Jun+Pei&rft.au=Yan%E2%80%90Kang+Shuai&rft.au=Gao%2C+Xiang&rft.au=Jia%E2%80%90Cheng+Chen&rft.date=2024-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202400139&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |