Ni and Co Active Site Transition and Competition in Fluorine‐Doped NiCo(OH)2 LDH Electrocatalysts for Oxygen Evolution Reaction

The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 31; pp. e2400139 - n/a
Main Authors Pei, Mao‐Jun, Shuai, Yan‐Kang, Gao, Xiang, Chen, Jia‐Cheng, Liu, Yao, Yan, Wei, Zhang, Jiujun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F‐atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F‐atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2g to e1g, and subsequently to e0g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F‐NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm−2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F‐NiCo LDH catalysts but also establishes a foundation for the design of high‐performance catalysts. The active center competitive mechanism in F‐NiCo LDH for OER from the points of view of both eg orbital and the valence.
AbstractList The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F-atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F-atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2 g to e1 g, and subsequently to e0 g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F-NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm-2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F-NiCo LDH catalysts but also establishes a foundation for the design of high-performance catalysts.The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F-atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F-atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2 g to e1 g, and subsequently to e0 g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F-NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm-2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F-NiCo LDH catalysts but also establishes a foundation for the design of high-performance catalysts.
The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F-atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F-atoms are progressively aggregate, the e orbitals of Ni and Co transition from e to e , and subsequently to e . The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F-NiCo LDH catalysts are synthesized to verify the e orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm , respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F-NiCo LDH catalysts but also establishes a foundation for the design of high-performance catalysts.
The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F‐atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F‐atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2g to e1g, and subsequently to e0g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F‐NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm−2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F‐NiCo LDH catalysts but also establishes a foundation for the design of high‐performance catalysts.
The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F‐atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F‐atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2g to e1g, and subsequently to e0g. The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F‐NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm−2, respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F‐NiCo LDH catalysts but also establishes a foundation for the design of high‐performance catalysts. The active center competitive mechanism in F‐NiCo LDH for OER from the points of view of both eg orbital and the valence.
The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F‐atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F‐atoms are progressively aggregate, the e g orbitals of Ni and Co transition from e 2 g to e 1 g , and subsequently to e 0 g . The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F‐NiCo LDH catalysts are synthesized to verify the e g orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm −2 , respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F‐NiCo LDH catalysts but also establishes a foundation for the design of high‐performance catalysts.
Author Liu, Yao
Gao, Xiang
Chen, Jia‐Cheng
Yan, Wei
Zhang, Jiujun
Pei, Mao‐Jun
Shuai, Yan‐Kang
Author_xml – sequence: 1
  givenname: Mao‐Jun
  surname: Pei
  fullname: Pei, Mao‐Jun
  organization: Fuzhou University
– sequence: 2
  givenname: Yan‐Kang
  surname: Shuai
  fullname: Shuai, Yan‐Kang
  organization: Fuzhou University
– sequence: 3
  givenname: Xiang
  surname: Gao
  fullname: Gao, Xiang
  organization: Fuzhou University
– sequence: 4
  givenname: Jia‐Cheng
  surname: Chen
  fullname: Chen, Jia‐Cheng
  organization: Fuzhou University
– sequence: 5
  givenname: Yao
  surname: Liu
  fullname: Liu, Yao
  email: yaoliu@fzu.edu.cn
  organization: Fuzhou University
– sequence: 6
  givenname: Wei
  surname: Yan
  fullname: Yan, Wei
  email: weiyan@fzu.edu.cn
  organization: Fuzhou University
– sequence: 7
  givenname: Jiujun
  orcidid: 0000-0001-8357-3696
  surname: Zhang
  fullname: Zhang, Jiujun
  email: jiujun.zhang@fzu.edu.cn
  organization: Fuzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38497843$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URC-wZYkssSmLBF_m4llWaUqQhkaiZW15PGeQK48dbE9LdvAGPCNPwgwJQaqEWPnY5_vPsf7_FB057wChl5TMKSHsbeytnTPCMkIor56gE1pQPisEq44ONSXH6DTGO0I4ZVn5DB1zkVWlyPgJ-n5tsHItXnh8oZO5B3xjEuDboFw0yXi37_YbSLu7cfjKDj4YBz-__bj0G2jxtVn48_XqDcP15QovLegUvFZJ2W1MEXc-4PXX7WdweHnv7fB7zkdQeiqeo6edshFe7M8z9OlqebtYzer1u_eLi3qmecmrWVOByHPVataUDVUEGuAKcmi7plRTgzRZpaEbXynXihSiLAuhBLRMqIxqfobOd3M3wX8ZICbZm6jBWuXAD1GyqihJLrgQI_r6EXrnh-DG30lOxGio4Hk5Uq_21ND00MpNML0KW_nH3BGY7wAdfIwBugNCiZzSk1N68pDeKMgeCbRJajIpBWXsv2XVTvZgLGz_s0TefKjrv9pfyU6wwg
CitedBy_id crossref_primary_10_1002_slct_202404610
crossref_primary_10_1002_adfm_202410816
crossref_primary_10_1155_2024_3149906
crossref_primary_10_1016_j_jcis_2024_10_064
crossref_primary_10_1016_j_mser_2025_100978
crossref_primary_10_1002_adfm_202423965
crossref_primary_10_1016_j_jcis_2025_01_103
crossref_primary_10_1016_j_electacta_2024_144678
crossref_primary_10_1039_D4TA06767C
crossref_primary_10_1021_acs_inorgchem_4c04351
crossref_primary_10_1016_j_ijhydene_2024_09_114
crossref_primary_10_3390_catal15030219
crossref_primary_10_1002_adfm_202414449
Cites_doi 10.1002/aenm.202002731
10.1038/s41467-019-13415-8
10.1021/acs.chemrev.1c00686
10.1126/science.1127180
10.1021/acscatal.0c01273
10.1038/nmat4778
10.1039/C9CC00555B
10.1002/ange.201903200
10.1038/s41929-021-00732-9
10.1002/anie.201802923
10.1002/smll.202104323
10.1021/acs.jpcc.6b09141
10.1016/j.cej.2020.124713
10.21236/ADA196638
10.1038/s41467-023-37091-x
10.1021/jacs.3c08697
10.1016/j.cej.2020.125500
10.1002/aenm.201401880
10.1039/D1CS00186H
10.1021/acscatal.2c05624
10.1021/acscatal.3c03804
10.1002/adma.202306097
10.1002/anie.202112447
10.1007/s41918-022-00137-7
10.1002/aenm.202203609
10.1002/aenm.202301391
10.1126/science.aad4998
10.1016/j.nanoen.2021.106079
10.1002/ange.202216477
10.1021/acsami.0c03823
10.1021/acs.nanolett.0c03950
10.1039/D0CS00013B
10.1021/ic50001a022
10.1126/science.1212858
10.1007/s41918-022-00144-8
10.1002/adfm.202302621
10.1039/D0CS00575D
10.1002/adma.201806296
10.1039/C9TA03882E
10.1149/1945-7111/acc555
10.1007/s40820-022-01004-2
10.1126/sciadv.abl9271
10.1021/acscatal.0c00304
10.1007/s41918-022-00131-z
10.1039/D0CS01079K
10.1016/j.jcat.2014.12.033
10.1016/j.apcatb.2020.119165
10.1021/acs.chemrev.2c00515
10.1007/s41918-022-00162-6
10.1038/s41467-022-28260-5
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202400139
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38497843
10_1002_smll_202400139
SMLL202400139
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22250710676
– fundername: National Key R&D Program
  funderid: 2022YFB4004100)
– fundername: National Key R&D Program
  grantid: 2022YFB4004100)
– fundername: National Natural Science Foundation of China
  grantid: 22250710676
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3739-b9e855adc2b7b1a0ebe3ae5edfb7a55ad0b49cefe3a13ca0687768a8ed28a41c3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 03:43:13 EDT 2025
Wed Aug 13 11:30:16 EDT 2025
Mon Jul 21 05:48:47 EDT 2025
Tue Jul 01 02:55:01 EDT 2025
Thu Apr 24 23:05:50 EDT 2025
Wed Jan 22 17:17:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords competitive mechanism
eg orbital occupancy
dehydrogenation
valence state
F-NiCo LDH electrocatalyst
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-b9e855adc2b7b1a0ebe3ae5edfb7a55ad0b49cefe3a13ca0687768a8ed28a41c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8357-3696
PMID 38497843
PQID 3086818357
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_2967058388
proquest_journals_3086818357
pubmed_primary_38497843
crossref_primary_10_1002_smll_202400139
crossref_citationtrail_10_1002_smll_202400139
wiley_primary_10_1002_smll_202400139_SMLL202400139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 1, 2024
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2011; 334
2023; 13
2023; 35
2023; 14
2015; 5
2021; 86
2023; 33
2019; 31
2019; 55
2023; 15
2019; 10
2022; 51
2023; 123
2023; 145
1962; 1
2019; 58
2020; 12
2015; 328
2020; 10
2021; 50
2017; 355
2016; 120
2006; 312
2022; 122
2023; 170
2021; 11
2020; 393
2022; 5
2017; 16
2023; 135
2022; 8
2020; 49
2022; 13
2020; 397
2020; 276
2020; 21
2021; 60
2019; 131
2022; 18
1988
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 5
  start-page: 16
  year: 2022
  publication-title: Electrochem. Energy Rev.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 15
  start-page: 32
  year: 2023
  publication-title: Nano‐Micro Lett.
– volume: 123
  start-page: 6257
  year: 2023
  publication-title: Chem. Rev.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 13
  start-page: 605
  year: 2022
  publication-title: Nat. Commun.
– volume: 312
  start-page: 1322
  year: 2006
  publication-title: Science
– volume: 13
  year: 2023
  publication-title: ACS Catal.
– volume: 393
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 70
  year: 2017
  publication-title: Nat. Mater.
– volume: 51
  start-page: 4583
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 109
  year: 2022
  publication-title: Nat. Catal.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 276
  year: 2020
  publication-title: Appl. Catal. B
– volume: 131
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 86
  year: 2021
  publication-title: Nano Energy
– volume: 355
  year: 2017
  publication-title: Science
– volume: 49
  start-page: 9154
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 14
  year: 2022
  publication-title: Electrochem. Energy Rev.
– volume: 10
  start-page: 6254
  year: 2020
  publication-title: ACS Catal.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 20
  year: 2022
  publication-title: Electrochem. Energy Rev.
– volume: 13
  start-page: 2771
  year: 2023
  publication-title: ACS Catal.
– volume: 135
  year: 2023
  publication-title: Angew. Chem.
– volume: 1
  start-page: 111
  year: 1962
  publication-title: Inorg. Chem.
– volume: 122
  start-page: 4204
  year: 2022
  publication-title: Chem. Rev.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 397
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 17
  year: 2022
  publication-title: Electrochem. Energy Rev.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 50
  start-page: 8790
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 1252
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 3072
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 55
  start-page: 3406
  year: 2019
  publication-title: Chem. Commun.
– volume: 21
  start-page: 492
  year: 2020
  publication-title: Nano Lett.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– year: 1988
– volume: 10
  start-page: 9086
  year: 2020
  publication-title: ACS Catal.
– volume: 14
  start-page: 1873
  year: 2023
  publication-title: Nat. Commun.
– volume: 10
  start-page: 5599
  year: 2019
  publication-title: Nat. Commun.
– volume: 328
  start-page: 36
  year: 2015
  publication-title: J. Catal.
– volume: 170
  year: 2023
  publication-title: J. Electrochem. Soc.
– volume: 334
  start-page: 1383
  year: 2011
  publication-title: Science
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.202002731
– ident: e_1_2_7_7_1
  doi: 10.1038/s41467-019-13415-8
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.chemrev.1c00686
– ident: e_1_2_7_8_1
  doi: 10.1126/science.1127180
– ident: e_1_2_7_42_1
  doi: 10.1021/acscatal.0c01273
– ident: e_1_2_7_19_1
  doi: 10.1038/nmat4778
– ident: e_1_2_7_31_1
  doi: 10.1039/C9CC00555B
– ident: e_1_2_7_35_1
  doi: 10.1002/ange.201903200
– ident: e_1_2_7_16_1
  doi: 10.1038/s41929-021-00732-9
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.201802923
– ident: e_1_2_7_45_1
  doi: 10.1002/smll.202104323
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.jpcc.6b09141
– ident: e_1_2_7_50_1
  doi: 10.1016/j.cej.2020.124713
– ident: e_1_2_7_39_1
  doi: 10.21236/ADA196638
– ident: e_1_2_7_1_1
  doi: 10.1038/s41467-023-37091-x
– ident: e_1_2_7_40_1
  doi: 10.1021/jacs.3c08697
– ident: e_1_2_7_27_1
  doi: 10.1016/j.cej.2020.125500
– ident: e_1_2_7_34_1
  doi: 10.1002/aenm.201401880
– ident: e_1_2_7_41_1
  doi: 10.1039/D1CS00186H
– ident: e_1_2_7_30_1
  doi: 10.1021/acscatal.2c05624
– ident: e_1_2_7_25_1
  doi: 10.1021/acscatal.3c03804
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.202306097
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.202112447
– ident: e_1_2_7_4_1
  doi: 10.1007/s41918-022-00137-7
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.202203609
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.202301391
– ident: e_1_2_7_12_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_7_48_1
  doi: 10.1016/j.nanoen.2021.106079
– ident: e_1_2_7_24_1
  doi: 10.1002/ange.202216477
– ident: e_1_2_7_26_1
  doi: 10.1021/acsami.0c03823
– ident: e_1_2_7_32_1
  doi: 10.1021/acs.nanolett.0c03950
– ident: e_1_2_7_10_1
  doi: 10.1039/D0CS00013B
– ident: e_1_2_7_37_1
  doi: 10.1021/ic50001a022
– ident: e_1_2_7_36_1
  doi: 10.1126/science.1212858
– ident: e_1_2_7_6_1
  doi: 10.1007/s41918-022-00144-8
– ident: e_1_2_7_22_1
  doi: 10.1002/adfm.202302621
– ident: e_1_2_7_23_1
  doi: 10.1039/D0CS00575D
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201806296
– ident: e_1_2_7_33_1
  doi: 10.1039/C9TA03882E
– ident: e_1_2_7_46_1
  doi: 10.1149/1945-7111/acc555
– ident: e_1_2_7_47_1
  doi: 10.1007/s40820-022-01004-2
– ident: e_1_2_7_21_1
  doi: 10.1126/sciadv.abl9271
– ident: e_1_2_7_43_1
  doi: 10.1021/acscatal.0c00304
– ident: e_1_2_7_3_1
  doi: 10.1007/s41918-022-00131-z
– ident: e_1_2_7_11_1
  doi: 10.1039/D0CS01079K
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jcat.2014.12.033
– ident: e_1_2_7_28_1
  doi: 10.1016/j.apcatb.2020.119165
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.chemrev.2c00515
– ident: e_1_2_7_5_1
  doi: 10.1007/s41918-022-00162-6
– ident: e_1_2_7_17_1
  doi: 10.1038/s41467-022-28260-5
SSID ssj0031247
Score 2.536379
Snippet The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2400139
SubjectTerms Catalysts
Chemical synthesis
competitive mechanism
Dehydrogenation
eg orbital occupancy
Electrocatalysts
Fluorine
F‐NiCo LDH electrocatalyst
Intermetallic compounds
Molecular orbitals
Oxygen evolution reactions
Valence
valence state
Title Ni and Co Active Site Transition and Competition in Fluorine‐Doped NiCo(OH)2 LDH Electrocatalysts for Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202400139
https://www.ncbi.nlm.nih.gov/pubmed/38497843
https://www.proquest.com/docview/3086818357
https://www.proquest.com/docview/2967058388
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hPcEDGzBYRkGehDR4yJbacf48Tl2rauo6aaNS3yLbcaSKkkxLO9E9jW_AZ-ST4LPTsIIQErzZsa38u_P9zj7_DuCdFjwpVKR9qrlxUEzZR44YHx2gkIZRoeyC_vk4Gk7CsymfPjjF7_gh2gU31Aw7X6OCC1kf_yQNrT_PcesAYyANijGTMAZsISq6bPmjmDFeNruKsVk-Em-tWRsDerw5fNMq_QY1N5GrNT2DbRDrh3YRJ5-Olgt5pO5-4XP8n7fagacNLiUnTpCewSNdPocnD9gKX8DX8YyIMie9ipzYWZJcGbxKrLWzgV9NKwJxV5-VZDBfYoif_n7_7bS61jkZz3rV-4vhB0pGp0PSd1l47CLSql7UxGBocvFlZcSa9G8btSCX2h2_2IXJoP-xN_SbDA6-YjFLfZnqhHORKypj2RWBkRgmNNd5IWOBDYEMU6ULc7XLlAiiJDbuj0h0ThMRdhV7CVtlVeo9IJKja8bjPIrSUAahxDOzgUgKzJceU-2Bv_6DmWrozTHLxjxzxMw0w0-btZ_Wg8O2_7Uj9vhjz85aILJGweuMGVfQYB3GYw8O2majmrjfIkpdLeuMplEc4LZ04sErJ0jtrViCqf1C5gG14vCXZ8iuzkejtrb_L4New2Msu-DFDmwtbpb6jQFUC_nWKs0PZRYYPQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BcgAOvBcCCxgJCThkN7XjPI6rbqsAaVfah8Qtsh1HqijJirSI5QT_gN_IL8FjJ4GCEBLcEjtRnGTG8814_A3AUy14UqlI-1Rz46CYYx85Ynx0gEIaRpWyAf3ZPMpOw1dveJ9NiHthHD_EEHBDzbDzNSo4BqT3frCGtu-WuHaASZAGxlyES1jW23pVRwODFDPmy9ZXMVbLR-qtnrcxoHub92_apd_A5iZ2tcZneh1kP2yXc_J2d72Su-rTL4yO__VeN-BaB03JvpOlm3BB17fg6k-Ehbfhy3xBRF2ScUP27URJjg1kJdbg2dyvrhexuDtf1GS6XGOWn_72-etBc6ZLMl-Mm-eH2QtK8oOMTFwhHhtHOm9XLTEwmhx-PDeSTSYfOs0gR9rtwLgDp9PJyTjzuyIOvmIxS32Z6oRzUSoqYzkSgREaJjTXZSVjgR2BDFOlK9M6YkoEURIbD0gkuqSJCEeKbcNW3dT6HhDJ0TvjcRlFaSiDUOK22UAkFZZMj6n2wO9_YaE6hnMstLEsHDczLfDTFsOn9eDZcP2Z4_b445U7vUQUnY63BTPeoIE7jMcePBm6jXbikouodbNuC5pGcYAr04kHd50kDY9iCVb3C5kH1MrDX8ZQHM_yfDi7_y83PYbL2cksL_KX89cP4Aq2u1zGHdhavV_rhwZfreQjq0HfAdzRHFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAc-C8EChgJCTikzdpO4hyr_dEC2y1qqdRbZDuOtGJJVmQXUU7wBjwjT4LHzoYuCCHBLY5txXFmMt_Y428AnhoZi1InJqQmtg6KvQ6RIyZEB4hTnpTaLegfTJPxCX91Gp-eO8Xv-SG6BTfUDPe_RgVfFOXeT9LQ5v0ctw4wBtKimItwiSeRQLkeHHUEUsxaL5dexRqtEJm31rSNEd3b7L9pln7DmpvQ1dme0XWQ61H7kJN3u6ul2tWffyF0_J_XugHXWmBK9r0k3YQLproFV8_RFd6Gr9MZkVVB-jXZd79JcmwBK3HmzkV-tbWIxH15VpHRfIUxfub7l2-DemEKMp316-eH4xeUTAZjMvRpeNwq0lmzbIgF0eTw05mVazL82OoFOTL-_MUdOBkN3_bHYZvCIdQsZVmoMiPiWBaaqlT1ZGRFhkkTm6JUqcSKSPFMm9Le7TEto0Sk1v-RwhRUSN7TbBu2qroy94CoGH2zOC2SJOMq4goPzUZSlJgwPaUmgHD9BXPd8ptjmo157pmZaY5Tm3dTG8Czrv3CM3v8seXOWiDyVsObnFlf0IIdFqcBPOmqrW7ihousTL1qcpolaYT70iKAu16Qukcxgbn9OAuAOnH4yxjy44PJpCvd_5dOj-Hym8Eon7ycvn4AV_C2D2Tcga3lh5V5aMHVUj1y-vMDiwwbEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ni+and+Co+Active+Site+Transition+and+Competition+in+Fluorine%E2%80%90Doped+NiCo%28OH%292+LDH+Electrocatalysts+for+Oxygen+Evolution+Reaction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Mao%E2%80%90Jun+Pei&rft.au=Yan%E2%80%90Kang+Shuai&rft.au=Gao%2C+Xiang&rft.au=Jia%E2%80%90Cheng+Chen&rft.date=2024-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202400139&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon