Inlaying Bismuth Nanoparticles on Graphene Nanosheets by Chemical Bond for Ultralong‐Lifespan Aqueous Sodium Storage

Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reacti...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 2; pp. e202212439 - n/a
Main Authors Zhu, Haojie, Wang, Fangcheng, Peng, Lu, Qin, Tingting, Kang, Feiyu, Yang, Cheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.01.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal‐graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g−1 at a large current density of 4 A g−1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems. Reinforcing bismuth nanoparticles on laser‐induced graphene nanosheets were introduced for an electrically rechargeable aqueous sodium‐ion battery for the first time, which could achieve long‐term operation stability based on a chemical anchoring effect.
AbstractList Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal-graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g-1 at a large current density of 4 A g-1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems.Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal-graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g-1 at a large current density of 4 A g-1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems.
Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal-graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g at a large current density of 4 A g for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems.
Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal‐graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g −1 at a large current density of 4 A g −1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems.
Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal‐graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g−1 at a large current density of 4 A g−1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems. Reinforcing bismuth nanoparticles on laser‐induced graphene nanosheets were introduced for an electrically rechargeable aqueous sodium‐ion battery for the first time, which could achieve long‐term operation stability based on a chemical anchoring effect.
Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal‐graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g−1 at a large current density of 4 A g−1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems.
Author Yang, Cheng
Peng, Lu
Wang, Fangcheng
Zhu, Haojie
Qin, Tingting
Kang, Feiyu
Author_xml – sequence: 1
  givenname: Haojie
  surname: Zhu
  fullname: Zhu, Haojie
  organization: Tsinghua University
– sequence: 2
  givenname: Fangcheng
  surname: Wang
  fullname: Wang, Fangcheng
  email: fc.wang@siat.ac.cn
  organization: Shenzhen Institute of Advanced Technology Chinese Academy of Sciences
– sequence: 3
  givenname: Lu
  surname: Peng
  fullname: Peng, Lu
  organization: Tsinghua University
– sequence: 4
  givenname: Tingting
  surname: Qin
  fullname: Qin, Tingting
  organization: Tsinghua University
– sequence: 5
  givenname: Feiyu
  surname: Kang
  fullname: Kang, Feiyu
  organization: Tsinghua University
– sequence: 6
  givenname: Cheng
  orcidid: 0000-0003-2618-4787
  surname: Yang
  fullname: Yang, Cheng
  email: yang.cheng@sz.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36397656$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URH9gyxJZYsNmgn_iGXuZRqVEisqidG15PHcSVx472DOg7HgEnpEnwSEtSJUQK1vyd47PveccnYQYAKHXlMwoIey9CQ5mjDBG2ZyrZ-iMCkYr3jT8pNznnFeNFPQUned8X3gpSf0CnfKaq6YW9Rn6ugre7F3Y4EuXh2nc4hsT4s6k0VkPGceAr5PZbSHA75e8BRgzbvd4uYXBWePxZQwd7mPCd35Mxsew-fn9x9r1kHcm4MWXCeKU8W3s3DTg2zEms4GX6HlvfIZXD-cFuvtw9Xn5sVp_ul4tF-vK8oarqhXSWgWgSMc55ZyIWhIrOqlaKmkZoWnnlAnWyg5aQlrTW-iIkI1ibUeF4Rfo3dF3l2IJkkc9uGzBexMOqTRrePEhismCvn2C3scphZKuUEKpWpbvC_XmgZraATq9S24waa8fN1qA-RGwKeacoNfWjWZ0MZTlOK8p0Yfi9KE4_ae4Ips9kT06_1OgjoJvzsP-P7Re3Kyu_mp_Ab9drC0
CitedBy_id crossref_primary_10_1039_D4TA00950A
crossref_primary_10_1021_acsami_3c16856
crossref_primary_10_1039_D4RA07887J
crossref_primary_10_1021_acsami_4c18772
crossref_primary_10_1126_sciadv_ads4724
crossref_primary_10_3390_coatings13122088
crossref_primary_10_1002_batt_202400581
crossref_primary_10_3390_ma17010021
crossref_primary_10_1021_acs_energyfuels_3c00106
crossref_primary_10_1021_acs_nanolett_4c05645
crossref_primary_10_3390_batteries9090440
Cites_doi 10.1039/C5EE00878F
10.1021/acs.nanolett.7b00083
10.3390/nano5041756
10.1016/j.elecom.2013.03.013
10.1002/adma.200501576
10.1103/PhysRevLett.93.105501
10.1107/S0108768196015479
10.1149/1.3428667
10.1021/acs.chemmater.5b00616
10.1021/acs.chemmater.6b00491
10.1021/nn300097q
10.1039/C6EE03185D
10.1021/ja308676h
10.1021/acsnano.8b00643
10.1002/aenm.201870082
10.1021/jacs.6b10782
10.1039/D0TA03947K
10.1002/aenm.201703288
10.1002/ange.201801389
10.1002/aenm.201703008
10.1149/2.054303jes
10.1021/nl403669a
10.1002/aenm.201501005
10.1021/acs.chemrev.8b00128
10.1021/cr900070d
10.1002/adma.201904771
10.1039/C8NR00276B
10.1007/s40820-020-00511-4
10.1002/aenm.201600904
10.1039/c2ee02781j
10.1016/j.nanoen.2014.12.012
10.1002/anie.201801389
10.1002/adma.202106232
10.1039/C7EE03016A
10.1016/j.cej.2017.03.054
10.1021/nn406105n
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202212439
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36397656
10_1002_anie_202212439
ANIE202212439
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: International Cooperation and Exchange Programme
  funderid: 52061160482
– fundername: International Cooperation and Exchange Programme
  grantid: 52061160482
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3739-b58cc9ee90d3313305680c5d89b1819767b41252b8deb00bafced058792bd15a3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:13:59 EDT 2025
Sun Jul 13 04:15:36 EDT 2025
Wed Feb 19 02:24:57 EST 2025
Tue Jul 01 01:46:59 EDT 2025
Thu Apr 24 23:07:45 EDT 2025
Wed Jan 22 16:19:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bismuth
Aqueous Sodium-Ion Batteries
Bonding Interaction
Anchoring Effect
Laser-Induced Graphene
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-b58cc9ee90d3313305680c5d89b1819767b41252b8deb00bafced058792bd15a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2618-4787
PMID 36397656
PQID 2759968305
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2738190928
proquest_journals_2759968305
pubmed_primary_36397656
crossref_citationtrail_10_1002_anie_202212439
crossref_primary_10_1002_anie_202212439
wiley_primary_10_1002_anie_202212439_ANIE202212439
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 9, 2023
PublicationDateYYYYMMDD 2023-01-09
PublicationDate_xml – month: 01
  year: 2023
  text: January 9, 2023
  day: 09
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 12
2015; 5
2019; 31
2006; 18
2020; 12
2015; 8
2013; 160
2020; 8
2016; 6
2018; 8
2015; 27
2012; 134
2021; 33
2004; 93
2017; 17
1997; 53
2013; 13
2018; 118
2018 2018; 57 130
2017; 10
2013; 31
2010; 157
2010; 110
2016; 138
2018; 12
2017; 320
2012; 6
2018; 11
2016; 28
2014; 8
2018; 10
2012; 5
e_1_2_3_1_1
e_1_2_3_2_1
e_1_2_3_19_2
e_1_2_3_19_3
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_5_1
e_1_2_3_16_2
e_1_2_3_17_1
e_1_2_3_4_1
e_1_2_3_3_1
e_1_2_3_18_2
e_1_2_3_39_2
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_13_1
e_1_2_3_33_2
e_1_2_3_34_1
e_1_2_3_7_2
e_1_2_3_14_1
e_1_2_3_36_2
e_1_2_3_37_1
e_1_2_3_6_2
e_1_2_3_35_2
e_1_2_3_30_2
e_1_2_3_10_1
e_1_2_3_32_2
e_1_2_3_31_2
e_1_2_3_40_1
e_1_2_3_26_2
e_1_2_3_27_2
e_1_2_3_28_1
e_1_2_3_29_1
e_1_2_3_22_2
e_1_2_3_23_2
e_1_2_3_24_2
e_1_2_3_25_2
e_1_2_3_42_1
e_1_2_3_20_1
e_1_2_3_41_1
e_1_2_3_21_1
e_1_2_3_43_1
References_xml – volume: 5
  start-page: 1756
  year: 2015
  end-page: 1765
  publication-title: Nanomaterials
– volume: 31
  start-page: 145
  year: 2013
  end-page: 148
  publication-title: Electrochem. Commun.
– volume: 57 130
  start-page: 4687 4777
  year: 2018 2018
  end-page: 4691 4781
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 118
  start-page: 7363
  year: 2018
  end-page: 7408
  publication-title: Chem. Rev.
– volume: 8
  start-page: 1728
  year: 2014
  end-page: 1738
  publication-title: ACS Nano
– volume: 12
  start-page: 171
  year: 2020
  publication-title: Nano-Micro Lett.
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 1218
  year: 2018
  end-page: 1225
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 552
  year: 2017
  end-page: 557
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 16533
  year: 2016
  end-page: 16541
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3206
  year: 2012
  end-page: 3213
  publication-title: ACS Nano
– volume: 134
  start-page: 19532
  year: 2012
  end-page: 19535
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 132
  year: 2010
  end-page: 145
  publication-title: Chem. Rev.
– volume: 10
  start-page: 7047
  year: 2018
  end-page: 7057
  publication-title: Nanoscale
– volume: 8
  start-page: 2954
  year: 2015
  end-page: 2962
  publication-title: Energy Environ. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 160
  start-page: A497
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 3568
  year: 2018
  end-page: 3577
  publication-title: ACS Nano
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 320
  start-page: 300
  year: 2017
  end-page: 307
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 15479
  year: 2020
  end-page: 15512
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 5748
  year: 2013
  end-page: 5752
  publication-title: Nano Lett.
– volume: 5
  start-page: 5884
  year: 2012
  end-page: 5901
  publication-title: Energy Environ. Sci.
– volume: 53
  start-page: 353
  year: 1997
  end-page: 357
  publication-title: Acta Crystallogr. Sect. B
– volume: 12
  start-page: 88
  year: 2015
  end-page: 95
  publication-title: Nano Energy
– volume: 157
  start-page: A870
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 2750
  year: 2016
  end-page: 2756
  publication-title: Chem. Mater.
– volume: 18
  start-page: 2073
  year: 2006
  end-page: 2094
  publication-title: Adv. Mater.
– volume: 27
  start-page: 3096
  year: 2015
  end-page: 3101
  publication-title: Chem. Mater.
– volume: 17
  start-page: 2034
  year: 2017
  end-page: 2042
  publication-title: Nano Lett.
– ident: e_1_2_3_27_2
  doi: 10.1039/C5EE00878F
– ident: e_1_2_3_12_2
  doi: 10.1021/acs.nanolett.7b00083
– ident: e_1_2_3_41_1
  doi: 10.3390/nano5041756
– ident: e_1_2_3_6_2
  doi: 10.1016/j.elecom.2013.03.013
– ident: e_1_2_3_26_2
  doi: 10.1002/adma.200501576
– ident: e_1_2_3_38_2
  doi: 10.1103/PhysRevLett.93.105501
– ident: e_1_2_3_40_1
  doi: 10.1107/S0108768196015479
– ident: e_1_2_3_8_2
  doi: 10.1149/1.3428667
– ident: e_1_2_3_18_2
  doi: 10.1021/acs.chemmater.5b00616
– ident: e_1_2_3_23_2
  doi: 10.1021/acs.chemmater.6b00491
– ident: e_1_2_3_31_2
  doi: 10.1021/nn300097q
– ident: e_1_2_3_33_2
  doi: 10.1039/C6EE03185D
– ident: e_1_2_3_34_1
– ident: e_1_2_3_32_2
  doi: 10.1021/ja308676h
– ident: e_1_2_3_11_2
  doi: 10.1021/acsnano.8b00643
– ident: e_1_2_3_20_1
  doi: 10.1002/aenm.201870082
– ident: e_1_2_3_24_2
  doi: 10.1021/jacs.6b10782
– ident: e_1_2_3_2_1
  doi: 10.1039/D0TA03947K
– ident: e_1_2_3_29_1
– ident: e_1_2_3_13_1
  doi: 10.1002/aenm.201703288
– ident: e_1_2_3_19_3
  doi: 10.1002/ange.201801389
– ident: e_1_2_3_37_1
– ident: e_1_2_3_1_1
  doi: 10.1002/aenm.201703008
– ident: e_1_2_3_7_2
  doi: 10.1149/2.054303jes
– ident: e_1_2_3_42_1
  doi: 10.1021/nl403669a
– ident: e_1_2_3_3_1
  doi: 10.1002/aenm.201501005
– ident: e_1_2_3_25_2
  doi: 10.1021/acs.chemrev.8b00128
– ident: e_1_2_3_14_1
– ident: e_1_2_3_17_1
– ident: e_1_2_3_5_1
– ident: e_1_2_3_36_2
  doi: 10.1021/cr900070d
– ident: e_1_2_3_39_2
  doi: 10.1002/adma.201904771
– ident: e_1_2_3_43_1
  doi: 10.1039/C8NR00276B
– ident: e_1_2_3_10_1
– ident: e_1_2_3_28_1
  doi: 10.1007/s40820-020-00511-4
– ident: e_1_2_3_35_2
  doi: 10.1002/aenm.201600904
– ident: e_1_2_3_4_1
  doi: 10.1039/c2ee02781j
– ident: e_1_2_3_16_2
  doi: 10.1016/j.nanoen.2014.12.012
– ident: e_1_2_3_19_2
  doi: 10.1002/anie.201801389
– ident: e_1_2_3_9_2
  doi: 10.1002/adma.202106232
– ident: e_1_2_3_22_2
  doi: 10.1039/C7EE03016A
– ident: e_1_2_3_15_2
  doi: 10.1016/j.cej.2017.03.054
– ident: e_1_2_3_21_1
– ident: e_1_2_3_30_2
  doi: 10.1021/nn406105n
SSID ssj0028806
Score 2.6382272
Snippet Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202212439
SubjectTerms Anchoring Effect
Anodes
Aqueous Sodium-Ion Batteries
Batteries
Bismuth
Bonding Interaction
Chemical bonds
Electrochemistry
Energy storage
Graphene
Heterostructures
Laser-Induced Graphene
Life span
Lithium
Lithium-ion batteries
Nanoparticles
Nanosheets
Reaction kinetics
Rechargeable batteries
Sodium
Sodium-ion batteries
Storage batteries
Storage systems
Structural design
Structural engineering
Title Inlaying Bismuth Nanoparticles on Graphene Nanosheets by Chemical Bond for Ultralong‐Lifespan Aqueous Sodium Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202212439
https://www.ncbi.nlm.nih.gov/pubmed/36397656
https://www.proquest.com/docview/2759968305
https://www.proquest.com/docview/2738190928
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwEB1V3cAGKM-0BbkSEqu0uXbSxMtL1dJWpQvKlbqLPLHTXnGbIJJUalf9BL6RL2EmL7gghAS7RLaV2D4eHz_mDMBrAkVuJDrfxTnSAiXMfEQT-3Fo8sxg7nTAjsLvT3cPZ-HxeXT-kxd_pw8xbrjxyGjtNQ9wg9XOD9FQ9sCm9Z0k20uTKhlhvrDFrOjDqB8lCZyde5FSPkehH1QbA7mzXHx5VvqNai4z13bqOXgIZvjp7sbJp-2mxu3s9hc9x_-p1SN40PNSMe2AtAYrrngM9_aGcHBP4PqoWBj2iRJv59VVU18KMsy04u4v1omyEO9Y_JpsZ5tSXTpXVwJvxKBJIDiEsSCSLGYL3l8pi4tvd19P5rkjq1aIKTVG2VTirLTz5kqc1QTOC_cUZgf7H_cO_T5og5-pWGkfoyTLtKM-tkrRApgIVhJkkU00Epkg8hNjSKRKYmI5bBESJJwNoiTWEu0kMuoZrBZl4V6AmOSBsbFCQxwstEGuCXBRkE-UxchpjDzwh05Ls17RnANrLNJOi1mm3Jrp2JoevBnzf-60PP6Yc3PAQNqP6SqVMUvZJFQjD7bGZOoFPmIxBTdRyo5ORLG0TDx43mFn_JTiM1Sizx7IFgF_-Yd0enq0P76t_0uhDbhPz6rdMdKbsFp_adxL4lA1vmrHyXfGYBWd
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BOZRL-aaBAkZC4pQ2ayckPi5Vyy5s90C7EjfLjp12xTapmgSpPfET-I38EmbyhRaEkOCYOFZi-3n8xvG8AXiFoMg0N853cWbQQQlT3xgd-3Gos1SbzMmAAoWP5m8mi_D9p6g_TUixMK0-xLDhRjOjsdc0wWlDeu-naiiFYKODx9H44qp6E25RWu_Gq_o4KEhxhGcbYCSET3noe93GgO-t119fl34jm-vctVl8Du-A6T-7PXPyebeuzG56_Yui43-16y5sddSUjVss3YMbLr8Pm_t9RrgH8GWarzSFRbG3y_K8rs4Y2mZ0uruzdazI2TvSv0bz2ZSUZ85VJTNXrJclYJTFmCFPZosVbbEU-en3r99my8yhYcvZGHujqEt2XNhlfc6OK8TnqXsIi8ODk_2J3-Vt8FMRC-mbKElT6XCYrRDoAyPHSoI0sok0yCeQ_8QmRF7FTWIpc5FBVDgbREksubGjSItHsJEXudsGNsoCbWNhNNKw0AaZRMxFQTYS1kROmsgDvx81lXai5pRbY6VaOWauqDfV0JsevB6ev2jlPP745E4PAtVN61LxmNRsEmyRBy-HYhwF-suic-oiRbFOyLIkTzx43IJneJWg36jIoD3gDQT-8g1qPJ8eDFdP_qXSC9icnBzN1Gw6__AUbuN90WwgyR3YqC5r9wwpVWWeN5PmBxPMGbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CIgGb8iwEChgJiVXajJ00yXJoO3SgjBBlpO4sO7bbEdOkahIkWPEJfCNfwr15wYAQEiwT20psH18fP-65AM8QFE5xbX0bO40LlDDztVaxH4fKZUo7mwbkKPxmtnMwD18dR8c_efG3-hDDhhuNjMZe0wA_N277h2goeWDj-o6j7cVJ9TJcCXeChHC9924QkOKIzta_SAifwtD3so0B314tvzot_cY1V6lrM_dMboDq_7q9cvJhq670Vvb5F0HH_6nWTVjviCkbt0i6BZdsfhuu7fbx4O7Ax2m-VOQUxV4syrO6OmVomXHJ3d2sY0XOXpL6NRrPJqU8tbYqmf7EelECRjGMGbJkNl_SBkuRn3z78vVw4SyatZyNsTGKumRHhVnUZ-yoQnSe2Lswn-y_3z3wu6gNfiZikfo6SrIstdjJRghcASPDSoIsMkmqkU0g-4l1iKyK68RQ3CKNmLAmiJI45dqMIiU2YC0vcnsf2MgFysRCKyRhoQlcioiLAjcSRkc21ZEHft9pMuskzSmyxlK2YsxcUmvKoTU9eD7kP2_FPP6Yc7PHgOwGdSl5TFo2CdbIg6dDMvYCnbGonJpIkqcTcqyUJx7ca7EzfErQISryZw94g4C__IMcz6b7w9ODfyn0BK6-3ZvIw-ns9UO4jq9Fs3uUbsJadVHbR8inKv24GTLfAc17GHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inlaying+Bismuth+Nanoparticles+on+Graphene+Nanosheets+by+Chemical+Bond+for+Ultralong-Lifespan+Aqueous+Sodium+Storage&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhu%2C+Haojie&rft.au=Wang%2C+Fangcheng&rft.au=Peng%2C+Lu&rft.au=Qin%2C+Tingting&rft.date=2023-01-09&rft.eissn=1521-3773&rft.volume=62&rft.issue=2&rft.spage=e202212439&rft_id=info:doi/10.1002%2Fanie.202212439&rft_id=info%3Apmid%2F36397656&rft.externalDocID=36397656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon