Inlaying Bismuth Nanoparticles on Graphene Nanosheets by Chemical Bond for Ultralong‐Lifespan Aqueous Sodium Storage
Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reacti...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 2; pp. e202212439 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.01.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal‐graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g−1 at a large current density of 4 A g−1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems.
Reinforcing bismuth nanoparticles on laser‐induced graphene nanosheets were introduced for an electrically rechargeable aqueous sodium‐ion battery for the first time, which could achieve long‐term operation stability based on a chemical anchoring effect. |
---|---|
AbstractList | Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal-graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g-1 at a large current density of 4 A g-1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems.Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal-graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g-1 at a large current density of 4 A g-1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems. Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal-graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g at a large current density of 4 A g for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems. Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal‐graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g −1 at a large current density of 4 A g −1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems. Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal‐graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g−1 at a large current density of 4 A g−1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems. Reinforcing bismuth nanoparticles on laser‐induced graphene nanosheets were introduced for an electrically rechargeable aqueous sodium‐ion battery for the first time, which could achieve long‐term operation stability based on a chemical anchoring effect. Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal anodes show a high theoretical capacity and nonselective hydrated ion insertion for ASIBs, yet their large volume expansion and sluggish reaction kinetics resulted in poor electrochemical stability. Herein, we demonstrate an electrode cyclability enhancement mechanism by inlaying bismuth (Bi) nanoparticles on graphene nanosheets through chemical bond, which is achieved by a unique laser induced compounding method. This anchored metal‐graphene heterostructure can effectively mitigate volume variation, and accelerate the kinetic capability as the active Bi can be exposed to the electrolyte. Our method can achieve a reversible capacity of 122 mAh g−1 at a large current density of 4 A g−1 for over 9500 cycles. This finding offers a desirable structural design of other metal anodes for aqueous energy storage systems. |
Author | Yang, Cheng Peng, Lu Wang, Fangcheng Zhu, Haojie Qin, Tingting Kang, Feiyu |
Author_xml | – sequence: 1 givenname: Haojie surname: Zhu fullname: Zhu, Haojie organization: Tsinghua University – sequence: 2 givenname: Fangcheng surname: Wang fullname: Wang, Fangcheng email: fc.wang@siat.ac.cn organization: Shenzhen Institute of Advanced Technology Chinese Academy of Sciences – sequence: 3 givenname: Lu surname: Peng fullname: Peng, Lu organization: Tsinghua University – sequence: 4 givenname: Tingting surname: Qin fullname: Qin, Tingting organization: Tsinghua University – sequence: 5 givenname: Feiyu surname: Kang fullname: Kang, Feiyu organization: Tsinghua University – sequence: 6 givenname: Cheng orcidid: 0000-0003-2618-4787 surname: Yang fullname: Yang, Cheng email: yang.cheng@sz.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36397656$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URH9gyxJZYsNmgn_iGXuZRqVEisqidG15PHcSVx472DOg7HgEnpEnwSEtSJUQK1vyd47PveccnYQYAKHXlMwoIey9CQ5mjDBG2ZyrZ-iMCkYr3jT8pNznnFeNFPQUned8X3gpSf0CnfKaq6YW9Rn6ugre7F3Y4EuXh2nc4hsT4s6k0VkPGceAr5PZbSHA75e8BRgzbvd4uYXBWePxZQwd7mPCd35Mxsew-fn9x9r1kHcm4MWXCeKU8W3s3DTg2zEms4GX6HlvfIZXD-cFuvtw9Xn5sVp_ul4tF-vK8oarqhXSWgWgSMc55ZyIWhIrOqlaKmkZoWnnlAnWyg5aQlrTW-iIkI1ibUeF4Rfo3dF3l2IJkkc9uGzBexMOqTRrePEhismCvn2C3scphZKuUEKpWpbvC_XmgZraATq9S24waa8fN1qA-RGwKeacoNfWjWZ0MZTlOK8p0Yfi9KE4_ae4Ips9kT06_1OgjoJvzsP-P7Re3Kyu_mp_Ab9drC0 |
CitedBy_id | crossref_primary_10_1039_D4TA00950A crossref_primary_10_1021_acsami_3c16856 crossref_primary_10_1039_D4RA07887J crossref_primary_10_1021_acsami_4c18772 crossref_primary_10_1126_sciadv_ads4724 crossref_primary_10_3390_coatings13122088 crossref_primary_10_1002_batt_202400581 crossref_primary_10_3390_ma17010021 crossref_primary_10_1021_acs_energyfuels_3c00106 crossref_primary_10_1021_acs_nanolett_4c05645 crossref_primary_10_3390_batteries9090440 |
Cites_doi | 10.1039/C5EE00878F 10.1021/acs.nanolett.7b00083 10.3390/nano5041756 10.1016/j.elecom.2013.03.013 10.1002/adma.200501576 10.1103/PhysRevLett.93.105501 10.1107/S0108768196015479 10.1149/1.3428667 10.1021/acs.chemmater.5b00616 10.1021/acs.chemmater.6b00491 10.1021/nn300097q 10.1039/C6EE03185D 10.1021/ja308676h 10.1021/acsnano.8b00643 10.1002/aenm.201870082 10.1021/jacs.6b10782 10.1039/D0TA03947K 10.1002/aenm.201703288 10.1002/ange.201801389 10.1002/aenm.201703008 10.1149/2.054303jes 10.1021/nl403669a 10.1002/aenm.201501005 10.1021/acs.chemrev.8b00128 10.1021/cr900070d 10.1002/adma.201904771 10.1039/C8NR00276B 10.1007/s40820-020-00511-4 10.1002/aenm.201600904 10.1039/c2ee02781j 10.1016/j.nanoen.2014.12.012 10.1002/anie.201801389 10.1002/adma.202106232 10.1039/C7EE03016A 10.1016/j.cej.2017.03.054 10.1021/nn406105n |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202212439 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36397656 10_1002_anie_202212439 ANIE202212439 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: International Cooperation and Exchange Programme funderid: 52061160482 – fundername: International Cooperation and Exchange Programme grantid: 52061160482 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3739-b58cc9ee90d3313305680c5d89b1819767b41252b8deb00bafced058792bd15a3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:13:59 EDT 2025 Sun Jul 13 04:15:36 EDT 2025 Wed Feb 19 02:24:57 EST 2025 Tue Jul 01 01:46:59 EDT 2025 Thu Apr 24 23:07:45 EDT 2025 Wed Jan 22 16:19:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Bismuth Aqueous Sodium-Ion Batteries Bonding Interaction Anchoring Effect Laser-Induced Graphene |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-b58cc9ee90d3313305680c5d89b1819767b41252b8deb00bafced058792bd15a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2618-4787 |
PMID | 36397656 |
PQID | 2759968305 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2738190928 proquest_journals_2759968305 pubmed_primary_36397656 crossref_citationtrail_10_1002_anie_202212439 crossref_primary_10_1002_anie_202212439 wiley_primary_10_1002_anie_202212439_ANIE202212439 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 9, 2023 |
PublicationDateYYYYMMDD | 2023-01-09 |
PublicationDate_xml | – month: 01 year: 2023 text: January 9, 2023 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 12 2015; 5 2019; 31 2006; 18 2020; 12 2015; 8 2013; 160 2020; 8 2016; 6 2018; 8 2015; 27 2012; 134 2021; 33 2004; 93 2017; 17 1997; 53 2013; 13 2018; 118 2018 2018; 57 130 2017; 10 2013; 31 2010; 157 2010; 110 2016; 138 2018; 12 2017; 320 2012; 6 2018; 11 2016; 28 2014; 8 2018; 10 2012; 5 e_1_2_3_1_1 e_1_2_3_2_1 e_1_2_3_19_2 e_1_2_3_19_3 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_5_1 e_1_2_3_16_2 e_1_2_3_17_1 e_1_2_3_4_1 e_1_2_3_3_1 e_1_2_3_18_2 e_1_2_3_39_2 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_13_1 e_1_2_3_33_2 e_1_2_3_34_1 e_1_2_3_7_2 e_1_2_3_14_1 e_1_2_3_36_2 e_1_2_3_37_1 e_1_2_3_6_2 e_1_2_3_35_2 e_1_2_3_30_2 e_1_2_3_10_1 e_1_2_3_32_2 e_1_2_3_31_2 e_1_2_3_40_1 e_1_2_3_26_2 e_1_2_3_27_2 e_1_2_3_28_1 e_1_2_3_29_1 e_1_2_3_22_2 e_1_2_3_23_2 e_1_2_3_24_2 e_1_2_3_25_2 e_1_2_3_42_1 e_1_2_3_20_1 e_1_2_3_41_1 e_1_2_3_21_1 e_1_2_3_43_1 |
References_xml | – volume: 5 start-page: 1756 year: 2015 end-page: 1765 publication-title: Nanomaterials – volume: 31 start-page: 145 year: 2013 end-page: 148 publication-title: Electrochem. Commun. – volume: 57 130 start-page: 4687 4777 year: 2018 2018 end-page: 4691 4781 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 118 start-page: 7363 year: 2018 end-page: 7408 publication-title: Chem. Rev. – volume: 8 start-page: 1728 year: 2014 end-page: 1738 publication-title: ACS Nano – volume: 12 start-page: 171 year: 2020 publication-title: Nano-Micro Lett. – volume: 93 year: 2004 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 1218 year: 2018 end-page: 1225 publication-title: Energy Environ. Sci. – volume: 10 start-page: 552 year: 2017 end-page: 557 publication-title: Energy Environ. Sci. – volume: 138 start-page: 16533 year: 2016 end-page: 16541 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3206 year: 2012 end-page: 3213 publication-title: ACS Nano – volume: 134 start-page: 19532 year: 2012 end-page: 19535 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 132 year: 2010 end-page: 145 publication-title: Chem. Rev. – volume: 10 start-page: 7047 year: 2018 end-page: 7057 publication-title: Nanoscale – volume: 8 start-page: 2954 year: 2015 end-page: 2962 publication-title: Energy Environ. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 160 start-page: A497 year: 2013 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 3568 year: 2018 end-page: 3577 publication-title: ACS Nano – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 320 start-page: 300 year: 2017 end-page: 307 publication-title: Chem. Eng. J. – volume: 8 start-page: 15479 year: 2020 end-page: 15512 publication-title: J. Mater. Chem. A – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 13 start-page: 5748 year: 2013 end-page: 5752 publication-title: Nano Lett. – volume: 5 start-page: 5884 year: 2012 end-page: 5901 publication-title: Energy Environ. Sci. – volume: 53 start-page: 353 year: 1997 end-page: 357 publication-title: Acta Crystallogr. Sect. B – volume: 12 start-page: 88 year: 2015 end-page: 95 publication-title: Nano Energy – volume: 157 start-page: A870 year: 2010 publication-title: J. Electrochem. Soc. – volume: 28 start-page: 2750 year: 2016 end-page: 2756 publication-title: Chem. Mater. – volume: 18 start-page: 2073 year: 2006 end-page: 2094 publication-title: Adv. Mater. – volume: 27 start-page: 3096 year: 2015 end-page: 3101 publication-title: Chem. Mater. – volume: 17 start-page: 2034 year: 2017 end-page: 2042 publication-title: Nano Lett. – ident: e_1_2_3_27_2 doi: 10.1039/C5EE00878F – ident: e_1_2_3_12_2 doi: 10.1021/acs.nanolett.7b00083 – ident: e_1_2_3_41_1 doi: 10.3390/nano5041756 – ident: e_1_2_3_6_2 doi: 10.1016/j.elecom.2013.03.013 – ident: e_1_2_3_26_2 doi: 10.1002/adma.200501576 – ident: e_1_2_3_38_2 doi: 10.1103/PhysRevLett.93.105501 – ident: e_1_2_3_40_1 doi: 10.1107/S0108768196015479 – ident: e_1_2_3_8_2 doi: 10.1149/1.3428667 – ident: e_1_2_3_18_2 doi: 10.1021/acs.chemmater.5b00616 – ident: e_1_2_3_23_2 doi: 10.1021/acs.chemmater.6b00491 – ident: e_1_2_3_31_2 doi: 10.1021/nn300097q – ident: e_1_2_3_33_2 doi: 10.1039/C6EE03185D – ident: e_1_2_3_34_1 – ident: e_1_2_3_32_2 doi: 10.1021/ja308676h – ident: e_1_2_3_11_2 doi: 10.1021/acsnano.8b00643 – ident: e_1_2_3_20_1 doi: 10.1002/aenm.201870082 – ident: e_1_2_3_24_2 doi: 10.1021/jacs.6b10782 – ident: e_1_2_3_2_1 doi: 10.1039/D0TA03947K – ident: e_1_2_3_29_1 – ident: e_1_2_3_13_1 doi: 10.1002/aenm.201703288 – ident: e_1_2_3_19_3 doi: 10.1002/ange.201801389 – ident: e_1_2_3_37_1 – ident: e_1_2_3_1_1 doi: 10.1002/aenm.201703008 – ident: e_1_2_3_7_2 doi: 10.1149/2.054303jes – ident: e_1_2_3_42_1 doi: 10.1021/nl403669a – ident: e_1_2_3_3_1 doi: 10.1002/aenm.201501005 – ident: e_1_2_3_25_2 doi: 10.1021/acs.chemrev.8b00128 – ident: e_1_2_3_14_1 – ident: e_1_2_3_17_1 – ident: e_1_2_3_5_1 – ident: e_1_2_3_36_2 doi: 10.1021/cr900070d – ident: e_1_2_3_39_2 doi: 10.1002/adma.201904771 – ident: e_1_2_3_43_1 doi: 10.1039/C8NR00276B – ident: e_1_2_3_10_1 – ident: e_1_2_3_28_1 doi: 10.1007/s40820-020-00511-4 – ident: e_1_2_3_35_2 doi: 10.1002/aenm.201600904 – ident: e_1_2_3_4_1 doi: 10.1039/c2ee02781j – ident: e_1_2_3_16_2 doi: 10.1016/j.nanoen.2014.12.012 – ident: e_1_2_3_19_2 doi: 10.1002/anie.201801389 – ident: e_1_2_3_9_2 doi: 10.1002/adma.202106232 – ident: e_1_2_3_22_2 doi: 10.1039/C7EE03016A – ident: e_1_2_3_15_2 doi: 10.1016/j.cej.2017.03.054 – ident: e_1_2_3_21_1 – ident: e_1_2_3_30_2 doi: 10.1021/nn406105n |
SSID | ssj0028806 |
Score | 2.6382272 |
Snippet | Rechargeable aqueous sodium ion batteries (ASIBs) are rising as an important alternative to lithium ion batteries, owing to their safety and low cost. Metal... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202212439 |
SubjectTerms | Anchoring Effect Anodes Aqueous Sodium-Ion Batteries Batteries Bismuth Bonding Interaction Chemical bonds Electrochemistry Energy storage Graphene Heterostructures Laser-Induced Graphene Life span Lithium Lithium-ion batteries Nanoparticles Nanosheets Reaction kinetics Rechargeable batteries Sodium Sodium-ion batteries Storage batteries Storage systems Structural design Structural engineering |
Title | Inlaying Bismuth Nanoparticles on Graphene Nanosheets by Chemical Bond for Ultralong‐Lifespan Aqueous Sodium Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202212439 https://www.ncbi.nlm.nih.gov/pubmed/36397656 https://www.proquest.com/docview/2759968305 https://www.proquest.com/docview/2738190928 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwEB1V3cAGKM-0BbkSEqu0uXbSxMtL1dJWpQvKlbqLPLHTXnGbIJJUalf9BL6RL2EmL7gghAS7RLaV2D4eHz_mDMBrAkVuJDrfxTnSAiXMfEQT-3Fo8sxg7nTAjsLvT3cPZ-HxeXT-kxd_pw8xbrjxyGjtNQ9wg9XOD9FQ9sCm9Z0k20uTKhlhvrDFrOjDqB8lCZyde5FSPkehH1QbA7mzXHx5VvqNai4z13bqOXgIZvjp7sbJp-2mxu3s9hc9x_-p1SN40PNSMe2AtAYrrngM9_aGcHBP4PqoWBj2iRJv59VVU18KMsy04u4v1omyEO9Y_JpsZ5tSXTpXVwJvxKBJIDiEsSCSLGYL3l8pi4tvd19P5rkjq1aIKTVG2VTirLTz5kqc1QTOC_cUZgf7H_cO_T5og5-pWGkfoyTLtKM-tkrRApgIVhJkkU00Epkg8hNjSKRKYmI5bBESJJwNoiTWEu0kMuoZrBZl4V6AmOSBsbFCQxwstEGuCXBRkE-UxchpjDzwh05Ls17RnANrLNJOi1mm3Jrp2JoevBnzf-60PP6Yc3PAQNqP6SqVMUvZJFQjD7bGZOoFPmIxBTdRyo5ORLG0TDx43mFn_JTiM1Sizx7IFgF_-Yd0enq0P76t_0uhDbhPz6rdMdKbsFp_adxL4lA1vmrHyXfGYBWd |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BOZRL-aaBAkZC4pQ2ayckPi5Vyy5s90C7EjfLjp12xTapmgSpPfET-I38EmbyhRaEkOCYOFZi-3n8xvG8AXiFoMg0N853cWbQQQlT3xgd-3Gos1SbzMmAAoWP5m8mi_D9p6g_TUixMK0-xLDhRjOjsdc0wWlDeu-naiiFYKODx9H44qp6E25RWu_Gq_o4KEhxhGcbYCSET3noe93GgO-t119fl34jm-vctVl8Du-A6T-7PXPyebeuzG56_Yui43-16y5sddSUjVss3YMbLr8Pm_t9RrgH8GWarzSFRbG3y_K8rs4Y2mZ0uruzdazI2TvSv0bz2ZSUZ85VJTNXrJclYJTFmCFPZosVbbEU-en3r99my8yhYcvZGHujqEt2XNhlfc6OK8TnqXsIi8ODk_2J3-Vt8FMRC-mbKElT6XCYrRDoAyPHSoI0sok0yCeQ_8QmRF7FTWIpc5FBVDgbREksubGjSItHsJEXudsGNsoCbWNhNNKw0AaZRMxFQTYS1kROmsgDvx81lXai5pRbY6VaOWauqDfV0JsevB6ev2jlPP745E4PAtVN61LxmNRsEmyRBy-HYhwF-suic-oiRbFOyLIkTzx43IJneJWg36jIoD3gDQT-8g1qPJ8eDFdP_qXSC9icnBzN1Gw6__AUbuN90WwgyR3YqC5r9wwpVWWeN5PmBxPMGbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CIgGb8iwEChgJiVXajJ00yXJoO3SgjBBlpO4sO7bbEdOkahIkWPEJfCNfwr15wYAQEiwT20psH18fP-65AM8QFE5xbX0bO40LlDDztVaxH4fKZUo7mwbkKPxmtnMwD18dR8c_efG3-hDDhhuNjMZe0wA_N277h2goeWDj-o6j7cVJ9TJcCXeChHC9924QkOKIzta_SAifwtD3so0B314tvzot_cY1V6lrM_dMboDq_7q9cvJhq670Vvb5F0HH_6nWTVjviCkbt0i6BZdsfhuu7fbx4O7Ax2m-VOQUxV4syrO6OmVomXHJ3d2sY0XOXpL6NRrPJqU8tbYqmf7EelECRjGMGbJkNl_SBkuRn3z78vVw4SyatZyNsTGKumRHhVnUZ-yoQnSe2Lswn-y_3z3wu6gNfiZikfo6SrIstdjJRghcASPDSoIsMkmqkU0g-4l1iKyK68RQ3CKNmLAmiJI45dqMIiU2YC0vcnsf2MgFysRCKyRhoQlcioiLAjcSRkc21ZEHft9pMuskzSmyxlK2YsxcUmvKoTU9eD7kP2_FPP6Yc7PHgOwGdSl5TFo2CdbIg6dDMvYCnbGonJpIkqcTcqyUJx7ca7EzfErQISryZw94g4C__IMcz6b7w9ODfyn0BK6-3ZvIw-ns9UO4jq9Fs3uUbsJadVHbR8inKv24GTLfAc17GHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inlaying+Bismuth+Nanoparticles+on+Graphene+Nanosheets+by+Chemical+Bond+for+Ultralong-Lifespan+Aqueous+Sodium+Storage&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhu%2C+Haojie&rft.au=Wang%2C+Fangcheng&rft.au=Peng%2C+Lu&rft.au=Qin%2C+Tingting&rft.date=2023-01-09&rft.eissn=1521-3773&rft.volume=62&rft.issue=2&rft.spage=e202212439&rft_id=info:doi/10.1002%2Fanie.202212439&rft_id=info%3Apmid%2F36397656&rft.externalDocID=36397656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |