Enhanced Coplanarity and Giant Birefringence in Hydroxypyridinium Nitrate via Hydrogen Bonding between Planar Donors and Planar Acceptors

Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic com...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 5; pp. e202417579 - n/a
Main Authors Yin, Jian‐Ping, Guo, Jingyu, Huo, Hao, Liu, Xin, Cheng, Xue‐Jie, Lin, Zheshuai, Wu, Li‐Ming, Chen, Ling
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 27.01.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C5H6ON)+(NO3)−, (4‐hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C5H6ON)+) and planar hydrogen bond acceptor ((NO3)−) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a Δnobv. ${\Delta {n}^{obv.}}$ =0.494 ( Δnmaxcal. ${\Delta {n}_{max}^{cal.}}$ =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This Δnobv. ${\Delta {n}^{obv.}}$ value already surpasses those of the benchmark crystals, e.g., YVO4 and CaCO3, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices. A strategy that utilizes hydrogen bonding between planar donors and planar acceptors is proposed. Guided by this stratedy, the giant birefringence achieved by ionic crystal, (C5H6ON)+(NO3)−, 4HPN, is achieved. This concept has convincingly demonstrated its applicability and relevance across a diverse array of systems, providing a guiding principle in design synthesis.
AbstractList Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C5H6ON)+(NO3)−, (4‐hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C5H6ON)+) and planar hydrogen bond acceptor ((NO3)−) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a Δnobv. ${\Delta {n}^{obv.}}$ =0.494 ( Δnmaxcal. ${\Delta {n}_{max}^{cal.}}$ =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This Δnobv. ${\Delta {n}^{obv.}}$ value already surpasses those of the benchmark crystals, e.g., YVO4 and CaCO3, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices. A strategy that utilizes hydrogen bonding between planar donors and planar acceptors is proposed. Guided by this stratedy, the giant birefringence achieved by ionic crystal, (C5H6ON)+(NO3)−, 4HPN, is achieved. This concept has convincingly demonstrated its applicability and relevance across a diverse array of systems, providing a guiding principle in design synthesis.
Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C5H6ON)+(NO3)-, (4-hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C5H6ON)+) and planar hydrogen bond acceptor ((NO3)-) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a Δ n o b v . ${\Delta {n}^{obv.}}$ =0.494 ( Δ n m a x c a l . ${\Delta {n}_{max}^{cal.}}$ =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This Δ n o b v . ${\Delta {n}^{obv.}}$ value already surpasses those of the benchmark crystals, e.g., YVO4 and CaCO3, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices.Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C5H6ON)+(NO3)-, (4-hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C5H6ON)+) and planar hydrogen bond acceptor ((NO3)-) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a Δ n o b v . ${\Delta {n}^{obv.}}$ =0.494 ( Δ n m a x c a l . ${\Delta {n}_{max}^{cal.}}$ =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This Δ n o b v . ${\Delta {n}^{obv.}}$ value already surpasses those of the benchmark crystals, e.g., YVO4 and CaCO3, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices.
Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C 5 H 6 ON) + (NO 3 ) − , (4‐hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C 5 H 6 ON) + ) and planar hydrogen bond acceptor ((NO 3 ) − ) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a =0.494 ( =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This value already surpasses those of the benchmark crystals, e.g., YVO 4 and CaCO 3 , commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices.
Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C5H6ON)+(NO3)−, (4‐hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C5H6ON)+) and planar hydrogen bond acceptor ((NO3)−) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a Δnobv.${\Delta {n}^{obv.}}$=0.494 (Δnmaxcal.${\Delta {n}_{max}^{cal.}}$=0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This Δnobv.${\Delta {n}^{obv.}}$value already surpasses those of the benchmark crystals, e.g., YVO4 and CaCO3, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices.
Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C H ON) (NO ) , (4-hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C H ON) ) and planar hydrogen bond acceptor ((NO ) ) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a =0.494 ( =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This value already surpasses those of the benchmark crystals, e.g., YVO and CaCO , commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices.
Author Yin, Jian‐Ping
Huo, Hao
Lin, Zheshuai
Cheng, Xue‐Jie
Wu, Li‐Ming
Liu, Xin
Guo, Jingyu
Chen, Ling
Author_xml – sequence: 1
  givenname: Jian‐Ping
  surname: Yin
  fullname: Yin, Jian‐Ping
  organization: Beijing Normal University
– sequence: 2
  givenname: Jingyu
  surname: Guo
  fullname: Guo, Jingyu
  organization: Beijing Normal University
– sequence: 3
  givenname: Hao
  surname: Huo
  fullname: Huo, Hao
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Beijing Normal University
– sequence: 5
  givenname: Xue‐Jie
  surname: Cheng
  fullname: Cheng, Xue‐Jie
  organization: Beijing Normal University
– sequence: 6
  givenname: Zheshuai
  surname: Lin
  fullname: Lin, Zheshuai
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Li‐Ming
  surname: Wu
  fullname: Wu, Li‐Ming
  email: wlm@bnu.edu.cn
  organization: Beijing Normal University
– sequence: 8
  givenname: Ling
  orcidid: 0000-0002-3693-4193
  surname: Chen
  fullname: Chen, Ling
  email: chenl@bnu.edu.cn
  organization: Beijing Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39506829$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi3Uin5x5YgsceGSxR9xbB-3y9JWqgoHeo4c2ymusnawHUp-Av8ab3cpUqWKk8czz_vOaOYEHPjgLQBvMVpghMhH5Z1dEERqzBmXr8AxZgRXlHN6UOKa0ooLho_ASUr3hRcCNa_BEZUMNYLIY_B77b8rr62BqzAOyqvo8gyVN_DCKZ_huYu2j87f2QJB5-HlbGL4NY9zdMZ5N23gjctRZQt_OrWrFhaeB1_Kd7Cz-cGW_9dHb_gp-BDTo_8-s9Tajrkkz8Bhr4Zk3-zfU3D7ef1tdVldf7m4Wi2vK005lZUQilmiup5IhTjtlUK1ZJoZ3CONa6EN6S3uDNFMcYm54NwwUzdKdp00tKGn4MPOd4zhx2RTbjcuaTuUcWyYUksxYbVsCBIFff8MvQ9T9GW6QjWI0NJgS73bU1O3saYdo9uoOLd_l1yAxQ7QMaRU9vmEYNRur9hur9g-XbEI6mcC7bLKLviyaTe8LJM72YMb7PyfJu3y5mr9T_sHpE-zVA
CitedBy_id crossref_primary_10_1021_acs_inorgchem_4c04843
crossref_primary_10_1039_D5SC00112A
crossref_primary_10_1021_acs_inorgchem_5c00476
Cites_doi 10.1002/anie.202208514
10.1016/j.poly.2016.12.045
10.1016/j.saa.2013.01.080
10.1107/S1600536809048521
10.1016/S0022-0248(02)01693-7
10.1016/j.jallcom.2022.164632
10.1139/v83-440
10.1021/jacs.9b08851
10.1021/jacs.2c05063
10.1107/S1600536812019460
10.1002/chir.23492
10.1016/S0030-4018(99)00091-7
10.1002/anie.202208811
10.1021/jacs.1c00959
10.1103/PhysRevB.60.13380
10.1002/anie.202304498
10.1126/science.250.4983.975
10.1002/anie.201909760
10.1063/1.1656857
10.1038/ncomms1176
10.1038/s41566-023-01228-7
10.1038/s41566-021-00943-3
10.1126/science.287.5462.2451
10.1107/S1600536806027474
10.1039/D3CS00691C
10.1016/j.optcom.2009.03.037
10.1364/JOSA.41.000416
10.1038/s41566-021-00865-0
10.1107/S1600536809048533
10.1117/12.452881
10.1038/s41566-022-00970-8
10.1107/S1600536812028565
10.1002/anie.202110740
10.1107/S1600536811027978
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
2025 Wiley-VCH GmbH
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
– notice: 2025 Wiley-VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202417579
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 39506829
10_1002_anie_202417579
ANIE202417579
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22193043
– fundername: National Natural Science Foundation of China
  grantid: 22193043
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
NPM
RWI
VQA
WRC
YIN
7TM
K9.
53G
7X8
ID FETCH-LOGICAL-c3739-88a5e2abf29a073faa0495c5d1f0c148cd2fe1bd2c5a7917877d5d46a9bb9d363
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:59:23 EDT 2025
Fri Jul 25 11:51:19 EDT 2025
Wed Feb 19 02:02:14 EST 2025
Tue Jul 01 05:07:23 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
Wed Aug 20 07:26:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Second harmonic generation
Birefringence
Coplanar arrangement
Hydrogen bond
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-88a5e2abf29a073faa0495c5d1f0c148cd2fe1bd2c5a7917877d5d46a9bb9d363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3693-4193
PMID 39506829
PQID 3160237918
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_3125496208
proquest_journals_3160237918
pubmed_primary_39506829
crossref_primary_10_1002_anie_202417579
crossref_citationtrail_10_1002_anie_202417579
wiley_primary_10_1002_anie_202417579_ANIE202417579
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 27, 2025
PublicationDateYYYYMMDD 2025-01-27
PublicationDate_xml – month: 01
  year: 2025
  text: January 27, 2025
  day: 27
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 52
2011; 2
2009; 65
2023; 17
2013; 109
2019; 58
1999; 163
2021; 143
1999; 60
2002; 4481
2019; 141
1951; 41
2022; 144
2023; 62
2021; 15
2006; 62
1968; 39
2022; 61
2002; 245
2022; 34
2022; 908
2009; 282
1983; 61
2011; 67
2000; 287
2021; 60
2012; 68
2017; 124
2022; 16
1990; 250
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
References_xml – volume: 15
  start-page: 813
  year: 2021
  end-page: 816
  publication-title: Nat. Photonics
– volume: 141
  start-page: 16151
  year: 2019
  end-page: 16159
  publication-title: J. Am. Chem. Soc.
– volume: 61
  start-page: 2556
  year: 1983
  end-page: 2562
  publication-title: Can. J. Chem.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 4481
  start-page: 10
  year: 2002
  end-page: 16
  publication-title: Proc. SPIE
– volume: 58
  start-page: 15128
  year: 2019
  end-page: 15135
  publication-title: Angew. Chem. Int. Ed.
– volume: 124
  start-page: 243
  year: 2017
  end-page: 250
  publication-title: Polyhedron
– volume: 67
  start-page: o2057
  year: 2011
  end-page: o2058
  publication-title: Acta Crystllogr. Sect. E
– volume: 68
  year: 2012
  publication-title: Acta Crystllogr. Sect. E
– volume: 60
  start-page: 13380
  year: 1999
  end-page: 13389
  publication-title: Phys. Rev. B
– volume: 34
  start-page: 1338
  year: 2022
  end-page: 1354
  publication-title: Chirality
– volume: 144
  start-page: 16471
  year: 2022
  end-page: 16479
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 8699
  year: 2023
  end-page: 8720
  publication-title: Chem. Soc. Rev.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 65
  year: 2009
  publication-title: Acta Crystllogr. Sect. E
– volume: 62
  start-page: o3481
  year: 2006
  end-page: o3482
  publication-title: Acta Crystllogr. Sect. E
– volume: 245
  start-page: 84
  year: 2002
  end-page: 86
  publication-title: J. Cryst. Growth
– volume: 60
  start-page: 25063
  year: 2021
  end-page: 25067
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 191
  year: 2022
  end-page: 195
  publication-title: Nat. Photon.
– volume: 41
  start-page: 416
  year: 1951
  end-page: 419
  publication-title: J. Opt. Soc. Am.
– volume: 250
  start-page: 975
  year: 1990
  end-page: 976
  publication-title: Science
– volume: 163
  start-page: 95
  year: 1999
  end-page: 102
  publication-title: Opt. Commun.
– volume: 282
  start-page: 2620
  year: 2009
  end-page: 2623
  publication-title: Opt. Commun.
– volume: 109
  start-page: 1
  year: 2013
  end-page: 7
  publication-title: Spectrochim. Acta Part A.
– volume: 39
  start-page: 3798
  year: 1968
  end-page: 3813
  publication-title: J. Appl. Phys.
– volume: 287
  start-page: 2451
  year: 2000
  end-page: 2456
  publication-title: Science
– volume: 16
  start-page: 311
  year: 2022
  end-page: 317
  publication-title: Nat. Photonics
– volume: 17
  start-page: 694
  year: 2023
  end-page: 701
  publication-title: Nat. Photonics
– volume: 2
  start-page: 176
  year: 2011
  publication-title: Nat. Commun.
– volume: 908
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 143
  start-page: 3647
  year: 2021
  end-page: 3654
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.202208514
– ident: e_1_2_7_19_1
  doi: 10.1016/j.poly.2016.12.045
– ident: e_1_2_7_25_1
  doi: 10.1016/j.saa.2013.01.080
– ident: e_1_2_7_16_1
  doi: 10.1107/S1600536809048521
– ident: e_1_2_7_28_1
  doi: 10.1016/S0022-0248(02)01693-7
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jallcom.2022.164632
– ident: e_1_2_7_11_1
– ident: e_1_2_7_10_1
  doi: 10.1139/v83-440
– ident: e_1_2_7_8_1
  doi: 10.1021/jacs.9b08851
– ident: e_1_2_7_14_1
  doi: 10.1021/jacs.2c05063
– ident: e_1_2_7_22_1
  doi: 10.1107/S1600536812019460
– ident: e_1_2_7_12_1
  doi: 10.1002/chir.23492
– ident: e_1_2_7_29_1
  doi: 10.1016/S0030-4018(99)00091-7
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202208811
– ident: e_1_2_7_15_1
  doi: 10.1021/jacs.1c00959
– ident: e_1_2_7_23_1
  doi: 10.1103/PhysRevB.60.13380
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.202304498
– ident: e_1_2_7_13_1
  doi: 10.1126/science.250.4983.975
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.201909760
– ident: e_1_2_7_35_1
  doi: 10.1063/1.1656857
– ident: e_1_2_7_5_1
  doi: 10.1038/ncomms1176
– ident: e_1_2_7_6_1
  doi: 10.1038/s41566-023-01228-7
– ident: e_1_2_7_2_1
  doi: 10.1038/s41566-021-00943-3
– ident: e_1_2_7_1_1
  doi: 10.1126/science.287.5462.2451
– ident: e_1_2_7_18_1
  doi: 10.1107/S1600536806027474
– ident: e_1_2_7_7_1
  doi: 10.1039/D3CS00691C
– ident: e_1_2_7_24_1
  doi: 10.1016/j.optcom.2009.03.037
– ident: e_1_2_7_31_1
  doi: 10.1364/JOSA.41.000416
– ident: e_1_2_7_4_1
  doi: 10.1038/s41566-021-00865-0
– ident: e_1_2_7_17_1
  doi: 10.1107/S1600536809048533
– ident: e_1_2_7_30_1
  doi: 10.1117/12.452881
– ident: e_1_2_7_3_1
  doi: 10.1038/s41566-022-00970-8
– ident: e_1_2_7_21_1
  doi: 10.1107/S1600536812028565
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.202110740
– ident: e_1_2_7_20_1
  doi: 10.1107/S1600536811027978
SSID ssj0028806
Score 2.5372055
Snippet Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202417579
SubjectTerms Anisotropy
Birefringence
Calcium carbonate
Coplanar arrangement
Coplanarity
Crystals
Hydrogen
Hydrogen bond
Hydrogen bonding
Hydrogen bonds
Nitrates
Optical components
Second harmonic generation
Signal generation
Signal processing
Title Enhanced Coplanarity and Giant Birefringence in Hydroxypyridinium Nitrate via Hydrogen Bonding between Planar Donors and Planar Acceptors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202417579
https://www.ncbi.nlm.nih.gov/pubmed/39506829
https://www.proquest.com/docview/3160237918
https://www.proquest.com/docview/3125496208
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZixQxEA6yL_rifYy7SgTBp-x2J50-Hsdx1lFwEHFh35qc2LimhzkW1n_gv7YqfegoIuhjJ5V0dVJJqtJVXxHyHDbG0pbOMjC7OMukFEwnFWfWeM-lcyaPVwPvlvniLHt7Ls9_iuLv8CHGCzdcGXG_xgWu9ObkB2goRmCDfQcnUCELjOBDhy3Uij6M-FEchLMLLxKCYRb6AbUx4Sf7zfdPpd9UzX3NNR49p7eIGpjuPE4-H--2-th8_QXP8X--6ja52euldNoJ0h1yzYW75PpsSAd3j3ybh0_RW4DO2tWFCgqz3lEVLH0NEralL2Hv9PGSEIhoE-jiyiLDq6t1A-djs_tCl02EwqWXjepqgZZiXmNoRXuHMfo-9k1ftaFdb2L_fcnUoAcOFN4nZ6fzj7MF6_M4MCMKUbGyVNJxpT2vFOwoXikwS6SRNvWJAXPMWO5dqi03UhVgPpZFYaXNclVpXVmRiwfkILTBPSI0M1oL7XKtjc4qJarE-4wnvsg0MOHTCWHDPNamBznHXBsXdQfPzGsc4Hoc4Al5MdKvOniPP1IeDWJR98t8U4s0B50HeC4n5NlYDRODf11UcO0OadAGz3kCNA87cRpfJSqZ5CWHznkUir_wUE-Xb-bj0-N_aXRIbnDMYJykjBdH5GC73rknoFZt9dO4dL4DFkUcFQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMoFynuhgJGQOLlN7DiJj9vtli20K4RaiVvkp4gozmq7i1T-Af-6Y-eBFoSQ4Bh77EzssT0zGX-D0GvYGEtTWkPA7KIk45wRlQhKjHaOcmt1Hl0Dp_N8dp69-8T7aMJwF6bFhxgcbmFlxP06LPDgkN7_iRoarmCDgQdHUMELcRPdCmm9o1X1cUCQoiCe7QUjxkjIQ9_jNiZ0f7P95rn0m7K5qbvGw-foLlI9223MyZe99Urt6e-_IDr-13ftoDudaorHrSzdQzesv4-2J31GuAfox9R_jgEDeNIsLqSXIfEdlt7gtyBkK3wA26eLfkIgwrXHsysTOF5cLWs4Iuv1VzyvIxou_lbLthZocUhtDK1wFzOGP8S-8WHjm-Vl7L8rGesQhAOFD9H50fRsMiNdKgeiWcEEKUvJLZXKUSFhU3FSgmXCNTepSzRYZNpQZ1NlqOayAAuyLArDTZZLoZQwLGeP0JZvvH2CcKaVYsrmSmmVCclE4lxGE1dkCphw6QiRfiIr3eGch3QbF1WL0EyrMMDVMMAj9GagX7QIH3-k3O3loupW-mXF0hzUHuC5HKFXQzVMTPjxIr1t1oEmmOE5TYDmcStPw6uY4EleUuicRqn4Cw_VeH48HZ6e_kujl2h7dnZ6Up0cz98_Q7dpSGicpIQWu2hrtVzb56BlrdSLuI6uAcOPIDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagSNAXytWybQEjIfHk1rHjHI_LHmw5VhWiUt8inyKiJKvtLlL7D_jXjJ0DFoSQ4DH22JnYM_aMM_4GoRewMGYms4aA28VILAQniuaMGO0cE9bqJBwNvJ8ns7P4zbk4_-kWf4MP0R-4ec0I67VX8IVxxz9AQ_0NbPDvYAdKRZrfRLfihGZerscfegApBtLZ3C_inPg09B1sI2XHm-03t6XfbM1N0zXsPdMdJDuum5CTz0frlTrS178AOv7PZ91Dd1vDFA8bSbqPbtjqAboz6vLBPUTfJtWnEC6AR_XiQlbSp73DsjL4NYjYCr-CxdOFU0IgwmWFZ1fGM7y4WpawQZbrL3heBixc_LWUTS3QYp_YGFrhNmIMn4a-8biu6uVl6L8tGWofggOFj9DZdPJxNCNtIgeiecpzkmVSWCaVY7mEJcVJCX6J0MJEjmrwx7RhzkbKMC1kCv5jlqZGmDiRuVK54QnfRVtVXdnHCMdaKa5sopRWcS55Tp2LGXVprIAJFw0Q6eax0C3KuU-2cVE0-Mys8ANc9AM8QC97-kWD7_FHysNOLIpWzy8LHiVg9ADP2QA976thYvxvF1nZeu1pvBOeMAo0e4049a_iuaBJxqBzFoTiLzwUw_nJpH_a_5dGz9Dt0_G0eHcyf3uAtpnPZkwjwtJDtLVaru0TMLFW6mnQou9oJx7o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Coplanarity+and+Giant+Birefringence+in+Hydroxypyridinium+Nitrate+via+Hydrogen+Bonding+between+Planar+Donors+and+Planar+Acceptors&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yin%2C+Jian%E2%80%90Ping&rft.au=Guo%2C+Jingyu&rft.au=Huo%2C+Hao&rft.au=Liu%2C+Xin&rft.date=2025-01-27&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202417579&rft.externalDBID=10.1002%252Fanie.202417579&rft.externalDocID=ANIE202417579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon