Enhanced Coplanarity and Giant Birefringence in Hydroxypyridinium Nitrate via Hydrogen Bonding between Planar Donors and Planar Acceptors
Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic com...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 5; pp. e202417579 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
27.01.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C5H6ON)+(NO3)−, (4‐hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C5H6ON)+) and planar hydrogen bond acceptor ((NO3)−) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a
Δnobv.
${\Delta {n}^{obv.}}$
=0.494 (
Δnmaxcal.
${\Delta {n}_{max}^{cal.}}$
=0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This
Δnobv.
${\Delta {n}^{obv.}}$
value already surpasses those of the benchmark crystals, e.g., YVO4 and CaCO3, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices.
A strategy that utilizes hydrogen bonding between planar donors and planar acceptors is proposed. Guided by this stratedy, the giant birefringence achieved by ionic crystal, (C5H6ON)+(NO3)−, 4HPN, is achieved. This concept has convincingly demonstrated its applicability and relevance across a diverse array of systems, providing a guiding principle in design synthesis. |
---|---|
AbstractList | Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C5H6ON)+(NO3)−, (4‐hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C5H6ON)+) and planar hydrogen bond acceptor ((NO3)−) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a
Δnobv.
${\Delta {n}^{obv.}}$
=0.494 (
Δnmaxcal.
${\Delta {n}_{max}^{cal.}}$
=0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This
Δnobv.
${\Delta {n}^{obv.}}$
value already surpasses those of the benchmark crystals, e.g., YVO4 and CaCO3, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices.
A strategy that utilizes hydrogen bonding between planar donors and planar acceptors is proposed. Guided by this stratedy, the giant birefringence achieved by ionic crystal, (C5H6ON)+(NO3)−, 4HPN, is achieved. This concept has convincingly demonstrated its applicability and relevance across a diverse array of systems, providing a guiding principle in design synthesis. Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C5H6ON)+(NO3)-, (4-hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C5H6ON)+) and planar hydrogen bond acceptor ((NO3)-) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a Δ n o b v . ${\Delta {n}^{obv.}}$ =0.494 ( Δ n m a x c a l . ${\Delta {n}_{max}^{cal.}}$ =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This Δ n o b v . ${\Delta {n}^{obv.}}$ value already surpasses those of the benchmark crystals, e.g., YVO4 and CaCO3, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices.Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C5H6ON)+(NO3)-, (4-hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C5H6ON)+) and planar hydrogen bond acceptor ((NO3)-) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a Δ n o b v . ${\Delta {n}^{obv.}}$ =0.494 ( Δ n m a x c a l . ${\Delta {n}_{max}^{cal.}}$ =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This Δ n o b v . ${\Delta {n}^{obv.}}$ value already surpasses those of the benchmark crystals, e.g., YVO4 and CaCO3, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices. Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C 5 H 6 ON) + (NO 3 ) − , (4‐hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C 5 H 6 ON) + ) and planar hydrogen bond acceptor ((NO 3 ) − ) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a =0.494 ( =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This value already surpasses those of the benchmark crystals, e.g., YVO 4 and CaCO 3 , commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices. Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C5H6ON)+(NO3)−, (4‐hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C5H6ON)+) and planar hydrogen bond acceptor ((NO3)−) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a Δnobv.${\Delta {n}^{obv.}}$=0.494 (Δnmaxcal.${\Delta {n}_{max}^{cal.}}$=0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This Δnobv.${\Delta {n}^{obv.}}$value already surpasses those of the benchmark crystals, e.g., YVO4 and CaCO3, commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices. Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the challenge of achieving anisotropic structures, especially coplanar geometries. Herein, we achieve a significant birefringence in an ionic compound (C H ON) (NO ) , (4-hydroxypyridinium nitrate, 4HPN) by hydrogen bonding between planar donors and planar acceptors. We demonstrate that the interactions between the planar hydrogen bond donor ((C H ON) ) and planar hydrogen bond acceptor ((NO ) ) ensure the coplanarity during the crystal packing, generating the desired giant optical anisotropy. On two manually cut crystal chips, we observe a =0.494 ( =0.593), which is the largest among nitrates, or hydroxypyridinium derivatives. This value already surpasses those of the benchmark crystals, e.g., YVO and CaCO , commonly used in the UV to visible and near IR spectral range. 4HPN also exhibits a strong second harmonic generation response (9.55×KDP). This strategy offers a promising avenue for the design and development of birefringent crystals with potential applications in optical communication, sensing and signal processing devices. |
Author | Yin, Jian‐Ping Huo, Hao Lin, Zheshuai Cheng, Xue‐Jie Wu, Li‐Ming Liu, Xin Guo, Jingyu Chen, Ling |
Author_xml | – sequence: 1 givenname: Jian‐Ping surname: Yin fullname: Yin, Jian‐Ping organization: Beijing Normal University – sequence: 2 givenname: Jingyu surname: Guo fullname: Guo, Jingyu organization: Beijing Normal University – sequence: 3 givenname: Hao surname: Huo fullname: Huo, Hao organization: Chinese Academy of Sciences – sequence: 4 givenname: Xin surname: Liu fullname: Liu, Xin organization: Beijing Normal University – sequence: 5 givenname: Xue‐Jie surname: Cheng fullname: Cheng, Xue‐Jie organization: Beijing Normal University – sequence: 6 givenname: Zheshuai surname: Lin fullname: Lin, Zheshuai organization: Chinese Academy of Sciences – sequence: 7 givenname: Li‐Ming surname: Wu fullname: Wu, Li‐Ming email: wlm@bnu.edu.cn organization: Beijing Normal University – sequence: 8 givenname: Ling orcidid: 0000-0002-3693-4193 surname: Chen fullname: Chen, Ling email: chenl@bnu.edu.cn organization: Beijing Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39506829$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi3Uin5x5YgsceGSxR9xbB-3y9JWqgoHeo4c2ymusnawHUp-Av8ab3cpUqWKk8czz_vOaOYEHPjgLQBvMVpghMhH5Z1dEERqzBmXr8AxZgRXlHN6UOKa0ooLho_ASUr3hRcCNa_BEZUMNYLIY_B77b8rr62BqzAOyqvo8gyVN_DCKZ_huYu2j87f2QJB5-HlbGL4NY9zdMZ5N23gjctRZQt_OrWrFhaeB1_Kd7Cz-cGW_9dHb_gp-BDTo_8-s9Tajrkkz8Bhr4Zk3-zfU3D7ef1tdVldf7m4Wi2vK005lZUQilmiup5IhTjtlUK1ZJoZ3CONa6EN6S3uDNFMcYm54NwwUzdKdp00tKGn4MPOd4zhx2RTbjcuaTuUcWyYUksxYbVsCBIFff8MvQ9T9GW6QjWI0NJgS73bU1O3saYdo9uoOLd_l1yAxQ7QMaRU9vmEYNRur9hur9g-XbEI6mcC7bLKLviyaTe8LJM72YMb7PyfJu3y5mr9T_sHpE-zVA |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_4c04843 crossref_primary_10_1039_D5SC00112A crossref_primary_10_1021_acs_inorgchem_5c00476 |
Cites_doi | 10.1002/anie.202208514 10.1016/j.poly.2016.12.045 10.1016/j.saa.2013.01.080 10.1107/S1600536809048521 10.1016/S0022-0248(02)01693-7 10.1016/j.jallcom.2022.164632 10.1139/v83-440 10.1021/jacs.9b08851 10.1021/jacs.2c05063 10.1107/S1600536812019460 10.1002/chir.23492 10.1016/S0030-4018(99)00091-7 10.1002/anie.202208811 10.1021/jacs.1c00959 10.1103/PhysRevB.60.13380 10.1002/anie.202304498 10.1126/science.250.4983.975 10.1002/anie.201909760 10.1063/1.1656857 10.1038/ncomms1176 10.1038/s41566-023-01228-7 10.1038/s41566-021-00943-3 10.1126/science.287.5462.2451 10.1107/S1600536806027474 10.1039/D3CS00691C 10.1016/j.optcom.2009.03.037 10.1364/JOSA.41.000416 10.1038/s41566-021-00865-0 10.1107/S1600536809048533 10.1117/12.452881 10.1038/s41566-022-00970-8 10.1107/S1600536812028565 10.1002/anie.202110740 10.1107/S1600536811027978 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. 2025 Wiley-VCH GmbH |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. – notice: 2025 Wiley-VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202417579 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 39506829 10_1002_anie_202417579 ANIE202417579 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22193043 – fundername: National Natural Science Foundation of China grantid: 22193043 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT NPM RWI VQA WRC YIN 7TM K9. 53G 7X8 |
ID | FETCH-LOGICAL-c3739-88a5e2abf29a073faa0495c5d1f0c148cd2fe1bd2c5a7917877d5d46a9bb9d363 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:59:23 EDT 2025 Fri Jul 25 11:51:19 EDT 2025 Wed Feb 19 02:02:14 EST 2025 Tue Jul 01 05:07:23 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Wed Aug 20 07:26:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Second harmonic generation Birefringence Coplanar arrangement Hydrogen bond |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-88a5e2abf29a073faa0495c5d1f0c148cd2fe1bd2c5a7917877d5d46a9bb9d363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3693-4193 |
PMID | 39506829 |
PQID | 3160237918 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3125496208 proquest_journals_3160237918 pubmed_primary_39506829 crossref_primary_10_1002_anie_202417579 crossref_citationtrail_10_1002_anie_202417579 wiley_primary_10_1002_anie_202417579_ANIE202417579 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 27, 2025 |
PublicationDateYYYYMMDD | 2025-01-27 |
PublicationDate_xml | – month: 01 year: 2025 text: January 27, 2025 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 52 2011; 2 2009; 65 2023; 17 2013; 109 2019; 58 1999; 163 2021; 143 1999; 60 2002; 4481 2019; 141 1951; 41 2022; 144 2023; 62 2021; 15 2006; 62 1968; 39 2022; 61 2002; 245 2022; 34 2022; 908 2009; 282 1983; 61 2011; 67 2000; 287 2021; 60 2012; 68 2017; 124 2022; 16 1990; 250 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 |
References_xml | – volume: 15 start-page: 813 year: 2021 end-page: 816 publication-title: Nat. Photonics – volume: 141 start-page: 16151 year: 2019 end-page: 16159 publication-title: J. Am. Chem. Soc. – volume: 61 start-page: 2556 year: 1983 end-page: 2562 publication-title: Can. J. Chem. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 4481 start-page: 10 year: 2002 end-page: 16 publication-title: Proc. SPIE – volume: 58 start-page: 15128 year: 2019 end-page: 15135 publication-title: Angew. Chem. Int. Ed. – volume: 124 start-page: 243 year: 2017 end-page: 250 publication-title: Polyhedron – volume: 67 start-page: o2057 year: 2011 end-page: o2058 publication-title: Acta Crystllogr. Sect. E – volume: 68 year: 2012 publication-title: Acta Crystllogr. Sect. E – volume: 60 start-page: 13380 year: 1999 end-page: 13389 publication-title: Phys. Rev. B – volume: 34 start-page: 1338 year: 2022 end-page: 1354 publication-title: Chirality – volume: 144 start-page: 16471 year: 2022 end-page: 16479 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 8699 year: 2023 end-page: 8720 publication-title: Chem. Soc. Rev. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 65 year: 2009 publication-title: Acta Crystllogr. Sect. E – volume: 62 start-page: o3481 year: 2006 end-page: o3482 publication-title: Acta Crystllogr. Sect. E – volume: 245 start-page: 84 year: 2002 end-page: 86 publication-title: J. Cryst. Growth – volume: 60 start-page: 25063 year: 2021 end-page: 25067 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 191 year: 2022 end-page: 195 publication-title: Nat. Photon. – volume: 41 start-page: 416 year: 1951 end-page: 419 publication-title: J. Opt. Soc. Am. – volume: 250 start-page: 975 year: 1990 end-page: 976 publication-title: Science – volume: 163 start-page: 95 year: 1999 end-page: 102 publication-title: Opt. Commun. – volume: 282 start-page: 2620 year: 2009 end-page: 2623 publication-title: Opt. Commun. – volume: 109 start-page: 1 year: 2013 end-page: 7 publication-title: Spectrochim. Acta Part A. – volume: 39 start-page: 3798 year: 1968 end-page: 3813 publication-title: J. Appl. Phys. – volume: 287 start-page: 2451 year: 2000 end-page: 2456 publication-title: Science – volume: 16 start-page: 311 year: 2022 end-page: 317 publication-title: Nat. Photonics – volume: 17 start-page: 694 year: 2023 end-page: 701 publication-title: Nat. Photonics – volume: 2 start-page: 176 year: 2011 publication-title: Nat. Commun. – volume: 908 year: 2022 publication-title: J. Alloys Compd. – volume: 143 start-page: 3647 year: 2021 end-page: 3654 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_34_1 doi: 10.1002/anie.202208514 – ident: e_1_2_7_19_1 doi: 10.1016/j.poly.2016.12.045 – ident: e_1_2_7_25_1 doi: 10.1016/j.saa.2013.01.080 – ident: e_1_2_7_16_1 doi: 10.1107/S1600536809048521 – ident: e_1_2_7_28_1 doi: 10.1016/S0022-0248(02)01693-7 – ident: e_1_2_7_32_1 doi: 10.1016/j.jallcom.2022.164632 – ident: e_1_2_7_11_1 – ident: e_1_2_7_10_1 doi: 10.1139/v83-440 – ident: e_1_2_7_8_1 doi: 10.1021/jacs.9b08851 – ident: e_1_2_7_14_1 doi: 10.1021/jacs.2c05063 – ident: e_1_2_7_22_1 doi: 10.1107/S1600536812019460 – ident: e_1_2_7_12_1 doi: 10.1002/chir.23492 – ident: e_1_2_7_29_1 doi: 10.1016/S0030-4018(99)00091-7 – ident: e_1_2_7_26_1 doi: 10.1002/anie.202208811 – ident: e_1_2_7_15_1 doi: 10.1021/jacs.1c00959 – ident: e_1_2_7_23_1 doi: 10.1103/PhysRevB.60.13380 – ident: e_1_2_7_27_1 doi: 10.1002/anie.202304498 – ident: e_1_2_7_13_1 doi: 10.1126/science.250.4983.975 – ident: e_1_2_7_33_1 doi: 10.1002/anie.201909760 – ident: e_1_2_7_35_1 doi: 10.1063/1.1656857 – ident: e_1_2_7_5_1 doi: 10.1038/ncomms1176 – ident: e_1_2_7_6_1 doi: 10.1038/s41566-023-01228-7 – ident: e_1_2_7_2_1 doi: 10.1038/s41566-021-00943-3 – ident: e_1_2_7_1_1 doi: 10.1126/science.287.5462.2451 – ident: e_1_2_7_18_1 doi: 10.1107/S1600536806027474 – ident: e_1_2_7_7_1 doi: 10.1039/D3CS00691C – ident: e_1_2_7_24_1 doi: 10.1016/j.optcom.2009.03.037 – ident: e_1_2_7_31_1 doi: 10.1364/JOSA.41.000416 – ident: e_1_2_7_4_1 doi: 10.1038/s41566-021-00865-0 – ident: e_1_2_7_17_1 doi: 10.1107/S1600536809048533 – ident: e_1_2_7_30_1 doi: 10.1117/12.452881 – ident: e_1_2_7_3_1 doi: 10.1038/s41566-022-00970-8 – ident: e_1_2_7_21_1 doi: 10.1107/S1600536812028565 – ident: e_1_2_7_9_1 doi: 10.1002/anie.202110740 – ident: e_1_2_7_20_1 doi: 10.1107/S1600536811027978 |
SSID | ssj0028806 |
Score | 2.5372055 |
Snippet | Birefringent crystals, which possess optical anisotropy, are important optical components. However, designing and synthesizing birefringent crystals faces the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202417579 |
SubjectTerms | Anisotropy Birefringence Calcium carbonate Coplanar arrangement Coplanarity Crystals Hydrogen Hydrogen bond Hydrogen bonding Hydrogen bonds Nitrates Optical components Second harmonic generation Signal generation Signal processing |
Title | Enhanced Coplanarity and Giant Birefringence in Hydroxypyridinium Nitrate via Hydrogen Bonding between Planar Donors and Planar Acceptors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202417579 https://www.ncbi.nlm.nih.gov/pubmed/39506829 https://www.proquest.com/docview/3160237918 https://www.proquest.com/docview/3125496208 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZixQxEA6yL_rifYy7SgTBp-x2J50-Hsdx1lFwEHFh35qc2LimhzkW1n_gv7YqfegoIuhjJ5V0dVJJqtJVXxHyHDbG0pbOMjC7OMukFEwnFWfWeM-lcyaPVwPvlvniLHt7Ls9_iuLv8CHGCzdcGXG_xgWu9ObkB2goRmCDfQcnUCELjOBDhy3Uij6M-FEchLMLLxKCYRb6AbUx4Sf7zfdPpd9UzX3NNR49p7eIGpjuPE4-H--2-th8_QXP8X--6ja52euldNoJ0h1yzYW75PpsSAd3j3ybh0_RW4DO2tWFCgqz3lEVLH0NEralL2Hv9PGSEIhoE-jiyiLDq6t1A-djs_tCl02EwqWXjepqgZZiXmNoRXuHMfo-9k1ftaFdb2L_fcnUoAcOFN4nZ6fzj7MF6_M4MCMKUbGyVNJxpT2vFOwoXikwS6SRNvWJAXPMWO5dqi03UhVgPpZFYaXNclVpXVmRiwfkILTBPSI0M1oL7XKtjc4qJarE-4wnvsg0MOHTCWHDPNamBznHXBsXdQfPzGsc4Hoc4Al5MdKvOniPP1IeDWJR98t8U4s0B50HeC4n5NlYDRODf11UcO0OadAGz3kCNA87cRpfJSqZ5CWHznkUir_wUE-Xb-bj0-N_aXRIbnDMYJykjBdH5GC73rknoFZt9dO4dL4DFkUcFQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMoFynuhgJGQOLlN7DiJj9vtli20K4RaiVvkp4gozmq7i1T-Af-6Y-eBFoSQ4Bh77EzssT0zGX-D0GvYGEtTWkPA7KIk45wRlQhKjHaOcmt1Hl0Dp_N8dp69-8T7aMJwF6bFhxgcbmFlxP06LPDgkN7_iRoarmCDgQdHUMELcRPdCmm9o1X1cUCQoiCe7QUjxkjIQ9_jNiZ0f7P95rn0m7K5qbvGw-foLlI9223MyZe99Urt6e-_IDr-13ftoDudaorHrSzdQzesv4-2J31GuAfox9R_jgEDeNIsLqSXIfEdlt7gtyBkK3wA26eLfkIgwrXHsysTOF5cLWs4Iuv1VzyvIxou_lbLthZocUhtDK1wFzOGP8S-8WHjm-Vl7L8rGesQhAOFD9H50fRsMiNdKgeiWcEEKUvJLZXKUSFhU3FSgmXCNTepSzRYZNpQZ1NlqOayAAuyLArDTZZLoZQwLGeP0JZvvH2CcKaVYsrmSmmVCclE4lxGE1dkCphw6QiRfiIr3eGch3QbF1WL0EyrMMDVMMAj9GagX7QIH3-k3O3loupW-mXF0hzUHuC5HKFXQzVMTPjxIr1t1oEmmOE5TYDmcStPw6uY4EleUuicRqn4Cw_VeH48HZ6e_kujl2h7dnZ6Up0cz98_Q7dpSGicpIQWu2hrtVzb56BlrdSLuI6uAcOPIDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagSNAXytWybQEjIfHk1rHjHI_LHmw5VhWiUt8inyKiJKvtLlL7D_jXjJ0DFoSQ4DH22JnYM_aMM_4GoRewMGYms4aA28VILAQniuaMGO0cE9bqJBwNvJ8ns7P4zbk4_-kWf4MP0R-4ec0I67VX8IVxxz9AQ_0NbPDvYAdKRZrfRLfihGZerscfegApBtLZ3C_inPg09B1sI2XHm-03t6XfbM1N0zXsPdMdJDuum5CTz0frlTrS178AOv7PZ91Dd1vDFA8bSbqPbtjqAboz6vLBPUTfJtWnEC6AR_XiQlbSp73DsjL4NYjYCr-CxdOFU0IgwmWFZ1fGM7y4WpawQZbrL3heBixc_LWUTS3QYp_YGFrhNmIMn4a-8biu6uVl6L8tGWofggOFj9DZdPJxNCNtIgeiecpzkmVSWCaVY7mEJcVJCX6J0MJEjmrwx7RhzkbKMC1kCv5jlqZGmDiRuVK54QnfRVtVXdnHCMdaKa5sopRWcS55Tp2LGXVprIAJFw0Q6eax0C3KuU-2cVE0-Mys8ANc9AM8QC97-kWD7_FHysNOLIpWzy8LHiVg9ADP2QA976thYvxvF1nZeu1pvBOeMAo0e4049a_iuaBJxqBzFoTiLzwUw_nJpH_a_5dGz9Dt0_G0eHcyf3uAtpnPZkwjwtJDtLVaru0TMLFW6mnQou9oJx7o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Coplanarity+and+Giant+Birefringence+in+Hydroxypyridinium+Nitrate+via+Hydrogen+Bonding+between+Planar+Donors+and+Planar+Acceptors&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yin%2C+Jian%E2%80%90Ping&rft.au=Guo%2C+Jingyu&rft.au=Huo%2C+Hao&rft.au=Liu%2C+Xin&rft.date=2025-01-27&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202417579&rft.externalDBID=10.1002%252Fanie.202417579&rft.externalDocID=ANIE202417579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |