Quasi‐Hodgkin–Huxley Neurons with Leaky Integrate‐and‐Fire Functions Physically Realized with Memristive Devices

Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin–Huxley (HH) neurons, integrate‐and‐fire (IF) neurons, and LIF neurons, only a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 3; pp. e1803849 - n/a
Main Authors Huang, He‐Ming, Yang, Rui, Tan, Zheng‐Hua, He, Hui‐Kai, Zhou, Wen, Xiong, Jue, Guo, Xin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin–Huxley (HH) neurons, integrate‐and‐fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi‐HH neurons with leaky integrate‐and‐fire functions are physically demonstrated with a volatile memristive device, W/WO3/poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide‐based memristors. With multifunctions similar to their biological counterparts, quasi‐HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications. Quasi‐Hodgkin–Huxley (HH) neurons with leaky integrate‐and‐fire functions are physically demonstrated by W/WO3/poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate/Pt memristive devices with a battery effect; in the device, proton migration plays a key role. With the help of a neuromorphic circuit, the neuron successfully emulates the multifunction of a biological neuron, being advantageous over previously reported HH and leaky integrate‐and‐fire neurons.
AbstractList Artificial neurons with functions such as leaky integrate-and-fire (LIF) and spike output are essential for brain-inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin-Huxley (HH) neurons, integrate-and-fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi-HH neurons with leaky integrate-and-fire functions are physically demonstrated with a volatile memristive device, W/WO3 /poly(3,4-ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide-based memristors. With multifunctions similar to their biological counterparts, quasi-HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications.Artificial neurons with functions such as leaky integrate-and-fire (LIF) and spike output are essential for brain-inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin-Huxley (HH) neurons, integrate-and-fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi-HH neurons with leaky integrate-and-fire functions are physically demonstrated with a volatile memristive device, W/WO3 /poly(3,4-ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide-based memristors. With multifunctions similar to their biological counterparts, quasi-HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications.
Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin–Huxley (HH) neurons, integrate‐and‐fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi‐HH neurons with leaky integrate‐and‐fire functions are physically demonstrated with a volatile memristive device, W/WO3/poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide‐based memristors. With multifunctions similar to their biological counterparts, quasi‐HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications.
Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin–Huxley (HH) neurons, integrate‐and‐fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi‐HH neurons with leaky integrate‐and‐fire functions are physically demonstrated with a volatile memristive device, W/WO3/poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide‐based memristors. With multifunctions similar to their biological counterparts, quasi‐HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications. Quasi‐Hodgkin–Huxley (HH) neurons with leaky integrate‐and‐fire functions are physically demonstrated by W/WO3/poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate/Pt memristive devices with a battery effect; in the device, proton migration plays a key role. With the help of a neuromorphic circuit, the neuron successfully emulates the multifunction of a biological neuron, being advantageous over previously reported HH and leaky integrate‐and‐fire neurons.
Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin–Huxley (HH) neurons, integrate‐and‐fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi‐HH neurons with leaky integrate‐and‐fire functions are physically demonstrated with a volatile memristive device, W/WO 3 /poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide‐based memristors. With multifunctions similar to their biological counterparts, quasi‐HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications.
Artificial neurons with functions such as leaky integrate-and-fire (LIF) and spike output are essential for brain-inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin-Huxley (HH) neurons, integrate-and-fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi-HH neurons with leaky integrate-and-fire functions are physically demonstrated with a volatile memristive device, W/WO /poly(3,4-ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide-based memristors. With multifunctions similar to their biological counterparts, quasi-HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications.
Author Xiong, Jue
He, Hui‐Kai
Zhou, Wen
Yang, Rui
Guo, Xin
Huang, He‐Ming
Tan, Zheng‐Hua
Author_xml – sequence: 1
  givenname: He‐Ming
  surname: Huang
  fullname: Huang, He‐Ming
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Rui
  surname: Yang
  fullname: Yang, Rui
  email: yangrui@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Zheng‐Hua
  surname: Tan
  fullname: Tan, Zheng‐Hua
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Hui‐Kai
  surname: He
  fullname: He, Hui‐Kai
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Wen
  surname: Zhou
  fullname: Zhou, Wen
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Jue
  surname: Xiong
  fullname: Xiong, Jue
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: Xin
  orcidid: 0000-0003-1546-8119
  surname: Guo
  fullname: Guo, Xin
  email: xguo@hust.edu.cn
  organization: Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30461092$$D View this record in MEDLINE/PubMed
BookMark eNqFkctO3DAUhq2Kqgy02y6rSN10k6kvsWMvR9DpIA29qV1bjn0ChsShdgKEFY-A1DfkSZrRQCshVd2cs_m-X0fn30M7oQuA0GuC5wRj-t641swpJhIzWahnaEY4JXmBFd9BM6wYz5Uo5C7aS-kMY6wEFi_QLsOFIFjRGbr-Opjk72_vVp07Offh_vbXarhuYMw-wRC7kLIr359mazDnY3YUejiJpoeJN8FNc-kjZMsh2N5v2C-nY_LWNM2YfQPT-BtwW_8Y2uhT7y8hO4RLbyG9RM9r0yR49bD30Y_lh-8Hq3z9-ePRwWKdW1YylUsmaSklY4YVpapqaqXlzqnCGlxXmNfS0tKBMdyZuiylUlZYyyvqKkapLdk-erfNvYjdzwFSr1ufLDSNCdANSVPCBOeEKzahb5-gZ90Qw3TdRAmhhBSMTNSbB2qoWnD6IvrWxFE__nQCii1gY5dShFpb35vNg_pofKMJ1pvq9KY6_ae6SZs_0R6T_ymorXDlp77-Q-vF4fHir_sbTr6w5g
CitedBy_id crossref_primary_10_1002_adma_202003610
crossref_primary_10_1021_acsanm_4c01087
crossref_primary_10_1088_1674_4926_44_5_053102
crossref_primary_10_1080_14686996_2023_2183712
crossref_primary_10_1021_acsami_2c18561
crossref_primary_10_1063_5_0047641
crossref_primary_10_1002_smll_202408233
crossref_primary_10_1016_j_ssi_2021_115732
crossref_primary_10_1021_acsami_9b04901
crossref_primary_10_1002_aisy_202000124
crossref_primary_10_1016_j_mee_2022_111778
crossref_primary_10_1021_acs_nanolett_4c00739
crossref_primary_10_1007_s11467_023_1308_0
crossref_primary_10_1186_s40580_023_00407_0
crossref_primary_10_1002_adfm_202309807
crossref_primary_10_34133_adi_0044
crossref_primary_10_1080_14686996_2022_2162325
crossref_primary_10_1126_sciadv_adr6733
crossref_primary_10_1002_adma_202418108
crossref_primary_10_1002_smll_202105070
crossref_primary_10_1002_adma_202004659
crossref_primary_10_1002_smtd_202402218
crossref_primary_10_1021_acs_chemrev_4c00587
crossref_primary_10_1038_s41928_021_00697_4
crossref_primary_10_1002_aisy_202000137
crossref_primary_10_1002_aisy_201900022
crossref_primary_10_1021_acs_jpclett_2c03669
crossref_primary_10_1021_acs_nanolett_1c00108
crossref_primary_10_1007_s40843_024_3122_7
crossref_primary_10_1016_j_orgel_2021_106062
crossref_primary_10_1002_adma_202203209
crossref_primary_10_1002_aelm_201901335
crossref_primary_10_1002_advs_202001842
crossref_primary_10_1021_acs_jpcc_9b11085
crossref_primary_10_1002_aisy_202000149
crossref_primary_10_1007_s40843_024_3236_6
crossref_primary_10_1007_s00339_022_06365_4
crossref_primary_10_1038_s41467_024_50496_6
crossref_primary_10_7498_aps_71_20220281
crossref_primary_10_1016_j_nanoen_2022_107525
crossref_primary_10_3390_nano13050789
crossref_primary_10_1039_D3NR03034B
crossref_primary_10_1109_TED_2023_3236906
crossref_primary_10_1002_inf2_12196
crossref_primary_10_1002_aelm_201901290
crossref_primary_10_1002_aelm_202200094
crossref_primary_10_1002_aelm_202300565
crossref_primary_10_1088_2631_7990_ad2c61
crossref_primary_10_1002_smll_202404177
crossref_primary_10_15541_jim20210658
crossref_primary_10_1109_TED_2022_3160138
crossref_primary_10_1021_acsami_9b14338
crossref_primary_10_15541_jim20230405
crossref_primary_10_1002_adfm_201909114
crossref_primary_10_1038_s41467_023_36728_1
crossref_primary_10_1021_acsomega_3c09936
crossref_primary_10_1021_acsami_3c19261
crossref_primary_10_1109_TCSI_2023_3276983
crossref_primary_10_1016_j_nanoen_2020_104828
crossref_primary_10_1007_s11432_022_3601_8
crossref_primary_10_1063_5_0133044
crossref_primary_10_1039_D1TC02112E
crossref_primary_10_35848_1347_4065_ad297b
crossref_primary_10_1002_adma_202104598
crossref_primary_10_1088_2053_1591_ac14fe
crossref_primary_10_1002_aelm_202300865
crossref_primary_10_3390_bioengineering10020174
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1089_soro_2021_0034
crossref_primary_10_1109_JFLEX_2023_3298593
crossref_primary_10_1007_s12274_021_3452_6
crossref_primary_10_1039_D0QM00371A
crossref_primary_10_7498_aps_71_20220666
crossref_primary_10_1080_14686996_2023_2188878
crossref_primary_10_1038_s41467_022_35160_1
crossref_primary_10_1063_5_0007393
crossref_primary_10_1039_C9NR07941F
crossref_primary_10_1002_adma_202205047
crossref_primary_10_1063_5_0151312
crossref_primary_10_1002_aisy_201900189
crossref_primary_10_1039_D3MH00835E
crossref_primary_10_1002_aisy_202000055
crossref_primary_10_1016_j_nanoen_2022_107418
crossref_primary_10_1016_j_mtadv_2021_100192
crossref_primary_10_1039_C9CP00596J
crossref_primary_10_1002_aelm_202001241
crossref_primary_10_1038_s43246_024_00621_1
crossref_primary_10_1039_D1NH00481F
crossref_primary_10_1002_adma_202006469
crossref_primary_10_1002_aelm_202100918
crossref_primary_10_1039_D4TC02677B
crossref_primary_10_1177_00219983221135055
crossref_primary_10_1021_acsnano_1c05565
crossref_primary_10_1016_j_nanoen_2022_108091
crossref_primary_10_1002_aelm_201900439
crossref_primary_10_1021_acs_jpclett_4c03132
crossref_primary_10_1039_D0MH01759K
crossref_primary_10_1021_acsami_9b13434
crossref_primary_10_3390_math11051268
crossref_primary_10_1002_aisy_202000180
crossref_primary_10_1002_admi_201900471
crossref_primary_10_1007_s12274_022_4416_1
crossref_primary_10_1039_D3NR02780E
crossref_primary_10_1021_acs_chemrev_4c00369
crossref_primary_10_1002_adma_202311472
crossref_primary_10_1002_adma_202412549
crossref_primary_10_1088_2631_7990_acfcf1
crossref_primary_10_1109_TCE_2024_3356563
crossref_primary_10_1021_acs_nanolett_4c05063
crossref_primary_10_1039_D1NR00148E
Cites_doi 10.1002/adma.201606927
10.1002/adma.201500315
10.1126/science.1249625
10.1002/adfm.201103148
10.1002/adma.201703628
10.1002/adma.201000282
10.1002/adma.201700989
10.1073/pnas.0307711101
10.1002/adfm.201704455
10.1038/nmat3054
10.1038/nmat3415
10.1002/adfm.201501427
10.1002/adfm.201604740
10.1021/acs.nanolett.5b00697
10.1021/nl904092h
10.1038/78829
10.1109/LED.2017.2782752
10.1038/nmat3601
10.1038/s41928-018-0023-2
10.1088/0268-1242/23/5/055009
10.1063/1.4791673
10.1038/ncomms8522
10.1038/nature24270
10.1038/s41467-018-05677-5
10.1039/C6CP06049H
10.1039/C7NR08385H
10.1002/adma.201503575
10.1038/ncomms3676
10.1021/nl201040y
10.1038/ncomms10163
10.1038/s41598-017-00849-7
10.1002/adma.201700906
10.1038/nnano.2016.70
10.1002/adma.201603313
10.1038/nature22389
10.1038/ncomms2784
10.1038/ncomms12611
10.1016/S0927-0248(99)00088-4
10.1002/aelm.201500298
10.1038/nmat3510
10.1016/j.solmat.2004.01.045
10.1038/nature14441
10.1021/nn302510e
10.1016/0022-3093(78)90079-0
10.1002/adfm.201706927
10.1038/ncomms4158
10.1038/nmat4856
10.1016/S0927-0248(01)00103-9
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201803849
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30461092
10_1002_adma_201803849
ADMA201803849
Genre article
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2016YXZD058
– fundername: National Natural Science Foundation of China
  funderid: 51772112; U1832116; 51372094
– fundername: National Natural Science Foundation of China
  grantid: 51772112
– fundername: National Natural Science Foundation of China
  grantid: 51372094
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2016YXZD058
– fundername: National Natural Science Foundation of China
  grantid: U1832116
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3739-838278833a3479bf2c8c5dd94ca0fb05f8c27deaa5daf77899c6cc5b2db322c73
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 22:38:50 EDT 2025
Fri Jul 25 04:53:04 EDT 2025
Wed Feb 19 02:36:07 EST 2025
Thu Apr 24 23:12:24 EDT 2025
Tue Jul 01 00:44:47 EDT 2025
Wed Jan 22 16:50:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords leaky integrate-and-fire
memristive devices
proton migration
quasi-Hodgkin-Huxley neurons
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-838278833a3479bf2c8c5dd94ca0fb05f8c27deaa5daf77899c6cc5b2db322c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1546-8119
PMID 30461092
PQID 2166968631
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2136551593
proquest_journals_2166968631
pubmed_primary_30461092
crossref_citationtrail_10_1002_adma_201803849
crossref_primary_10_1002_adma_201803849
wiley_primary_10_1002_adma_201803849_ADMA201803849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Jan
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 101
2018; 28
2015; 6
2017 2018; 27 39
2013; 4
2017 2016 2015; 7 18 15
2010 2013 2017; 22 4 29
2000; 3
2017 2013 2014; 29 12 343
2013; 102
2005
2017; 29
2012 2018; 22 28
2017; 550
2012; 11
2016; 11
2013; 12
2010 2011 2012 2015 2015 2015 2016 2012 2017 2016; 10 10 6 25 6 521 7 12 29 2
2014 2017; 5 546
2008; 23
2017
1978; 28
2002; 71
2013
2016; 28
2018 2018; 1 9
2017 2015 2016; 16 27 28
2000 2004 2018; 60 84 10
e_1_2_5_25_3
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_25_2
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_21_2
e_1_2_5_29_1
e_1_2_5_29_2
e_1_2_5_3_10
e_1_2_5_15_1
e_1_2_5_3_9
e_1_2_5_13_2
e_1_2_5_3_8
e_1_2_5_3_7
e_1_2_5_9_1
e_1_2_5_3_6
e_1_2_5_11_1
e_1_2_5_3_5
e_1_2_5_7_1
e_1_2_5_3_4
e_1_2_5_13_1
e_1_2_5_3_3
e_1_2_5_5_1
e_1_2_5_3_2
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_19_3
e_1_2_5_19_2
e_1_2_5_28_1
e_1_2_5_24_2
e_1_2_5_24_3
e_1_2_5_26_1
e_1_2_5_24_1
e_1_2_5_22_1
Dayan P. (e_1_2_5_6_1) 2005
e_1_2_5_20_1
Webb W. G. (e_1_2_5_8_1) 2017
Vetter K. J. (e_1_2_5_17_1) 2013
e_1_2_5_14_1
e_1_2_5_16_1
e_1_2_5_10_1
e_1_2_5_4_3
e_1_2_5_12_2
e_1_2_5_4_2
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_2
e_1_2_5_18_1
e_1_2_5_18_3
References_xml – volume: 550
  start-page: 354
  year: 2017
  publication-title: Nature
– volume: 71
  start-page: 511
  year: 2002
  publication-title: Solar Energy Mater. Solar Cells
– volume: 16 27 28
  start-page: 414 3391 10149
  year: 2017 2015 2016
  publication-title: Nat. Mater. Adv. Mater. Adv. Mater.
– volume: 1 9
  start-page: 137 3208
  year: 2018 2018
  publication-title: Nat. Electron. Nat. Commun.
– volume: 11
  start-page: 860
  year: 2012
  publication-title: Nat. Mater.
– year: 2005
– volume: 4
  start-page: 1771
  year: 2013
  publication-title: Nat. Commun.
– volume: 28
  start-page: 123
  year: 1978
  publication-title: J. Non‐Cryst. Solids
– volume: 29
  start-page: 1703628
  year: 2017
  publication-title: Adv. Mater.
– volume: 7 18 15
  start-page: 713 31796 2203
  year: 2017 2016 2015
  publication-title: Sci. Rep. Phys. Chem. Chem. Phys. Nano Lett.
– volume: 60 84 10
  start-page: 201 315 4718
  year: 2000 2004 2018
  publication-title: Solar Energy Mater. Solar Cells Solar Energy Mater. Solar Cells Nanoscale
– volume: 22 4 29
  start-page: 2448 2676 1700906
  year: 2010 2013 2017
  publication-title: Adv. Mater. Nat. Commun. Adv. Mater.
– volume: 29 12 343
  start-page: 1700989 518 1210
  year: 2017 2013 2014
  publication-title: Adv. Mater. Nat. Mater. Science
– volume: 27 39
  start-page: 1604740 308
  year: 2017 2018
  publication-title: Adv. Funct. Mater. IEEE Electron Device Lett.
– volume: 5 546
  start-page: 3158 124
  year: 2014 2017
  publication-title: Nat. Commun. Nature
– volume: 101
  start-page: 5123
  year: 2004
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22 28
  start-page: 2759 1706927
  year: 2012 2018
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 28
  start-page: 377
  year: 2016
  publication-title: Adv. Mater.
– volume: 10 10 6 25 6 521 7 12 29 2
  start-page: 1297 591 9515 4290 7522 61 12611 2179 1606927 1500298
  year: 2010 2011 2012 2015 2015 2015 2016 2012 2017 2016
  publication-title: Nano Lett. Nat. Mater. ACS Nano Adv. Funct. Mater. Nat. Commun. Nature Nat. Commun. Nano Lett. Adv. Mater. Adv. Electron. Mater.
– volume: 23
  start-page: 055009
  year: 2008
  publication-title: Semicond. Sci. Technol.
– volume: 12
  start-page: 114
  year: 2013
  publication-title: Nat. Mater.
– volume: 28
  start-page: 1704455
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 10163
  year: 2015
  publication-title: Nat. Commun.
– volume: 3
  start-page: 919
  year: 2000
  publication-title: Nat. Neurosci.
– year: 2017
– volume: 11
  start-page: 693
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 102
  start-page: 052905
  year: 2013
  publication-title: Appl. Phys. Lett.
– year: 2013
– ident: e_1_2_5_3_9
  doi: 10.1002/adma.201606927
– ident: e_1_2_5_19_2
  doi: 10.1002/adma.201500315
– ident: e_1_2_5_18_3
  doi: 10.1126/science.1249625
– ident: e_1_2_5_29_1
  doi: 10.1002/adfm.201103148
– ident: e_1_2_5_27_1
  doi: 10.1002/adma.201703628
– volume-title: Electrochemical Kinetics: Theoretical Aspects
  year: 2013
  ident: e_1_2_5_17_1
– ident: e_1_2_5_4_1
  doi: 10.1002/adma.201000282
– ident: e_1_2_5_18_1
  doi: 10.1002/adma.201700989
– volume-title: Neurology for the Speech‐Language Pathologist (Sixth Edition)
  year: 2017
  ident: e_1_2_5_8_1
– ident: e_1_2_5_9_1
  doi: 10.1073/pnas.0307711101
– ident: e_1_2_5_15_1
  doi: 10.1002/adfm.201704455
– ident: e_1_2_5_3_2
  doi: 10.1038/nmat3054
– ident: e_1_2_5_5_1
  doi: 10.1038/nmat3415
– ident: e_1_2_5_3_4
  doi: 10.1002/adfm.201501427
– volume-title: Theoretical Neuroscience: Computational And Mathematical Modeling of Neural Systems
  year: 2005
  ident: e_1_2_5_6_1
– ident: e_1_2_5_12_1
  doi: 10.1002/adfm.201604740
– ident: e_1_2_5_24_3
  doi: 10.1021/acs.nanolett.5b00697
– ident: e_1_2_5_3_1
  doi: 10.1021/nl904092h
– ident: e_1_2_5_7_1
  doi: 10.1038/78829
– ident: e_1_2_5_12_2
  doi: 10.1109/LED.2017.2782752
– ident: e_1_2_5_18_2
  doi: 10.1038/nmat3601
– ident: e_1_2_5_13_1
  doi: 10.1038/s41928-018-0023-2
– ident: e_1_2_5_20_1
  doi: 10.1088/0268-1242/23/5/055009
– ident: e_1_2_5_22_1
  doi: 10.1063/1.4791673
– ident: e_1_2_5_3_5
  doi: 10.1038/ncomms8522
– ident: e_1_2_5_1_1
  doi: 10.1038/nature24270
– ident: e_1_2_5_13_2
  doi: 10.1038/s41467-018-05677-5
– ident: e_1_2_5_2_1
– ident: e_1_2_5_24_2
  doi: 10.1039/C6CP06049H
– ident: e_1_2_5_25_3
  doi: 10.1039/C7NR08385H
– ident: e_1_2_5_23_1
  doi: 10.1002/adma.201503575
– ident: e_1_2_5_4_2
  doi: 10.1038/ncomms3676
– ident: e_1_2_5_3_8
  doi: 10.1021/nl201040y
– ident: e_1_2_5_10_1
  doi: 10.1038/ncomms10163
– ident: e_1_2_5_24_1
  doi: 10.1038/s41598-017-00849-7
– ident: e_1_2_5_4_3
  doi: 10.1002/adma.201700906
– ident: e_1_2_5_14_1
  doi: 10.1038/nnano.2016.70
– ident: e_1_2_5_19_3
  doi: 10.1002/adma.201603313
– ident: e_1_2_5_21_2
  doi: 10.1038/nature22389
– ident: e_1_2_5_16_1
  doi: 10.1038/ncomms2784
– ident: e_1_2_5_3_7
  doi: 10.1038/ncomms12611
– ident: e_1_2_5_25_1
  doi: 10.1016/S0927-0248(99)00088-4
– ident: e_1_2_5_3_10
  doi: 10.1002/aelm.201500298
– ident: e_1_2_5_11_1
  doi: 10.1038/nmat3510
– ident: e_1_2_5_25_2
  doi: 10.1016/j.solmat.2004.01.045
– ident: e_1_2_5_3_6
  doi: 10.1038/nature14441
– ident: e_1_2_5_3_3
  doi: 10.1021/nn302510e
– ident: e_1_2_5_28_1
  doi: 10.1016/0022-3093(78)90079-0
– ident: e_1_2_5_29_2
  doi: 10.1002/adfm.201706927
– ident: e_1_2_5_21_1
  doi: 10.1038/ncomms4158
– ident: e_1_2_5_19_1
  doi: 10.1038/nmat4856
– ident: e_1_2_5_26_1
  doi: 10.1016/S0927-0248(01)00103-9
SSID ssj0009606
Score 2.593056
Snippet Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency....
Artificial neurons with functions such as leaky integrate-and-fire (LIF) and spike output are essential for brain-inspired computation with high efficiency....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1803849
SubjectTerms Action Potentials
Animals
Biomimetics
Brain
Computing time
Electrical Equipment and Supplies
Equipment Design
leaky integrate‐and‐fire
Materials science
Memory devices
memristive devices
Memristors
Migration
Models, Neurological
Neurons
Neurons - physiology
Oxygen ions
Polystyrene resins
proton migration
Protons
quasi‐Hodgkin–Huxley neurons
Title Quasi‐Hodgkin–Huxley Neurons with Leaky Integrate‐and‐Fire Functions Physically Realized with Memristive Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201803849
https://www.ncbi.nlm.nih.gov/pubmed/30461092
https://www.proquest.com/docview/2166968631
https://www.proquest.com/docview/2136551593
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlp_bQR_pymwQVCj058UqWLB-XJssmdEsbGsjNSCO5LJt4Q3ZdkpzyEwr9h_klHcmPZFtKob0YG48sWZ4ZfSNrPhHyVudM5hjlxEI5DFBKKWIlwMUuZQAcpE7CdkCTj3J8lB4ci-M7WfwNP0Q_4eYtI_hrb-DaLHZuSUO1DbxBA5VwlfoMPr9gy6Oiw1v-KA_PA9keF3EuU9WxNiZsZ7X46qj0G9RcRa5h6Bk9IrprdLPiZLZdL802XP3C5_g_b_WYPGxxKR02ivSE3HPVOnlwh63wKbn4XOvF9Ob6-3huv86m1c31j3F9gZXQwPBRLaif1KUfnJ5d0v2OhgLldWXxOELnSkc4jAZNp59aBTm5pIcIVqdXzjblJ-40OJ5vju664MeekaPR3pf347jduCEGnvE8VlyxzO9irH2eqikZKBDW5inopDSJKBWwzDqthdVllmHIBxJAGGYN-hfI-HOyVs0r95JQk5b4FJ8vbBMfiyEgtCWglzFaSwMqInH34QpoWc395honRcPHzArfo0XfoxF518ufNXwef5Tc6PSgaO16UbCB9GxCkg8i8qa_jRbpf7Poys1rL4OK6GEij8iLRn_6qlp-exYRFrTgL20ohruTYX_16l8KvSb38TxvZo02yNryvHabiKOWZivYyk9wohj3
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_EMDBYwE4pQ2a8eOc-CwYlll6W4FVSv1ljq2g1bbZhG7gW5PfQQknoRX4RH6JNjOT1kQQkLqgUukJGPHPzPjmYn9DcAzEWMWGy_Hp1wbByVn1OdUal-HWEoimQhcOqDRNkv2wjf7dH8FvjVnYSp8iDbgZiXD6Wsr4DYgvXmOGiqUAw7q8IDwMK73VW7pxWfjtc1eDnpmip9j3H-9-yrx68QCviQRiX1OOI5sll1hz1FmOZZcUqXiUIogzwKac4kjpYWgSuRRZFwSyaSkGVaZ4X8ZEVPvJbhs04hbuP7ezjlilXUIHLwfoX7MQt7gRAZ4c7m9y-vgb8btsq3sFrv-DfjeDFO1x2WyUc6zDXnyC4LkfzWON-F6bXqjbiUrt2BFF7fh2k-AjHfg-F0pZuOz0y_JVL2fjIuz069JeWx6hRyISTFDNm6NhlpMFmjQIG0YelEoc-2b9QP1jaXghBm9rWXgcIF2jD0-PtGqKj_SR063ftKop52qvgt7F9L1e7BaTAu9BigLc1OLPRKtAutuGptX5dIo0kwIlknugd9wSipr4HabP-QwrSCncWpnMG1n0IMXLf2HCrLkj5TrDeOlteqapbjDLGASIx0PnravjdKxf5JEoaelpSGMWkuYeHC_Ytj2UzWEP_YAO7b7SxvSbm_Ube8e_EuhJ3Al2R0N0-Fge-shXDXP4ypItg6r84-lfmTMxnn22AkqgoOL5ugfpiN4Mg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0IFDASiFXajB07zoLFiBDN0E5VKip1FxzbQaMpmYqZQKerfgISP8Kv8Av9EmznUQaEkJC6YBMpie34ce_1uY59LsBTEWMWGy_Hp1wbB6Vg1OdUal-HWEoimQhcOKDRNhvsha_36f4KfGvPwtT8EN2Cm9UMZ6-tgh-qYuOMNFQoxxvU4wHhYdxsq9zUi8_GaZu9GCZmhJ9hnL56-3LgN3EFfEkiEvuccBzZILvCHqPMCyy5pErFoRRBkQe04BJHSgtBlSiiyHgkkklJc6xyI_4yIqbcC3AxZEFsg0Uku2eEVdYfcOx-hPoxC3lLExngjeX6Lk-Dv2HbZajs5rr0Gnxve6ne4jJZr-b5ujz-hUDyf-rG63C1Ad6oX2vKDVjR5U248hMd4y04elOJ2fj05Mtgqt5PxuXpyddBdWQahRyFSTlDdtUabWkxWaBhy7Nh0otSmWtqZg-UGpzgVBntNBpwsEC7Bo2Pj7Wq84_0B2dZP2mUaGeob8PeuTT9DqyW01LfA5SHhSnFHohWgXU2DeJVhTRmNBeC5ZJ74LeCksmGtt1GDznIasJpnNkRzLoR9OB5l_6wJiz5Y8q1Vu6yxnDNMtxjli6JkZ4HT7rXxuTY_0ii1NPKpiGMWhxMPLhby2v3qYbAH3uAndT9pQ5ZPxn1u7v7_5LpMVzaSdJsa7i9-QAum8dxvUK2Bqvzj5V-aDDjPH_k1BTBu_MW6B-5oHbh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-Hodgkin-Huxley+Neurons+with+Leaky+Integrate-and-Fire+Functions+Physically+Realized+with+Memristive+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+He-Ming&rft.au=Yang%2C+Rui&rft.au=Tan%2C+Zheng-Hua&rft.au=He%2C+Hui-Kai&rft.date=2019-01-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=3&rft.spage=e1803849&rft_id=info:doi/10.1002%2Fadma.201803849&rft_id=info%3Apmid%2F30461092&rft.externalDocID=30461092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon