Quasi‐Hodgkin–Huxley Neurons with Leaky Integrate‐and‐Fire Functions Physically Realized with Memristive Devices
Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin–Huxley (HH) neurons, integrate‐and‐fire (IF) neurons, and LIF neurons, only a...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 3; pp. e1803849 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin–Huxley (HH) neurons, integrate‐and‐fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi‐HH neurons with leaky integrate‐and‐fire functions are physically demonstrated with a volatile memristive device, W/WO3/poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide‐based memristors. With multifunctions similar to their biological counterparts, quasi‐HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications.
Quasi‐Hodgkin–Huxley (HH) neurons with leaky integrate‐and‐fire functions are physically demonstrated by W/WO3/poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate/Pt memristive devices with a battery effect; in the device, proton migration plays a key role. With the help of a neuromorphic circuit, the neuron successfully emulates the multifunction of a biological neuron, being advantageous over previously reported HH and leaky integrate‐and‐fire neurons. |
---|---|
AbstractList | Artificial neurons with functions such as leaky integrate-and-fire (LIF) and spike output are essential for brain-inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin-Huxley (HH) neurons, integrate-and-fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi-HH neurons with leaky integrate-and-fire functions are physically demonstrated with a volatile memristive device, W/WO3 /poly(3,4-ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide-based memristors. With multifunctions similar to their biological counterparts, quasi-HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications.Artificial neurons with functions such as leaky integrate-and-fire (LIF) and spike output are essential for brain-inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin-Huxley (HH) neurons, integrate-and-fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi-HH neurons with leaky integrate-and-fire functions are physically demonstrated with a volatile memristive device, W/WO3 /poly(3,4-ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide-based memristors. With multifunctions similar to their biological counterparts, quasi-HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications. Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin–Huxley (HH) neurons, integrate‐and‐fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi‐HH neurons with leaky integrate‐and‐fire functions are physically demonstrated with a volatile memristive device, W/WO3/poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide‐based memristors. With multifunctions similar to their biological counterparts, quasi‐HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications. Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin–Huxley (HH) neurons, integrate‐and‐fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi‐HH neurons with leaky integrate‐and‐fire functions are physically demonstrated with a volatile memristive device, W/WO3/poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide‐based memristors. With multifunctions similar to their biological counterparts, quasi‐HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications. Quasi‐Hodgkin–Huxley (HH) neurons with leaky integrate‐and‐fire functions are physically demonstrated by W/WO3/poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate/Pt memristive devices with a battery effect; in the device, proton migration plays a key role. With the help of a neuromorphic circuit, the neuron successfully emulates the multifunction of a biological neuron, being advantageous over previously reported HH and leaky integrate‐and‐fire neurons. Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin–Huxley (HH) neurons, integrate‐and‐fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi‐HH neurons with leaky integrate‐and‐fire functions are physically demonstrated with a volatile memristive device, W/WO 3 /poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide‐based memristors. With multifunctions similar to their biological counterparts, quasi‐HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications. Artificial neurons with functions such as leaky integrate-and-fire (LIF) and spike output are essential for brain-inspired computation with high efficiency. However, previously implemented artificial neurons, e.g., Hodgkin-Huxley (HH) neurons, integrate-and-fire (IF) neurons, and LIF neurons, only achieve partial functionality of a biological neuron. In this work, quasi-HH neurons with leaky integrate-and-fire functions are physically demonstrated with a volatile memristive device, W/WO /poly(3,4-ethylenedioxythiophene): polystyrene sulfonate/Pt. The resistive switching behavior of the device can be attributed to the migration of protons, unlike the migration of oxygen ions normally involved in oxide-based memristors. With multifunctions similar to their biological counterparts, quasi-HH neurons are advantageous over the reported HH and LIF neurons, demonstrating their potential for neuromorphic computing applications. |
Author | Xiong, Jue He, Hui‐Kai Zhou, Wen Yang, Rui Guo, Xin Huang, He‐Ming Tan, Zheng‐Hua |
Author_xml | – sequence: 1 givenname: He‐Ming surname: Huang fullname: Huang, He‐Ming organization: Huazhong University of Science and Technology – sequence: 2 givenname: Rui surname: Yang fullname: Yang, Rui email: yangrui@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 3 givenname: Zheng‐Hua surname: Tan fullname: Tan, Zheng‐Hua organization: Huazhong University of Science and Technology – sequence: 4 givenname: Hui‐Kai surname: He fullname: He, Hui‐Kai organization: Huazhong University of Science and Technology – sequence: 5 givenname: Wen surname: Zhou fullname: Zhou, Wen organization: Huazhong University of Science and Technology – sequence: 6 givenname: Jue surname: Xiong fullname: Xiong, Jue organization: Huazhong University of Science and Technology – sequence: 7 givenname: Xin orcidid: 0000-0003-1546-8119 surname: Guo fullname: Guo, Xin email: xguo@hust.edu.cn organization: Huazhong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30461092$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctO3DAUhq2Kqgy02y6rSN10k6kvsWMvR9DpIA29qV1bjn0ChsShdgKEFY-A1DfkSZrRQCshVd2cs_m-X0fn30M7oQuA0GuC5wRj-t641swpJhIzWahnaEY4JXmBFd9BM6wYz5Uo5C7aS-kMY6wEFi_QLsOFIFjRGbr-Opjk72_vVp07Offh_vbXarhuYMw-wRC7kLIr359mazDnY3YUejiJpoeJN8FNc-kjZMsh2N5v2C-nY_LWNM2YfQPT-BtwW_8Y2uhT7y8hO4RLbyG9RM9r0yR49bD30Y_lh-8Hq3z9-ePRwWKdW1YylUsmaSklY4YVpapqaqXlzqnCGlxXmNfS0tKBMdyZuiylUlZYyyvqKkapLdk-erfNvYjdzwFSr1ufLDSNCdANSVPCBOeEKzahb5-gZ90Qw3TdRAmhhBSMTNSbB2qoWnD6IvrWxFE__nQCii1gY5dShFpb35vNg_pofKMJ1pvq9KY6_ae6SZs_0R6T_ymorXDlp77-Q-vF4fHir_sbTr6w5g |
CitedBy_id | crossref_primary_10_1002_adma_202003610 crossref_primary_10_1021_acsanm_4c01087 crossref_primary_10_1088_1674_4926_44_5_053102 crossref_primary_10_1080_14686996_2023_2183712 crossref_primary_10_1021_acsami_2c18561 crossref_primary_10_1063_5_0047641 crossref_primary_10_1002_smll_202408233 crossref_primary_10_1016_j_ssi_2021_115732 crossref_primary_10_1021_acsami_9b04901 crossref_primary_10_1002_aisy_202000124 crossref_primary_10_1016_j_mee_2022_111778 crossref_primary_10_1021_acs_nanolett_4c00739 crossref_primary_10_1007_s11467_023_1308_0 crossref_primary_10_1186_s40580_023_00407_0 crossref_primary_10_1002_adfm_202309807 crossref_primary_10_34133_adi_0044 crossref_primary_10_1080_14686996_2022_2162325 crossref_primary_10_1126_sciadv_adr6733 crossref_primary_10_1002_adma_202418108 crossref_primary_10_1002_smll_202105070 crossref_primary_10_1002_adma_202004659 crossref_primary_10_1002_smtd_202402218 crossref_primary_10_1021_acs_chemrev_4c00587 crossref_primary_10_1038_s41928_021_00697_4 crossref_primary_10_1002_aisy_202000137 crossref_primary_10_1002_aisy_201900022 crossref_primary_10_1021_acs_jpclett_2c03669 crossref_primary_10_1021_acs_nanolett_1c00108 crossref_primary_10_1007_s40843_024_3122_7 crossref_primary_10_1016_j_orgel_2021_106062 crossref_primary_10_1002_adma_202203209 crossref_primary_10_1002_aelm_201901335 crossref_primary_10_1002_advs_202001842 crossref_primary_10_1021_acs_jpcc_9b11085 crossref_primary_10_1002_aisy_202000149 crossref_primary_10_1007_s40843_024_3236_6 crossref_primary_10_1007_s00339_022_06365_4 crossref_primary_10_1038_s41467_024_50496_6 crossref_primary_10_7498_aps_71_20220281 crossref_primary_10_1016_j_nanoen_2022_107525 crossref_primary_10_3390_nano13050789 crossref_primary_10_1039_D3NR03034B crossref_primary_10_1109_TED_2023_3236906 crossref_primary_10_1002_inf2_12196 crossref_primary_10_1002_aelm_201901290 crossref_primary_10_1002_aelm_202200094 crossref_primary_10_1002_aelm_202300565 crossref_primary_10_1088_2631_7990_ad2c61 crossref_primary_10_1002_smll_202404177 crossref_primary_10_15541_jim20210658 crossref_primary_10_1109_TED_2022_3160138 crossref_primary_10_1021_acsami_9b14338 crossref_primary_10_15541_jim20230405 crossref_primary_10_1002_adfm_201909114 crossref_primary_10_1038_s41467_023_36728_1 crossref_primary_10_1021_acsomega_3c09936 crossref_primary_10_1021_acsami_3c19261 crossref_primary_10_1109_TCSI_2023_3276983 crossref_primary_10_1016_j_nanoen_2020_104828 crossref_primary_10_1007_s11432_022_3601_8 crossref_primary_10_1063_5_0133044 crossref_primary_10_1039_D1TC02112E crossref_primary_10_35848_1347_4065_ad297b crossref_primary_10_1002_adma_202104598 crossref_primary_10_1088_2053_1591_ac14fe crossref_primary_10_1002_aelm_202300865 crossref_primary_10_3390_bioengineering10020174 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_1089_soro_2021_0034 crossref_primary_10_1109_JFLEX_2023_3298593 crossref_primary_10_1007_s12274_021_3452_6 crossref_primary_10_1039_D0QM00371A crossref_primary_10_7498_aps_71_20220666 crossref_primary_10_1080_14686996_2023_2188878 crossref_primary_10_1038_s41467_022_35160_1 crossref_primary_10_1063_5_0007393 crossref_primary_10_1039_C9NR07941F crossref_primary_10_1002_adma_202205047 crossref_primary_10_1063_5_0151312 crossref_primary_10_1002_aisy_201900189 crossref_primary_10_1039_D3MH00835E crossref_primary_10_1002_aisy_202000055 crossref_primary_10_1016_j_nanoen_2022_107418 crossref_primary_10_1016_j_mtadv_2021_100192 crossref_primary_10_1039_C9CP00596J crossref_primary_10_1002_aelm_202001241 crossref_primary_10_1038_s43246_024_00621_1 crossref_primary_10_1039_D1NH00481F crossref_primary_10_1002_adma_202006469 crossref_primary_10_1002_aelm_202100918 crossref_primary_10_1039_D4TC02677B crossref_primary_10_1177_00219983221135055 crossref_primary_10_1021_acsnano_1c05565 crossref_primary_10_1016_j_nanoen_2022_108091 crossref_primary_10_1002_aelm_201900439 crossref_primary_10_1021_acs_jpclett_4c03132 crossref_primary_10_1039_D0MH01759K crossref_primary_10_1021_acsami_9b13434 crossref_primary_10_3390_math11051268 crossref_primary_10_1002_aisy_202000180 crossref_primary_10_1002_admi_201900471 crossref_primary_10_1007_s12274_022_4416_1 crossref_primary_10_1039_D3NR02780E crossref_primary_10_1021_acs_chemrev_4c00369 crossref_primary_10_1002_adma_202311472 crossref_primary_10_1002_adma_202412549 crossref_primary_10_1088_2631_7990_acfcf1 crossref_primary_10_1109_TCE_2024_3356563 crossref_primary_10_1021_acs_nanolett_4c05063 crossref_primary_10_1039_D1NR00148E |
Cites_doi | 10.1002/adma.201606927 10.1002/adma.201500315 10.1126/science.1249625 10.1002/adfm.201103148 10.1002/adma.201703628 10.1002/adma.201000282 10.1002/adma.201700989 10.1073/pnas.0307711101 10.1002/adfm.201704455 10.1038/nmat3054 10.1038/nmat3415 10.1002/adfm.201501427 10.1002/adfm.201604740 10.1021/acs.nanolett.5b00697 10.1021/nl904092h 10.1038/78829 10.1109/LED.2017.2782752 10.1038/nmat3601 10.1038/s41928-018-0023-2 10.1088/0268-1242/23/5/055009 10.1063/1.4791673 10.1038/ncomms8522 10.1038/nature24270 10.1038/s41467-018-05677-5 10.1039/C6CP06049H 10.1039/C7NR08385H 10.1002/adma.201503575 10.1038/ncomms3676 10.1021/nl201040y 10.1038/ncomms10163 10.1038/s41598-017-00849-7 10.1002/adma.201700906 10.1038/nnano.2016.70 10.1002/adma.201603313 10.1038/nature22389 10.1038/ncomms2784 10.1038/ncomms12611 10.1016/S0927-0248(99)00088-4 10.1002/aelm.201500298 10.1038/nmat3510 10.1016/j.solmat.2004.01.045 10.1038/nature14441 10.1021/nn302510e 10.1016/0022-3093(78)90079-0 10.1002/adfm.201706927 10.1038/ncomms4158 10.1038/nmat4856 10.1016/S0927-0248(01)00103-9 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201803849 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30461092 10_1002_adma_201803849 ADMA201803849 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2016YXZD058 – fundername: National Natural Science Foundation of China funderid: 51772112; U1832116; 51372094 – fundername: National Natural Science Foundation of China grantid: 51772112 – fundername: National Natural Science Foundation of China grantid: 51372094 – fundername: Fundamental Research Funds for the Central Universities grantid: 2016YXZD058 – fundername: National Natural Science Foundation of China grantid: U1832116 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3739-838278833a3479bf2c8c5dd94ca0fb05f8c27deaa5daf77899c6cc5b2db322c73 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 22:38:50 EDT 2025 Fri Jul 25 04:53:04 EDT 2025 Wed Feb 19 02:36:07 EST 2025 Thu Apr 24 23:12:24 EDT 2025 Tue Jul 01 00:44:47 EDT 2025 Wed Jan 22 16:50:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | leaky integrate-and-fire memristive devices proton migration quasi-Hodgkin-Huxley neurons |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-838278833a3479bf2c8c5dd94ca0fb05f8c27deaa5daf77899c6cc5b2db322c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1546-8119 |
PMID | 30461092 |
PQID | 2166968631 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2136551593 proquest_journals_2166968631 pubmed_primary_30461092 crossref_citationtrail_10_1002_adma_201803849 crossref_primary_10_1002_adma_201803849 wiley_primary_10_1002_adma_201803849_ADMA201803849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Jan |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-Jan |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 101 2018; 28 2015; 6 2017 2018; 27 39 2013; 4 2017 2016 2015; 7 18 15 2010 2013 2017; 22 4 29 2000; 3 2017 2013 2014; 29 12 343 2013; 102 2005 2017; 29 2012 2018; 22 28 2017; 550 2012; 11 2016; 11 2013; 12 2010 2011 2012 2015 2015 2015 2016 2012 2017 2016; 10 10 6 25 6 521 7 12 29 2 2014 2017; 5 546 2008; 23 2017 1978; 28 2002; 71 2013 2016; 28 2018 2018; 1 9 2017 2015 2016; 16 27 28 2000 2004 2018; 60 84 10 e_1_2_5_25_3 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_25_2 e_1_2_5_23_1 e_1_2_5_21_1 e_1_2_5_21_2 e_1_2_5_29_1 e_1_2_5_29_2 e_1_2_5_3_10 e_1_2_5_15_1 e_1_2_5_3_9 e_1_2_5_13_2 e_1_2_5_3_8 e_1_2_5_3_7 e_1_2_5_9_1 e_1_2_5_3_6 e_1_2_5_11_1 e_1_2_5_3_5 e_1_2_5_7_1 e_1_2_5_3_4 e_1_2_5_13_1 e_1_2_5_3_3 e_1_2_5_5_1 e_1_2_5_3_2 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_19_3 e_1_2_5_19_2 e_1_2_5_28_1 e_1_2_5_24_2 e_1_2_5_24_3 e_1_2_5_26_1 e_1_2_5_24_1 e_1_2_5_22_1 Dayan P. (e_1_2_5_6_1) 2005 e_1_2_5_20_1 Webb W. G. (e_1_2_5_8_1) 2017 Vetter K. J. (e_1_2_5_17_1) 2013 e_1_2_5_14_1 e_1_2_5_16_1 e_1_2_5_10_1 e_1_2_5_4_3 e_1_2_5_12_2 e_1_2_5_4_2 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_2 e_1_2_5_18_1 e_1_2_5_18_3 |
References_xml | – volume: 550 start-page: 354 year: 2017 publication-title: Nature – volume: 71 start-page: 511 year: 2002 publication-title: Solar Energy Mater. Solar Cells – volume: 16 27 28 start-page: 414 3391 10149 year: 2017 2015 2016 publication-title: Nat. Mater. Adv. Mater. Adv. Mater. – volume: 1 9 start-page: 137 3208 year: 2018 2018 publication-title: Nat. Electron. Nat. Commun. – volume: 11 start-page: 860 year: 2012 publication-title: Nat. Mater. – year: 2005 – volume: 4 start-page: 1771 year: 2013 publication-title: Nat. Commun. – volume: 28 start-page: 123 year: 1978 publication-title: J. Non‐Cryst. Solids – volume: 29 start-page: 1703628 year: 2017 publication-title: Adv. Mater. – volume: 7 18 15 start-page: 713 31796 2203 year: 2017 2016 2015 publication-title: Sci. Rep. Phys. Chem. Chem. Phys. Nano Lett. – volume: 60 84 10 start-page: 201 315 4718 year: 2000 2004 2018 publication-title: Solar Energy Mater. Solar Cells Solar Energy Mater. Solar Cells Nanoscale – volume: 22 4 29 start-page: 2448 2676 1700906 year: 2010 2013 2017 publication-title: Adv. Mater. Nat. Commun. Adv. Mater. – volume: 29 12 343 start-page: 1700989 518 1210 year: 2017 2013 2014 publication-title: Adv. Mater. Nat. Mater. Science – volume: 27 39 start-page: 1604740 308 year: 2017 2018 publication-title: Adv. Funct. Mater. IEEE Electron Device Lett. – volume: 5 546 start-page: 3158 124 year: 2014 2017 publication-title: Nat. Commun. Nature – volume: 101 start-page: 5123 year: 2004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 28 start-page: 2759 1706927 year: 2012 2018 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. – volume: 28 start-page: 377 year: 2016 publication-title: Adv. Mater. – volume: 10 10 6 25 6 521 7 12 29 2 start-page: 1297 591 9515 4290 7522 61 12611 2179 1606927 1500298 year: 2010 2011 2012 2015 2015 2015 2016 2012 2017 2016 publication-title: Nano Lett. Nat. Mater. ACS Nano Adv. Funct. Mater. Nat. Commun. Nature Nat. Commun. Nano Lett. Adv. Mater. Adv. Electron. Mater. – volume: 23 start-page: 055009 year: 2008 publication-title: Semicond. Sci. Technol. – volume: 12 start-page: 114 year: 2013 publication-title: Nat. Mater. – volume: 28 start-page: 1704455 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 10163 year: 2015 publication-title: Nat. Commun. – volume: 3 start-page: 919 year: 2000 publication-title: Nat. Neurosci. – year: 2017 – volume: 11 start-page: 693 year: 2016 publication-title: Nat. Nanotechnol. – volume: 102 start-page: 052905 year: 2013 publication-title: Appl. Phys. Lett. – year: 2013 – ident: e_1_2_5_3_9 doi: 10.1002/adma.201606927 – ident: e_1_2_5_19_2 doi: 10.1002/adma.201500315 – ident: e_1_2_5_18_3 doi: 10.1126/science.1249625 – ident: e_1_2_5_29_1 doi: 10.1002/adfm.201103148 – ident: e_1_2_5_27_1 doi: 10.1002/adma.201703628 – volume-title: Electrochemical Kinetics: Theoretical Aspects year: 2013 ident: e_1_2_5_17_1 – ident: e_1_2_5_4_1 doi: 10.1002/adma.201000282 – ident: e_1_2_5_18_1 doi: 10.1002/adma.201700989 – volume-title: Neurology for the Speech‐Language Pathologist (Sixth Edition) year: 2017 ident: e_1_2_5_8_1 – ident: e_1_2_5_9_1 doi: 10.1073/pnas.0307711101 – ident: e_1_2_5_15_1 doi: 10.1002/adfm.201704455 – ident: e_1_2_5_3_2 doi: 10.1038/nmat3054 – ident: e_1_2_5_5_1 doi: 10.1038/nmat3415 – ident: e_1_2_5_3_4 doi: 10.1002/adfm.201501427 – volume-title: Theoretical Neuroscience: Computational And Mathematical Modeling of Neural Systems year: 2005 ident: e_1_2_5_6_1 – ident: e_1_2_5_12_1 doi: 10.1002/adfm.201604740 – ident: e_1_2_5_24_3 doi: 10.1021/acs.nanolett.5b00697 – ident: e_1_2_5_3_1 doi: 10.1021/nl904092h – ident: e_1_2_5_7_1 doi: 10.1038/78829 – ident: e_1_2_5_12_2 doi: 10.1109/LED.2017.2782752 – ident: e_1_2_5_18_2 doi: 10.1038/nmat3601 – ident: e_1_2_5_13_1 doi: 10.1038/s41928-018-0023-2 – ident: e_1_2_5_20_1 doi: 10.1088/0268-1242/23/5/055009 – ident: e_1_2_5_22_1 doi: 10.1063/1.4791673 – ident: e_1_2_5_3_5 doi: 10.1038/ncomms8522 – ident: e_1_2_5_1_1 doi: 10.1038/nature24270 – ident: e_1_2_5_13_2 doi: 10.1038/s41467-018-05677-5 – ident: e_1_2_5_2_1 – ident: e_1_2_5_24_2 doi: 10.1039/C6CP06049H – ident: e_1_2_5_25_3 doi: 10.1039/C7NR08385H – ident: e_1_2_5_23_1 doi: 10.1002/adma.201503575 – ident: e_1_2_5_4_2 doi: 10.1038/ncomms3676 – ident: e_1_2_5_3_8 doi: 10.1021/nl201040y – ident: e_1_2_5_10_1 doi: 10.1038/ncomms10163 – ident: e_1_2_5_24_1 doi: 10.1038/s41598-017-00849-7 – ident: e_1_2_5_4_3 doi: 10.1002/adma.201700906 – ident: e_1_2_5_14_1 doi: 10.1038/nnano.2016.70 – ident: e_1_2_5_19_3 doi: 10.1002/adma.201603313 – ident: e_1_2_5_21_2 doi: 10.1038/nature22389 – ident: e_1_2_5_16_1 doi: 10.1038/ncomms2784 – ident: e_1_2_5_3_7 doi: 10.1038/ncomms12611 – ident: e_1_2_5_25_1 doi: 10.1016/S0927-0248(99)00088-4 – ident: e_1_2_5_3_10 doi: 10.1002/aelm.201500298 – ident: e_1_2_5_11_1 doi: 10.1038/nmat3510 – ident: e_1_2_5_25_2 doi: 10.1016/j.solmat.2004.01.045 – ident: e_1_2_5_3_6 doi: 10.1038/nature14441 – ident: e_1_2_5_3_3 doi: 10.1021/nn302510e – ident: e_1_2_5_28_1 doi: 10.1016/0022-3093(78)90079-0 – ident: e_1_2_5_29_2 doi: 10.1002/adfm.201706927 – ident: e_1_2_5_21_1 doi: 10.1038/ncomms4158 – ident: e_1_2_5_19_1 doi: 10.1038/nmat4856 – ident: e_1_2_5_26_1 doi: 10.1016/S0927-0248(01)00103-9 |
SSID | ssj0009606 |
Score | 2.593056 |
Snippet | Artificial neurons with functions such as leaky integrate‐and‐fire (LIF) and spike output are essential for brain‐inspired computation with high efficiency.... Artificial neurons with functions such as leaky integrate-and-fire (LIF) and spike output are essential for brain-inspired computation with high efficiency.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1803849 |
SubjectTerms | Action Potentials Animals Biomimetics Brain Computing time Electrical Equipment and Supplies Equipment Design leaky integrate‐and‐fire Materials science Memory devices memristive devices Memristors Migration Models, Neurological Neurons Neurons - physiology Oxygen ions Polystyrene resins proton migration Protons quasi‐Hodgkin–Huxley neurons |
Title | Quasi‐Hodgkin–Huxley Neurons with Leaky Integrate‐and‐Fire Functions Physically Realized with Memristive Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201803849 https://www.ncbi.nlm.nih.gov/pubmed/30461092 https://www.proquest.com/docview/2166968631 https://www.proquest.com/docview/2136551593 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlp_bQR_pymwQVCj058UqWLB-XJssmdEsbGsjNSCO5LJt4Q3ZdkpzyEwr9h_klHcmPZFtKob0YG48sWZ4ZfSNrPhHyVudM5hjlxEI5DFBKKWIlwMUuZQAcpE7CdkCTj3J8lB4ci-M7WfwNP0Q_4eYtI_hrb-DaLHZuSUO1DbxBA5VwlfoMPr9gy6Oiw1v-KA_PA9keF3EuU9WxNiZsZ7X46qj0G9RcRa5h6Bk9IrprdLPiZLZdL802XP3C5_g_b_WYPGxxKR02ivSE3HPVOnlwh63wKbn4XOvF9Ob6-3huv86m1c31j3F9gZXQwPBRLaif1KUfnJ5d0v2OhgLldWXxOELnSkc4jAZNp59aBTm5pIcIVqdXzjblJ-40OJ5vju664MeekaPR3pf347jduCEGnvE8VlyxzO9irH2eqikZKBDW5inopDSJKBWwzDqthdVllmHIBxJAGGYN-hfI-HOyVs0r95JQk5b4FJ8vbBMfiyEgtCWglzFaSwMqInH34QpoWc395honRcPHzArfo0XfoxF518ufNXwef5Tc6PSgaO16UbCB9GxCkg8i8qa_jRbpf7Poys1rL4OK6GEij8iLRn_6qlp-exYRFrTgL20ohruTYX_16l8KvSb38TxvZo02yNryvHabiKOWZivYyk9wohj3 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_EMDBYwE4pQ2a8eOc-CwYlll6W4FVSv1ljq2g1bbZhG7gW5PfQQknoRX4RH6JNjOT1kQQkLqgUukJGPHPzPjmYn9DcAzEWMWGy_Hp1wbByVn1OdUal-HWEoimQhcOqDRNkv2wjf7dH8FvjVnYSp8iDbgZiXD6Wsr4DYgvXmOGiqUAw7q8IDwMK73VW7pxWfjtc1eDnpmip9j3H-9-yrx68QCviQRiX1OOI5sll1hz1FmOZZcUqXiUIogzwKac4kjpYWgSuRRZFwSyaSkGVaZ4X8ZEVPvJbhs04hbuP7ezjlilXUIHLwfoX7MQt7gRAZ4c7m9y-vgb8btsq3sFrv-DfjeDFO1x2WyUc6zDXnyC4LkfzWON-F6bXqjbiUrt2BFF7fh2k-AjHfg-F0pZuOz0y_JVL2fjIuz069JeWx6hRyISTFDNm6NhlpMFmjQIG0YelEoc-2b9QP1jaXghBm9rWXgcIF2jD0-PtGqKj_SR063ftKop52qvgt7F9L1e7BaTAu9BigLc1OLPRKtAutuGptX5dIo0kwIlknugd9wSipr4HabP-QwrSCncWpnMG1n0IMXLf2HCrLkj5TrDeOlteqapbjDLGASIx0PnravjdKxf5JEoaelpSGMWkuYeHC_Ytj2UzWEP_YAO7b7SxvSbm_Ube8e_EuhJ3Al2R0N0-Fge-shXDXP4ypItg6r84-lfmTMxnn22AkqgoOL5ugfpiN4Mg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0IFDASiFXajB07zoLFiBDN0E5VKip1FxzbQaMpmYqZQKerfgISP8Kv8Av9EmznUQaEkJC6YBMpie34ce_1uY59LsBTEWMWGy_Hp1wbB6Vg1OdUal-HWEoimQhcOKDRNhvsha_36f4KfGvPwtT8EN2Cm9UMZ6-tgh-qYuOMNFQoxxvU4wHhYdxsq9zUi8_GaZu9GCZmhJ9hnL56-3LgN3EFfEkiEvuccBzZILvCHqPMCyy5pErFoRRBkQe04BJHSgtBlSiiyHgkkklJc6xyI_4yIqbcC3AxZEFsg0Uku2eEVdYfcOx-hPoxC3lLExngjeX6Lk-Dv2HbZajs5rr0Gnxve6ne4jJZr-b5ujz-hUDyf-rG63C1Ad6oX2vKDVjR5U248hMd4y04elOJ2fj05Mtgqt5PxuXpyddBdWQahRyFSTlDdtUabWkxWaBhy7Nh0otSmWtqZg-UGpzgVBntNBpwsEC7Bo2Pj7Wq84_0B2dZP2mUaGeob8PeuTT9DqyW01LfA5SHhSnFHohWgXU2DeJVhTRmNBeC5ZJ74LeCksmGtt1GDznIasJpnNkRzLoR9OB5l_6wJiz5Y8q1Vu6yxnDNMtxjli6JkZ4HT7rXxuTY_0ii1NPKpiGMWhxMPLhby2v3qYbAH3uAndT9pQ5ZPxn1u7v7_5LpMVzaSdJsa7i9-QAum8dxvUK2Bqvzj5V-aDDjPH_k1BTBu_MW6B-5oHbh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-Hodgkin-Huxley+Neurons+with+Leaky+Integrate-and-Fire+Functions+Physically+Realized+with+Memristive+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+He-Ming&rft.au=Yang%2C+Rui&rft.au=Tan%2C+Zheng-Hua&rft.au=He%2C+Hui-Kai&rft.date=2019-01-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=3&rft.spage=e1803849&rft_id=info:doi/10.1002%2Fadma.201803849&rft_id=info%3Apmid%2F30461092&rft.externalDocID=30461092 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |