Interplay of temperature, thermal‐stresses and strains in laser‐assisted modification of collagenous tissues: Speckle‐contrast and OCT‐based studies

Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural rearrangements and relaxation of internal stresses resulting in the tissue reshaping. The reshaping results and eventual changes in optical and biolog...

Full description

Saved in:
Bibliographic Details
Published inJournal of biophotonics Vol. 13; no. 1; pp. e201900199 - n/a
Main Authors Baum, Olga I., Zaitsev, Vladimir Y., Yuzhakov, Alexey V., Sviridov, Alexander P., Novikova, Maria L., Matveyev, Alexander L., Matveev, Lev A., Sovetsky, Alexander A., Sobol, Emil N.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.01.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural rearrangements and relaxation of internal stresses resulting in the tissue reshaping. The reshaping results and eventual changes in optical and biological properties of the tissue strongly depend on the laser‐irradiation regime. Here, a speckle‐contrast technique based on monochromatic illumination of the tissue in combination with strain mapping by means of optical coherence elastography (OCE) is applied to reveal the interplay between the temperature and thermal stress fields producing tissue modifications. The speckle‐based technique ensured en face visualization of cross correlation and contrast of speckle images, with evolving proportions between contributions of temperature increase and thermal‐stresses determined by temperature gradients. The speckle‐technique findings are corroborated by quantitative OCE‐based depth‐resolved imaging of irradiation‐induced strain‐evolution. The revealed relationships can be used for real‐time control of the reshaping procedures (e.g., for laser shaping of cartilaginous implants in otolaryngology and maxillofacial surgery) and optimization of the laser‐irradiation regimes to ensure the desired reshaping using lower and biologically safer temperatures. The figure of waterfall OCE‐image demonstrates how the strain‐rate maximum arising in the heating‐beam center gradually splits and drifts towards the zones of maximal thermal stresses located at the temperature‐profile slopes. Moderate short‐time heating of cartilage and cornea by infrared‐laser irradiation can produce biologically nondestructive tissue reshaping, which can be used for fabrication of cartilaginous implants and cornea‐refraction correction. We show that thermal stresses can help to produce efficient reshaping at lower temperature outside the temperature maximum. OCT‐based visualization demonstrates how the strain‐rate maximum arising in the heating‐beam center gradually splits and drifts towards the temperature‐profile slopes, where maximal thermal stresses are located.
AbstractList Abstract Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural rearrangements and relaxation of internal stresses resulting in the tissue reshaping. The reshaping results and eventual changes in optical and biological properties of the tissue strongly depend on the laser‐irradiation regime. Here, a speckle‐contrast technique based on monochromatic illumination of the tissue in combination with strain mapping by means of optical coherence elastography (OCE) is applied to reveal the interplay between the temperature and thermal stress fields producing tissue modifications. The speckle‐based technique ensured en face visualization of cross correlation and contrast of speckle images, with evolving proportions between contributions of temperature increase and thermal‐stresses determined by temperature gradients. The speckle‐technique findings are corroborated by quantitative OCE‐based depth‐resolved imaging of irradiation‐induced strain‐evolution. The revealed relationships can be used for real‐time control of the reshaping procedures (e.g., for laser shaping of cartilaginous implants in otolaryngology and maxillofacial surgery) and optimization of the laser‐irradiation regimes to ensure the desired reshaping using lower and biologically safer temperatures. The figure of waterfall OCE‐image demonstrates how the strain‐rate maximum arising in the heating‐beam center gradually splits and drifts towards the zones of maximal thermal stresses located at the temperature‐profile slopes.
Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural rearrangements and relaxation of internal stresses resulting in the tissue reshaping. The reshaping results and eventual changes in optical and biological properties of the tissue strongly depend on the laser-irradiation regime. Here, a speckle-contrast technique based on monochromatic illumination of the tissue in combination with strain mapping by means of optical coherence elastography (OCE) is applied to reveal the interplay between the temperature and thermal stress fields producing tissue modifications. The speckle-based technique ensured en face visualization of cross correlation and contrast of speckle images, with evolving proportions between contributions of temperature increase and thermal-stresses determined by temperature gradients. The speckle-technique findings are corroborated by quantitative OCE-based depth-resolved imaging of irradiation-induced strain-evolution. The revealed relationships can be used for real-time control of the reshaping procedures (e.g., for laser shaping of cartilaginous implants in otolaryngology and maxillofacial surgery) and optimization of the laser-irradiation regimes to ensure the desired reshaping using lower and biologically safer temperatures. The figure of waterfall OCE-image demonstrates how the strain-rate maximum arising in the heating-beam center gradually splits and drifts towards the zones of maximal thermal stresses located at the temperature-profile slopes.
Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural rearrangements and relaxation of internal stresses resulting in the tissue reshaping. The reshaping results and eventual changes in optical and biological properties of the tissue strongly depend on the laser‐irradiation regime. Here, a speckle‐contrast technique based on monochromatic illumination of the tissue in combination with strain mapping by means of optical coherence elastography (OCE) is applied to reveal the interplay between the temperature and thermal stress fields producing tissue modifications. The speckle‐based technique ensured en face visualization of cross correlation and contrast of speckle images, with evolving proportions between contributions of temperature increase and thermal‐stresses determined by temperature gradients. The speckle‐technique findings are corroborated by quantitative OCE‐based depth‐resolved imaging of irradiation‐induced strain‐evolution. The revealed relationships can be used for real‐time control of the reshaping procedures (e.g., for laser shaping of cartilaginous implants in otolaryngology and maxillofacial surgery) and optimization of the laser‐irradiation regimes to ensure the desired reshaping using lower and biologically safer temperatures. The figure of waterfall OCE‐image demonstrates how the strain‐rate maximum arising in the heating‐beam center gradually splits and drifts towards the zones of maximal thermal stresses located at the temperature‐profile slopes. Moderate short‐time heating of cartilage and cornea by infrared‐laser irradiation can produce biologically nondestructive tissue reshaping, which can be used for fabrication of cartilaginous implants and cornea‐refraction correction. We show that thermal stresses can help to produce efficient reshaping at lower temperature outside the temperature maximum. OCT‐based visualization demonstrates how the strain‐rate maximum arising in the heating‐beam center gradually splits and drifts towards the temperature‐profile slopes, where maximal thermal stresses are located.
Author Sviridov, Alexander P.
Novikova, Maria L.
Sobol, Emil N.
Yuzhakov, Alexey V.
Sovetsky, Alexander A.
Matveyev, Alexander L.
Zaitsev, Vladimir Y.
Baum, Olga I.
Matveev, Lev A.
Author_xml – sequence: 1
  givenname: Olga I.
  surname: Baum
  fullname: Baum, Olga I.
  organization: Institute of Photon Technologies
– sequence: 2
  givenname: Vladimir Y.
  orcidid: 0000-0002-2122-2943
  surname: Zaitsev
  fullname: Zaitsev, Vladimir Y.
  email: vyuzai@ipfran.ru
  organization: Russian Academy of Sciences
– sequence: 3
  givenname: Alexey V.
  surname: Yuzhakov
  fullname: Yuzhakov, Alexey V.
  organization: Russian Academy of Sciences
– sequence: 4
  givenname: Alexander P.
  surname: Sviridov
  fullname: Sviridov, Alexander P.
  organization: Institute of Photon Technologies
– sequence: 5
  givenname: Maria L.
  surname: Novikova
  fullname: Novikova, Maria L.
  organization: Institute of Photon Technologies
– sequence: 6
  givenname: Alexander L.
  surname: Matveyev
  fullname: Matveyev, Alexander L.
  organization: Russian Academy of Sciences
– sequence: 7
  givenname: Lev A.
  surname: Matveev
  fullname: Matveev, Lev A.
  organization: Russian Academy of Sciences
– sequence: 8
  givenname: Alexander A.
  surname: Sovetsky
  fullname: Sovetsky, Alexander A.
  organization: Russian Academy of Sciences
– sequence: 9
  givenname: Emil N.
  surname: Sobol
  fullname: Sobol, Emil N.
  organization: IPG Medical Corporation
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31568651$$D View this record in MEDLINE/PubMed
BookMark eNqFkbuO1DAUhiO0iL1AS4ks0VAwgy9JnNDBaIFBK03BItFFjn0MHhI76-MITbePwAPwdDwJHmYZJBoKy7fvfD7yf16c-OChKB4zumSU8hfb3oUlp6ylebT3ijPW1OWC1mVzclyLT6fFOeKW0pqKSjwoTgWr6qau2FnxY-0TxGlQOxIsSTBOEFWaIzwn6QvEUQ0_b79jioAISJQ3JG-U80icJ4NCiPleITpMYMgYjLNOq-SC3_t0GAb1GXyYkSSHOAO-JB8m0F8HyHU6-CzD9Nu7WV3noz4r92_MxgE-LO5bNSA8upsvio9vLq9X7xZXm7fr1aurhRZStAvZN1Yx3phSMdY3RvVcllzZnpZaWik151WtamoaUMJWRjHJtC2ZMlbWpbTionh28E4x3OQeUzc61JB795Bb7zhvWyl5_uKMPv0H3YY5-txdx4VgLctZlJlaHigdA2IE203RjSruOka7fW7dPrfumFsueHKnnfsRzBH_E1QG2gPwzQ2w-4-ue_96vfkr_wXABq4f
CitedBy_id crossref_primary_10_1364_BOE_489021
crossref_primary_10_1002_jbio_202300292
crossref_primary_10_1088_1612_202X_ab8794
crossref_primary_10_3367_UFNe_2022_06_039207
crossref_primary_10_3390_ma16052036
crossref_primary_10_1002_jbio_202200253
crossref_primary_10_3390_photonics8120527
crossref_primary_10_3367_UFNr_2022_06_039207
crossref_primary_10_1088_1612_202X_ab9446
crossref_primary_10_1088_1612_202X_ace253
crossref_primary_10_1364_BOE_440739
crossref_primary_10_1002_jbio_202400016
crossref_primary_10_3390_ma15030904
crossref_primary_10_1364_BOE_447340
crossref_primary_10_3390_ma15093308
crossref_primary_10_1002_jbio_202400086
crossref_primary_10_1097_PRS_0000000000009573
Cites_doi 10.1142/S1793545817420068
10.1088/1612-202X/aafd21
10.1002/lsm.22331
10.1364/AO.45.004480
10.1088/1612-202X/aac879
10.1364/BOE.7.004859
10.1016/0030-4018(95)00042-7
10.1186/1471-2474-11-231
10.1364/BOE.5.001419
10.2106/00004623-200311000-00008
10.1364/BOE.7.002759
10.1007/s10973-007-8782-4
10.1070/QE2014v044n01ABEH015343
10.1134/S1054660X06120140
10.1117/1.429896
10.1002/lsm.20611
10.1038/srep37949
10.1364/OL.39.003014
10.1117/12.231359
10.1097/00003086-200401000-00043
10.1016/0030-4018(81)90428-4
10.1364/BOE.9.001097
10.1088/1612-202X/ab183c
10.1117/12.2038860
10.1117/12.2266879
10.1088/1612-2011/13/11/115603
10.1117/1.3614565
10.1002/lsm.22202
10.1364/AO.41.005989
10.1109/3.753657
10.1088/1054-660X/23/8/085602
10.1117/1.JBO.22.9.091515
10.1002/lsm.21077
10.1117/12.178896
10.1007/978-1-4939-1758-7_14
10.1117/1.3285504
10.1002/lsm.20795
10.1111/j.1442-9071.2010.02228.x
10.1070/QEL16368
10.1088/1612-202X/aa6b1a
10.1117/12.822302
10.1117/1.JBO.22.9.091514
10.1364/OE.3.000212
10.1134/S0036024407040218
10.1088/1612-202X/aab5e9
10.1002/jbio.201500203
10.1088/0031-9155/46/6/306
10.1002/jbio.201600291
10.1002/lsm.10167
10.1016/S1058-2746(99)90157-X
10.1002/lsm.20666
10.1002/jbio.201500152
10.18287/JBPE17.03.010308
10.1080/02648725.2000.10648005
10.1002/jor.1100070406
10.1364/BOE.3.001865
10.1007/978-3-7091-5710-7
10.1117/12.260730
10.1002/jbio.201800250
10.1117/1.2333613
10.1038/srep15538
10.1007/s12200-015-0493-z
10.1097/00004647-200103000-00002
10.1007/s10103-003-0275-5
10.1186/s40634-015-0029-x
10.1117/1.JBO.22.8.086004
10.1117/1.JBO.21.11.116005
10.1070/QEL16384
10.1002/lapl.200710019
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID NPM
AAYXX
CITATION
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
DOI 10.1002/jbio.201900199
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Technology Research Database
Electronics & Communications Abstracts
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-0648
EndPage n/a
ExternalDocumentID 10_1002_jbio_201900199
31568651
JBIO201900199
Genre article
Journal Article
GrantInformation_xml – fundername: Russian Ministry of Science
  funderid: 007‐ГЗ/Ч3363/26
– fundername: Russian Ministry of Science and Education
– fundername: Russian Science Foundation
  funderid: 16‐15‐10274
– fundername: Russian Foundation for Basic Research
  funderid: 18‐29‐02124
– fundername: Russian Ministry of Science
  grantid: 007-ГЗ/Ч3363/26
– fundername: Russian Science Foundation
  grantid: 16-15-10274
– fundername: Russian Foundation for Basic Research
  grantid: 18-29-02124
GroupedDBID ---
05W
0R~
1OC
31~
33P
3SF
4.4
52U
52V
53G
5DZ
5GY
66C
8-0
8-1
A00
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NNB
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
NPM
AAYXX
CITATION
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
ID FETCH-LOGICAL-c3739-7b8fa128d4a11b8dab2742afb04c7f77c2256a60d8ea3f5da171cf41adf7647f3
IEDL.DBID DR2
ISSN 1864-063X
IngestDate Fri Aug 16 23:25:32 EDT 2024
Thu Oct 10 18:21:53 EDT 2024
Fri Aug 23 01:07:36 EDT 2024
Sat Sep 28 08:35:06 EDT 2024
Sat Aug 24 01:09:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords speckle-contrast imaging
thermomechanical tissue reshaping
optical coherence elastography
laser-tissue interaction
strain mapping
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-7b8fa128d4a11b8dab2742afb04c7f77c2256a60d8ea3f5da171cf41adf7647f3
Notes Funding information
Russian Science Foundation, Grant/Award Number: 16‐15‐10274; Russian Foundation for Basic Research, Grant/Award Number: 18‐29‐02124; Russian Ministry of Science, Grant/Award Number: 007‐ГЗ/Ч3363/26; Russian Ministry of Science and Education; RFBR
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2122-2943
PMID 31568651
PQID 2331912014
PQPubID 1006377
PageCount 16
ParticipantIDs proquest_miscellaneous_2299772001
proquest_journals_2331912014
crossref_primary_10_1002_jbio_201900199
pubmed_primary_31568651
wiley_primary_10_1002_jbio_201900199_JBIO201900199
PublicationCentury 2000
PublicationDate January 2020
2020-Jan
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
– name: Jena
PublicationTitle Journal of biophotonics
PublicationTitleAlternate J Biophotonics
PublicationYear 2020
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2010; 11
2009; 41
2010; 15
2017; 3
2017; 47
2013; 23
2019; 12
2019; 16
2003; 18
1996; 2923
1970
2011; 16
2001; 46
2018; 9
2015; 47
2014; 5
2009; 95
2000; 17
2002; 41
1994; 33
1981; 37
2007; 4
1996; 1
2009; 7179
2003; 85
2014; 8946
2004; 418
2015; 2
2010; 38
2015; 5
2006; 11
2017; 22
2006; 16
1989; 7
2014; 46
2017; 10039
1995; 116
1999; 4
1999; 8
2015; 8
2015; 7
1959
2003; 32
2016; 13
2014; 44
2007; 14
2001; 21
2016; 6
2016; 7
2012; 3
2006; 45
2017; 10
1999; 35
2016; 21
2011; 43
2007; 81
2016
1998; 3
2004; 5475
2014; 39
2008; 40
2016; 9
2018; 15
e_1_2_8_28_1
Kuznetsova L. V. (e_1_2_8_56_1) 2004; 5475
e_1_2_8_24_1
e_1_2_8_47_1
Seifert E. (e_1_2_8_57_1) 2014; 8946
Liu C.‐H. (e_1_2_8_63_1) 2015; 7
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
Tuchin V. V. (e_1_2_8_40_1) 1999; 4
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Timoshenko S. P. (e_1_2_8_72_1) 1970
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Sobol E. (e_1_2_8_10_1) 2017; 10039
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 7
  start-page: 4859
  issue: 12
  year: 2016
  publication-title: Biomed. Opt. Express
– volume: 39
  start-page: 3014
  issue: 10
  year: 2014
  publication-title: Opt. Lett.
– volume: 418
  start-page: 246
  year: 2004
  publication-title: Clin. Orthop.
– volume: 2923
  start-page: 114
  year: 1996
  publication-title: SPIE Proc.
– volume: 3
  start-page: 010308
  issue: 1
  year: 2017
  publication-title: J. Biomed. Photonics Eng.
– volume: 10039
  start-page: 100390U
  year: 2017
  publication-title: Proc. SPIE
– volume: 16
  start-page: 065601
  issue: 6
  year: 2019
  publication-title: Laser Phys. Lett.
– volume: 8
  start-page: 187
  issue: 2
  year: 2015
  publication-title: Front. Optoelectron.
– volume: 116
  start-page: 36
  issue: 1–3
  year: 1995
  publication-title: Opt. Commun.
– start-page: 203
  year: 2016
– volume: 22
  start-page: 091515
  issue: 9
  year: 2017
  publication-title: J. Biomed. Opt.
– volume: 7
  start-page: 494
  year: 1989
  publication-title: J. Orthop. Res.
– volume: 7179
  start-page: 71790B
  year: 2009
  publication-title: SPIE Proc.
– volume: 41
  start-page: 487
  issue: 7
  year: 2009
  publication-title: Lasers Surg. Med.
– volume: 4
  start-page: 100
  issue: 1
  year: 1999
  publication-title: J. Biomed. Opt.
– volume: 47
  start-page: 860
  issue: 9
  year: 2017
  publication-title: Quantum Electron.
– volume: 10
  start-page: 1742006
  issue: 6
  year: 2017
  publication-title: J. Innov. Opt. Health Sci.
– volume: 5475
  start-page: 125
  year: 2004
  publication-title: Proc. SPIE
– volume: 3
  start-page: 1865
  issue: 8
  year: 2012
  publication-title: Biomed. Opt. Express
– volume: 45
  start-page: 4480
  issue: 18
  year: 2006
  publication-title: Appl. Optics
– volume: 11
  start-page: 231
  year: 2010
  publication-title: BMC Musculoskelet. Disord.
– year: 1959
– volume: 11
  start-page: 041120
  issue: 4
  year: 2006
  publication-title: J. Biomed. Opt.
– volume: 35
  start-page: 532
  issue: 4
  year: 1999
  publication-title: IEEE J. Quantum Electron.
– volume: 8946
  start-page: 89460F
  year: 2014
  publication-title: Proc. SPIE
– volume: 7
  start-page: 2759
  issue: 7
  year: 2016
  publication-title: Biomed. Opt. Express
– volume: 40
  start-page: 202
  issue: 3
  year: 2008
  publication-title: Lasers Surg. Med.
– volume: 13
  start-page: 115603
  issue: 11
  year: 2016
  publication-title: Laser Phys. Lett.
– volume: 22
  start-page: 091514
  issue: 9
  year: 2017
  publication-title: J. Biomed. Opt.
– volume: 6
  start-page: 37949
  year: 2016
  publication-title: Sci. Rep.
– volume: 9
  start-page: 499
  issue: 5
  year: 2016
  publication-title: J. Biophotonics
– volume: 1
  start-page: 174
  issue: 2
  year: 1996
  publication-title: J. Biomed. Opt.
– volume: 9
  start-page: 1097
  issue: 3
  year: 2018
  publication-title: Biomed. Opt. Express
– volume: 5
  start-page: 15538
  year: 2015
  publication-title: Sci. Rep.
– volume: 95
  start-page: 937
  issue: 3
  year: 2009
  publication-title: Anal. Calorim.
– volume: 16
  start-page: 1681
  issue: 12
  year: 2006
  publication-title: Laser Phys.
– volume: 2
  start-page: 15
  issue: 1
  year: 2015
  publication-title: J. Exp. Orthopaed.
– volume: 17
  start-page: 553
  year: 2000
  publication-title: Biotechnol. Genet. Eng. Rev.
– volume: 43
  start-page: 511
  year: 2011
  publication-title: Lasers Surg. Med.
– volume: 22
  start-page: 1
  issue: 8
  year: 2017
  publication-title: J. Biomed. Opt.
– volume: 7
  start-page: 44
  year: 2015
  publication-title: Mod. Technol. Med.
– volume: 10
  start-page: 1450
  issue: 11
  year: 2017
  publication-title: J. Biophotonics
– volume: 15
  start-page: 065603
  issue: 6
  year: 2018
  publication-title: Laser Phys. Lett.
– volume: 85
  start-page: 2111
  year: 2003
  publication-title: J. Bone Jt. Surg.
– volume: 3
  start-page: 409
  issue: 4
  year: 1998
  publication-title: J. Biomed. Opt.
– volume: 16
  start-page: 080902
  issue: 8
  year: 2011
  publication-title: J. Biomed. Opt.
– volume: 37
  start-page: 326
  issue: 5
  year: 1981
  publication-title: Opt. Commun.
– volume: 40
  start-page: 550
  issue: 8
  year: 2008
  publication-title: Lasers Surg. Med.
– volume: 46
  start-page: 1665
  year: 2001
  publication-title: Phys. Med. Biol.
– volume: 5
  start-page: 1419
  issue: 5
  year: 2014
  publication-title: Biomed. Opt. Express
– volume: 16
  start-page: 035603
  year: 2019
  publication-title: Laser Phys. Lett.
– volume: 4
  start-page: 488
  issue: 7
  year: 2007
  publication-title: Laser Phys. Lett.
– volume: 33
  start-page: 3189
  issue: 10
  year: 1994
  publication-title: Opt. Eng.
– volume: 3
  start-page: 212
  year: 1998
  publication-title: Opt. Exp. Dermatol.
– volume: 8
  start-page: 339
  issue: 4
  year: 1999
  publication-title: J. Shoulder Elbow Surg.
– volume: 21
  start-page: 195
  issue: 3
  year: 2001
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 8
  start-page: 790
  issue: 10
  year: 2015
  publication-title: J. Biophotonics
– volume: 21
  start-page: 116005
  issue: 11
  year: 2016
  publication-title: J. Biomed. Opt.
– volume: 38
  start-page: 141
  issue: 2
  year: 2010
  publication-title: Clin. Experiment. Ophthalmol.
– volume: 18
  start-page: 148
  issue: 3
  year: 2003
  end-page: 153
  publication-title: Laser Med. Sci.
– volume: 46
  start-page: 46
  issue: 1
  year: 2014
  publication-title: Lasers Surg. Med.
– volume: 47
  start-page: 935
  issue: 10
  year: 2017
  publication-title: Quantum Electron.
– volume: 32
  start-page: 271
  issue: 4
  year: 2003
  publication-title: Lasers Surg. Med.
– volume: 14
  start-page: 065601
  issue: 6
  year: 2007
  publication-title: Laser Phys. Lett.
– volume: 47
  start-page: 243
  issue: 3
  year: 2015
  publication-title: Lasers Surg. Med.
– volume: 15
  start-page: 011109
  issue: 1
  year: 2010
  publication-title: J. Biomed. Opt.
– volume: 44
  start-page: 65
  issue: 1
  year: 2014
  publication-title: Quantum Electron.
– year: 1970
– volume: 15
  start-page: 085602
  year: 2018
  publication-title: Laser Phys. Lett.
– volume: 23
  start-page: 085602
  issue: 8
  year: 2013
  publication-title: Laser Phys.
– volume: 41
  start-page: 5984
  issue: 28
  year: 2002
  publication-title: Appl. Optics
– volume: 12
  issue: 3
  year: 2019
  publication-title: J. Biophotonics
– volume: 81
  start-page: 626
  issue: 4
  year: 2007
  publication-title: Russ. J. Phys. Chem.
– volume: 4
  start-page: 100
  issue: 1
  year: 1999
  ident: e_1_2_8_40_1
  publication-title: J. Biomed. Opt.
  contributor:
    fullname: Tuchin V. V.
– ident: e_1_2_8_31_1
  doi: 10.1142/S1793545817420068
– ident: e_1_2_8_13_1
  doi: 10.1088/1612-202X/aafd21
– ident: e_1_2_8_20_1
  doi: 10.1002/lsm.22331
– ident: e_1_2_8_54_1
  doi: 10.1364/AO.45.004480
– ident: e_1_2_8_74_1
  doi: 10.1088/1612-202X/aac879
– ident: e_1_2_8_47_1
  doi: 10.1364/BOE.7.004859
– ident: e_1_2_8_43_1
  doi: 10.1016/0030-4018(95)00042-7
– ident: e_1_2_8_67_1
  doi: 10.1186/1471-2474-11-231
– ident: e_1_2_8_8_1
  doi: 10.1364/BOE.5.001419
– ident: e_1_2_8_66_1
  doi: 10.2106/00004623-200311000-00008
– ident: e_1_2_8_51_1
  doi: 10.1364/BOE.7.002759
– ident: e_1_2_8_26_1
  doi: 10.1007/s10973-007-8782-4
– ident: e_1_2_8_58_1
  doi: 10.1070/QE2014v044n01ABEH015343
– ident: e_1_2_8_60_1
  doi: 10.1134/S1054660X06120140
– ident: e_1_2_8_15_1
  doi: 10.1117/1.429896
– ident: e_1_2_8_16_1
  doi: 10.1002/lsm.20611
– ident: e_1_2_8_53_1
  doi: 10.1038/srep37949
– ident: e_1_2_8_71_1
  doi: 10.1364/OL.39.003014
– ident: e_1_2_8_44_1
  doi: 10.1117/12.231359
– ident: e_1_2_8_64_1
  doi: 10.1097/00003086-200401000-00043
– ident: e_1_2_8_42_1
  doi: 10.1016/0030-4018(81)90428-4
– ident: e_1_2_8_48_1
  doi: 10.1364/BOE.9.001097
– ident: e_1_2_8_37_1
  doi: 10.1088/1612-202X/ab183c
– volume: 8946
  start-page: 89460F
  year: 2014
  ident: e_1_2_8_57_1
  publication-title: Proc. SPIE
  doi: 10.1117/12.2038860
  contributor:
    fullname: Seifert E.
– volume: 10039
  start-page: 100390U
  year: 2017
  ident: e_1_2_8_10_1
  publication-title: Proc. SPIE
  doi: 10.1117/12.2266879
  contributor:
    fullname: Sobol E.
– ident: e_1_2_8_28_1
  doi: 10.1088/1612-2011/13/11/115603
– volume: 7
  start-page: 44
  year: 2015
  ident: e_1_2_8_63_1
  publication-title: Mod. Technol. Med.
  contributor:
    fullname: Liu C.‐H.
– ident: e_1_2_8_22_1
  doi: 10.1117/1.3614565
– ident: e_1_2_8_5_1
  doi: 10.1002/lsm.22202
– ident: e_1_2_8_41_1
  doi: 10.1364/AO.41.005989
– ident: e_1_2_8_4_1
  doi: 10.1109/3.753657
– ident: e_1_2_8_62_1
  doi: 10.1088/1054-660X/23/8/085602
– ident: e_1_2_8_19_1
  doi: 10.1117/1.JBO.22.9.091515
– ident: e_1_2_8_2_1
  doi: 10.1002/lsm.21077
– ident: e_1_2_8_39_1
  doi: 10.1117/12.178896
– ident: e_1_2_8_3_1
  doi: 10.1007/978-1-4939-1758-7_14
– ident: e_1_2_8_38_1
  doi: 10.1117/1.3285504
– ident: e_1_2_8_24_1
  doi: 10.1002/lsm.20795
– ident: e_1_2_8_7_1
  doi: 10.1111/j.1442-9071.2010.02228.x
– ident: e_1_2_8_9_1
  doi: 10.1070/QEL16368
– volume-title: Theory of Elasticity
  year: 1970
  ident: e_1_2_8_72_1
  contributor:
    fullname: Timoshenko S. P.
– volume: 5475
  start-page: 125
  year: 2004
  ident: e_1_2_8_56_1
  publication-title: Proc. SPIE
  contributor:
    fullname: Kuznetsova L. V.
– ident: e_1_2_8_61_1
  doi: 10.1088/1612-202X/aa6b1a
– ident: e_1_2_8_23_1
  doi: 10.1117/12.822302
– ident: e_1_2_8_52_1
  doi: 10.1117/1.JBO.22.9.091514
– ident: e_1_2_8_34_1
  doi: 10.1364/OE.3.000212
– ident: e_1_2_8_55_1
  doi: 10.1134/S0036024407040218
– ident: e_1_2_8_70_1
  doi: 10.1088/1612-202X/aab5e9
– ident: e_1_2_8_29_1
  doi: 10.1002/jbio.201500203
– ident: e_1_2_8_35_1
  doi: 10.1088/0031-9155/46/6/306
– ident: e_1_2_8_30_1
  doi: 10.1002/jbio.201600291
– ident: e_1_2_8_17_1
  doi: 10.1002/lsm.10167
– ident: e_1_2_8_27_1
  doi: 10.1016/S1058-2746(99)90157-X
– ident: e_1_2_8_12_1
  doi: 10.1002/lsm.20666
– ident: e_1_2_8_50_1
  doi: 10.1002/jbio.201500152
– ident: e_1_2_8_6_1
  doi: 10.18287/JBPE17.03.010308
– ident: e_1_2_8_25_1
  doi: 10.1080/02648725.2000.10648005
– ident: e_1_2_8_65_1
  doi: 10.1002/jor.1100070406
– ident: e_1_2_8_68_1
  doi: 10.1364/BOE.3.001865
– ident: e_1_2_8_73_1
  doi: 10.1007/978-3-7091-5710-7
– ident: e_1_2_8_59_1
  doi: 10.1117/12.260730
– ident: e_1_2_8_32_1
  doi: 10.1002/jbio.201800250
– ident: e_1_2_8_36_1
  doi: 10.1117/1.2333613
– ident: e_1_2_8_33_1
  doi: 10.1038/srep15538
– ident: e_1_2_8_49_1
  doi: 10.1007/s12200-015-0493-z
– ident: e_1_2_8_46_1
  doi: 10.1097/00004647-200103000-00002
– ident: e_1_2_8_14_1
  doi: 10.1007/s10103-003-0275-5
– ident: e_1_2_8_18_1
  doi: 10.1186/s40634-015-0029-x
– ident: e_1_2_8_45_1
  doi: 10.1117/1.JBO.22.8.086004
– ident: e_1_2_8_69_1
  doi: 10.1117/1.JBO.21.11.116005
– ident: e_1_2_8_11_1
  doi: 10.1070/QEL16384
– ident: e_1_2_8_21_1
  doi: 10.1002/lapl.200710019
SSID ssj0060353
Score 2.3897007
Snippet Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural...
Abstract Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e201900199
SubjectTerms Biological properties
Cartilage
Collagen
Cornea
Cross correlation
I.R. radiation
Image contrast
Infrared lasers
Irradiation
Laser beam heating
Lasers
laser‐tissue interaction
Mapping
Maxillofacial
optical coherence elastography
Optical properties
Optimization
Otolaryngology
Residual stress
speckle‐contrast imaging
Strain
strain mapping
Stress distribution
Stress relaxation
Surgery
Surgical implants
Temperature
Temperature gradients
Thermal stress
thermomechanical tissue reshaping
Tissues
Waterfalls
Title Interplay of temperature, thermal‐stresses and strains in laser‐assisted modification of collagenous tissues: Speckle‐contrast and OCT‐based studies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.201900199
https://www.ncbi.nlm.nih.gov/pubmed/31568651
https://www.proquest.com/docview/2331912014
https://search.proquest.com/docview/2299772001
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTvRQSvnbApWRkLgQSGJvnPRWUBFwAIkfaW_ROLYlWsgiEg5w4hH6AH06noQZezdl4VAJDjkkju3EnvH3xR5_YWzdgi76RssohQQimRc2QhDOIlkptCDEXGV9lO9Rtn8uDwf9wbNd_EEfoptwI8_w4zU5OOhm-59o6C99QZv3ENDwoB18pKZHrOik04_KYuFlKJM8kxFi8WCs2hin25PZJ1HpFdWcZK4eevZmGIwfOkSc_N66bfVWdf9Cz_E9b_WZfRrxUv4jGNIs-2DrL-zjM7XCOfY3BChewh0fOk6aViNB5k1OLPIKLh8f_oS9J7bhUBve-B9QNPyi5kjS7Q2mI1cnwzL8amgoSskbBpXnDTIoxvLWW0PznZ9eW1p6xnw-pB6a1pd7vHuGlwiAqQ4fCDnPzvd-nu3uR6OfO0SVUKKIlM4dIDgaCUmicwOaFo3B6RjNxClV4UCTQRab3IJwfQOJSionEzBOZVI5scCm6mFtlxgXpjLSgJEa2V9hc50XSKRAKMwYG-d6bGPcueV10PAog1pzWlJ7l11799jKuO_LkS83ZSpwmErwHtlja10yeiEtrUBtsV3KFFEdv1OwkB5bDDbTVSXwEznP-piS-p7_zzOUhzsHx93Z17dkWmbTKU0L-JmiFTbV3tzaVeROrf7m_eMJKaUYpg
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_n8WChgJiQtpk9iJE25QqLaltBJspd6scWxLhTZbNekBTjwCD8DT8SSM7U1g4YAEhxwSx3Ziz_j7Yo-_ADyxqOvCaJHkmGEiqtomBMJlIhpJFkSYK22I8t0tp_ti-6AYogn9XpioDzFOuHnPCOO1d3A_Ib3-UzX0gz70u_cI0eioz8MF8vnC--ard6OCVJnyIESZVaVICI0PBt3GNF9fzr-MS3-QzWXuGsBn8yro4bFjzMnHtbNerzWff1N0_K_3ugZXFtSUvYi2dB3O2fYGXP5FsPAmfIsxikf4ic0d87JWC03mZ8wTyWM8-v7la9x-YjuGrWFd-AdFxw5bRjzdnlI60XVvW4Ydz40PVAq24csLNhlFY1kfDKJ7zt6fWL_6TPlCVD12fSh3b2NGlzwG-zpCLOQt2N98PduYJov_OyQNl7xOpK4cEj4agVmmK4Parxuj0ylZipOyobGmxDI1lUXuCoOZzBonMjROlkI6fhtW2nlr7wLjpjHCoBGaCGBtK13VxKWQS8qYGucm8HToXXUSZTxUFGzOlW9vNbb3BFaHzlcLd-5UzmmkyugeMYHHYzI5ol9dwdZSu6icgJ0-VaiQCdyJRjNWxekruSoLSslD1__lGdT2y6298ezev2R6BBens7c7amdr9819uJT7WYIwcbQKK_3pmX1AVKrXD4Oz_ACd4BzG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAc-C8sFDASEhfSJrHXTnorLau2oBZBK-3NGse2VGizqyY9wIlH4AF4uj5Jx85u6MIBCQ45JI6dxJ7x99kefwF46dCUQ2tEkmOGiShKlxAIy0RUiiyIMFe5GOW7J7cPxe54OL60i7_Th-gn3IJnxP46OPjU-rVfoqGfzVHYvEeARkd5Fa4JyfMw_Nr62AtIyZRHHcqskCIhMB7PZRvTfG0x_yIs_cE1F6lrxJ7RbcD5W3chJ19Wz1qzWn37TdDxfz7rDtyaEVO20VnSXbji6ntw85Jc4X342UUoHuNXNvEsiFrNFJlfs0AjT_D4_PuPbvOJaxjWljXxDxQNO6oZsXR3SulE1oNlWXYysSFMKVpGKC9aZCcZy9poDs06-zR1Ye2Z8sWYemzaWO7-5gFdCggcnhEjIR_A4ejtweZ2Mvu7Q1JxxctEmcIjoaMVmGWmsGjCqjF6k5KdeKUq6mkkytQWDrkfWsxUVnmRofVKCuX5MizVk9o9AsZtZYVFKwzRv9IVpiiJSSFXlDG13g_g1bxx9bQT8dCdXHOuQ33rvr4HsDJvez1z5kbnnPqpjO4RA3jRJ5MbhrUVrB3Vi84J1mmgQoUM4GFnM_2jOI2RCzmklDy2_F_eQe--2dnvzx7_S6bncP3D1ki_39l79wRu5GGKIM4arcBSe3rmnhKPas2z6CoXQhobdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interplay+of+temperature%2C+thermal-stresses+and+strains+in+laser-assisted+modification+of+collagenous+tissues%3A+Speckle-contrast+and+OCT-based+studies&rft.jtitle=Journal+of+biophotonics&rft.au=Baum%2C+Olga+I&rft.au=Zaitsev%2C+Vladimir+Y&rft.au=Yuzhakov%2C+Alexey+V&rft.au=Sviridov%2C+Alexander+P&rft.date=2020-01-01&rft.eissn=1864-0648&rft.volume=13&rft.issue=1&rft.spage=e201900199&rft.epage=e201900199&rft_id=info:doi/10.1002%2Fjbio.201900199&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon