Enzyme‐Programmable Microgel Lasers for Information Encoding and Anti‐Counterfeiting

Microscale laser emissions have emerged as a promising approach for information encoding and anti‐counterfeiting for their feature‐rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 10; pp. e2107809 - n/a
Main Authors Gong, Xuerui, Qiao, Zhen, Liao, Yikai, Zhu, Song, Shi, Lei, Kim, Munho, Chen, Yu‐Cheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202107809

Cover

Loading…
Abstract Microscale laser emissions have emerged as a promising approach for information encoding and anti‐counterfeiting for their feature‐rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme‐responsive hydrogel droplets in a Fabry–Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet‐printed multiwavelength laser encoding and anti‐counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing. Inspired by the natural responsivity of active biomaterials, laser information encoding is demonstrated by exploiting enzyme‐bioactive hydrogel materials confined in a microcavity. Tunable lasing wavelengths are achieved by manipulating the biological activity and nanostructures in hydrogel droplets. This study represents the first development of a biologically controlled laser for optical information applications.
AbstractList Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme-responsive hydrogel droplets in a Fabry-Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet-printed multiwavelength laser encoding and anti-counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing.
Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme-responsive hydrogel droplets in a Fabry-Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet-printed multiwavelength laser encoding and anti-counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing.Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme-responsive hydrogel droplets in a Fabry-Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet-printed multiwavelength laser encoding and anti-counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing.
Microscale laser emissions have emerged as a promising approach for information encoding and anti‐counterfeiting for their feature‐rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme‐responsive hydrogel droplets in a Fabry–Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet‐printed multiwavelength laser encoding and anti‐counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing. Inspired by the natural responsivity of active biomaterials, laser information encoding is demonstrated by exploiting enzyme‐bioactive hydrogel materials confined in a microcavity. Tunable lasing wavelengths are achieved by manipulating the biological activity and nanostructures in hydrogel droplets. This study represents the first development of a biologically controlled laser for optical information applications.
Author Zhu, Song
Chen, Yu‐Cheng
Qiao, Zhen
Gong, Xuerui
Shi, Lei
Kim, Munho
Liao, Yikai
Author_xml – sequence: 1
  givenname: Xuerui
  surname: Gong
  fullname: Gong, Xuerui
  organization: Nanyang Technological University
– sequence: 2
  givenname: Zhen
  surname: Qiao
  fullname: Qiao, Zhen
  organization: Nanyang Technological University
– sequence: 3
  givenname: Yikai
  surname: Liao
  fullname: Liao, Yikai
  organization: Nanyang Technological University
– sequence: 4
  givenname: Song
  surname: Zhu
  fullname: Zhu, Song
  organization: Nanyang Technological University
– sequence: 5
  givenname: Lei
  surname: Shi
  fullname: Shi, Lei
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Munho
  surname: Kim
  fullname: Kim, Munho
  organization: Nanyang Technological University
– sequence: 7
  givenname: Yu‐Cheng
  orcidid: 0000-0002-0008-5601
  surname: Chen
  fullname: Chen, Yu‐Cheng
  email: yucchen@ntu.edu.sg
  organization: Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34918404$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9O3DAQxi1EBcuWK8cqUi-9ZBn_TXxcbZcWaVE5tFJvkRPbyCixqZ0IbU99BJ6RJ8F0KUhIFZcZjfz7ZqzvO0L7PniD0AmGBQYgp0oPakGAYKhqkHtohjnBJQPJ99EMJOWlFKw-REcpXQOAFCAO0CFlEtcM2Az9XPvf28Hc_7m7jOEqqmFQbW-KC9fl0fTFRiUTU2FDLM59roMaXfDF2ndBO39VKK-LpR9dXrAKkx9NtMaN-eU9emdVn8zxU5-jH2fr76uv5ebbl_PVclN2tKKyFBqMVtoQkLrmpALFAEuOW4IFp4xoZquqZpQLZoHaSrTSmjajLbacd4TO0afd3psYfk0mjc3gUmf6XnkTptQQgbEQQCnO6MdX6HWYos-_yxSteLYw9zn68ERN7WB0cxPdoOK2-edZBhY7IFuUUjT2GcHQPIbSPIbSPIeSBeyVoHPjXx_HqFz_f5ncyW5db7ZvHGmWny-WL9oHLUOhqw
CitedBy_id crossref_primary_10_1364_PRJ_489700
crossref_primary_10_1002_ange_202310263
crossref_primary_10_1038_s41598_024_65450_1
crossref_primary_10_1016_j_nanoen_2024_110358
crossref_primary_10_1016_j_cej_2023_141666
crossref_primary_10_1039_D4MH01828A
crossref_primary_10_1007_s12274_023_5848_y
crossref_primary_10_1021_acsanm_2c01878
crossref_primary_10_1007_s11426_023_1779_3
crossref_primary_10_1039_D4TA07312F
crossref_primary_10_1002_adom_202300232
crossref_primary_10_1039_D4TC00979G
crossref_primary_10_1007_s12274_023_5709_8
crossref_primary_10_1007_s40843_024_3195_6
crossref_primary_10_1021_acsami_3c14571
crossref_primary_10_1002_adfm_202314130
crossref_primary_10_1021_acsnano_4c16389
crossref_primary_10_1002_adom_202200872
crossref_primary_10_1002_anie_202310263
crossref_primary_10_1002_adfm_202417673
crossref_primary_10_1021_acsphotonics_2c01611
crossref_primary_10_1149_2162_8777_ac8a73
crossref_primary_10_1021_acs_nanolett_2c03148
crossref_primary_10_1002_lpor_202301122
crossref_primary_10_1002_adma_202501271
crossref_primary_10_1002_lpor_202301006
crossref_primary_10_1039_D4CC00538D
crossref_primary_10_1021_acs_jpclett_3c03151
crossref_primary_10_1063_5_0206704
Cites_doi 10.1126/sciadv.abg0363
10.1038/s41598-018-24553-2
10.1117/1.1304844
10.1002/adma.201807880
10.1002/adom.201600185
10.1016/j.joca.2009.04.012
10.1126/sciadv.aar6768
10.1021/acsami.8b10768
10.1038/s41598-018-32469-0
10.1038/s41467-018-07808-4
10.1002/adom.202070082
10.1038/natrevmats.2016.71
10.1007/s13319-014-0029-0
10.1002/smll.202000239
10.1039/D0NR06358D
10.1039/D0QO00613K
10.1002/advs.202100096
10.1002/adma.202103192
10.1039/C6RA00550K
10.1039/c2cs15267c
10.1039/D1TC00830G
10.1038/s41467-018-07967-4
10.1002/adma.201501603
10.1002/ange.202109336
10.1126/science.abc2666
10.34133/2020/6539431
10.1002/adfm.202002943
10.1073/pnas.1006911107
10.1021/acsmaterialslett.9b00509
10.1039/D0NR07921A
10.1021/ja200729w
10.1002/anie.202009295
10.1186/s43074-020-00013-x
10.1109/JLT.2017.2762696
10.1007/s11831-018-9298-8
10.1038/s41467-019-10406-7
10.1039/C8NA00158H
10.1021/cm049764u
10.1016/j.pquantelec.2021.100361
10.1002/adom.201902020
10.1002/adma.202102586
10.1021/acsnano.0c08219
10.1038/s41467-020-19312-9
10.1021/acs.nanolett.1c01423
10.1021/nn504659p
10.1039/D0NA00107D
10.1002/adom.202000547
10.1039/D0MH01019G
10.1002/adma.201701558
10.1002/lpor.202100295
10.1038/s41598-021-03026-z
10.1364/OL.25.000887
10.1002/adom.201801467
10.1002/adpr.202000041
10.1016/j.ejpb.2007.06.020
10.1039/C6ME00031B
10.1002/lpor.202000506
10.1016/S0030-4018(00)00977-9
10.1073/pnas.2011660117
10.1021/nl504217p
10.1093/nsr/nwaa162
10.1016/j.optcom.2020.125341
10.1002/ange.201907433
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202107809
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34918404
10_1002_adma_202107809
ADMA202107809
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Singapore
  funderid: AcRF TIER 1‐2021‐T1‐001‐040 RG46/21
– fundername: Agency for Science, Technology and Research
  funderid: A20E5c0085
– fundername: Ministry of Education, Singapore
  grantid: AcRF TIER 1-2021-T1-001-040 RG46/21
– fundername: Agency for Science, Technology and Research
  grantid: A20E5c0085
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3739-6d0edade209d85270a401951b2165342d4f77843564f03f76b9febd85b1f55c23
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:45:01 EDT 2025
Sun Jul 13 04:43:47 EDT 2025
Thu Apr 03 06:56:36 EDT 2025
Tue Jul 01 02:33:11 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Wed Jan 22 16:25:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords enzyme-responsive hydrogels
microlaser arrays
anti-counterfeiting
biolasers
laser encoding
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-6d0edade209d85270a401951b2165342d4f77843564f03f76b9febd85b1f55c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0008-5601
PMID 34918404
PQID 2637507826
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2611660331
proquest_journals_2637507826
pubmed_primary_34918404
crossref_primary_10_1002_adma_202107809
crossref_citationtrail_10_1002_adma_202107809
wiley_primary_10_1002_adma_202107809_ADMA202107809
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 21
2021; 23
2010; 107
2019; 10
2020; 16
2020; 59
2020; 14
2020; 12
2020; 11
2020; 8
2020; 7
2018; 8
2014; 5
2020; 2
2020; 1
2018; 4
2008; 68
2014; 8
2018; 36
2009; 17
2021; 80
2021; 9
2019; 7
2021; 8
2015; 15
2021; 7
2000; 25
2019; 31
2019; 1
2017; 29
2020; 463
2011; 133
2016; 4
2021; 13
2016; 6
2021; 15
2015; 27
2016; 1
2020; 2020
2000; 39
2021; 11
2020; 30
2021
2004; 16
2020; 27
2021; 371
2020; 117
2000; 185
2021; 133
2018; 10
2019; 131
2012; 41
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 133
  start-page: 8790
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 3647
  year: 2004
  publication-title: Chem. Mater.
– volume: 2020
  year: 2020
  publication-title: Research
– volume: 23
  year: 2021
  publication-title: Adv. Mater.
– volume: 1
  start-page: 225
  year: 2016
  publication-title: Mol. Syst. Des. Eng.
– volume: 15
  year: 2021
  publication-title: Laser Photonics Rev.
– volume: 8
  year: 2021
  publication-title: Natl. Sci. Rev.
– volume: 10
  start-page: 2409
  year: 2019
  publication-title: Nat. Commun.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 13
  start-page: 1608
  year: 2021
  publication-title: Nanoscale
– volume: 9
  start-page: 5840
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 131
  year: 2019
  publication-title: Angew. Chem.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 4
  start-page: 998
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 2
  start-page: 425
  year: 2020
  publication-title: ACS Mater. Lett.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 463
  year: 2020
  publication-title: Opt. Commun.
– volume: 8
  start-page: 6200
  year: 2018
  publication-title: Sci. Rep.
– volume: 10
  start-page: 25
  year: 2019
  publication-title: Nat. Commun.
– volume: 10
  start-page: 144
  year: 2019
  publication-title: Nat. Commun.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 27
  start-page: 15
  year: 2020
  publication-title: Arch. Comput. Methods Eng.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 41
  start-page: 3297
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– year: 2021
  publication-title: Adv. Mater.
– volume: 27
  start-page: 4081
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2944
  year: 2020
  publication-title: Mater. Horiz.
– volume: 1
  start-page: 13
  year: 2020
  publication-title: PhotoniX
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  year: 2021
  publication-title: Sci. Rep.
– volume: 1
  start-page: 490
  year: 2019
  publication-title: Nanoscale Adv.
– volume: 36
  start-page: 819
  year: 2018
  publication-title: J. Lightwave Technol.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 185
  start-page: 25
  year: 2000
  publication-title: Opt. Commun.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  year: 2020
  publication-title: Adv. Photonics Res.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 25
  start-page: 887
  year: 2000
  publication-title: Opt. Lett.
– volume: 7
  start-page: 2776
  year: 2020
  publication-title: Org. Chem. Front.
– volume: 11
  start-page: 5484
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 17
  start-page: 1377
  year: 2009
  publication-title: Osteoarthritis Cartilage
– volume: 2
  start-page: 2713
  year: 2020
  publication-title: Nanoscale Adv.
– volume: 15
  start-page: 1146
  year: 2015
  publication-title: Nano Lett.
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 39
  start-page: 2031
  year: 2000
  publication-title: Opt. Eng.
– volume: 133
  year: 2021
  publication-title: Angew. Chem.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 80
  year: 2021
  publication-title: Prog. Quantum Electron.
– volume: 68
  start-page: 19
  year: 2008
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 21
  start-page: 6792
  year: 2021
  publication-title: Nano Lett.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 371
  start-page: 948
  year: 2021
  publication-title: Science
– volume: 5
  start-page: 29
  year: 2014
  publication-title: 3D Res.
– volume: 107
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– ident: e_1_2_9_61_1
  doi: 10.1126/sciadv.abg0363
– ident: e_1_2_9_60_1
  doi: 10.1038/s41598-018-24553-2
– ident: e_1_2_9_6_1
  doi: 10.1117/1.1304844
– ident: e_1_2_9_20_1
  doi: 10.1002/adma.201807880
– ident: e_1_2_9_36_1
  doi: 10.1002/adom.201600185
– ident: e_1_2_9_54_1
  doi: 10.1016/j.joca.2009.04.012
– ident: e_1_2_9_59_1
  doi: 10.1126/sciadv.aar6768
– ident: e_1_2_9_43_1
  doi: 10.1021/acsami.8b10768
– ident: e_1_2_9_33_1
  doi: 10.1038/s41598-018-32469-0
– ident: e_1_2_9_12_1
  doi: 10.1038/s41467-018-07808-4
– ident: e_1_2_9_56_1
  doi: 10.1002/adom.202070082
– ident: e_1_2_9_44_1
  doi: 10.1038/natrevmats.2016.71
– ident: e_1_2_9_2_1
  doi: 10.1007/s13319-014-0029-0
– ident: e_1_2_9_57_1
  doi: 10.1002/smll.202000239
– ident: e_1_2_9_14_1
  doi: 10.1039/D0NR06358D
– ident: e_1_2_9_26_1
  doi: 10.1039/D0QO00613K
– ident: e_1_2_9_30_1
  doi: 10.1002/advs.202100096
– ident: e_1_2_9_11_1
  doi: 10.1002/adma.202103192
– ident: e_1_2_9_37_1
  doi: 10.1039/C6RA00550K
– ident: e_1_2_9_38_1
  doi: 10.1039/c2cs15267c
– ident: e_1_2_9_53_1
  doi: 10.1039/D1TC00830G
– ident: e_1_2_9_42_1
  doi: 10.1038/s41467-018-07967-4
– ident: e_1_2_9_40_1
  doi: 10.1002/adma.201501603
– ident: e_1_2_9_3_1
  doi: 10.1002/ange.202109336
– ident: e_1_2_9_24_1
  doi: 10.1126/science.abc2666
– ident: e_1_2_9_28_1
  doi: 10.34133/2020/6539431
– ident: e_1_2_9_4_1
  doi: 10.1002/adfm.202002943
– ident: e_1_2_9_50_1
  doi: 10.1073/pnas.1006911107
– ident: e_1_2_9_55_1
  doi: 10.1021/acsmaterialslett.9b00509
– ident: e_1_2_9_39_1
  doi: 10.1039/D0NR07921A
– ident: e_1_2_9_18_1
  doi: 10.1021/ja200729w
– ident: e_1_2_9_16_1
  doi: 10.1002/anie.202009295
– ident: e_1_2_9_29_1
  doi: 10.1186/s43074-020-00013-x
– ident: e_1_2_9_48_1
  doi: 10.1109/JLT.2017.2762696
– ident: e_1_2_9_1_1
  doi: 10.1007/s11831-018-9298-8
– ident: e_1_2_9_15_1
  doi: 10.1038/s41467-019-10406-7
– ident: e_1_2_9_46_1
  doi: 10.1039/C8NA00158H
– ident: e_1_2_9_47_1
  doi: 10.1021/cm049764u
– ident: e_1_2_9_63_1
  doi: 10.1016/j.pquantelec.2021.100361
– ident: e_1_2_9_62_1
  doi: 10.1002/adom.201902020
– ident: e_1_2_9_23_1
  doi: 10.1002/adma.202102586
– ident: e_1_2_9_34_1
  doi: 10.1021/acsnano.0c08219
– ident: e_1_2_9_7_1
  doi: 10.1038/s41467-020-19312-9
– ident: e_1_2_9_13_1
  doi: 10.1021/acs.nanolett.1c01423
– ident: e_1_2_9_19_1
  doi: 10.1021/nn504659p
– ident: e_1_2_9_58_1
  doi: 10.1039/D0NA00107D
– ident: e_1_2_9_17_1
  doi: 10.1002/adom.202000547
– ident: e_1_2_9_52_1
  doi: 10.1039/D0MH01019G
– ident: e_1_2_9_25_1
  doi: 10.1002/adma.201701558
– ident: e_1_2_9_22_1
  doi: 10.1002/lpor.202100295
– ident: e_1_2_9_31_1
  doi: 10.1038/s41598-021-03026-z
– ident: e_1_2_9_9_1
  doi: 10.1364/OL.25.000887
– ident: e_1_2_9_5_1
  doi: 10.1002/adom.201801467
– ident: e_1_2_9_41_1
  doi: 10.1002/adpr.202000041
– ident: e_1_2_9_49_1
  doi: 10.1016/j.ejpb.2007.06.020
– ident: e_1_2_9_51_1
  doi: 10.1039/C6ME00031B
– ident: e_1_2_9_21_1
  doi: 10.1002/lpor.202000506
– ident: e_1_2_9_8_1
  doi: 10.1016/S0030-4018(00)00977-9
– ident: e_1_2_9_35_1
  doi: 10.1073/pnas.2011660117
– ident: e_1_2_9_45_1
  doi: 10.1021/nl504217p
– ident: e_1_2_9_10_1
  doi: 10.1093/nsr/nwaa162
– ident: e_1_2_9_32_1
  doi: 10.1016/j.optcom.2020.125341
– ident: e_1_2_9_27_1
  doi: 10.1002/ange.201907433
SSID ssj0009606
Score 2.5238419
Snippet Microscale laser emissions have emerged as a promising approach for information encoding and anti‐counterfeiting for their feature‐rich spectra and high...
Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2107809
SubjectTerms anti‐counterfeiting
Biocompatible Materials
biolasers
Biomedical materials
Biomolecules
Counterfeiting
Droplets
Enzymes
enzyme‐responsive hydrogels
Hydrogels
laser encoding
Lasers
Lasing
Microgels
microlaser arrays
Spectral sensitivity
Wavelengths
Title Enzyme‐Programmable Microgel Lasers for Information Encoding and Anti‐Counterfeiting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107809
https://www.ncbi.nlm.nih.gov/pubmed/34918404
https://www.proquest.com/docview/2637507826
https://www.proquest.com/docview/2611660331
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB2hnpbD8rlL2C4yEhInt4ntOMmx2m1VIRYhRKXeIn8FVbTpirYHetqfwG_kl-BJ0rRlhZDgGGWcOB5P5jmZ9wzwprChUT4R08yZjIqksFRzbih3Otbc2sS3w2qLD3I8Ee-m8fSAxV_rQ7Qf3DAyqvc1BrjSq_5eNFTZSjfIL1mStGLwYcEWoqJPe_0ohOeV2B6PaSZFulNtDFn_uPlxVroHNY-Ra5V6Ro9A7TpdV5x87W3Wume2v-k5_s9TPYbTBpeSQT2RnsADVz6Fhwdqhc9gOiy33xfu592Pj3VR1wJpV-QGS_q-uDl5r5C5STwKJg3JCZ1OhqVZYoIkqrRkUK5n_gLIhMf9sd0Mq66fw2Q0_Hw1ps3GDNTwhGdU2tBZZR0LM5vGLAmVQN5hpFkkYy6YFUWSpB6ISVGEvEikzgqnvamOijg2jJ9Bp1yW7gUQoWIjw1REyimhmFVcG58x_arMIyFVmADozjG5aVTLcfOMeV7rLbMcRyxvRyyAt639ba3X8UfL7s7PeRO3q5xJ7iGUR00ygNftaR9x-BtFlW65QZsokjLkPArgvJ4f7a24yHDJLAJglZf_0od8cH0zaI9e_kujCzhhyMioyuK60Fl_27hLj5PW-lUVC78AfYwLMQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcCgcSlseTUuLK1XqyZDYjpMcV2XRArsIIZC4RX4FrQrZqt09lBM_gd_IL8GTF91WFRIco9h5eDyZz8583wB8KWxolA_ENHMmoyIpLNWcG8qdjjW3NvH9MNviSA7OxMF53GYTIhem1ofoNtzQM6rvNTo4bkjvPKiGKlsJB_k1S5IihW8Ry3pjEYPdkwcFKQToldwej2kmRdrqNoZsZ77_fFz6B2zOY9cq-OytgG4fu845-b49m-ptc_2XouOz3us1vGqgKenVc-kNvHDlW1j-Q7BwFc775fXvK3d3c3tc53VdIfOKjDCr78JdkqFC8ibxQJg0PCe0O-mXZoIxkqjSkl45HfsLIBkeS2S7MSZer8HZXv_024A2tRmo4QnPqLShs8o6FmY2jVkSKoHUw0izSMZcMCuKJEk9FpOiCHmRSJ0VTvumOiri2DC-DgvlpHTvgAgVGxmmIlJOCcWs4tr4oOkXZh4MqcIEQFvL5KYRLsf6GZd5LbnMchyxvBuxAL527X_Ukh3_bbnZGjpvXPdXziT3KMoDJxnA5-60dzr8k6JKN5lhmyiSMuQ8CmCjniDdrbjIcNUsAmCVmR95hry3O-p1R--f0mkLXg5OR8N8uH90-AGWGBI0qiy5TViY_py5jx42TfWnyjHuASktD0s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hkFA59Mkj7ba4UiVOhsR2nM1xVXbFW6gq0t4iPxECsqjdPXRP_IT-xv6SepJsYFshJDhGGSeOx5P5nMz3GeCLt7FRIRHT3Jmcisxbqjk3lDudam5tFtphtcWJ3DsTB8N0eI_FX-tDtB_cMDKq9zUG-I31O3eiocpWukFhyZJ1kcG3JGSIGIRF3-4EpBCfV2p7PKW5FN2ZbGPMdubbz6el_7DmPHStcs_gFahZr-uSk8vtyVhvm-k_go7PeazX8LIBpqRXz6Q3sODKt7ByT67wHQz75fTXtftz-_u0ruq6Rt4VOcaavnN3RY4UUjdJgMGkYTmh10m_NCPMkESVlvTK8UW4AFLhcYNsd4Fl16twNuh__7pHm50ZqOEZz6m0sbPKOhbntpuyLFYCiYeJZolMuWBW-CzrBiQmhY-5z6TOvdPBVCc-TQ3ja7BYjkq3AUSo1ATHiUQ5JRSzimsTUmZYlgUopLyJgM4cU5hGthx3z7gqasFlVuCIFe2IRbDV2t_Ugh0PWnZmfi6awP1ZMMkDhgqwSUbwuT0dQg7_o6jSjSZokyRSxpwnEazX86O9FRc5rplFBKzy8iN9KHq7x7326P1TGm3C8unuoDjaPzn8AC8YsjOqErkOLI5_TNzHgJnG-lMVFn8BB3cOAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzyme-Programmable+Microgel+Lasers+for+Information+Encoding+and+Anti-Counterfeiting&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gong%2C+Xuerui&rft.au=Qiao%2C+Zhen&rft.au=Liao%2C+Yikai&rft.au=Zhu%2C+Song&rft.date=2022-03-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=10&rft.spage=e2107809&rft_id=info:doi/10.1002%2Fadma.202107809&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon