Enzyme‐Programmable Microgel Lasers for Information Encoding and Anti‐Counterfeiting
Microscale laser emissions have emerged as a promising approach for information encoding and anti‐counterfeiting for their feature‐rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 10; pp. e2107809 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202107809 |
Cover
Loading…
Abstract | Microscale laser emissions have emerged as a promising approach for information encoding and anti‐counterfeiting for their feature‐rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme‐responsive hydrogel droplets in a Fabry–Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet‐printed multiwavelength laser encoding and anti‐counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing.
Inspired by the natural responsivity of active biomaterials, laser information encoding is demonstrated by exploiting enzyme‐bioactive hydrogel materials confined in a microcavity. Tunable lasing wavelengths are achieved by manipulating the biological activity and nanostructures in hydrogel droplets. This study represents the first development of a biologically controlled laser for optical information applications. |
---|---|
AbstractList | Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme-responsive hydrogel droplets in a Fabry-Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet-printed multiwavelength laser encoding and anti-counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing. Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme-responsive hydrogel droplets in a Fabry-Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet-printed multiwavelength laser encoding and anti-counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing.Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme-responsive hydrogel droplets in a Fabry-Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet-printed multiwavelength laser encoding and anti-counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing. Microscale laser emissions have emerged as a promising approach for information encoding and anti‐counterfeiting for their feature‐rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme‐responsive hydrogel droplets in a Fabry–Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet‐printed multiwavelength laser encoding and anti‐counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing. Inspired by the natural responsivity of active biomaterials, laser information encoding is demonstrated by exploiting enzyme‐bioactive hydrogel materials confined in a microcavity. Tunable lasing wavelengths are achieved by manipulating the biological activity and nanostructures in hydrogel droplets. This study represents the first development of a biologically controlled laser for optical information applications. |
Author | Zhu, Song Chen, Yu‐Cheng Qiao, Zhen Gong, Xuerui Shi, Lei Kim, Munho Liao, Yikai |
Author_xml | – sequence: 1 givenname: Xuerui surname: Gong fullname: Gong, Xuerui organization: Nanyang Technological University – sequence: 2 givenname: Zhen surname: Qiao fullname: Qiao, Zhen organization: Nanyang Technological University – sequence: 3 givenname: Yikai surname: Liao fullname: Liao, Yikai organization: Nanyang Technological University – sequence: 4 givenname: Song surname: Zhu fullname: Zhu, Song organization: Nanyang Technological University – sequence: 5 givenname: Lei surname: Shi fullname: Shi, Lei organization: Huazhong University of Science and Technology – sequence: 6 givenname: Munho surname: Kim fullname: Kim, Munho organization: Nanyang Technological University – sequence: 7 givenname: Yu‐Cheng orcidid: 0000-0002-0008-5601 surname: Chen fullname: Chen, Yu‐Cheng email: yucchen@ntu.edu.sg organization: Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34918404$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9O3DAQxi1EBcuWK8cqUi-9ZBn_TXxcbZcWaVE5tFJvkRPbyCixqZ0IbU99BJ6RJ8F0KUhIFZcZjfz7ZqzvO0L7PniD0AmGBQYgp0oPakGAYKhqkHtohjnBJQPJ99EMJOWlFKw-REcpXQOAFCAO0CFlEtcM2Az9XPvf28Hc_7m7jOEqqmFQbW-KC9fl0fTFRiUTU2FDLM59roMaXfDF2ndBO39VKK-LpR9dXrAKkx9NtMaN-eU9emdVn8zxU5-jH2fr76uv5ebbl_PVclN2tKKyFBqMVtoQkLrmpALFAEuOW4IFp4xoZquqZpQLZoHaSrTSmjajLbacd4TO0afd3psYfk0mjc3gUmf6XnkTptQQgbEQQCnO6MdX6HWYos-_yxSteLYw9zn68ERN7WB0cxPdoOK2-edZBhY7IFuUUjT2GcHQPIbSPIbSPIeSBeyVoHPjXx_HqFz_f5ncyW5db7ZvHGmWny-WL9oHLUOhqw |
CitedBy_id | crossref_primary_10_1364_PRJ_489700 crossref_primary_10_1002_ange_202310263 crossref_primary_10_1038_s41598_024_65450_1 crossref_primary_10_1016_j_nanoen_2024_110358 crossref_primary_10_1016_j_cej_2023_141666 crossref_primary_10_1039_D4MH01828A crossref_primary_10_1007_s12274_023_5848_y crossref_primary_10_1021_acsanm_2c01878 crossref_primary_10_1007_s11426_023_1779_3 crossref_primary_10_1039_D4TA07312F crossref_primary_10_1002_adom_202300232 crossref_primary_10_1039_D4TC00979G crossref_primary_10_1007_s12274_023_5709_8 crossref_primary_10_1007_s40843_024_3195_6 crossref_primary_10_1021_acsami_3c14571 crossref_primary_10_1002_adfm_202314130 crossref_primary_10_1021_acsnano_4c16389 crossref_primary_10_1002_adom_202200872 crossref_primary_10_1002_anie_202310263 crossref_primary_10_1002_adfm_202417673 crossref_primary_10_1021_acsphotonics_2c01611 crossref_primary_10_1149_2162_8777_ac8a73 crossref_primary_10_1021_acs_nanolett_2c03148 crossref_primary_10_1002_lpor_202301122 crossref_primary_10_1002_adma_202501271 crossref_primary_10_1002_lpor_202301006 crossref_primary_10_1039_D4CC00538D crossref_primary_10_1021_acs_jpclett_3c03151 crossref_primary_10_1063_5_0206704 |
Cites_doi | 10.1126/sciadv.abg0363 10.1038/s41598-018-24553-2 10.1117/1.1304844 10.1002/adma.201807880 10.1002/adom.201600185 10.1016/j.joca.2009.04.012 10.1126/sciadv.aar6768 10.1021/acsami.8b10768 10.1038/s41598-018-32469-0 10.1038/s41467-018-07808-4 10.1002/adom.202070082 10.1038/natrevmats.2016.71 10.1007/s13319-014-0029-0 10.1002/smll.202000239 10.1039/D0NR06358D 10.1039/D0QO00613K 10.1002/advs.202100096 10.1002/adma.202103192 10.1039/C6RA00550K 10.1039/c2cs15267c 10.1039/D1TC00830G 10.1038/s41467-018-07967-4 10.1002/adma.201501603 10.1002/ange.202109336 10.1126/science.abc2666 10.34133/2020/6539431 10.1002/adfm.202002943 10.1073/pnas.1006911107 10.1021/acsmaterialslett.9b00509 10.1039/D0NR07921A 10.1021/ja200729w 10.1002/anie.202009295 10.1186/s43074-020-00013-x 10.1109/JLT.2017.2762696 10.1007/s11831-018-9298-8 10.1038/s41467-019-10406-7 10.1039/C8NA00158H 10.1021/cm049764u 10.1016/j.pquantelec.2021.100361 10.1002/adom.201902020 10.1002/adma.202102586 10.1021/acsnano.0c08219 10.1038/s41467-020-19312-9 10.1021/acs.nanolett.1c01423 10.1021/nn504659p 10.1039/D0NA00107D 10.1002/adom.202000547 10.1039/D0MH01019G 10.1002/adma.201701558 10.1002/lpor.202100295 10.1038/s41598-021-03026-z 10.1364/OL.25.000887 10.1002/adom.201801467 10.1002/adpr.202000041 10.1016/j.ejpb.2007.06.020 10.1039/C6ME00031B 10.1002/lpor.202000506 10.1016/S0030-4018(00)00977-9 10.1073/pnas.2011660117 10.1021/nl504217p 10.1093/nsr/nwaa162 10.1016/j.optcom.2020.125341 10.1002/ange.201907433 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202107809 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34918404 10_1002_adma_202107809 ADMA202107809 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, Singapore funderid: AcRF TIER 1‐2021‐T1‐001‐040 RG46/21 – fundername: Agency for Science, Technology and Research funderid: A20E5c0085 – fundername: Ministry of Education, Singapore grantid: AcRF TIER 1-2021-T1-001-040 RG46/21 – fundername: Agency for Science, Technology and Research grantid: A20E5c0085 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3739-6d0edade209d85270a401951b2165342d4f77843564f03f76b9febd85b1f55c23 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 16:45:01 EDT 2025 Sun Jul 13 04:43:47 EDT 2025 Thu Apr 03 06:56:36 EDT 2025 Tue Jul 01 02:33:11 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Wed Jan 22 16:25:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | enzyme-responsive hydrogels microlaser arrays anti-counterfeiting biolasers laser encoding |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-6d0edade209d85270a401951b2165342d4f77843564f03f76b9febd85b1f55c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0008-5601 |
PMID | 34918404 |
PQID | 2637507826 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2611660331 proquest_journals_2637507826 pubmed_primary_34918404 crossref_primary_10_1002_adma_202107809 crossref_citationtrail_10_1002_adma_202107809 wiley_primary_10_1002_adma_202107809_ADMA202107809 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 21 2021; 23 2010; 107 2019; 10 2020; 16 2020; 59 2020; 14 2020; 12 2020; 11 2020; 8 2020; 7 2018; 8 2014; 5 2020; 2 2020; 1 2018; 4 2008; 68 2014; 8 2018; 36 2009; 17 2021; 80 2021; 9 2019; 7 2021; 8 2015; 15 2021; 7 2000; 25 2019; 31 2019; 1 2017; 29 2020; 463 2011; 133 2016; 4 2021; 13 2016; 6 2021; 15 2015; 27 2016; 1 2020; 2020 2000; 39 2021; 11 2020; 30 2021 2004; 16 2020; 27 2021; 371 2020; 117 2000; 185 2021; 133 2018; 10 2019; 131 2012; 41 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 133 start-page: 8790 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 3647 year: 2004 publication-title: Chem. Mater. – volume: 2020 year: 2020 publication-title: Research – volume: 23 year: 2021 publication-title: Adv. Mater. – volume: 1 start-page: 225 year: 2016 publication-title: Mol. Syst. Des. Eng. – volume: 15 year: 2021 publication-title: Laser Photonics Rev. – volume: 8 year: 2021 publication-title: Natl. Sci. Rev. – volume: 10 start-page: 2409 year: 2019 publication-title: Nat. Commun. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 13 start-page: 1608 year: 2021 publication-title: Nanoscale – volume: 9 start-page: 5840 year: 2021 publication-title: J. Mater. Chem. C – volume: 131 year: 2019 publication-title: Angew. Chem. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 4 start-page: 998 year: 2016 publication-title: Adv. Opt. Mater. – volume: 2 start-page: 425 year: 2020 publication-title: ACS Mater. Lett. – volume: 16 year: 2020 publication-title: Small – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 463 year: 2020 publication-title: Opt. Commun. – volume: 8 start-page: 6200 year: 2018 publication-title: Sci. Rep. – volume: 10 start-page: 25 year: 2019 publication-title: Nat. Commun. – volume: 10 start-page: 144 year: 2019 publication-title: Nat. Commun. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 27 start-page: 15 year: 2020 publication-title: Arch. Comput. Methods Eng. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 41 start-page: 3297 year: 2012 publication-title: Chem. Soc. Rev. – volume: 8 year: 2021 publication-title: Adv. Sci. – year: 2021 publication-title: Adv. Mater. – volume: 27 start-page: 4081 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 2944 year: 2020 publication-title: Mater. Horiz. – volume: 1 start-page: 13 year: 2020 publication-title: PhotoniX – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 year: 2021 publication-title: Sci. Rep. – volume: 1 start-page: 490 year: 2019 publication-title: Nanoscale Adv. – volume: 36 start-page: 819 year: 2018 publication-title: J. Lightwave Technol. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 185 start-page: 25 year: 2000 publication-title: Opt. Commun. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 1 year: 2020 publication-title: Adv. Photonics Res. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 25 start-page: 887 year: 2000 publication-title: Opt. Lett. – volume: 7 start-page: 2776 year: 2020 publication-title: Org. Chem. Front. – volume: 11 start-page: 5484 year: 2020 publication-title: Nat. Commun. – volume: 8 year: 2014 publication-title: ACS Nano – volume: 17 start-page: 1377 year: 2009 publication-title: Osteoarthritis Cartilage – volume: 2 start-page: 2713 year: 2020 publication-title: Nanoscale Adv. – volume: 15 start-page: 1146 year: 2015 publication-title: Nano Lett. – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 39 start-page: 2031 year: 2000 publication-title: Opt. Eng. – volume: 133 year: 2021 publication-title: Angew. Chem. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 80 year: 2021 publication-title: Prog. Quantum Electron. – volume: 68 start-page: 19 year: 2008 publication-title: Eur. J. Pharm. Biopharm. – volume: 21 start-page: 6792 year: 2021 publication-title: Nano Lett. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 371 start-page: 948 year: 2021 publication-title: Science – volume: 5 start-page: 29 year: 2014 publication-title: 3D Res. – volume: 107 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – ident: e_1_2_9_61_1 doi: 10.1126/sciadv.abg0363 – ident: e_1_2_9_60_1 doi: 10.1038/s41598-018-24553-2 – ident: e_1_2_9_6_1 doi: 10.1117/1.1304844 – ident: e_1_2_9_20_1 doi: 10.1002/adma.201807880 – ident: e_1_2_9_36_1 doi: 10.1002/adom.201600185 – ident: e_1_2_9_54_1 doi: 10.1016/j.joca.2009.04.012 – ident: e_1_2_9_59_1 doi: 10.1126/sciadv.aar6768 – ident: e_1_2_9_43_1 doi: 10.1021/acsami.8b10768 – ident: e_1_2_9_33_1 doi: 10.1038/s41598-018-32469-0 – ident: e_1_2_9_12_1 doi: 10.1038/s41467-018-07808-4 – ident: e_1_2_9_56_1 doi: 10.1002/adom.202070082 – ident: e_1_2_9_44_1 doi: 10.1038/natrevmats.2016.71 – ident: e_1_2_9_2_1 doi: 10.1007/s13319-014-0029-0 – ident: e_1_2_9_57_1 doi: 10.1002/smll.202000239 – ident: e_1_2_9_14_1 doi: 10.1039/D0NR06358D – ident: e_1_2_9_26_1 doi: 10.1039/D0QO00613K – ident: e_1_2_9_30_1 doi: 10.1002/advs.202100096 – ident: e_1_2_9_11_1 doi: 10.1002/adma.202103192 – ident: e_1_2_9_37_1 doi: 10.1039/C6RA00550K – ident: e_1_2_9_38_1 doi: 10.1039/c2cs15267c – ident: e_1_2_9_53_1 doi: 10.1039/D1TC00830G – ident: e_1_2_9_42_1 doi: 10.1038/s41467-018-07967-4 – ident: e_1_2_9_40_1 doi: 10.1002/adma.201501603 – ident: e_1_2_9_3_1 doi: 10.1002/ange.202109336 – ident: e_1_2_9_24_1 doi: 10.1126/science.abc2666 – ident: e_1_2_9_28_1 doi: 10.34133/2020/6539431 – ident: e_1_2_9_4_1 doi: 10.1002/adfm.202002943 – ident: e_1_2_9_50_1 doi: 10.1073/pnas.1006911107 – ident: e_1_2_9_55_1 doi: 10.1021/acsmaterialslett.9b00509 – ident: e_1_2_9_39_1 doi: 10.1039/D0NR07921A – ident: e_1_2_9_18_1 doi: 10.1021/ja200729w – ident: e_1_2_9_16_1 doi: 10.1002/anie.202009295 – ident: e_1_2_9_29_1 doi: 10.1186/s43074-020-00013-x – ident: e_1_2_9_48_1 doi: 10.1109/JLT.2017.2762696 – ident: e_1_2_9_1_1 doi: 10.1007/s11831-018-9298-8 – ident: e_1_2_9_15_1 doi: 10.1038/s41467-019-10406-7 – ident: e_1_2_9_46_1 doi: 10.1039/C8NA00158H – ident: e_1_2_9_47_1 doi: 10.1021/cm049764u – ident: e_1_2_9_63_1 doi: 10.1016/j.pquantelec.2021.100361 – ident: e_1_2_9_62_1 doi: 10.1002/adom.201902020 – ident: e_1_2_9_23_1 doi: 10.1002/adma.202102586 – ident: e_1_2_9_34_1 doi: 10.1021/acsnano.0c08219 – ident: e_1_2_9_7_1 doi: 10.1038/s41467-020-19312-9 – ident: e_1_2_9_13_1 doi: 10.1021/acs.nanolett.1c01423 – ident: e_1_2_9_19_1 doi: 10.1021/nn504659p – ident: e_1_2_9_58_1 doi: 10.1039/D0NA00107D – ident: e_1_2_9_17_1 doi: 10.1002/adom.202000547 – ident: e_1_2_9_52_1 doi: 10.1039/D0MH01019G – ident: e_1_2_9_25_1 doi: 10.1002/adma.201701558 – ident: e_1_2_9_22_1 doi: 10.1002/lpor.202100295 – ident: e_1_2_9_31_1 doi: 10.1038/s41598-021-03026-z – ident: e_1_2_9_9_1 doi: 10.1364/OL.25.000887 – ident: e_1_2_9_5_1 doi: 10.1002/adom.201801467 – ident: e_1_2_9_41_1 doi: 10.1002/adpr.202000041 – ident: e_1_2_9_49_1 doi: 10.1016/j.ejpb.2007.06.020 – ident: e_1_2_9_51_1 doi: 10.1039/C6ME00031B – ident: e_1_2_9_21_1 doi: 10.1002/lpor.202000506 – ident: e_1_2_9_8_1 doi: 10.1016/S0030-4018(00)00977-9 – ident: e_1_2_9_35_1 doi: 10.1073/pnas.2011660117 – ident: e_1_2_9_45_1 doi: 10.1021/nl504217p – ident: e_1_2_9_10_1 doi: 10.1093/nsr/nwaa162 – ident: e_1_2_9_32_1 doi: 10.1016/j.optcom.2020.125341 – ident: e_1_2_9_27_1 doi: 10.1002/ange.201907433 |
SSID | ssj0009606 |
Score | 2.5238419 |
Snippet | Microscale laser emissions have emerged as a promising approach for information encoding and anti‐counterfeiting for their feature‐rich spectra and high... Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2107809 |
SubjectTerms | anti‐counterfeiting Biocompatible Materials biolasers Biomedical materials Biomolecules Counterfeiting Droplets Enzymes enzyme‐responsive hydrogels Hydrogels laser encoding Lasers Lasing Microgels microlaser arrays Spectral sensitivity Wavelengths |
Title | Enzyme‐Programmable Microgel Lasers for Information Encoding and Anti‐Counterfeiting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107809 https://www.ncbi.nlm.nih.gov/pubmed/34918404 https://www.proquest.com/docview/2637507826 https://www.proquest.com/docview/2611660331 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB2hnpbD8rlL2C4yEhInt4ntOMmx2m1VIRYhRKXeIn8FVbTpirYHetqfwG_kl-BJ0rRlhZDgGGWcOB5P5jmZ9wzwprChUT4R08yZjIqksFRzbih3Otbc2sS3w2qLD3I8Ee-m8fSAxV_rQ7Qf3DAyqvc1BrjSq_5eNFTZSjfIL1mStGLwYcEWoqJPe_0ohOeV2B6PaSZFulNtDFn_uPlxVroHNY-Ra5V6Ro9A7TpdV5x87W3Wume2v-k5_s9TPYbTBpeSQT2RnsADVz6Fhwdqhc9gOiy33xfu592Pj3VR1wJpV-QGS_q-uDl5r5C5STwKJg3JCZ1OhqVZYoIkqrRkUK5n_gLIhMf9sd0Mq66fw2Q0_Hw1ps3GDNTwhGdU2tBZZR0LM5vGLAmVQN5hpFkkYy6YFUWSpB6ISVGEvEikzgqnvamOijg2jJ9Bp1yW7gUQoWIjw1REyimhmFVcG58x_arMIyFVmADozjG5aVTLcfOMeV7rLbMcRyxvRyyAt639ba3X8UfL7s7PeRO3q5xJ7iGUR00ygNftaR9x-BtFlW65QZsokjLkPArgvJ4f7a24yHDJLAJglZf_0od8cH0zaI9e_kujCzhhyMioyuK60Fl_27hLj5PW-lUVC78AfYwLMQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcCgcSlseTUuLK1XqyZDYjpMcV2XRArsIIZC4RX4FrQrZqt09lBM_gd_IL8GTF91WFRIco9h5eDyZz8583wB8KWxolA_ENHMmoyIpLNWcG8qdjjW3NvH9MNviSA7OxMF53GYTIhem1ofoNtzQM6rvNTo4bkjvPKiGKlsJB_k1S5IihW8Ry3pjEYPdkwcFKQToldwej2kmRdrqNoZsZ77_fFz6B2zOY9cq-OytgG4fu845-b49m-ptc_2XouOz3us1vGqgKenVc-kNvHDlW1j-Q7BwFc775fXvK3d3c3tc53VdIfOKjDCr78JdkqFC8ibxQJg0PCe0O-mXZoIxkqjSkl45HfsLIBkeS2S7MSZer8HZXv_024A2tRmo4QnPqLShs8o6FmY2jVkSKoHUw0izSMZcMCuKJEk9FpOiCHmRSJ0VTvumOiri2DC-DgvlpHTvgAgVGxmmIlJOCcWs4tr4oOkXZh4MqcIEQFvL5KYRLsf6GZd5LbnMchyxvBuxAL527X_Ukh3_bbnZGjpvXPdXziT3KMoDJxnA5-60dzr8k6JKN5lhmyiSMuQ8CmCjniDdrbjIcNUsAmCVmR95hry3O-p1R--f0mkLXg5OR8N8uH90-AGWGBI0qiy5TViY_py5jx42TfWnyjHuASktD0s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hkFA59Mkj7ba4UiVOhsR2nM1xVXbFW6gq0t4iPxECsqjdPXRP_IT-xv6SepJsYFshJDhGGSeOx5P5nMz3GeCLt7FRIRHT3Jmcisxbqjk3lDudam5tFtphtcWJ3DsTB8N0eI_FX-tDtB_cMDKq9zUG-I31O3eiocpWukFhyZJ1kcG3JGSIGIRF3-4EpBCfV2p7PKW5FN2ZbGPMdubbz6el_7DmPHStcs_gFahZr-uSk8vtyVhvm-k_go7PeazX8LIBpqRXz6Q3sODKt7ByT67wHQz75fTXtftz-_u0ruq6Rt4VOcaavnN3RY4UUjdJgMGkYTmh10m_NCPMkESVlvTK8UW4AFLhcYNsd4Fl16twNuh__7pHm50ZqOEZz6m0sbPKOhbntpuyLFYCiYeJZolMuWBW-CzrBiQmhY-5z6TOvdPBVCc-TQ3ja7BYjkq3AUSo1ATHiUQ5JRSzimsTUmZYlgUopLyJgM4cU5hGthx3z7gqasFlVuCIFe2IRbDV2t_Ugh0PWnZmfi6awP1ZMMkDhgqwSUbwuT0dQg7_o6jSjSZokyRSxpwnEazX86O9FRc5rplFBKzy8iN9KHq7x7326P1TGm3C8unuoDjaPzn8AC8YsjOqErkOLI5_TNzHgJnG-lMVFn8BB3cOAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzyme-Programmable+Microgel+Lasers+for+Information+Encoding+and+Anti-Counterfeiting&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gong%2C+Xuerui&rft.au=Qiao%2C+Zhen&rft.au=Liao%2C+Yikai&rft.au=Zhu%2C+Song&rft.date=2022-03-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=10&rft.spage=e2107809&rft_id=info:doi/10.1002%2Fadma.202107809&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |