A New Hybrid Lead‐Free Metal Halide Piezoelectric for Energy Harvesting and Human Motion Sensing

Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self‐powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, mo...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 3; pp. e2103829 - n/a
Main Authors Guo, Tian‐Meng, Gong, Yong‐Ji, Li, Zhi‐Gang, Liu, Yi‐Ming, Li, Wei, Li, Zhao‐Yang, Bu, Xian‐He
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self‐powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite‐type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead‐free metal halide, (BTMA)2CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4]2− tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N−1), low Young's and shear moduli (4.11–17.56 GPa; 1.86–7.91 GPa). Moreover, the (BTMA)2CoBr4/PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2CoBr4/PDMS‐based flexible devices show attractive performance in energy harvesting with an open‐circuit voltage of 19.70 V, short‐circuit current of 4.24 µA, and powder density of 11.72 µW cm−2, catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2CoBr4 and related piezoelectric lead‐free halides can be promising molecular materials in modern energy and sensing applications. A hybrid lead‐free metal halide, (BTMA)2CoBr4 (BTMA, benzyltrimethylammonium), is demonstrated to exhibit significant piezoelectricity and soft elastic properties. Moreover, (BTMA)2CoBr4‐based composite films are fabricated for energy harvesting and human body motion sensing with attractive performance. This work broadens the landscape of molecular piezoelectric materials by paying more attention to the non‐perovskite‐type and lead‐free hybrid organic‐inorganic systems.
AbstractList Hybrid organic-inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self-powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite-type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead-free metal halide, (BTMA) CoBr (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr ] tetrahedra and BTMA cations exhibits significant piezoelectricity (d = 5.14, d = 12.40 pC N ), low Young's and shear moduli (4.11-17.56 GPa; 1.86-7.91 GPa). Moreover, the (BTMA) CoBr /PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA) CoBr /PDMS-based flexible devices show attractive performance in energy harvesting with an open-circuit voltage of 19.70 V, short-circuit current of 4.24 µA, and powder density of 11.72 µW cm , catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA) CoBr and related piezoelectric lead-free halides can be promising molecular materials in modern energy and sensing applications.
Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self‐powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite‐type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead‐free metal halide, (BTMA) 2 CoBr 4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr 4 ] 2− tetrahedra and BTMA + cations exhibits significant piezoelectricity ( d 22 = 5.14, d 25 = 12.40 pC N −1 ), low Young's and shear moduli (4.11–17.56 GPa; 1.86–7.91 GPa). Moreover, the (BTMA) 2 CoBr 4 /PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA) 2 CoBr 4 /PDMS‐based flexible devices show attractive performance in energy harvesting with an open‐circuit voltage of 19.70 V, short‐circuit current of 4.24 µ A, and powder density of 11.72 µ W cm −2 , catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA) 2 CoBr 4 and related piezoelectric lead‐free halides can be promising molecular materials in modern energy and sensing applications.
Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self‐powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite‐type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead‐free metal halide, (BTMA)2CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4]2− tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N−1), low Young's and shear moduli (4.11–17.56 GPa; 1.86–7.91 GPa). Moreover, the (BTMA)2CoBr4/PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2CoBr4/PDMS‐based flexible devices show attractive performance in energy harvesting with an open‐circuit voltage of 19.70 V, short‐circuit current of 4.24 µA, and powder density of 11.72 µW cm−2, catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2CoBr4 and related piezoelectric lead‐free halides can be promising molecular materials in modern energy and sensing applications.
Hybrid organic-inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self-powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite-type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead-free metal halide, (BTMA)2 CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4 ]2- tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N-1 ), low Young's and shear moduli (4.11-17.56 GPa; 1.86-7.91 GPa). Moreover, the (BTMA)2 CoBr4 /PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2 CoBr4 /PDMS-based flexible devices show attractive performance in energy harvesting with an open-circuit voltage of 19.70 V, short-circuit current of 4.24 µA, and powder density of 11.72 µW cm-2 , catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2 CoBr4 and related piezoelectric lead-free halides can be promising molecular materials in modern energy and sensing applications.Hybrid organic-inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self-powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite-type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead-free metal halide, (BTMA)2 CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4 ]2- tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N-1 ), low Young's and shear moduli (4.11-17.56 GPa; 1.86-7.91 GPa). Moreover, the (BTMA)2 CoBr4 /PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2 CoBr4 /PDMS-based flexible devices show attractive performance in energy harvesting with an open-circuit voltage of 19.70 V, short-circuit current of 4.24 µA, and powder density of 11.72 µW cm-2 , catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2 CoBr4 and related piezoelectric lead-free halides can be promising molecular materials in modern energy and sensing applications.
Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self‐powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite‐type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead‐free metal halide, (BTMA)2CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4]2− tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N−1), low Young's and shear moduli (4.11–17.56 GPa; 1.86–7.91 GPa). Moreover, the (BTMA)2CoBr4/PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2CoBr4/PDMS‐based flexible devices show attractive performance in energy harvesting with an open‐circuit voltage of 19.70 V, short‐circuit current of 4.24 µA, and powder density of 11.72 µW cm−2, catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2CoBr4 and related piezoelectric lead‐free halides can be promising molecular materials in modern energy and sensing applications. A hybrid lead‐free metal halide, (BTMA)2CoBr4 (BTMA, benzyltrimethylammonium), is demonstrated to exhibit significant piezoelectricity and soft elastic properties. Moreover, (BTMA)2CoBr4‐based composite films are fabricated for energy harvesting and human body motion sensing with attractive performance. This work broadens the landscape of molecular piezoelectric materials by paying more attention to the non‐perovskite‐type and lead‐free hybrid organic‐inorganic systems.
Author Li, Zhi‐Gang
Guo, Tian‐Meng
Liu, Yi‐Ming
Li, Wei
Bu, Xian‐He
Gong, Yong‐Ji
Li, Zhao‐Yang
Author_xml – sequence: 1
  givenname: Tian‐Meng
  surname: Guo
  fullname: Guo, Tian‐Meng
  organization: Nankai University
– sequence: 2
  givenname: Yong‐Ji
  surname: Gong
  fullname: Gong, Yong‐Ji
  organization: Guizhou University
– sequence: 3
  givenname: Zhi‐Gang
  surname: Li
  fullname: Li, Zhi‐Gang
  organization: Nankai University
– sequence: 4
  givenname: Yi‐Ming
  surname: Liu
  fullname: Liu, Yi‐Ming
  organization: Nankai University
– sequence: 5
  givenname: Wei
  orcidid: 0000-0002-5277-6850
  surname: Li
  fullname: Li, Wei
  email: wl276@nankai.edu.cn
  organization: Nankai University
– sequence: 6
  givenname: Zhao‐Yang
  surname: Li
  fullname: Li, Zhao‐Yang
  email: zhaoyang@nankai.edu.cn
  organization: Nankai University
– sequence: 7
  givenname: Xian‐He
  surname: Bu
  fullname: Bu, Xian‐He
  email: buxh@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34825468$$D View this record in MEDLINE/PubMed
BookMark eNqFkctq3DAUhkVJyX3bZRF0081MdbNsL0NIOgVPW0izFpJ1HBRkKZXshOmqj9Bn7JNUwyQpBEoXQgfO9x2O9B-hvRADIPSGkiUlhH3Io_dLRhglvGHtK3RIJeULWeq955qSA3SU8y0hnDJR76MDLhpWCdkcInOGP8MDXm1MchZ3oO3vn78uEwBew6Q9XmnvLOCvDn5E8NBPyfV4iAlfBEg3m9JP95AnF26wDhav5lEHvI6TiwFfQcilcYJeD9pnOH28j9H15cW389Wi-_Lx0_lZt-h5zduFND2tTAsDk-XYhpmWikqwgTUa2saKFsygqa6sGAzUbJDE1tICiMrUtqX8GL3fzb1L8ftcllKjyz14rwPEOSsmiSBMcsEK-u4FehvnFMp2hWKU8qZuqkK9faRmM4JVd8mNOm3U0-8VQOyAPsWcEwyqd5Pevn1K2nlFidqGpLYhqeeQirZ8oT1N_qfQ7oQH52HzH1pdrbvur_sHkjak9A
CitedBy_id crossref_primary_10_1021_acs_cgd_2c00854
crossref_primary_10_1021_jacs_3c12905
crossref_primary_10_1002_asia_202401506
crossref_primary_10_1021_acsnano_4c07480
crossref_primary_10_1039_D4SC05442C
crossref_primary_10_1021_acsami_3c00206
crossref_primary_10_1002_slct_202304533
crossref_primary_10_1007_s10853_023_08321_w
crossref_primary_10_1016_j_matt_2023_04_024
crossref_primary_10_1002_adfm_202212110
crossref_primary_10_1039_D2QI02122F
crossref_primary_10_1002_ejic_202400612
crossref_primary_10_1002_adfm_202402649
crossref_primary_10_29026_oes_2023_230011
crossref_primary_10_1007_s10853_023_08451_1
crossref_primary_10_1039_D3CC02093B
crossref_primary_10_1039_D3CS00202K
crossref_primary_10_1002_smll_202308104
crossref_primary_10_1038_s41467_024_53031_9
crossref_primary_10_1002_anie_202214984
crossref_primary_10_1039_D2CE01342H
crossref_primary_10_3390_micro4020014
crossref_primary_10_1039_D3QM00072A
crossref_primary_10_1002_adfm_202109492
crossref_primary_10_1002_ange_202214984
crossref_primary_10_1007_s00604_023_05874_0
crossref_primary_10_3390_ma17133083
crossref_primary_10_1002_adom_202301010
crossref_primary_10_1007_s40843_022_2360_x
crossref_primary_10_1021_acsnano_1c11101
crossref_primary_10_1039_D3SC04332K
crossref_primary_10_1093_nsr_nwae372
crossref_primary_10_1039_D4NR05246C
crossref_primary_10_3390_ma15238397
crossref_primary_10_1002_sstr_202300135
crossref_primary_10_1039_D3SC02652C
crossref_primary_10_1021_acs_nanolett_2c04674
crossref_primary_10_3390_mi15091133
crossref_primary_10_1007_s11664_024_11341_0
Cites_doi 10.1016/j.ccr.2019.03.020
10.1103/PhysRevB.65.104104
10.1126/science.aav3057
10.1103/PhysRevB.59.1758
10.1021/acsenergylett.0c02200
10.1016/j.mtener.2021.100639
10.1021/jacs.9b11697
10.1107/S2053273314026370
10.1016/j.nanoen.2021.106039
10.1002/smll.202006021
10.1088/2053-1591/ab149b
10.1016/j.matt.2019.12.008
10.1107/S0021889808042726
10.1038/ncomms2639
10.1021/acs.chemmater.8b03296
10.1039/D0QM00288G
10.1021/jacs.9b13291
10.1039/C6CE02535H
10.1039/C9EE03212F
10.1063/5.0027776
10.1103/PhysRevLett.80.890
10.1007/s40843-020-1463-0
10.1002/adfm.202009457
10.1021/jacs.9b12368
10.1103/PhysRevLett.125.207601
10.1016/j.nanoen.2020.105567
10.1016/j.nanoen.2018.11.065
10.1107/S2053229614024218
10.1103/PhysRevB.54.11169
10.1021/jacs.0c06064
10.1103/PhysRevB.47.558
10.1149/1945-7111/ab6828
10.1021/acsami.0c08560
10.3390/cryst11020085
10.1021/acs.chemmater.0c02179
10.1039/C7NR05163H
10.1002/advs.202100864
10.1016/j.mtener.2021.100690
10.1063/1.4885256
10.1021/acs.chemmater.9b01227
10.1021/acsami.9b21052
10.1038/s41524-019-0157-4
10.1557/mrs.2012.273
10.1021/acsaelm.0c00473
10.1126/science.aai8535
10.1002/adfm.202011073
10.1063/5.0030302
10.1126/science.1229675
10.1039/D0MH00610F
10.1021/acsami.0c01331
10.1021/acs.jpcc.0c02973
10.1023/A:1009926623551
10.1039/D0DT04165C
10.1111/j.1151-2916.1993.tb06637.x
10.1039/C5TA09662F
10.1016/j.ceramint.2021.02.140
10.1021/jacs.0c09288
10.1002/anie.202102195
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202103829
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 34825468
10_1002_smll_202103829
SMLL202103829
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 63196006
– fundername: National Natural Science Foundation of China
  funderid: 21975132; 21991143; 21971124; 22035003
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3739-6bc15b9ef26ef2d82b914542f28ae98d49ebfa1a5d4fbe72f60d76dee45b7d913
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 09:34:08 EDT 2025
Sun Jul 27 15:40:17 EDT 2025
Wed Feb 19 02:27:15 EST 2025
Tue Jul 01 02:54:05 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Wed Jan 22 16:26:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords energy harvesting
piezoelectric materials
motion sensing
hybrid organic-inorganic materials
lead-free metal halides
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-6bc15b9ef26ef2d82b914542f28ae98d49ebfa1a5d4fbe72f60d76dee45b7d913
Notes Dedicated to the 100th anniversary of Chemistry at Nankai University
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5277-6850
PMID 34825468
PQID 2621138785
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2604026342
proquest_journals_2621138785
pubmed_primary_34825468
crossref_citationtrail_10_1002_smll_202103829
crossref_primary_10_1002_smll_202103829
wiley_primary_10_1002_smll_202103829_SMLL202103829
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 20
2021; 64
2013; 4
2009; 42
2015; 71
2019; 56
2020; 13
2020; 167
2020; 12
1998; 80
2020; 124
2020; 125
2017; 357
2017; 9
2019; 363
2020; 8
2020; 7
2021; 31
2020; 2
2014; 2
1993; 76
1999; 59
2021; 118
2018; 30
2019; 391
2021; 2021
2021; 80
2021; 47
2021; 8
1993; 47
2021; 6
2021; 5
2021; 86
2019; 6
2019; 5
2019; 31
2020; 142
2012; 37
2020; 32
2021; 50
1996; 54
2016; 4
2021; 11
2013; 339
2021; 17
2002; 65
2017; 19
1998; 2
2021; 60
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Li Z. G. (e_1_2_8_40_1) 2021; 2021
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 37
  start-page: 1007
  year: 2012
  publication-title: MRS Bull.
– volume: 64
  start-page: 706
  year: 2021
  publication-title: Sci. China Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 9008
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 44
  year: 2021
  publication-title: Mater. Chem. Front.
– volume: 391
  start-page: 15
  year: 2019
  publication-title: Coord. Chem. Rev.
– volume: 50
  start-page: 2648
  year: 2021
  publication-title: Dalton Trans.
– volume: 2
  year: 2014
  publication-title: APL Mater.
– volume: 30
  start-page: 8718
  year: 2018
  publication-title: Chem. Mater.
– volume: 19
  start-page: 2207
  year: 2017
  publication-title: CrystEngComm
– volume: 11
  start-page: 85
  year: 2021
  publication-title: Crystals
– volume: 2021
  year: 2021
  publication-title: Research
– volume: 4
  start-page: 756
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 2158
  year: 2020
  publication-title: Mater. Horiz.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 20
  year: 2021
  publication-title: Mater. Today Energy
– volume: 6
  start-page: 16
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 86
  year: 2021
  publication-title: Nano Energy
– volume: 13
  start-page: 2077
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 71
  start-page: 3
  year: 2015
  publication-title: Acta Crystallogr., Sect. C: Struct. Chem.
– volume: 2
  start-page: 697
  year: 2020
  publication-title: Matter
– volume: 339
  start-page: 425
  year: 2013
  publication-title: Science
– volume: 4
  start-page: 1633
  year: 2013
  publication-title: Nat. Commun.
– volume: 65
  year: 2002
  publication-title: Phys. Rev. B
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 47
  year: 2021
  publication-title: Ceram. Int.
– volume: 6
  year: 2019
  publication-title: Mater. Res. Express
– volume: 142
  start-page: 1077
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 339
  year: 2009
  publication-title: J. Appl. Crystallogr.
– volume: 76
  start-page: 1697
  year: 1993
  publication-title: J. Am. Ceram. Soc.
– volume: 363
  start-page: 1206
  year: 2019
  publication-title: Science
– volume: 2
  start-page: 2579
  year: 2020
  publication-title: ACS Appl. Electron. Mater.
– volume: 125
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 56
  start-page: 868
  year: 2019
  publication-title: Nano Energy
– volume: 47
  start-page: 558
  year: 1993
  publication-title: Phys. Rev. B
– volume: 357
  start-page: 306
  year: 2017
  publication-title: Science
– volume: 32
  start-page: 8333
  year: 2020
  publication-title: Chem. Mater.
– volume: 142
  start-page: 9634
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 142
  start-page: 4756
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 17
  year: 2019
  publication-title: npj Comput. Mater.
– volume: 118
  year: 2021
  publication-title: Appl. Phys. Lett.
– volume: 8
  year: 2020
  publication-title: APL Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 80
  year: 2021
  publication-title: Nano Energy
– volume: 2
  start-page: 257
  year: 1998
  publication-title: J. Electroceram.
– volume: 31
  start-page: 4545
  year: 2019
  publication-title: Chem. Mater.
– volume: 80
  start-page: 890
  year: 1998
  publication-title: Phys. Rev. Lett.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 71
  start-page: 3
  year: 2015
  publication-title: Acta Crystallogr., Sect. A: Found. Adv.
– ident: e_1_2_8_34_1
  doi: 10.1016/j.ccr.2019.03.020
– ident: e_1_2_8_59_1
  doi: 10.1103/PhysRevB.65.104104
– ident: e_1_2_8_11_1
  doi: 10.1126/science.aav3057
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_16_1
  doi: 10.1021/acsenergylett.0c02200
– ident: e_1_2_8_18_1
  doi: 10.1016/j.mtener.2021.100639
– ident: e_1_2_8_15_1
  doi: 10.1021/jacs.9b11697
– ident: e_1_2_8_52_1
  doi: 10.1107/S2053273314026370
– ident: e_1_2_8_24_1
  doi: 10.1016/j.nanoen.2021.106039
– ident: e_1_2_8_37_1
  doi: 10.1002/smll.202006021
– ident: e_1_2_8_45_1
  doi: 10.1088/2053-1591/ab149b
– ident: e_1_2_8_9_1
  doi: 10.1016/j.matt.2019.12.008
– ident: e_1_2_8_51_1
  doi: 10.1107/S0021889808042726
– ident: e_1_2_8_50_1
  doi: 10.1038/ncomms2639
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.chemmater.8b03296
– ident: e_1_2_8_8_1
  doi: 10.1039/D0QM00288G
– ident: e_1_2_8_30_1
  doi: 10.1021/jacs.9b13291
– ident: e_1_2_8_29_1
  doi: 10.1039/C6CE02535H
– ident: e_1_2_8_22_1
  doi: 10.1039/C9EE03212F
– ident: e_1_2_8_32_1
  doi: 10.1063/5.0027776
– ident: e_1_2_8_58_1
  doi: 10.1103/PhysRevLett.80.890
– ident: e_1_2_8_31_1
  doi: 10.1007/s40843-020-1463-0
– ident: e_1_2_8_43_1
  doi: 10.1002/adfm.202009457
– ident: e_1_2_8_12_1
  doi: 10.1021/jacs.9b12368
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevLett.125.207601
– ident: e_1_2_8_6_1
  doi: 10.1016/j.nanoen.2020.105567
– ident: e_1_2_8_48_1
  doi: 10.1016/j.nanoen.2018.11.065
– ident: e_1_2_8_53_1
  doi: 10.1107/S2053229614024218
– ident: e_1_2_8_55_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_36_1
  doi: 10.1021/jacs.0c06064
– ident: e_1_2_8_56_1
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_2_8_5_1
  doi: 10.1149/1945-7111/ab6828
– ident: e_1_2_8_49_1
  doi: 10.1021/acsami.0c08560
– volume: 2021
  year: 2021
  ident: e_1_2_8_40_1
  publication-title: Research
– ident: e_1_2_8_19_1
  doi: 10.3390/cryst11020085
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.chemmater.0c02179
– ident: e_1_2_8_44_1
  doi: 10.1039/C7NR05163H
– ident: e_1_2_8_4_1
  doi: 10.1002/advs.202100864
– ident: e_1_2_8_7_1
  doi: 10.1016/j.mtener.2021.100690
– ident: e_1_2_8_57_1
  doi: 10.1063/1.4885256
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.chemmater.9b01227
– ident: e_1_2_8_47_1
  doi: 10.1021/acsami.9b21052
– ident: e_1_2_8_39_1
  doi: 10.1038/s41524-019-0157-4
– ident: e_1_2_8_3_1
  doi: 10.1557/mrs.2012.273
– ident: e_1_2_8_28_1
  doi: 10.1021/acsaelm.0c00473
– ident: e_1_2_8_14_1
  doi: 10.1126/science.aai8535
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.202011073
– ident: e_1_2_8_20_1
  doi: 10.1063/5.0030302
– ident: e_1_2_8_42_1
  doi: 10.1126/science.1229675
– ident: e_1_2_8_1_1
  doi: 10.1039/D0MH00610F
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.0c01331
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.jpcc.0c02973
– ident: e_1_2_8_13_1
  doi: 10.1023/A:1009926623551
– ident: e_1_2_8_38_1
  doi: 10.1039/D0DT04165C
– ident: e_1_2_8_33_1
  doi: 10.1111/j.1151-2916.1993.tb06637.x
– ident: e_1_2_8_23_1
  doi: 10.1039/C5TA09662F
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ceramint.2021.02.140
– ident: e_1_2_8_10_1
  doi: 10.1021/jacs.0c09288
– ident: e_1_2_8_41_1
  doi: 10.1002/anie.202102195
SSID ssj0031247
Score 2.5362082
Snippet Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising...
Hybrid organic-inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2103829
SubjectTerms Circuits
Energy harvesting
Human motion
Humans
hybrid organic–inorganic materials
Lead content
lead‐free metal halides
Metal halides
Motion
motion sensing
Nanotechnology
Perovskites
Piezoelectric ceramics
piezoelectric materials
Piezoelectricity
Polydimethylsiloxane
Shear modulus
Synthesis
Tetrahedra
Thin films
Title A New Hybrid Lead‐Free Metal Halide Piezoelectric for Energy Harvesting and Human Motion Sensing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202103829
https://www.ncbi.nlm.nih.gov/pubmed/34825468
https://www.proquest.com/docview/2621138785
https://www.proquest.com/docview/2604026342
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL2qWNFFebSFlIdcCamrwMR2nGSJEKNRxVQVD4ld5McNQgyZiplZwIpP6Df2S_B1ZgJDhZBgkUUUW_Hr-h4_7jkAO0Io4_289Ybkl6tEoRUbmfHYVpnMTSoq7SjAuf9L9c7kz_P0_EkUf8MP0W64kWWE-ZoMXJvR3iNp6Oh6QEcHnBi-OUXw0YUtQkXHLX-U8M4rqKt4nxUT8daMtbHD9-azz3ul_6DmPHINrqe7BHpW6ObGydXuZGx27d0zPsf31GoZPk1xKdtvBtIKfMB6FT4-YSv8DGaf-SmR9W4pyIuRNue_-7_dG0TWRw_hWc9Deofs9yXeDRt1nUvLPCZmhyG-kJEMEXF61BdM146F4wPWDypC7ITu0dcXX-Cse3h60IunEg2xFZkoYmVskpoCK67843JuikSmklc811jkThZoKp3o1MnKYMYr1XGZcogyNZkrEvEVFuphjevATGU9dkatUSfSdLBIcqsTw621mZayiCCedVFpp_zlJKMxKBvmZV5S25Vt20Xwo03_p2HueDHl5qzHy6kFj0qu_NJY5FmeRvC9_extjw5UdI3DCaXxUyBXQvII1pqR0v6KSINSqfIIeOjvV8pQnvSPjtq3b2_JtAGLnGIzwv7QJiyMbya45RHT2GwHq3gA_LAOaA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CsgAWvAuBAkZCYpV2YjtOvKxQRwEmFaKtxC7y46aqKBnUzizoik_gG_kSfJ1JYEAICRZZRLEVv67v8eOeA_BcCGWDn3fBkMJylSi0UisLnrq2kKXNRWs8BTjX-6o6kq_f58NtQoqF6fkhxg03sow4X5OB04b0zg_W0POPp3R2wInim-vLcIVkveOq6t3IICWC-4r6KsFrpUS9NfA2TvjOev51v_Qb2FzHrtH5TG-CHYrd3zn5sL1c2G138Quj43_V6xbcWEFTttuPpdtwCbs7cP0nwsK7YHdZmBVZ9ZnivBjJc3778nV6hshqDCieVQHVe2RvT_Bi3gvsnDgWYDHbiyGGjJSIiNajO2am8yyeILA6CgmxA7pK3x3fg6Pp3uHLKl2pNKROFEKnyrostxpbrsLjS251JnPJW14a1KWXGm1rMpN72VoseKsmvlAeUea28DoTm7DRzTt8AMy2LsBnNAZNJu0EdVY6k1nunCuMlDqBdOijxq0ozElJ47TpyZd5Q23XjG2XwIsx_aeevOOPKbeGLm9WRnzecBVWx6IsyjyBZ-PnYH50pmI6nC8pTZgFuRKSJ3C_Hyrjr4g3KJeqTIDHDv9LGZqDejYb3x7-S6ancLU6rGfN7NX-m0dwjVOoRtwu2oKNxdkSHwcAtbBPool8B9nmEoM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CIiFY8H4EChgJiVXaieM49rKiHQ0wU1WUSt1FflxXFSVTtTMLuuIT-Ea-BF9nJnRACAkWWUSxFb-u7_HjngPwqiyljX7eRUOKy1Wi0MqtqHnuQi2UrcpgPAU4T3bl6EC8O6wOL0Xxd_wQ_YYbWUaar8nAT33Y_Ekaev75hI4OODF8c30Vrgk5UDSutz_0BFJl9F5JXiU6rZyYt5a0jQO-uZp_1S39hjVXoWvyPcPbYJal7q6cfNqYz-yGu_iF0PF_qnUHbi2AKdvqRtJduILtPbh5ia7wPtgtFudENvpCUV6MxDm_f_02PENkE4wYno0ipvfI9o7xYtrJ6xw7FkEx20kBhox0iIjUoz1ipvUsnR-wSZIRYvt0kb49egAHw52Pb0b5QqMhd2Vd6lxaV1RWY-AyPl5xqwtRCR64MqiVFxptMIWpvAgWax7kwNfSI4rK1l4X5UNYa6ctPgZmg4vgGY1BUwg7QF0oZwrLnXO1EUJnkC-7qHELAnPS0ThpOupl3lDbNX3bZfC6T3_aUXf8MeX6ssebhQmfN1zGtXGpalVl8LL_HI2PTlRMi9M5pYlzIJel4Bk86kZK_ytiDaqEVBnw1N9_KUOzPxmP-7cn_5LpBVzf2x4247e775_CDU5xGmmvaB3WZmdzfBbR08w-TwbyA66FETs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Hybrid+Lead-Free+Metal+Halide+Piezoelectric+for+Energy+Harvesting+and+Human+Motion+Sensing&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Guo%2C+Tian-Meng&rft.au=Gong%2C+Yong-Ji&rft.au=Li%2C+Zhi-Gang&rft.au=Liu%2C+Yi-Ming&rft.date=2022-01-01&rft.eissn=1613-6829&rft.volume=18&rft.issue=3&rft.spage=e2103829&rft_id=info:doi/10.1002%2Fsmll.202103829&rft_id=info%3Apmid%2F34825468&rft.externalDocID=34825468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon