A New Hybrid Lead‐Free Metal Halide Piezoelectric for Energy Harvesting and Human Motion Sensing
Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self‐powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, mo...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 3; pp. e2103829 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self‐powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite‐type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead‐free metal halide, (BTMA)2CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4]2− tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N−1), low Young's and shear moduli (4.11–17.56 GPa; 1.86–7.91 GPa). Moreover, the (BTMA)2CoBr4/PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2CoBr4/PDMS‐based flexible devices show attractive performance in energy harvesting with an open‐circuit voltage of 19.70 V, short‐circuit current of 4.24 µA, and powder density of 11.72 µW cm−2, catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2CoBr4 and related piezoelectric lead‐free halides can be promising molecular materials in modern energy and sensing applications.
A hybrid lead‐free metal halide, (BTMA)2CoBr4 (BTMA, benzyltrimethylammonium), is demonstrated to exhibit significant piezoelectricity and soft elastic properties. Moreover, (BTMA)2CoBr4‐based composite films are fabricated for energy harvesting and human body motion sensing with attractive performance. This work broadens the landscape of molecular piezoelectric materials by paying more attention to the non‐perovskite‐type and lead‐free hybrid organic‐inorganic systems. |
---|---|
AbstractList | Hybrid organic-inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self-powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite-type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead-free metal halide, (BTMA)
CoBr
(BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr
]
tetrahedra and BTMA
cations exhibits significant piezoelectricity (d
= 5.14, d
= 12.40 pC N
), low Young's and shear moduli (4.11-17.56 GPa; 1.86-7.91 GPa). Moreover, the (BTMA)
CoBr
/PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)
CoBr
/PDMS-based flexible devices show attractive performance in energy harvesting with an open-circuit voltage of 19.70 V, short-circuit current of 4.24 µA, and powder density of 11.72 µW cm
, catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)
CoBr
and related piezoelectric lead-free halides can be promising molecular materials in modern energy and sensing applications. Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self‐powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite‐type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead‐free metal halide, (BTMA) 2 CoBr 4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr 4 ] 2− tetrahedra and BTMA + cations exhibits significant piezoelectricity ( d 22 = 5.14, d 25 = 12.40 pC N −1 ), low Young's and shear moduli (4.11–17.56 GPa; 1.86–7.91 GPa). Moreover, the (BTMA) 2 CoBr 4 /PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA) 2 CoBr 4 /PDMS‐based flexible devices show attractive performance in energy harvesting with an open‐circuit voltage of 19.70 V, short‐circuit current of 4.24 µ A, and powder density of 11.72 µ W cm −2 , catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA) 2 CoBr 4 and related piezoelectric lead‐free halides can be promising molecular materials in modern energy and sensing applications. Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self‐powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite‐type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead‐free metal halide, (BTMA)2CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4]2− tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N−1), low Young's and shear moduli (4.11–17.56 GPa; 1.86–7.91 GPa). Moreover, the (BTMA)2CoBr4/PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2CoBr4/PDMS‐based flexible devices show attractive performance in energy harvesting with an open‐circuit voltage of 19.70 V, short‐circuit current of 4.24 µA, and powder density of 11.72 µW cm−2, catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2CoBr4 and related piezoelectric lead‐free halides can be promising molecular materials in modern energy and sensing applications. Hybrid organic-inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self-powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite-type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead-free metal halide, (BTMA)2 CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4 ]2- tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N-1 ), low Young's and shear moduli (4.11-17.56 GPa; 1.86-7.91 GPa). Moreover, the (BTMA)2 CoBr4 /PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2 CoBr4 /PDMS-based flexible devices show attractive performance in energy harvesting with an open-circuit voltage of 19.70 V, short-circuit current of 4.24 µA, and powder density of 11.72 µW cm-2 , catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2 CoBr4 and related piezoelectric lead-free halides can be promising molecular materials in modern energy and sensing applications.Hybrid organic-inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self-powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite-type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead-free metal halide, (BTMA)2 CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4 ]2- tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N-1 ), low Young's and shear moduli (4.11-17.56 GPa; 1.86-7.91 GPa). Moreover, the (BTMA)2 CoBr4 /PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2 CoBr4 /PDMS-based flexible devices show attractive performance in energy harvesting with an open-circuit voltage of 19.70 V, short-circuit current of 4.24 µA, and powder density of 11.72 µW cm-2 , catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2 CoBr4 and related piezoelectric lead-free halides can be promising molecular materials in modern energy and sensing applications. Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising application potential in flexible sensing and self‐powered energy harvesting devices. Although some hybrid piezoelectrics are discovered, most of their structures are limited by the perovskite‐type and often contain lead. Herein, the synthesis, structure, and piezoelectric properties of a new hybrid lead‐free metal halide, (BTMA)2CoBr4 (BTMA = benzyltrimethylammonium) are reported. The experimental and theoretical results demonstrate that this material simply composed of [CoBr4]2− tetrahedra and BTMA+ cations exhibits significant piezoelectricity (d22 = 5.14, d25 = 12.40 pC N−1), low Young's and shear moduli (4.11–17.56 GPa; 1.86–7.91 GPa). Moreover, the (BTMA)2CoBr4/PDMS (PDMS = polydimethylsiloxane) composite thin films are fabricated and optimized. The 10% (BTMA)2CoBr4/PDMS‐based flexible devices show attractive performance in energy harvesting with an open‐circuit voltage of 19.70 V, short‐circuit current of 4.24 µA, and powder density of 11.72 µW cm−2, catching up with those of piezoelectric ceramic composites. Meanwhile, these film devices show excellent capability in accurately sensing human body motions, such as finger bending and tapping. This work demonstrates that (BTMA)2CoBr4 and related piezoelectric lead‐free halides can be promising molecular materials in modern energy and sensing applications. A hybrid lead‐free metal halide, (BTMA)2CoBr4 (BTMA, benzyltrimethylammonium), is demonstrated to exhibit significant piezoelectricity and soft elastic properties. Moreover, (BTMA)2CoBr4‐based composite films are fabricated for energy harvesting and human body motion sensing with attractive performance. This work broadens the landscape of molecular piezoelectric materials by paying more attention to the non‐perovskite‐type and lead‐free hybrid organic‐inorganic systems. |
Author | Li, Zhi‐Gang Guo, Tian‐Meng Liu, Yi‐Ming Li, Wei Bu, Xian‐He Gong, Yong‐Ji Li, Zhao‐Yang |
Author_xml | – sequence: 1 givenname: Tian‐Meng surname: Guo fullname: Guo, Tian‐Meng organization: Nankai University – sequence: 2 givenname: Yong‐Ji surname: Gong fullname: Gong, Yong‐Ji organization: Guizhou University – sequence: 3 givenname: Zhi‐Gang surname: Li fullname: Li, Zhi‐Gang organization: Nankai University – sequence: 4 givenname: Yi‐Ming surname: Liu fullname: Liu, Yi‐Ming organization: Nankai University – sequence: 5 givenname: Wei orcidid: 0000-0002-5277-6850 surname: Li fullname: Li, Wei email: wl276@nankai.edu.cn organization: Nankai University – sequence: 6 givenname: Zhao‐Yang surname: Li fullname: Li, Zhao‐Yang email: zhaoyang@nankai.edu.cn organization: Nankai University – sequence: 7 givenname: Xian‐He surname: Bu fullname: Bu, Xian‐He email: buxh@nankai.edu.cn organization: Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34825468$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctq3DAUhkVJyX3bZRF0081MdbNsL0NIOgVPW0izFpJ1HBRkKZXshOmqj9Bn7JNUwyQpBEoXQgfO9x2O9B-hvRADIPSGkiUlhH3Io_dLRhglvGHtK3RIJeULWeq955qSA3SU8y0hnDJR76MDLhpWCdkcInOGP8MDXm1MchZ3oO3vn78uEwBew6Q9XmnvLOCvDn5E8NBPyfV4iAlfBEg3m9JP95AnF26wDhav5lEHvI6TiwFfQcilcYJeD9pnOH28j9H15cW389Wi-_Lx0_lZt-h5zduFND2tTAsDk-XYhpmWikqwgTUa2saKFsygqa6sGAzUbJDE1tICiMrUtqX8GL3fzb1L8ftcllKjyz14rwPEOSsmiSBMcsEK-u4FehvnFMp2hWKU8qZuqkK9faRmM4JVd8mNOm3U0-8VQOyAPsWcEwyqd5Pevn1K2nlFidqGpLYhqeeQirZ8oT1N_qfQ7oQH52HzH1pdrbvur_sHkjak9A |
CitedBy_id | crossref_primary_10_1021_acs_cgd_2c00854 crossref_primary_10_1021_jacs_3c12905 crossref_primary_10_1002_asia_202401506 crossref_primary_10_1021_acsnano_4c07480 crossref_primary_10_1039_D4SC05442C crossref_primary_10_1021_acsami_3c00206 crossref_primary_10_1002_slct_202304533 crossref_primary_10_1007_s10853_023_08321_w crossref_primary_10_1016_j_matt_2023_04_024 crossref_primary_10_1002_adfm_202212110 crossref_primary_10_1039_D2QI02122F crossref_primary_10_1002_ejic_202400612 crossref_primary_10_1002_adfm_202402649 crossref_primary_10_29026_oes_2023_230011 crossref_primary_10_1007_s10853_023_08451_1 crossref_primary_10_1039_D3CC02093B crossref_primary_10_1039_D3CS00202K crossref_primary_10_1002_smll_202308104 crossref_primary_10_1038_s41467_024_53031_9 crossref_primary_10_1002_anie_202214984 crossref_primary_10_1039_D2CE01342H crossref_primary_10_3390_micro4020014 crossref_primary_10_1039_D3QM00072A crossref_primary_10_1002_adfm_202109492 crossref_primary_10_1002_ange_202214984 crossref_primary_10_1007_s00604_023_05874_0 crossref_primary_10_3390_ma17133083 crossref_primary_10_1002_adom_202301010 crossref_primary_10_1007_s40843_022_2360_x crossref_primary_10_1021_acsnano_1c11101 crossref_primary_10_1039_D3SC04332K crossref_primary_10_1093_nsr_nwae372 crossref_primary_10_1039_D4NR05246C crossref_primary_10_3390_ma15238397 crossref_primary_10_1002_sstr_202300135 crossref_primary_10_1039_D3SC02652C crossref_primary_10_1021_acs_nanolett_2c04674 crossref_primary_10_3390_mi15091133 crossref_primary_10_1007_s11664_024_11341_0 |
Cites_doi | 10.1016/j.ccr.2019.03.020 10.1103/PhysRevB.65.104104 10.1126/science.aav3057 10.1103/PhysRevB.59.1758 10.1021/acsenergylett.0c02200 10.1016/j.mtener.2021.100639 10.1021/jacs.9b11697 10.1107/S2053273314026370 10.1016/j.nanoen.2021.106039 10.1002/smll.202006021 10.1088/2053-1591/ab149b 10.1016/j.matt.2019.12.008 10.1107/S0021889808042726 10.1038/ncomms2639 10.1021/acs.chemmater.8b03296 10.1039/D0QM00288G 10.1021/jacs.9b13291 10.1039/C6CE02535H 10.1039/C9EE03212F 10.1063/5.0027776 10.1103/PhysRevLett.80.890 10.1007/s40843-020-1463-0 10.1002/adfm.202009457 10.1021/jacs.9b12368 10.1103/PhysRevLett.125.207601 10.1016/j.nanoen.2020.105567 10.1016/j.nanoen.2018.11.065 10.1107/S2053229614024218 10.1103/PhysRevB.54.11169 10.1021/jacs.0c06064 10.1103/PhysRevB.47.558 10.1149/1945-7111/ab6828 10.1021/acsami.0c08560 10.3390/cryst11020085 10.1021/acs.chemmater.0c02179 10.1039/C7NR05163H 10.1002/advs.202100864 10.1016/j.mtener.2021.100690 10.1063/1.4885256 10.1021/acs.chemmater.9b01227 10.1021/acsami.9b21052 10.1038/s41524-019-0157-4 10.1557/mrs.2012.273 10.1021/acsaelm.0c00473 10.1126/science.aai8535 10.1002/adfm.202011073 10.1063/5.0030302 10.1126/science.1229675 10.1039/D0MH00610F 10.1021/acsami.0c01331 10.1021/acs.jpcc.0c02973 10.1023/A:1009926623551 10.1039/D0DT04165C 10.1111/j.1151-2916.1993.tb06637.x 10.1039/C5TA09662F 10.1016/j.ceramint.2021.02.140 10.1021/jacs.0c09288 10.1002/anie.202102195 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202103829 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 34825468 10_1002_smll_202103829 SMLL202103829 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 63196006 – fundername: National Natural Science Foundation of China funderid: 21975132; 21991143; 21971124; 22035003 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3739-6bc15b9ef26ef2d82b914542f28ae98d49ebfa1a5d4fbe72f60d76dee45b7d913 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 09:34:08 EDT 2025 Sun Jul 27 15:40:17 EDT 2025 Wed Feb 19 02:27:15 EST 2025 Tue Jul 01 02:54:05 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Wed Jan 22 16:26:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | energy harvesting piezoelectric materials motion sensing hybrid organic-inorganic materials lead-free metal halides |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-6bc15b9ef26ef2d82b914542f28ae98d49ebfa1a5d4fbe72f60d76dee45b7d913 |
Notes | Dedicated to the 100th anniversary of Chemistry at Nankai University ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5277-6850 |
PMID | 34825468 |
PQID | 2621138785 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2604026342 proquest_journals_2621138785 pubmed_primary_34825468 crossref_citationtrail_10_1002_smll_202103829 crossref_primary_10_1002_smll_202103829 wiley_primary_10_1002_smll_202103829_SMLL202103829 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 20 2021; 64 2013; 4 2009; 42 2015; 71 2019; 56 2020; 13 2020; 167 2020; 12 1998; 80 2020; 124 2020; 125 2017; 357 2017; 9 2019; 363 2020; 8 2020; 7 2021; 31 2020; 2 2014; 2 1993; 76 1999; 59 2021; 118 2018; 30 2019; 391 2021; 2021 2021; 80 2021; 47 2021; 8 1993; 47 2021; 6 2021; 5 2021; 86 2019; 6 2019; 5 2019; 31 2020; 142 2012; 37 2020; 32 2021; 50 1996; 54 2016; 4 2021; 11 2013; 339 2021; 17 2002; 65 2017; 19 1998; 2 2021; 60 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Li Z. G. (e_1_2_8_40_1) 2021; 2021 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 37 start-page: 1007 year: 2012 publication-title: MRS Bull. – volume: 64 start-page: 706 year: 2021 publication-title: Sci. China Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 9008 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 124 year: 2020 publication-title: J. Phys. Chem. C – volume: 5 start-page: 44 year: 2021 publication-title: Mater. Chem. Front. – volume: 391 start-page: 15 year: 2019 publication-title: Coord. Chem. Rev. – volume: 50 start-page: 2648 year: 2021 publication-title: Dalton Trans. – volume: 2 year: 2014 publication-title: APL Mater. – volume: 30 start-page: 8718 year: 2018 publication-title: Chem. Mater. – volume: 19 start-page: 2207 year: 2017 publication-title: CrystEngComm – volume: 11 start-page: 85 year: 2021 publication-title: Crystals – volume: 2021 year: 2021 publication-title: Research – volume: 4 start-page: 756 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 start-page: 2158 year: 2020 publication-title: Mater. Horiz. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 20 year: 2021 publication-title: Mater. Today Energy – volume: 6 start-page: 16 year: 2021 publication-title: ACS Energy Lett. – volume: 86 year: 2021 publication-title: Nano Energy – volume: 13 start-page: 2077 year: 2020 publication-title: Energy Environ. Sci. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 71 start-page: 3 year: 2015 publication-title: Acta Crystallogr., Sect. C: Struct. Chem. – volume: 2 start-page: 697 year: 2020 publication-title: Matter – volume: 339 start-page: 425 year: 2013 publication-title: Science – volume: 4 start-page: 1633 year: 2013 publication-title: Nat. Commun. – volume: 65 year: 2002 publication-title: Phys. Rev. B – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 47 year: 2021 publication-title: Ceram. Int. – volume: 6 year: 2019 publication-title: Mater. Res. Express – volume: 142 start-page: 1077 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 339 year: 2009 publication-title: J. Appl. Crystallogr. – volume: 76 start-page: 1697 year: 1993 publication-title: J. Am. Ceram. Soc. – volume: 363 start-page: 1206 year: 2019 publication-title: Science – volume: 2 start-page: 2579 year: 2020 publication-title: ACS Appl. Electron. Mater. – volume: 125 year: 2020 publication-title: Phys. Rev. Lett. – volume: 17 year: 2021 publication-title: Small – volume: 56 start-page: 868 year: 2019 publication-title: Nano Energy – volume: 47 start-page: 558 year: 1993 publication-title: Phys. Rev. B – volume: 357 start-page: 306 year: 2017 publication-title: Science – volume: 32 start-page: 8333 year: 2020 publication-title: Chem. Mater. – volume: 142 start-page: 9634 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 142 start-page: 4756 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 17 year: 2019 publication-title: npj Comput. Mater. – volume: 118 year: 2021 publication-title: Appl. Phys. Lett. – volume: 8 year: 2020 publication-title: APL Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 80 year: 2021 publication-title: Nano Energy – volume: 2 start-page: 257 year: 1998 publication-title: J. Electroceram. – volume: 31 start-page: 4545 year: 2019 publication-title: Chem. Mater. – volume: 80 start-page: 890 year: 1998 publication-title: Phys. Rev. Lett. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 71 start-page: 3 year: 2015 publication-title: Acta Crystallogr., Sect. A: Found. Adv. – ident: e_1_2_8_34_1 doi: 10.1016/j.ccr.2019.03.020 – ident: e_1_2_8_59_1 doi: 10.1103/PhysRevB.65.104104 – ident: e_1_2_8_11_1 doi: 10.1126/science.aav3057 – ident: e_1_2_8_54_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_8_16_1 doi: 10.1021/acsenergylett.0c02200 – ident: e_1_2_8_18_1 doi: 10.1016/j.mtener.2021.100639 – ident: e_1_2_8_15_1 doi: 10.1021/jacs.9b11697 – ident: e_1_2_8_52_1 doi: 10.1107/S2053273314026370 – ident: e_1_2_8_24_1 doi: 10.1016/j.nanoen.2021.106039 – ident: e_1_2_8_37_1 doi: 10.1002/smll.202006021 – ident: e_1_2_8_45_1 doi: 10.1088/2053-1591/ab149b – ident: e_1_2_8_9_1 doi: 10.1016/j.matt.2019.12.008 – ident: e_1_2_8_51_1 doi: 10.1107/S0021889808042726 – ident: e_1_2_8_50_1 doi: 10.1038/ncomms2639 – ident: e_1_2_8_2_1 doi: 10.1021/acs.chemmater.8b03296 – ident: e_1_2_8_8_1 doi: 10.1039/D0QM00288G – ident: e_1_2_8_30_1 doi: 10.1021/jacs.9b13291 – ident: e_1_2_8_29_1 doi: 10.1039/C6CE02535H – ident: e_1_2_8_22_1 doi: 10.1039/C9EE03212F – ident: e_1_2_8_32_1 doi: 10.1063/5.0027776 – ident: e_1_2_8_58_1 doi: 10.1103/PhysRevLett.80.890 – ident: e_1_2_8_31_1 doi: 10.1007/s40843-020-1463-0 – ident: e_1_2_8_43_1 doi: 10.1002/adfm.202009457 – ident: e_1_2_8_12_1 doi: 10.1021/jacs.9b12368 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevLett.125.207601 – ident: e_1_2_8_6_1 doi: 10.1016/j.nanoen.2020.105567 – ident: e_1_2_8_48_1 doi: 10.1016/j.nanoen.2018.11.065 – ident: e_1_2_8_53_1 doi: 10.1107/S2053229614024218 – ident: e_1_2_8_55_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_36_1 doi: 10.1021/jacs.0c06064 – ident: e_1_2_8_56_1 doi: 10.1103/PhysRevB.47.558 – ident: e_1_2_8_5_1 doi: 10.1149/1945-7111/ab6828 – ident: e_1_2_8_49_1 doi: 10.1021/acsami.0c08560 – volume: 2021 year: 2021 ident: e_1_2_8_40_1 publication-title: Research – ident: e_1_2_8_19_1 doi: 10.3390/cryst11020085 – ident: e_1_2_8_26_1 doi: 10.1021/acs.chemmater.0c02179 – ident: e_1_2_8_44_1 doi: 10.1039/C7NR05163H – ident: e_1_2_8_4_1 doi: 10.1002/advs.202100864 – ident: e_1_2_8_7_1 doi: 10.1016/j.mtener.2021.100690 – ident: e_1_2_8_57_1 doi: 10.1063/1.4885256 – ident: e_1_2_8_25_1 doi: 10.1021/acs.chemmater.9b01227 – ident: e_1_2_8_47_1 doi: 10.1021/acsami.9b21052 – ident: e_1_2_8_39_1 doi: 10.1038/s41524-019-0157-4 – ident: e_1_2_8_3_1 doi: 10.1557/mrs.2012.273 – ident: e_1_2_8_28_1 doi: 10.1021/acsaelm.0c00473 – ident: e_1_2_8_14_1 doi: 10.1126/science.aai8535 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.202011073 – ident: e_1_2_8_20_1 doi: 10.1063/5.0030302 – ident: e_1_2_8_42_1 doi: 10.1126/science.1229675 – ident: e_1_2_8_1_1 doi: 10.1039/D0MH00610F – ident: e_1_2_8_27_1 doi: 10.1021/acsami.0c01331 – ident: e_1_2_8_46_1 doi: 10.1021/acs.jpcc.0c02973 – ident: e_1_2_8_13_1 doi: 10.1023/A:1009926623551 – ident: e_1_2_8_38_1 doi: 10.1039/D0DT04165C – ident: e_1_2_8_33_1 doi: 10.1111/j.1151-2916.1993.tb06637.x – ident: e_1_2_8_23_1 doi: 10.1039/C5TA09662F – ident: e_1_2_8_17_1 doi: 10.1016/j.ceramint.2021.02.140 – ident: e_1_2_8_10_1 doi: 10.1021/jacs.0c09288 – ident: e_1_2_8_41_1 doi: 10.1002/anie.202102195 |
SSID | ssj0031247 |
Score | 2.5362082 |
Snippet | Hybrid organic–inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising... Hybrid organic-inorganic piezoelectrics have attracted attention due to their simple synthesis, mechanical flexibility, and designability, which have promising... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2103829 |
SubjectTerms | Circuits Energy harvesting Human motion Humans hybrid organic–inorganic materials Lead content lead‐free metal halides Metal halides Motion motion sensing Nanotechnology Perovskites Piezoelectric ceramics piezoelectric materials Piezoelectricity Polydimethylsiloxane Shear modulus Synthesis Tetrahedra Thin films |
Title | A New Hybrid Lead‐Free Metal Halide Piezoelectric for Energy Harvesting and Human Motion Sensing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202103829 https://www.ncbi.nlm.nih.gov/pubmed/34825468 https://www.proquest.com/docview/2621138785 https://www.proquest.com/docview/2604026342 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL2qWNFFebSFlIdcCamrwMR2nGSJEKNRxVQVD4ld5McNQgyZiplZwIpP6Df2S_B1ZgJDhZBgkUUUW_Hr-h4_7jkAO0Io4_289Ybkl6tEoRUbmfHYVpnMTSoq7SjAuf9L9c7kz_P0_EkUf8MP0W64kWWE-ZoMXJvR3iNp6Oh6QEcHnBi-OUXw0YUtQkXHLX-U8M4rqKt4nxUT8daMtbHD9-azz3ul_6DmPHINrqe7BHpW6ObGydXuZGx27d0zPsf31GoZPk1xKdtvBtIKfMB6FT4-YSv8DGaf-SmR9W4pyIuRNue_-7_dG0TWRw_hWc9Deofs9yXeDRt1nUvLPCZmhyG-kJEMEXF61BdM146F4wPWDypC7ITu0dcXX-Cse3h60IunEg2xFZkoYmVskpoCK67843JuikSmklc811jkThZoKp3o1MnKYMYr1XGZcogyNZkrEvEVFuphjevATGU9dkatUSfSdLBIcqsTw621mZayiCCedVFpp_zlJKMxKBvmZV5S25Vt20Xwo03_p2HueDHl5qzHy6kFj0qu_NJY5FmeRvC9_extjw5UdI3DCaXxUyBXQvII1pqR0v6KSINSqfIIeOjvV8pQnvSPjtq3b2_JtAGLnGIzwv7QJiyMbya45RHT2GwHq3gA_LAOaA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CsgAWvAuBAkZCYpV2YjtOvKxQRwEmFaKtxC7y46aqKBnUzizoik_gG_kSfJ1JYEAICRZZRLEVv67v8eOeA_BcCGWDn3fBkMJylSi0UisLnrq2kKXNRWs8BTjX-6o6kq_f58NtQoqF6fkhxg03sow4X5OB04b0zg_W0POPp3R2wInim-vLcIVkveOq6t3IICWC-4r6KsFrpUS9NfA2TvjOev51v_Qb2FzHrtH5TG-CHYrd3zn5sL1c2G138Quj43_V6xbcWEFTttuPpdtwCbs7cP0nwsK7YHdZmBVZ9ZnivBjJc3778nV6hshqDCieVQHVe2RvT_Bi3gvsnDgWYDHbiyGGjJSIiNajO2am8yyeILA6CgmxA7pK3x3fg6Pp3uHLKl2pNKROFEKnyrostxpbrsLjS251JnPJW14a1KWXGm1rMpN72VoseKsmvlAeUea28DoTm7DRzTt8AMy2LsBnNAZNJu0EdVY6k1nunCuMlDqBdOijxq0ozElJ47TpyZd5Q23XjG2XwIsx_aeevOOPKbeGLm9WRnzecBVWx6IsyjyBZ-PnYH50pmI6nC8pTZgFuRKSJ3C_Hyrjr4g3KJeqTIDHDv9LGZqDejYb3x7-S6ancLU6rGfN7NX-m0dwjVOoRtwu2oKNxdkSHwcAtbBPool8B9nmEoM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CIiFY8H4EChgJiVXaieM49rKiHQ0wU1WUSt1FflxXFSVTtTMLuuIT-Ea-BF9nJnRACAkWWUSxFb-u7_HjngPwqiyljX7eRUOKy1Wi0MqtqHnuQi2UrcpgPAU4T3bl6EC8O6wOL0Xxd_wQ_YYbWUaar8nAT33Y_Ekaev75hI4OODF8c30Vrgk5UDSutz_0BFJl9F5JXiU6rZyYt5a0jQO-uZp_1S39hjVXoWvyPcPbYJal7q6cfNqYz-yGu_iF0PF_qnUHbi2AKdvqRtJduILtPbh5ia7wPtgtFudENvpCUV6MxDm_f_02PENkE4wYno0ipvfI9o7xYtrJ6xw7FkEx20kBhox0iIjUoz1ipvUsnR-wSZIRYvt0kb49egAHw52Pb0b5QqMhd2Vd6lxaV1RWY-AyPl5xqwtRCR64MqiVFxptMIWpvAgWax7kwNfSI4rK1l4X5UNYa6ctPgZmg4vgGY1BUwg7QF0oZwrLnXO1EUJnkC-7qHELAnPS0ThpOupl3lDbNX3bZfC6T3_aUXf8MeX6ssebhQmfN1zGtXGpalVl8LL_HI2PTlRMi9M5pYlzIJel4Bk86kZK_ytiDaqEVBnw1N9_KUOzPxmP-7cn_5LpBVzf2x4247e775_CDU5xGmmvaB3WZmdzfBbR08w-TwbyA66FETs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Hybrid+Lead-Free+Metal+Halide+Piezoelectric+for+Energy+Harvesting+and+Human+Motion+Sensing&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Guo%2C+Tian-Meng&rft.au=Gong%2C+Yong-Ji&rft.au=Li%2C+Zhi-Gang&rft.au=Liu%2C+Yi-Ming&rft.date=2022-01-01&rft.eissn=1613-6829&rft.volume=18&rft.issue=3&rft.spage=e2103829&rft_id=info:doi/10.1002%2Fsmll.202103829&rft_id=info%3Apmid%2F34825468&rft.externalDocID=34825468 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |