Synthesis of α‐Quaternary β‐Lactams via Copper‐Catalyzed Enantioconvergent Radical C(sp3)−C(sp2) Cross‐Coupling with Organoboronate Esters

The copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the synthetically valuable α‐quaternary β‐lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters bet...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 2; pp. e202214709 - n/a
Main Authors Wang, Fu‐Li, Liu, Lin, Yang, Chang‐Jiang, Luan, Cheng, Yang, Jing, Chen, Ji‐Jun, Gu, Qiang‐Shuai, Li, Zhong‐Liang, Liu, Xin‐Yuan
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 09.01.2023
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the synthetically valuable α‐quaternary β‐lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N‐ligand catalyst to forge the sterically congested chiral C(sp3)−C(sp2) bond via a single‐electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross‐coupling reactions. Copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary alkyl bromides with organoboronate esters is developed to access synthetically valuable α‐quaternary chiral β‐lactams. The success of this work relies on the utilization of chiral N,N,N‐ligands to forge the sterically congested C(sp3)−C(sp2) bonds.
AbstractList The copper-catalyzed enantioconvergent radical C(sp3 )-C(sp2 ) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the synthetically valuable α-quaternary β-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp3 )-C(sp2 ) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions.The copper-catalyzed enantioconvergent radical C(sp3 )-C(sp2 ) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the synthetically valuable α-quaternary β-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp3 )-C(sp2 ) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions.
The copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the synthetically valuable α‐quaternary β‐lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N‐ligand catalyst to forge the sterically congested chiral C(sp3)−C(sp2) bond via a single‐electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross‐coupling reactions.Dedicated to Professor Keiji Maruoka on the occasion of his 70th birthday
The copper-catalyzed enantioconvergent radical C(sp(3))-C(sp(2)) cross-coupling of tertiary alpha-bromo-beta-lactams with organoboronate esters could provide the synthetically valuable alpha-quaternary beta-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp(3))-C(sp(2)) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions.
The copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the synthetically valuable α‐quaternary β‐lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N‐ligand catalyst to forge the sterically congested chiral C(sp3)−C(sp2) bond via a single‐electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross‐coupling reactions. Copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary alkyl bromides with organoboronate esters is developed to access synthetically valuable α‐quaternary chiral β‐lactams. The success of this work relies on the utilization of chiral N,N,N‐ligands to forge the sterically congested C(sp3)−C(sp2) bonds.
The copper‐catalyzed enantioconvergent radical C(sp 3 )−C(sp 2 ) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the synthetically valuable α‐quaternary β‐lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N‐ligand catalyst to forge the sterically congested chiral C(sp 3 )−C(sp 2 ) bond via a single‐electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross‐coupling reactions.
The copper-catalyzed enantioconvergent radical C(sp )-C(sp ) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the synthetically valuable α-quaternary β-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp )-C(sp ) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions.
Author Chen, Ji‐Jun
Yang, Chang‐Jiang
Li, Zhong‐Liang
Liu, Xin‐Yuan
Wang, Fu‐Li
Yang, Jing
Gu, Qiang‐Shuai
Luan, Cheng
Liu, Lin
Author_xml – sequence: 1
  givenname: Fu‐Li
  surname: Wang
  fullname: Wang, Fu‐Li
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Lin
  surname: Liu
  fullname: Liu, Lin
  organization: Southern University of Science and Technology
– sequence: 3
  givenname: Chang‐Jiang
  surname: Yang
  fullname: Yang, Chang‐Jiang
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Cheng
  surname: Luan
  fullname: Luan, Cheng
  organization: Southern University of Science and Technology
– sequence: 5
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
  organization: Shenzhen Technology University
– sequence: 6
  givenname: Ji‐Jun
  surname: Chen
  fullname: Chen, Ji‐Jun
  organization: Southern University of Science and Technology
– sequence: 7
  givenname: Qiang‐Shuai
  surname: Gu
  fullname: Gu, Qiang‐Shuai
  organization: Southern University of Science and Technology
– sequence: 8
  givenname: Zhong‐Liang
  surname: Li
  fullname: Li, Zhong‐Liang
  email: lizl@sustech.edu.cn
  organization: Southern University of Science and Technology
– sequence: 9
  givenname: Xin‐Yuan
  orcidid: 0000-0002-6978-6465
  surname: Liu
  fullname: Liu, Xin‐Yuan
  email: liuxy3@sustech.edu.cn
  organization: Southern University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36357331$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URC-wZYkssWmFMviSxMmyigaoNKLito4c52TqKmMH22k1rFiyRCx4D3iQPkSfBEczDFIlBN7Yjr7vnOj3OUR7xhpA6DElM0oIey6NhhkjjNFUkPIeOqAZowkXgu_Fc8p5IoqM7qND7y8jXxQkf4D2ec4zwTk9QN_frU24AK89th2--XH7-eubUQZwRro1vvkZ7wupglx5fKUlruwwgIsfKxlkv_4ELZ4baYK2yporcEswAb-VrVayx9WxH_jJ7Zdv04Gd4MpZ7yfXjkOvzRJf63CBz91SGttYZ03si-c-NvcP0f1O9h4ebfcj9OHF_H31KlmcvzyrTheJ4oKXSS4hF11WiI43Ik2JKGmjeNO1nOVNKoEK2hYlawUtVS6ZSFtguWKqTbOi5VzxI3S8qTs4-3EEH-qV9gr6Xhqwo6-Z4LE6yQsR0ad30Es7xpj6icrKMi_SnEbqyZYamxW09eD0KiZZ_048As82wDU0tvNKg1GwwwghJS1EGR8zroku_p-udJDxJUzM14SozjaqmmJ30O00Suppduppdurd7EQhvSOobcHgpO7_rpXbX9Q9rP_RpD59fTb_4_4C-33dqQ
CitedBy_id crossref_primary_10_1021_jacs_3c02387
crossref_primary_10_1021_jacs_4c18341
crossref_primary_10_1021_acs_chemrev_3c00059
crossref_primary_10_1039_D3GC02793G
crossref_primary_10_1002_anie_202411469
crossref_primary_10_1039_D3QO01600E
crossref_primary_10_1039_D3OB00309D
crossref_primary_10_1021_jacs_4c01842
crossref_primary_10_1002_anie_202408419
crossref_primary_10_1021_jacs_4c05480
crossref_primary_10_1002_adsc_202401489
crossref_primary_10_1002_ange_202408419
crossref_primary_10_1021_jacs_4c09324
crossref_primary_10_1039_D4SC01513D
crossref_primary_10_1002_ange_202411469
crossref_primary_10_1002_cjoc_202300622
crossref_primary_10_1021_jacs_4c02141
crossref_primary_10_1002_advs_202309069
crossref_primary_10_1002_anie_202302983
crossref_primary_10_1021_acs_orglett_3c00751
crossref_primary_10_1021_jacs_3c09369
crossref_primary_10_1021_prechem_3c00084
crossref_primary_10_1002_ange_202302983
Cites_doi 10.1038/s41557-022-00954-9
10.1021/acs.chemrev.5b00162
10.1039/C4CC05376A
10.1007/978-94-010-0850-1
10.1038/nature17438
10.1126/science.1251511
10.1002/ange.202013450
10.1021/jacs.2c00957
10.1021/acscatal.8b01687
10.1021/acs.orglett.1c00259
10.1080/10826069908544928
10.1002/ange.200902943
10.1021/cr1002276
10.1039/C5GC00794A
10.1021/jacs.6b13299
10.1021/cr020044l
10.1038/s41467-018-04885-3
10.1021/cr030009u
10.1021/jacs.0c11103
10.1002/anie.201906011
10.1002/anie.201008007
10.1016/j.bmcl.2007.01.027
10.1002/anie.201806931
10.1126/science.aau7797
10.1021/cr030705u
10.1038/s41557-019-0346-2
10.1002/adsc.201100410
10.1002/anie.202100601
10.1038/s41557-020-0482-8
10.1002/anie.200352103
10.1002/ange.201411409
10.1038/nchem.1998
10.1021/jacs.7b03387
10.1021/jacs.6b11336
10.1002/anie.201808923
10.1021/ol3003783
10.1007/978-3-642-33188-6
10.1002/adsc.202101114
10.31635/ccschem.019.201900064
10.1002/anie.202013450
10.1002/ejoc.201301720
10.1021/om300586p
10.1002/ange.201808923
10.1002/anie.202009527
10.1002/ange.201902191
10.1002/anie.200902943
10.1021/acscatal.9b04887
10.1021/ar030055g
10.1016/j.bmc.2008.06.035
10.1002/ange.201906011
10.1002/ange.201008007
10.1002/anie.202208323
10.1038/nature13892
10.1126/science.aar6376
10.1021/jacs.8b13052
10.1126/science.abk1603
10.1021/ja001754g
10.1002/ange.200352103
10.1126/science.1161976
10.1016/S0022-328X(00)99290-8
10.2174/1568026620666200309161444
10.1016/j.bmcl.2006.10.047
10.1021/cr4005549
10.1021/acs.orglett.5b01612
10.1126/science.aaf7783
10.1021/jacs.0c09125
10.1039/C8CC09523J
10.1002/ange.202208323
10.2165/00003088-200544050-00002
10.1002/chem.201200367
10.1038/s41586-018-0669-y
10.1021/jacs.1c04968
10.1002/ange.201806931
10.1021/ol702759b
10.1021/jacs.2c06718
10.1021/ja012427r
10.1002/ange.202100601
10.1002/ange.202009527
10.1007/978-3-319-55621-5
10.1126/science.aaw1143
10.1126/science.aaf7230
10.1002/anie.201902191
10.1038/s41557-020-00609-7
10.1038/s41557-019-0343-5
10.1002/anie.201411409
10.1021/jacs.1c07726
10.1021/ja110534g
10.1038/nchem.2841
10.1021/acscentsci.7b00212
10.1002/anie.201900011
10.1038/NCHEM.1998
10.1039/c8cc09523j
10.31635/ccschem.019.20190064
10.1038/NCHEM.2841
10.1039/c4cc05376a
10.1039/c5gc00794a
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
17B
1KM
1KN
BLEPL
BNZSX
DTL
EGQ
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202214709
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science Core Collection
Web of Science - Science Citation Index Expanded - 2023
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Web of Science

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36357331
000918794700001
10_1002_anie_202214709
ANIE202214709
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Guangdong Innovative Program
  funderid: 2019BT02Y335
– fundername: Shenzhen Science and Technology Program
  funderid: KQTD20210811090112004
– fundername: Guangdong Provincial Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology
  funderid: 2020B121201002
– fundername: Shenzhen Special Funds
  funderid: JCYJ20200109141001789
– fundername: National Key R&D Program of China
  funderid: 2021YFF0701604; 2021YFF0701704
– fundername: National Natural Science Foundation of China
  funderid: 22025103; 21831002; 21901106; 22001109; 22201127; 22271133; 22101186; 22101122
– fundername: National Key R&D Program of China
  grantid: 2021YFF0701604; 2021YFF0701704
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 22025103; 21831002; 21901106; 22001109; 22201127; 22271133; 22101186; 22101122
– fundername: Great Bay University
– fundername: Shenzhen Special Funds
  grantid: JCYJ20200109141001789
– fundername: Shenzhen Science and Technology Program
  grantid: KQTD20210811090112004
– fundername: Guangdong Innovative Program
  grantid: 2019BT02Y335
– fundername: Guangdong Provincial Key Laboratory of Catalysis
  grantid: 2020B121201002
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3739-6ae67f587f3b7440791bc3bfd326b4ae171d892d719c6a274de26c2cd458d33c3
IEDL.DBID DR2
ISICitedReferencesCount 72
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000918794700001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 02:39:55 EDT 2025
Sun Jul 13 04:44:00 EDT 2025
Thu Apr 03 07:03:48 EDT 2025
Wed Jul 09 18:14:03 EDT 2025
Fri Aug 29 16:17:46 EDT 2025
Tue Jul 01 01:46:58 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Jan 22 16:19:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords TRANSITION-METAL CATALYSIS
ASYMMETRIC-SYNTHESIS
ENANTIOSELECTIVE SYNTHESIS
beta-Lactam
Radical Chemistry
SUBSTITUTION-REACTIONS
ARYLBORONIC ACIDS
ALKYL-HALIDES
Asymmetric Catalysis
TRANSMETALATION
Cross-Coupling
Copper
DERIVATIVES
ACCESS
CYCLIZATION
β-Lactam
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3739-6ae67f587f3b7440791bc3bfd326b4ae171d892d719c6a274de26c2cd458d33c3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6978-6465
0000-0003-3405-1546
0000-0002-2043-5701
0009-0004-9601-2563
PMID 36357331
PQID 2759968461
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2735870687
pubmed_primary_36357331
webofscience_primary_000918794700001
crossref_primary_10_1002_anie_202214709
proquest_journals_2759968461
wiley_primary_10_1002_anie_202214709_ANIE202214709
webofscience_primary_000918794700001CitationCount
crossref_citationtrail_10_1002_anie_202214709
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 9, 2023
PublicationDateYYYYMMDD 2023-01-09
PublicationDate_xml – month: 01
  year: 2023
  text: January 9, 2023
  day: 09
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 3
2018; 360
2021; 23
2020; 20
2009 2009; 48 121
2019; 11
2019; 55
2018; 563
2012; 18
2020; 12
2020; 10
2012; 14
2017; 356
2017; 9
2019; 364
2011; 353
2011; 111
2019; 363
2022; 364
2018; 9
2022 2022; 61 134
2018; 8
2020; 2
2001
2018 2018; 57 130
2004; 37
2005; 105
2015 2015; 54 127
2016; 353
2000; 122
2014; 50
2014; 6
2007; 17
2014; 515
1983; 256
2015; 17
2020; 142
1999; 29
2008; 16
1984; 108
2008; 10
2003 2003; 42 115
2008; 322
2021; 143
2019; 141
2014; 114
2005; 44
2019 2019; 58 131
2012; 31
2011; 133
2017; 139
2022; 144
2021; 13
2015; 115
2002; 124
2021 2021; 60 133
2022; 14
2017
2011 2011; 50 123
2014
2013
2016; 532
2021; 374
2003; 103
2014; 344
e_1_2_3_50_2
e_1_2_3_92_1
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_39_2
e_1_2_3_12_2
e_1_2_3_58_2
e_1_2_3_8_1
e_1_2_3_77_2
e_1_2_3_35_2
e_1_2_3_31_1
e_1_2_3_50_3
e_1_2_3_54_2
e_1_2_3_73_2
e_1_2_3_73_3
e_1_2_3_81_3
e_1_2_3_81_2
Dallacker F. (e_1_2_3_78_2) 1984; 108
e_1_2_3_28_2
e_1_2_3_24_2
e_1_2_3_47_2
e_1_2_3_89_2
e_1_2_3_66_1
e_1_2_3_20_2
e_1_2_3_43_2
e_1_2_3_62_2
e_1_2_3_85_2
e_1_2_3_62_3
e_1_2_3_72_2
e_1_2_3_91_2
e_1_2_3_19_2
e_1_2_3_38_2
e_1_2_3_3_2
e_1_2_3_34_2
e_1_2_3_7_2
e_1_2_3_15_1
e_1_2_3_57_2
e_1_2_3_76_1
e_1_2_3_30_2
e_1_2_3_11_1
e_1_2_3_53_2
e_1_2_3_61_2
e_1_2_3_80_2
e_1_2_3_27_2
e_1_2_3_69_1
e_1_2_3_23_2
e_1_2_3_23_3
e_1_2_3_46_2
e_1_2_3_65_1
e_1_2_3_88_1
e_1_2_3_42_3
e_1_2_3_42_2
e_1_2_3_84_2
e_1_2_3_71_2
e_1_2_3_90_2
e_1_2_3_18_3
e_1_2_3_37_3
e_1_2_3_37_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_56_2
e_1_2_3_79_2
e_1_2_3_33_2
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_56_3
e_1_2_3_75_2
e_1_2_3_52_1
e_1_2_3_10_1
e_1_2_3_60_2
e_1_2_3_83_1
e_1_2_3_49_2
e_1_2_3_22_2
e_1_2_3_45_2
e_1_2_3_68_2
e_1_2_3_22_3
e_1_2_3_26_1
e_1_2_3_41_2
e_1_2_3_64_2
e_1_2_3_87_2
e_1_2_3_70_2
(e_1_2_3_24_3) 2022; 134
e_1_2_3_1_1
e_1_2_3_5_2
e_1_2_3_17_2
e_1_2_3_9_1
e_1_2_3_59_1
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_51_2
e_1_2_3_32_2
e_1_2_3_55_1
e_1_2_3_74_2
e_1_2_3_82_1
e_1_2_3_48_2
e_1_2_3_29_2
e_1_2_3_21_3
e_1_2_3_44_2
e_1_2_3_25_2
e_1_2_3_67_2
e_1_2_3_40_2
e_1_2_3_86_2
e_1_2_3_21_2
e_1_2_3_63_2
Cherney, AH (WOS:000361254500015) 2015; 115
Dong, XY (WOS:000498875700019) 2019; 11
Zhang, XF (WOS:000552025400007) 2020; 20
Yang, Z.-Q. (000918794700001.82) 2011; 123
King, AE (WOS:000311466300030) 2012; 31
Magriotis, PA (WOS:000334783300002) 2014; 2014
Fujita, K (WOS:000631439700028) 2021; 23
Choi, J (WOS:000399013800025) 2017; 356
Sladojevich, F (WOS:000287831800026) 2011; 133
Zhong, XQ (WOS:000855023500001) 2022; 61
Shintani, r (000918794700001.16) 2003; 115
Nicewicz, DA (WOS:000259680200040) 2008; 322
Iwamoto, H (WOS:000478635100058) 2019; 58
Su (000918794700001.64) 2021; 133
Biegasiewicz, KF (WOS:000472175100038) 2019; 364
O'Driscoll, M (WOS:000258726300034) 2008; 16
Zhang, X (WOS:000456871800038) 2019; 363
Kern, N (WOS:000416026200010) 2017; 9
Zhang, YF (WOS:000700883200054) 2021; 143
Wang, ZB (WOS:000607026500001) 2021; 13
Zhang, YR (WOS:000252294500032) 2008; 10
Nakamura, S (WOS:000725442200001) 2022; 364
Qi, JL (WOS:000605575400001) 2021; 60
Wang, ZB (WOS:000450048400055) 2018; 563
Su, XL (WOS:000585931100001) 2021; 60
Hodous, BL (WOS:000173982500011) 2002; 124
Vasilopoulos, A (WOS:000403631200009) 2017; 139
Xie, JJ (WOS:000684586600040) 2021; 143
Yang, Y (WOS:000493326400007) 2019; 11
Huang, LZ (WOS:000441112400053) 2018; 8
Iwamoto, H. (000918794700001.53) 2019; 131
Taggi, AE (WOS:000088946100034) 2000; 122
Shu, L. (000918794700001.20) 2018; 130
Shu, T (WOS:000442863700033) 2018; 57
Richens, DT (WOS:000229729000003) 2005; 105
Proctor, RSJ (WOS:000430949600038) 2018; 360
Ma, S (WOS:000271130900014) 2009; 48
Benfatti, F (WOS:000245827900024) 2007; 17
Su, L. (000918794700001.74) 2019; 131
Iwamoto, T (WOS:000458544800025) 2019; 55
Li, CJ (WOS:000231188700005) 2005; 105
Wang, Y (WOS:000393541000007) 2017; 139
Wu, LQ (WOS:000458348300016) 2019; 141
Wang, GZ (WOS:000359393800011) 2015; 17
Pitts, CR (WOS:000340992200005) 2014; 114
DALLACKER, F (WOS:A1984TL38400006) 1984; 108
Qi, F. (000918794700001.22) 2021; 133
Hashimoto, T (WOS:000341371100013) 2014; 6
Gerardin-Charbonnier, C (WOS:000081707200004) 1999; 29
(000918794700001.38) 2015; 127
Li, CQ (WOS:000453348900045) 2018; 57
France, S (WOS:000223385800013) 2004; 37
Shintani, R (WOS:000185436600024) 2003; 42
Brimioulle, R (WOS:000351204600003) 2015; 54
Fu, GC (WOS:000406308200007) 2017; 3
Qi, JL (WOS:000649698400001) 2021; 60
Zhang, W (WOS:000382558900035) 2016; 353
Li, JT (WOS:000436049400005) 2018; 9
Zhang, WP (WOS:000465413400045) 2019; 58
Ma, X. (000918794700001.58) 2009; 121
Dong, XY (WOS:000875120200001) 2022
Bruggink, A (CCC:000170831700001) 2001
Murphy, JJ (WOS:000374415100036) 2016; 532
Lang, K (WOS:000599506900050) 2020; 142
Wu, LQ (WOS:000395493400012) 2017; 139
Hara, N (WOS:000297099100019) 2011; 353
Nakafuku, KM (WOS:000542087800001) 2020; 12
Yang, CT (WOS:000289514100015) 2011; 50
Wang, PF (WOS:000790698300035) 2022; 144
Huo, HH (WOS:000344187500037) 2014; 515
Zhong (000918794700001.26) 2022; 134
Qi, F. (000918794700001.24) 2021; 133
Hoffmann, I (WOS:000357620900024) 2015; 17
Kosoglou, T (WOS:000229397400002) 2005; 44
Banik, B.K. (000918794700001.5) 2017
Banik (000918794700001.4) 2013
Sibi, MP (WOS:000184821500020) 2003; 103
Imbach, P (WOS:000244012200013) 2007; 17
LAUER, M (WOS:A1983RS03100001) 1983; 256
Li, K. (000918794700001.44) 2018; 130
Du, JN (WOS:000334867800035) 2014; 344
Sun, YY (WOS:000340900400037) 2014; 50
Jiang, SP (WOS:000592911000027) 2020; 142
Zhou, Q (WOS:000736589300033) 2021; 374
Wu, L (WOS:000794105100015) 2020; 2
Hara, N (WOS:000306403200019) 2012; 18
Liang, QJ (WOS:000516887400026) 2020; 10
Chen, S (WOS:000302387800032) 2012; 14
Partyka, DV (WOS:000288820600009) 2011; 111
Wang, FL (WOS:000805517500001) 2022; 14
References_xml – volume: 17
  start-page: 358
  year: 2007
  end-page: 362
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 17
  start-page: 1946
  year: 2007
  end-page: 1950
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 142
  start-page: 20902
  year: 2020
  end-page: 20911
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2633
  year: 2020
  end-page: 2639
  publication-title: ACS Catal.
– volume: 44
  start-page: 467
  year: 2005
  end-page: 494
  publication-title: Clin. Pharmacokinet.
– volume: 356
  year: 2017
  publication-title: Science
– volume: 515
  start-page: 100
  year: 2014
  end-page: 103
  publication-title: Nature
– volume: 139
  start-page: 1049
  year: 2017
  end-page: 1052
  publication-title: J. Am. Chem. Soc.
– volume: 48 121
  start-page: 8037 8181
  year: 2009 2009
  end-page: 8041 8185
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2001
– volume: 13
  start-page: 236
  year: 2021
  end-page: 242
  publication-title: Nat. Chem.
– volume: 141
  start-page: 1887
  year: 2019
  end-page: 1892
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 6442
  year: 2022
  end-page: 6452
  publication-title: J. Am. Chem. Soc.
– volume: 256
  start-page: 1
  year: 1983
  end-page: 9
  publication-title: J. Organomet. Chem.
– volume: 58 131
  start-page: 6425 6491
  year: 2019 2019
  end-page: 6429 6495
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 353
  start-page: 2976
  year: 2011
  end-page: 2980
  publication-title: Adv. Synth. Catal.
– volume: 142
  start-page: 19652
  year: 2020
  end-page: 19659
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 987
  year: 2019
  end-page: 993
  publication-title: Nat. Chem.
– volume: 12
  start-page: 697
  year: 2020
  end-page: 704
  publication-title: Nat. Chem.
– volume: 124
  start-page: 1578
  year: 2002
  end-page: 1579
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 257
  year: 1999
  end-page: 272
  publication-title: Prep. Biochem. Biotechnol.
– volume: 360
  start-page: 419
  year: 2018
  end-page: 422
  publication-title: Science
– volume: 60 133
  start-page: 380 384
  year: 2021 2021
  end-page: 384 388
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 144
  start-page: 17319
  year: 2022
  end-page: 17329
  publication-title: J. Am. Chem. Soc.
– volume: 374
  start-page: 1612
  year: 2021
  end-page: 1616
  publication-title: Science
– volume: 115
  start-page: 9587
  year: 2015
  end-page: 9652
  publication-title: Chem. Rev.
– volume: 353
  start-page: 1014
  year: 2016
  end-page: 1018
  publication-title: Science
– volume: 37
  start-page: 592
  year: 2004
  end-page: 600
  publication-title: Acc. Chem. Res.
– volume: 322
  start-page: 77
  year: 2008
  end-page: 80
  publication-title: Science
– volume: 143
  start-page: 15413
  year: 2021
  end-page: 15419
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 7705
  year: 2017
  end-page: 7708
  publication-title: J. Am. Chem. Soc.
– start-page: 2647
  year: 2014
  end-page: 2657
  publication-title: Eur. J. Org. Chem.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  start-page: 7948
  year: 2012
  end-page: 7957
  publication-title: Organometallics
– volume: 105
  start-page: 3095
  year: 2005
  end-page: 3166
  publication-title: Chem. Rev.
– volume: 143
  start-page: 11670
  year: 2021
  end-page: 11678
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 2445
  year: 2018
  publication-title: Nat. Commun.
– volume: 17
  start-page: 3844
  year: 2015
  end-page: 3857
  publication-title: Green Chem.
– volume: 54 127
  start-page: 3872 3944
  year: 2015 2015
  end-page: 3890 3963
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55
  start-page: 1128
  year: 2019
  end-page: 1131
  publication-title: Chem. Commun.
– volume: 532
  start-page: 218
  year: 2016
  end-page: 222
  publication-title: Nature
– volume: 133
  start-page: 1710
  year: 2011
  end-page: 1713
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 10985 11151
  year: 2018 2018
  end-page: 10988 11154
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 11060
  year: 2014
  end-page: 11062
  publication-title: Chem. Commun.
– volume: 9
  start-page: 1198
  year: 2017
  end-page: 1204
  publication-title: Nat. Chem.
– volume: 108
  start-page: 287
  year: 1984
  end-page: 288
  publication-title: Chem.-Ztg.
– volume: 139
  start-page: 2904
  year: 2017
  end-page: 2907
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 16837 17079
  year: 2018 2018
  end-page: 16841 17083
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 13814 13933
  year: 2021 2021
  end-page: 13818 13937
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 114
  start-page: 7930
  year: 2014
  end-page: 7953
  publication-title: Chem. Rev.
– volume: 10
  start-page: 277
  year: 2008
  end-page: 280
  publication-title: Org. Lett.
– volume: 364
  start-page: 1166
  year: 2019
  end-page: 1169
  publication-title: Science
– volume: 16
  start-page: 7832
  year: 2008
  end-page: 7837
  publication-title: Bioorg. Med. Chem.
– volume: 122
  start-page: 7831
  year: 2000
  end-page: 7832
  publication-title: J. Am. Chem. Soc.
– volume: 563
  start-page: 379
  year: 2018
  end-page: 383
  publication-title: Nature
– volume: 14
  start-page: 1784
  year: 2012
  end-page: 1787
  publication-title: Org. Lett.
– volume: 17
  start-page: 3682
  year: 2015
  end-page: 3685
  publication-title: Org. Lett.
– volume: 111
  start-page: 1529
  year: 2011
  end-page: 1595
  publication-title: Chem. Rev.
– volume: 2
  start-page: 623
  year: 2020
  end-page: 631
  publication-title: CCS Chem.
– volume: 344
  start-page: 392
  year: 2014
  end-page: 396
  publication-title: Science
– volume: 42 115
  start-page: 4082 4216
  year: 2003 2003
  end-page: 4085 4219
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 4561 4611
  year: 2021 2021
  end-page: 4565 4615
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 949
  year: 2022
  end-page: 957
  publication-title: Nat. Chem.
– volume: 8
  start-page: 7340
  year: 2018
  end-page: 7345
  publication-title: ACS Catal.
– volume: 50 123
  start-page: 3904 3990
  year: 2011 2011
  end-page: 3907 3993
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 1468
  year: 2020
  end-page: 1480
  publication-title: Curr. Top. Med. Chem.
– volume: 58 131
  start-page: 11112 11229
  year: 2019 2019
  end-page: 11117 11234
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 363
  start-page: 400
  year: 2019
  end-page: 404
  publication-title: Science
– volume: 364
  start-page: 781
  year: 2022
  end-page: 786
  publication-title: Adv. Synth. Catal.
– volume: 18
  start-page: 9276
  year: 2012
  end-page: 9280
  publication-title: Chem. Eur. J.
– volume: 6
  start-page: 702
  year: 2014
  end-page: 705
  publication-title: Nat. Chem.
– volume: 105
  start-page: 1961
  year: 2005
  end-page: 2002
  publication-title: Chem. Rev.
– volume: 23
  start-page: 2104
  year: 2021
  end-page: 2108
  publication-title: Org. Lett.
– volume: 11
  start-page: 1158
  year: 2019
  end-page: 1166
  publication-title: Nat. Chem.
– volume: 103
  start-page: 3263
  year: 2003
  end-page: 3296
  publication-title: Chem. Rev.
– year: 2017
– volume: 3
  start-page: 692
  year: 2017
  end-page: 700
  publication-title: ACS Cent. Sci.
– year: 2013
– ident: e_1_2_3_65_1
  doi: 10.1038/s41557-022-00954-9
– ident: e_1_2_3_27_2
  doi: 10.1021/acs.chemrev.5b00162
– ident: e_1_2_3_88_1
– ident: e_1_2_3_79_2
  doi: 10.1039/C4CC05376A
– ident: e_1_2_3_7_2
  doi: 10.1007/978-94-010-0850-1
– ident: e_1_2_3_38_2
  doi: 10.1038/nature17438
– ident: e_1_2_3_34_2
  doi: 10.1126/science.1251511
– ident: e_1_2_3_22_3
  doi: 10.1002/ange.202013450
– ident: e_1_2_3_26_1
– ident: e_1_2_3_11_1
– ident: e_1_2_3_64_2
  doi: 10.1021/jacs.2c00957
– ident: e_1_2_3_25_2
  doi: 10.1021/acscatal.8b01687
– ident: e_1_2_3_86_2
  doi: 10.1021/acs.orglett.1c00259
– ident: e_1_2_3_92_1
– ident: e_1_2_3_13_2
  doi: 10.1080/10826069908544928
– ident: e_1_2_3_56_3
  doi: 10.1002/ange.200902943
– ident: e_1_2_3_59_1
– ident: e_1_2_3_90_2
  doi: 10.1021/cr1002276
– ident: e_1_2_3_91_2
  doi: 10.1039/C5GC00794A
– ident: e_1_2_3_75_2
  doi: 10.1021/jacs.6b13299
– ident: e_1_2_3_32_2
  doi: 10.1021/cr020044l
– ident: e_1_2_3_57_2
  doi: 10.1038/s41467-018-04885-3
– ident: e_1_2_3_89_2
  doi: 10.1021/cr030009u
– ident: e_1_2_3_46_2
  doi: 10.1021/jacs.0c11103
– ident: e_1_2_3_50_2
  doi: 10.1002/anie.201906011
– ident: e_1_2_3_81_2
  doi: 10.1002/anie.201008007
– ident: e_1_2_3_14_2
  doi: 10.1016/j.bmcl.2007.01.027
– ident: e_1_2_3_21_2
  doi: 10.1002/anie.201806931
– ident: e_1_2_3_58_2
  doi: 10.1126/science.aau7797
– ident: e_1_2_3_70_2
  doi: 10.1021/cr030705u
– ident: e_1_2_3_60_2
  doi: 10.1038/s41557-019-0346-2
– ident: e_1_2_3_84_2
  doi: 10.1002/adsc.201100410
– ident: e_1_2_3_23_2
  doi: 10.1002/anie.202100601
– ident: e_1_2_3_47_2
  doi: 10.1038/s41557-020-0482-8
– ident: e_1_2_3_18_2
  doi: 10.1002/anie.200352103
– ident: e_1_2_3_37_3
  doi: 10.1002/ange.201411409
– ident: e_1_2_3_35_2
  doi: 10.1038/nchem.1998
– ident: e_1_2_3_72_2
  doi: 10.1021/jacs.7b03387
– ident: e_1_2_3_41_2
  doi: 10.1021/jacs.6b11336
– volume: 108
  start-page: 287
  year: 1984
  ident: e_1_2_3_78_2
  publication-title: Chem.-Ztg.
– ident: e_1_2_3_42_2
  doi: 10.1002/anie.201808923
– ident: e_1_2_3_20_2
  doi: 10.1021/ol3003783
– ident: e_1_2_3_5_2
  doi: 10.1007/978-3-642-33188-6
– ident: e_1_2_3_87_2
  doi: 10.1002/adsc.202101114
– ident: e_1_2_3_51_2
  doi: 10.31635/ccschem.019.201900064
– ident: e_1_2_3_52_1
– ident: e_1_2_3_22_2
  doi: 10.1002/anie.202013450
– ident: e_1_2_3_55_1
– ident: e_1_2_3_4_2
  doi: 10.1002/ejoc.201301720
– ident: e_1_2_3_71_2
  doi: 10.1021/om300586p
– ident: e_1_2_3_42_3
  doi: 10.1002/ange.201808923
– ident: e_1_2_3_62_2
  doi: 10.1002/anie.202009527
– ident: e_1_2_3_73_3
  doi: 10.1002/ange.201902191
– ident: e_1_2_3_56_2
  doi: 10.1002/anie.200902943
– ident: e_1_2_3_67_2
  doi: 10.1021/acscatal.9b04887
– ident: e_1_2_3_3_2
  doi: 10.1021/ar030055g
– ident: e_1_2_3_9_1
  doi: 10.1016/j.bmc.2008.06.035
– ident: e_1_2_3_50_3
  doi: 10.1002/ange.201906011
– ident: e_1_2_3_81_3
  doi: 10.1002/ange.201008007
– ident: e_1_2_3_24_2
  doi: 10.1002/anie.202208323
– ident: e_1_2_3_36_2
  doi: 10.1038/nature13892
– ident: e_1_2_3_43_2
  doi: 10.1126/science.aar6376
– ident: e_1_2_3_74_2
  doi: 10.1021/jacs.8b13052
– ident: e_1_2_3_49_2
  doi: 10.1126/science.abk1603
– ident: e_1_2_3_16_2
  doi: 10.1021/ja001754g
– ident: e_1_2_3_18_3
  doi: 10.1002/ange.200352103
– ident: e_1_2_3_83_1
– ident: e_1_2_3_33_2
  doi: 10.1126/science.1161976
– ident: e_1_2_3_77_2
  doi: 10.1016/S0022-328X(00)99290-8
– ident: e_1_2_3_8_1
  doi: 10.2174/1568026620666200309161444
– ident: e_1_2_3_12_2
  doi: 10.1016/j.bmcl.2006.10.047
– ident: e_1_2_3_2_2
  doi: 10.1021/cr4005549
– ident: e_1_2_3_80_2
  doi: 10.1021/acs.orglett.5b01612
– ident: e_1_2_3_39_2
  doi: 10.1126/science.aaf7783
– ident: e_1_2_3_1_1
– ident: e_1_2_3_15_1
– ident: e_1_2_3_61_2
  doi: 10.1021/jacs.0c09125
– ident: e_1_2_3_68_2
  doi: 10.1039/C8CC09523J
– volume: 134
  year: 2022
  ident: e_1_2_3_24_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202208323
– ident: e_1_2_3_10_1
  doi: 10.2165/00003088-200544050-00002
– ident: e_1_2_3_31_1
– ident: e_1_2_3_85_2
  doi: 10.1002/chem.201200367
– ident: e_1_2_3_53_2
  doi: 10.1038/s41586-018-0669-y
– ident: e_1_2_3_48_2
  doi: 10.1021/jacs.1c04968
– ident: e_1_2_3_21_3
  doi: 10.1002/ange.201806931
– ident: e_1_2_3_76_1
– ident: e_1_2_3_19_2
  doi: 10.1021/ol702759b
– ident: e_1_2_3_30_2
  doi: 10.1021/jacs.2c06718
– ident: e_1_2_3_17_2
  doi: 10.1021/ja012427r
– ident: e_1_2_3_23_3
  doi: 10.1002/ange.202100601
– ident: e_1_2_3_62_3
  doi: 10.1002/ange.202009527
– ident: e_1_2_3_6_2
  doi: 10.1007/978-3-319-55621-5
– ident: e_1_2_3_44_2
  doi: 10.1126/science.aaw1143
– ident: e_1_2_3_28_2
  doi: 10.1126/science.aaf7230
– ident: e_1_2_3_73_2
  doi: 10.1002/anie.201902191
– ident: e_1_2_3_54_2
  doi: 10.1038/s41557-020-00609-7
– ident: e_1_2_3_45_2
  doi: 10.1038/s41557-019-0343-5
– ident: e_1_2_3_37_2
  doi: 10.1002/anie.201411409
– ident: e_1_2_3_69_1
– ident: e_1_2_3_63_2
  doi: 10.1021/jacs.1c07726
– ident: e_1_2_3_82_1
  doi: 10.1021/ja110534g
– ident: e_1_2_3_66_1
– ident: e_1_2_3_40_2
  doi: 10.1038/nchem.2841
– ident: e_1_2_3_29_2
  doi: 10.1021/acscentsci.7b00212
– volume: 14
  start-page: 1784
  year: 2012
  ident: WOS:000302387800032
  article-title: BINAPHANE-Catalyzed Asymmetric Synthesis of trans-β-Lactams from Disubstituted Ketenes and N-Tosyl Arylimines
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol3003783
– volume: 60
  start-page: 380
  year: 2021
  ident: WOS:000585931100001
  article-title: Copper-Catalyzed Enantioconvergent Cross-Coupling of Racemic Alkyl Bromides with Azole C(sp2)-H Bonds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202009527
– volume: 363
  start-page: 400
  year: 2019
  ident: WOS:000456871800038
  article-title: An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction
  publication-title: SCIENCE
  doi: 10.1126/science.aau7797
– volume: 123
  start-page: 3990
  year: 2011
  ident: 000918794700001.82
  publication-title: Angew. Chem
– volume: 114
  start-page: 7930
  year: 2014
  ident: WOS:000340992200005
  article-title: Chemical Synthesis of β-Lactams: Asymmetric Catalysis and Other Recent Advances
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr4005549
– volume: 11
  start-page: 1158
  year: 2019
  ident: WOS:000498875700019
  article-title: A general asymmetric copper-catalysed Sonogashira C(sp3)-C(sp) coupling
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-019-0346-2
– volume: 10
  start-page: 277
  year: 2008
  ident: WOS:000252294500032
  article-title: Chiral N-heterocyclic carbene catalyzed Staudinger reaction of ketenes with imines:: Highly enantioselective synthesis of N-boc β-lactams
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol702759b
– volume: 31
  start-page: 7948
  year: 2012
  ident: WOS:000311466300030
  article-title: Kinetic and Spectroscopic Studies of Aerobic Copper(II)-Catalyzed Methoxylation of Arylboronic Esters and Insights into Aryl Transmetalation to Copper(II)
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om300586p
– volume: 105
  start-page: 3095
  year: 2005
  ident: WOS:000231188700005
  article-title: Organic reactions in aqueous media with a focus on carbon-carbon bond formations: A decade update
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr030009u
– volume: 364
  start-page: 781
  year: 2022
  ident: WOS:000725442200001
  article-title: Enantiodivergent Reaction of Ketimines with Malononitriles Using Single Cinchona Alkaloid Sulfonamide Catalysts
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.202101114
– volume: 141
  start-page: 1887
  year: 2019
  ident: WOS:000458348300016
  article-title: Enantioselective Construction of Quaternary All-Carbon Centers via Copper-Catalyzed Arylation of Tertiary Carbon-Centered Radicals
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b13052
– volume: 142
  start-page: 19652
  year: 2020
  ident: WOS:000592911000027
  article-title: Copper-Catalyzed Enantioconvergent Radical Suzuki-Miyaura C(sp3)-C(sp2) Cross-Coupling
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c09125
– volume: 143
  start-page: 15413
  year: 2021
  ident: WOS:000700883200054
  article-title: Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c07726
– volume: 17
  start-page: 358
  year: 2007
  ident: WOS:000244012200013
  article-title: Novel β-lactam derivatives:: Potent and selective inhibitors of the chymotrypsin-like activity of the human 20S proteasome
  publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS
  doi: 10.1016/j.bmcl.2006.10.047
– volume: 11
  start-page: 987
  year: 2019
  ident: WOS:000493326400007
  article-title: An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)-H bonds
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-019-0343-5
– volume: 115
  start-page: 4216
  year: 2003
  ident: 000918794700001.16
  publication-title: Angew. Chem
– volume: 17
  start-page: 3682
  year: 2015
  ident: WOS:000359393800011
  article-title: Copper-Catalyzed Cross-Coupling Reaction of Allyl Boron Ester with 1°/2°/3°-Halogenated Alkanes
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.5b01612
– volume: 10
  start-page: 2633
  year: 2020
  ident: WOS:000516887400026
  article-title: Copper-Catalyzed Intermolecular Difunctionalization of Styrenes with Thiosulfonates and Arylboronic Acids via a Radical Relay Pathway
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.9b04887
– year: 2022
  ident: WOS:000875120200001
  article-title: Ligand Development for Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Racemic Alkyl Halides
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c06718
– volume: 131
  start-page: 11229
  year: 2019
  ident: 000918794700001.53
  publication-title: Angew. Chem
– volume: 139
  start-page: 1049
  year: 2017
  ident: WOS:000393541000007
  article-title: Asymmetric Radical Cyclopropanation of Alkenes with In Situ Generated Donor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b11336
– volume: 139
  start-page: 2904
  year: 2017
  ident: WOS:000395493400012
  article-title: Asymmetric Cu-Catalyzed Intermolecular Trifluoromethylarylation of Styrenes: Enantioselective Arylation of Benzylic Radicals
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b13299
– volume: 133
  start-page: 384
  year: 2021
  ident: 000918794700001.64
  publication-title: Angew. Chem
– volume: 37
  start-page: 592
  year: 2004
  ident: WOS:000223385800013
  article-title: Advances in the catalytic, asymmetric synthesis of β-lactams
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar030055g
– volume: 18
  start-page: 9276
  year: 2012
  ident: WOS:000306403200019
  article-title: Enantioselective Synthesis of AG-041R by using N-Heteroarenesulfonyl Cinchona Alkaloid Amides as Organocatalysts
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201200367
– volume: 144
  start-page: 6442
  year: 2022
  ident: WOS:000790698300035
  article-title: Design of Hemilabile N,N,N-Ligands in Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Benzyl/Propargyl Halides with Alkenylboronate Esters
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c00957
– volume: 131
  start-page: 6491
  year: 2019
  ident: 000918794700001.74
  publication-title: Angew. Chem
– volume: 108
  start-page: 287
  year: 1984
  ident: WOS:A1984TL38400006
  article-title: THE SYNTHESIS OF 1,3-BENZODIOXOLBORON COMPOUNDS
  publication-title: CHEMIKER-ZEITUNG
– volume: 143
  start-page: 11670
  year: 2021
  ident: WOS:000684586600040
  article-title: New Catalytic Radical Process Involving 1,4-Hydrogen Atom Abstraction: Asymmetric Construction of Cyclobutanones
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c04968
– volume: 44
  start-page: 467
  year: 2005
  ident: WOS:000229397400002
  article-title: Ezetimibe - A review of its metabolism, pharmacokinetics and drug interactions
  publication-title: CLINICAL PHARMACOKINETICS
– volume: 122
  start-page: 7831
  year: 2000
  ident: WOS:000088946100034
  article-title: Catalytic, asymmetric synthesis of β-lactams
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja001754g
– volume: 58
  start-page: 6064
  year: 2019
  ident: WOS:000465413400045
  article-title: A Polymer Coating Transfer Enrichment Method for Direct Mass Spectrometry Analysis of Lipids in Biofluid Samples
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201900011
– volume: 60
  start-page: 4561
  year: 2021
  ident: WOS:000605575400001
  article-title: Copper(I)-Catalyzed Asymmetric Interrupted Kinugasa Reaction: Synthesis of α-Thiofunctional Chiral β-Lactams
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202013450
– volume: 134
  year: 2022
  ident: 000918794700001.26
  publication-title: Angew. Chem
– volume: 23
  start-page: 2104
  year: 2021
  ident: WOS:000631439700028
  article-title: Enantioselective Reaction of 2H-Azirines with Oxazol-5-(4H)-ones Catalyzed by Cinchona Alkaloid Sulfonamide Catalysts
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.1c00259
– volume: 57
  start-page: 16837
  year: 2018
  ident: WOS:000453348900045
  article-title: Catalytic Radical Process for Enantioselective Amination of C(sp3)-H Bonds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201808923
– volume: 16
  start-page: 7832
  year: 2008
  ident: WOS:000258726300034
  article-title: Studies on the antifungal properties of N-thiolated β-lactams
  publication-title: BIOORGANIC & MEDICINAL CHEMISTRY
  doi: 10.1016/j.bmc.2008.06.035
– volume: 42
  start-page: 4082
  year: 2003
  ident: WOS:000185436600024
  article-title: Catalytic enantioselective synthesis of β-lactams:: Intramolecular Kinugasa reactions and interception of an intermediate in the reaction cascade
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200352103
– volume: 532
  start-page: 218
  year: 2016
  ident: WOS:000374415100036
  article-title: Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals
  publication-title: NATURE
  doi: 10.1038/nature17438
– volume: 6
  start-page: 702
  year: 2014
  ident: WOS:000341371100013
  article-title: An organic thiyl radical catalyst for enantioselective cyclization
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.1998
– volume: 130
  start-page: 11151
  year: 2018
  ident: 000918794700001.20
  publication-title: Angew. Chem
– volume: 142
  start-page: 20902
  year: 2020
  ident: WOS:000599506900050
  article-title: Enantioconvergent Amination of Racemic Tertiary C-H Bonds
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c11103
– volume: 322
  start-page: 77
  year: 2008
  ident: WOS:000259680200040
  article-title: Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes
  publication-title: SCIENCE
  doi: 10.1126/science.1161976
– year: 2013
  ident: 000918794700001.4
  publication-title: Beta-Lactams: Unique Structures of Distinction for Novel Molecules
– volume: 356
  start-page: ARTN eaaf7230
  year: 2017
  ident: WOS:000399013800025
  article-title: Transition metal-catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry
  publication-title: SCIENCE
  doi: 10.1126/science.aaf7230
– volume: 256
  start-page: 1
  year: 1983
  ident: WOS:A1983RS03100001
  article-title: ARYLBORONIC ACIDS WITH INTRAMOLECULAR B-N INTERACTION - CONVENIENT SYNTHESIS THROUGH ORTHO-LITHIATION OF SUBSTITUTED BENZYLAMINES
  publication-title: JOURNAL OF ORGANOMETALLIC CHEMISTRY
– volume: 133
  start-page: 4611
  year: 2021
  ident: 000918794700001.22
  publication-title: Angew. Chem
– year: 2017
  ident: 000918794700001.5
  publication-title: Beta-Lactams: Novel Synthetic Pathways and Applications
– volume: 103
  start-page: 3263
  year: 2003
  ident: WOS:000184821500020
  article-title: Enantioselective radical processes
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr020044l
– volume: 55
  start-page: 1128
  year: 2019
  ident: WOS:000458544800025
  article-title: Iron-catalysed enantioselective Suzuki-Miyaura coupling of racemic alkyl bromides
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c8cc09523j
– volume: 111
  start-page: 1529
  year: 2011
  ident: WOS:000288820600009
  article-title: Transmetalation of Unsaturated Carbon Nucleophiles from Boron-Containing Species to the Mid to Late d-Block Metals of Relevance to Catalytic C-X Coupling Reactions (X = C, F, N, O, Pb, S, Se, Te)
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr1002276
– start-page: 12
  year: 2001
  ident: CCC:000170831700001
  article-title: Industrial synthesis of semisynthetic antibiotics
  publication-title: SYNTHESIS OF BETA-LACTAM ANTIBIOTICS: CHEMISTRY, BIOCATALYSIS & PROCESS INTEGRATION
– volume: 17
  start-page: 1946
  year: 2007
  ident: WOS:000245827900024
  article-title: Synthesis and biological evaluation, of unprecedented classes of spiro-β-lactams and azido-β-lactams as acyl-CoA:cholesterol acyltransferase inhibitors
  publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS
  doi: 10.1016/j.bmcl.2007.01.027
– volume: 105
  start-page: 1961
  year: 2005
  ident: WOS:000229729000003
  article-title: Ligand substitution reactions at inorganic centers
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr030705u
– volume: 115
  start-page: 9587
  year: 2015
  ident: WOS:000361254500015
  article-title: Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C-C Bonds
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00162
– volume: 60
  start-page: 13814
  year: 2021
  ident: WOS:000649698400001
  article-title: Modular Synthesis of α-Quaternary Chiral β-Lactams by a Synergistic Copper/Palladium-Catalyzed Multicomponent Reaction
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202100601
– volume: 3
  start-page: 692
  year: 2017
  ident: WOS:000406308200007
  article-title: Transition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Alternative to SN1 and SN2 Processes
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.7b00212
– volume: 515
  start-page: 100
  year: 2014
  ident: WOS:000344187500037
  article-title: Asymmetric photoredox transition-metal catalysis activated by visible light
  publication-title: NATURE
  doi: 10.1038/nature13892
– volume: 12
  year: 2020
  ident: WOS:000542087800001
  article-title: Enantioselective radical C-H amination for the synthesis of β-amino alcohols
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-020-0482-8
– volume: 133
  start-page: 13933
  year: 2021
  ident: 000918794700001.24
  publication-title: Angew. Chem
– volume: 48
  start-page: 8037
  year: 2009
  ident: WOS:000271130900014
  article-title: Catalytic Enantioselective Stereoablative Alkylation of 3-Halooxindoles: Facile Access to Oxindoles with C3 All-Carbon Quaternary Stereocenters
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200902943
– volume: 360
  start-page: 419
  year: 2018
  ident: WOS:000430949600038
  article-title: Catalytic enantioselective Minisci-type addition to heteroarenes
  publication-title: SCIENCE
  doi: 10.1126/science.aar6376
– volume: 2
  start-page: 623
  year: 2020
  ident: WOS:000794105100015
  article-title: Ni-Catalyzed Enantioconvergent Coupling of Epoxides with Alkenylboronic Acids: Construction of Oxindoles Bearing Quaternary Carbons
  publication-title: CCS CHEMISTRY
  doi: 10.31635/ccschem.019.20190064
– volume: 127
  start-page: 3944
  year: 2015
  ident: 000918794700001.38
  publication-title: Angew. Chem
– volume: 353
  start-page: 1014
  year: 2016
  ident: WOS:000382558900035
  article-title: Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay
  publication-title: SCIENCE
– volume: 364
  start-page: 1166
  year: 2019
  ident: WOS:000472175100038
  article-title: Photoexcitation of flavoenzymes enables a stereoselective radical cyclization
  publication-title: SCIENCE
  doi: 10.1126/science.aaw1143
– volume: 374
  start-page: 1612
  year: 2021
  ident: WOS:000736589300033
  article-title: Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450
  publication-title: SCIENCE
  doi: 10.1126/science.abk1603
– volume: 61
  start-page: ARTN e202208323
  year: 2022
  ident: WOS:000855023500001
  article-title: Asymmetric Synthesis of Spiro[Azetidine-3,3′-Indoline]-2,2′-Diones via Copper(I)-Catalyzed Kinugasa/C-C Coupling Cascade Reaction
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202208323
– volume: 353
  start-page: 2976
  year: 2011
  ident: WOS:000297099100019
  article-title: Organocatalytic Enantioselective Decarboxylative Addition of Malonic Acids Half Thioesters to Isatins
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.201100410
– volume: 8
  start-page: 7340
  year: 2018
  ident: WOS:000441112400053
  article-title: Asymmetric Rh(II)/Pd(0) Relay Catalysis: Synthesis of α-Quaternary Chiral β-Lactams through Enantioselective C-H Insertion/Diastereoselective Allylation of Diazoamides
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.8b01687
– volume: 9
  start-page: 1198
  year: 2017
  ident: WOS:000416026200010
  article-title: Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.2841
– volume: 13
  start-page: 236
  year: 2021
  ident: WOS:000607026500001
  article-title: Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-020-00609-7
– volume: 29
  start-page: 257
  year: 1999
  ident: WOS:000081707200004
  article-title: Preparation and antibiotic activity of monobactam analogues of nocardicins
  publication-title: PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY
– volume: 133
  start-page: 1710
  year: 2011
  ident: WOS:000287831800026
  article-title: A New Family of Cinchona-Derived Amino Phosphine Precatalysts: Application to the Highly Enantio- and Diastereoselective Silver-Catalyzed Isocyanoacetate Aldol Reaction
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja110534g
– volume: 121
  start-page: 8181
  year: 2009
  ident: 000918794700001.58
  publication-title: Angew. Chem
– volume: 563
  start-page: 379
  year: 2018
  ident: WOS:000450048400055
  article-title: Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins
  publication-title: NATURE
  doi: 10.1038/s41586-018-0669-y
– volume: 9
  start-page: ARTN 2445
  year: 2018
  ident: WOS:000436049400005
  article-title: Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-018-04885-3
– volume: 54
  start-page: 3872
  year: 2015
  ident: WOS:000351204600003
  article-title: Enantioselective Catalysis of Photochemical Reactions
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201411409
– volume: 50
  start-page: 3904
  year: 2011
  ident: WOS:000289514100015
  article-title: Copper-Catalyzed Cross-Coupling Reaction of Organoboron Compounds with Primary Alkyl Halides and Pseudohalides
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201008007
– volume: 50
  start-page: 11060
  year: 2014
  ident: WOS:000340900400037
  article-title: Cu-Catalyzed Suzuki-Miyaura reactions of primary and secondary benzyl halides with arylboronates
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c4cc05376a
– volume: 20
  start-page: 1468
  year: 2020
  ident: WOS:000552025400007
  article-title: Recent Advances in β-lactam Derivatives as Potential Anticancer Agents
  publication-title: CURRENT TOPICS IN MEDICINAL CHEMISTRY
  doi: 10.2174/1568026620666200309161444
– volume: 17
  start-page: 3844
  year: 2015
  ident: WOS:000357620900024
  article-title: Suzuki cross-coupling in aqueous media
  publication-title: GREEN CHEMISTRY
  doi: 10.1039/c5gc00794a
– volume: 2014
  start-page: 2647
  year: 2014
  ident: WOS:000334783300002
  article-title: Progress in Asymmetric Organocatalytic Synthesis of ∼- Lactams
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ejoc.201301720
– volume: 139
  start-page: 7705
  year: 2017
  ident: WOS:000403631200009
  article-title: Feedstocks to Pharmacophores: Cu-Catalyzed Oxidative Arylation of Inexpensive Alkylarenes Enabling Direct Access to Diarylalkanes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b03387
– volume: 344
  start-page: 392
  year: 2014
  ident: WOS:000334867800035
  article-title: A Dual-Catalysis Approach to Enantioselective [2+2] Photocycloadditions Using Visible Light
  publication-title: SCIENCE
  doi: 10.1126/science.1251511
– volume: 124
  start-page: 1578
  year: 2002
  ident: WOS:000173982500011
  article-title: Enantioselective Staudinger synthesis of β-lactams catalyzed by a planar-chiral nucleophile
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja012427r
– volume: 58
  start-page: 11112
  year: 2019
  ident: WOS:000478635100058
  article-title: Copper(I)-Catalyzed Enantioconvergent Borylation of Racemic Benzyl Chlorides Enabled by Quadrant-by-Quadrant Structure Modification of Chiral Bisphosphine Ligands
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201906011
– volume: 57
  start-page: 10985
  year: 2018
  ident: WOS:000442863700033
  article-title: Asymmetric Synthesis of Spirocyclic-Lactams through Copper-Catalyzed Kinugasa/Michael Domino Reactions
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201806931
– volume: 130
  start-page: 17079
  year: 2018
  ident: 000918794700001.44
  publication-title: Angew. Chem
– volume: 14
  start-page: 949
  year: 2022
  ident: WOS:000805517500001
  article-title: Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)-C(sp) cross-coupling of tertiary electrophiles with alkynes
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-022-00954-9
SSID ssj0028806
Score 2.617271
Snippet The copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the...
The copper‐catalyzed enantioconvergent radical C(sp 3 )−C(sp 2 ) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the...
The copper-catalyzed enantioconvergent radical C(sp(3))-C(sp(2)) cross-coupling of tertiary alpha-bromo-beta-lactams with organoboronate esters could provide...
The copper-catalyzed enantioconvergent radical C(sp )-C(sp ) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the...
The copper-catalyzed enantioconvergent radical C(sp3 )-C(sp2 ) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202214709
SubjectTerms Asymmetric Catalysis
beta-Lactams
Catalysis
Catalysts
Chemical reactions
Chemistry
Chemistry, Multidisciplinary
Construction
Copper
Copper - chemistry
Cross coupling
Electrons
Esters
Physical Sciences
Radical Chemistry
Science & Technology
β-Lactam
Title Synthesis of α‐Quaternary β‐Lactams via Copper‐Catalyzed Enantioconvergent Radical C(sp3)−C(sp2) Cross‐Coupling with Organoboronate Esters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202214709
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000918794700001
https://www.ncbi.nlm.nih.gov/pubmed/36357331
https://www.proquest.com/docview/2759968461
https://www.proquest.com/docview/2735870687
Volume 62
WOS 000918794700001
WOSCitedRecordID wos000918794700001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL3Dh_ydQkJEqQQ9pN3YSx8cq2qogqEShUm-R7TjVCkhWmwRpe-LIEXHgPeBB-hB9EmacH7pFCASHSE5sy7E9tj-PPd8QsqE0Z0FcTGCTk0z8UEnlJ2EY-dIaABfM6lCggfPL_XjvMHx-FB2ds-Lv-CFGhRuODDdf4wBXut7-SRqKFtiwv2PoaMdZ8OGFLURFByN_FAPh7MyLOPfRC_3A2jhh26vZV1elX6DmhVVpFci6lWj3GlFDHboLKG-32kZvmZML9I7_U8nr5GoPU-lOJ1c3yCVb3iSX08E73C3y9fWyBOxYz2paFfT029nHz69a5bSLiyU9_Q7vL5Rp1PuafpgpmlbzuV3AxxTVRcsTm9MpXsGZVe7aO1qANvRAuUMjmj6t53zz7NMXDLBNmmKbYd6qRfvhY4rKY-qsSCuNDAxQLp0i40N9mxzuTt-ke37v48E3XHDpx8rGoogSUXCNXIVCBtpwXeQAK3WobCCCPJEsF4E0sYItdG5ZbJjJwyjJOTf8Dlkrq9LeIxRkUXEeyTDP4TFSwfIfKAGzjmFW5pFH_KGPM9MToKMfjndZR93MMmztbGxtjzwZ08876o_fplwfRCbrp4A6YwKZbwDeBR55PEZDL-GJjCpt1WIaHuFBcyI8crcTtbEojkyBnEPujfOyN8YjOkZX8fADCNQ9EvxNsrSvODIeNB5hTvj-UL1sZ__ZdHy7_y-ZHpArEOZOdyXXyVqzaO1DQHONfuRG7A8LSkc_
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKOZQL70eggJGKoIe0GzuJ4wOHKt1ql25XorRSb6njeNEK2Kw2WdD2xJEj4sD_KD-kB35CfwkzecEWIRBSDxwiJY6dh2fGnhl7viFkRcWcOf6gBUZO0LJdJZUduK5nS6NBuWAmdgUGOO_0_c6--_zAO1ggx3UsTIkP0TjcUDKK8RoFHB3S6z9QQzEEGww8hpl2WrLaV7ltZu_BasuedTeBxI8Z22rvhR27Sixgay64tH1lfDHwAjHgMQLkCenEmseDBHSZ2FXGEU4SSJYIR2pfgd2WGOZrphPXCxLONYfnXiAXMY04wvVv7jaIVQzEoQxo4tzGvPc1TmSLrc9_7_w8-Itye2YenFedi7lv6wr5VvdaueXl9do0j9f00RlAyf-qW6-Sy5UmTjdK0blGFszoOlkK6wR4N8iXl7MRqMfZMKPpgJ4cn3749GKqCgfqZEZPvsJ1T-lcvc3ou6GiYToemwkUhugRmx2ZhLZxl9EwLXb2Y5BrTndVsS5Gw6fZmK-efvyMJ2yVhkgkbJtOMUT6FUX_OC0CZdMYQSbgvbSNoBbZTbJ_Lt1yiyyO0pG5QyiIm-Lck26SwKGlAg3HUQIGVs2MTDyL2DVTRbrCeMdUI2-iEp2aRUjdqKGuRZ409ccluslvay7XPBpVo1wWMYHgPqDBOhZ51NwGKuGikxqZdIp1uIdr6YGwyO2St5tXcQRD5Bxar_zM7M19NACcAGYMUSxCWcT5m2ph9eMI6pBbhBXc_offizb63XZzdfdfGj0kS529nV7U6_a375FLUM4LV51cJov5ZGrug_Kaxw-K4YKSw_MWpO9jy6Sv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKkYAL70eggJGKoIe0GzsvHzhU2V11aamgUKm34NgOWgGb1SYL2p44ckQc-B3AD6nEX-gvYSYv2CIEQuqBQ6Q87M3GM2N_Hnu-IWRZJpw5ftqBSU7YsV0ppB26rmcLowBcMJO4AQY4P9r2N3bdh3ve3gL53MTCVPwQrcMNLaPsr9HAxzpd-0EaihHYML9jmGinI-ptlZtm9hYmbfmDQRckfJexfu9ZtGHXeQVsxQMubF8aP0i9MEh5gvx4gXASxZNUA5RJXGmcwNGhYDpwhPIlTNu0Yb5iSrteqDlXHH73BDnp-h2BySK6Oy1hFQNrqOKZOLcx7X1DE9lha_P_d34Y_AXbHhkG55FzOfT1z5FvTaNVO15erk6LZFXtH-GT_J9a9Tw5W-Nwul4ZzgWyYEYXyemoSX93iXx6OhsBOM6HOc1SevDl8N2HJ1NZuk8nM3rwFa63pCrk65y-GUoaZeOxmcDNCP1hs32jaQ_3GA2zcl8_hrgWdEeWq2I0up-P-crh-494wlZohDLCutkUA6RfUPSO0zJMNkuQYgLeS3tIaZFfJrvH0ixXyOIoG5lrhIKxSc494WoNhxIS8I0jA-hWFTNCexaxG52KVc3wjolGXsUVNzWLUbpxK12L3GvLjytuk9-WXGpUNK77uDxmAVL7AH51LHKnfQxSwiUnOTLZFMtwD1fSw8AiVyvVbl_FkQqRc6i9_LOut88R_jshjBdBuQRlEedvikX1hyOlQ2ERVir7Hz4vXt8e9Nqr6_9S6TY59bjbj7cG25s3yBm4zUs_nVgii8Vkam4Cci2SW2VnQcnz47aj78y-o14
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+%CE%B1%E2%80%90Quaternary+%CE%B2%E2%80%90Lactams+via+Copper%E2%80%90Catalyzed+Enantioconvergent+Radical+C%28sp3%29%E2%88%92C%28sp2%29+Cross%E2%80%90Coupling+with+Organoboronate+Esters&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fu%E2%80%90Li+Wang&rft.au=Liu%2C+Lin&rft.au=Chang%E2%80%90Jiang+Yang&rft.au=Cheng%2C+Luan&rft.date=2023-01-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=2&rft_id=info:doi/10.1002%2Fanie.202214709&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon