Synthesis of α‐Quaternary β‐Lactams via Copper‐Catalyzed Enantioconvergent Radical C(sp3)−C(sp2) Cross‐Coupling with Organoboronate Esters
The copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the synthetically valuable α‐quaternary β‐lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters bet...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 2; pp. e202214709 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
09.01.2023
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the synthetically valuable α‐quaternary β‐lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N‐ligand catalyst to forge the sterically congested chiral C(sp3)−C(sp2) bond via a single‐electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross‐coupling reactions.
Copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary alkyl bromides with organoboronate esters is developed to access synthetically valuable α‐quaternary chiral β‐lactams. The success of this work relies on the utilization of chiral N,N,N‐ligands to forge the sterically congested C(sp3)−C(sp2) bonds. |
---|---|
AbstractList | The copper-catalyzed enantioconvergent radical C(sp3 )-C(sp2 ) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the synthetically valuable α-quaternary β-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp3 )-C(sp2 ) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions.The copper-catalyzed enantioconvergent radical C(sp3 )-C(sp2 ) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the synthetically valuable α-quaternary β-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp3 )-C(sp2 ) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions. The copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the synthetically valuable α‐quaternary β‐lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N‐ligand catalyst to forge the sterically congested chiral C(sp3)−C(sp2) bond via a single‐electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross‐coupling reactions.Dedicated to Professor Keiji Maruoka on the occasion of his 70th birthday The copper-catalyzed enantioconvergent radical C(sp(3))-C(sp(2)) cross-coupling of tertiary alpha-bromo-beta-lactams with organoboronate esters could provide the synthetically valuable alpha-quaternary beta-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp(3))-C(sp(2)) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions. The copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the synthetically valuable α‐quaternary β‐lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N‐ligand catalyst to forge the sterically congested chiral C(sp3)−C(sp2) bond via a single‐electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross‐coupling reactions. Copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary alkyl bromides with organoboronate esters is developed to access synthetically valuable α‐quaternary chiral β‐lactams. The success of this work relies on the utilization of chiral N,N,N‐ligands to forge the sterically congested C(sp3)−C(sp2) bonds. The copper‐catalyzed enantioconvergent radical C(sp 3 )−C(sp 2 ) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the synthetically valuable α‐quaternary β‐lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N‐ligand catalyst to forge the sterically congested chiral C(sp 3 )−C(sp 2 ) bond via a single‐electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross‐coupling reactions. The copper-catalyzed enantioconvergent radical C(sp )-C(sp ) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the synthetically valuable α-quaternary β-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp )-C(sp ) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions. |
Author | Chen, Ji‐Jun Yang, Chang‐Jiang Li, Zhong‐Liang Liu, Xin‐Yuan Wang, Fu‐Li Yang, Jing Gu, Qiang‐Shuai Luan, Cheng Liu, Lin |
Author_xml | – sequence: 1 givenname: Fu‐Li surname: Wang fullname: Wang, Fu‐Li organization: Southern University of Science and Technology – sequence: 2 givenname: Lin surname: Liu fullname: Liu, Lin organization: Southern University of Science and Technology – sequence: 3 givenname: Chang‐Jiang surname: Yang fullname: Yang, Chang‐Jiang organization: Southern University of Science and Technology – sequence: 4 givenname: Cheng surname: Luan fullname: Luan, Cheng organization: Southern University of Science and Technology – sequence: 5 givenname: Jing surname: Yang fullname: Yang, Jing organization: Shenzhen Technology University – sequence: 6 givenname: Ji‐Jun surname: Chen fullname: Chen, Ji‐Jun organization: Southern University of Science and Technology – sequence: 7 givenname: Qiang‐Shuai surname: Gu fullname: Gu, Qiang‐Shuai organization: Southern University of Science and Technology – sequence: 8 givenname: Zhong‐Liang surname: Li fullname: Li, Zhong‐Liang email: lizl@sustech.edu.cn organization: Southern University of Science and Technology – sequence: 9 givenname: Xin‐Yuan orcidid: 0000-0002-6978-6465 surname: Liu fullname: Liu, Xin‐Yuan email: liuxy3@sustech.edu.cn organization: Southern University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36357331$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAUhi1URC-wZYkssWmFMviSxMmyigaoNKLito4c52TqKmMH22k1rFiyRCx4D3iQPkSfBEczDFIlBN7Yjr7vnOj3OUR7xhpA6DElM0oIey6NhhkjjNFUkPIeOqAZowkXgu_Fc8p5IoqM7qND7y8jXxQkf4D2ec4zwTk9QN_frU24AK89th2--XH7-eubUQZwRro1vvkZ7wupglx5fKUlruwwgIsfKxlkv_4ELZ4baYK2yporcEswAb-VrVayx9WxH_jJ7Zdv04Gd4MpZ7yfXjkOvzRJf63CBz91SGttYZ03si-c-NvcP0f1O9h4ebfcj9OHF_H31KlmcvzyrTheJ4oKXSS4hF11WiI43Ik2JKGmjeNO1nOVNKoEK2hYlawUtVS6ZSFtguWKqTbOi5VzxI3S8qTs4-3EEH-qV9gr6Xhqwo6-Z4LE6yQsR0ad30Es7xpj6icrKMi_SnEbqyZYamxW09eD0KiZZ_048As82wDU0tvNKg1GwwwghJS1EGR8zroku_p-udJDxJUzM14SozjaqmmJ30O00Suppduppdurd7EQhvSOobcHgpO7_rpXbX9Q9rP_RpD59fTb_4_4C-33dqQ |
CitedBy_id | crossref_primary_10_1021_jacs_3c02387 crossref_primary_10_1021_jacs_4c18341 crossref_primary_10_1021_acs_chemrev_3c00059 crossref_primary_10_1039_D3GC02793G crossref_primary_10_1002_anie_202411469 crossref_primary_10_1039_D3QO01600E crossref_primary_10_1039_D3OB00309D crossref_primary_10_1021_jacs_4c01842 crossref_primary_10_1002_anie_202408419 crossref_primary_10_1021_jacs_4c05480 crossref_primary_10_1002_adsc_202401489 crossref_primary_10_1002_ange_202408419 crossref_primary_10_1021_jacs_4c09324 crossref_primary_10_1039_D4SC01513D crossref_primary_10_1002_ange_202411469 crossref_primary_10_1002_cjoc_202300622 crossref_primary_10_1021_jacs_4c02141 crossref_primary_10_1002_advs_202309069 crossref_primary_10_1002_anie_202302983 crossref_primary_10_1021_acs_orglett_3c00751 crossref_primary_10_1021_jacs_3c09369 crossref_primary_10_1021_prechem_3c00084 crossref_primary_10_1002_ange_202302983 |
Cites_doi | 10.1038/s41557-022-00954-9 10.1021/acs.chemrev.5b00162 10.1039/C4CC05376A 10.1007/978-94-010-0850-1 10.1038/nature17438 10.1126/science.1251511 10.1002/ange.202013450 10.1021/jacs.2c00957 10.1021/acscatal.8b01687 10.1021/acs.orglett.1c00259 10.1080/10826069908544928 10.1002/ange.200902943 10.1021/cr1002276 10.1039/C5GC00794A 10.1021/jacs.6b13299 10.1021/cr020044l 10.1038/s41467-018-04885-3 10.1021/cr030009u 10.1021/jacs.0c11103 10.1002/anie.201906011 10.1002/anie.201008007 10.1016/j.bmcl.2007.01.027 10.1002/anie.201806931 10.1126/science.aau7797 10.1021/cr030705u 10.1038/s41557-019-0346-2 10.1002/adsc.201100410 10.1002/anie.202100601 10.1038/s41557-020-0482-8 10.1002/anie.200352103 10.1002/ange.201411409 10.1038/nchem.1998 10.1021/jacs.7b03387 10.1021/jacs.6b11336 10.1002/anie.201808923 10.1021/ol3003783 10.1007/978-3-642-33188-6 10.1002/adsc.202101114 10.31635/ccschem.019.201900064 10.1002/anie.202013450 10.1002/ejoc.201301720 10.1021/om300586p 10.1002/ange.201808923 10.1002/anie.202009527 10.1002/ange.201902191 10.1002/anie.200902943 10.1021/acscatal.9b04887 10.1021/ar030055g 10.1016/j.bmc.2008.06.035 10.1002/ange.201906011 10.1002/ange.201008007 10.1002/anie.202208323 10.1038/nature13892 10.1126/science.aar6376 10.1021/jacs.8b13052 10.1126/science.abk1603 10.1021/ja001754g 10.1002/ange.200352103 10.1126/science.1161976 10.1016/S0022-328X(00)99290-8 10.2174/1568026620666200309161444 10.1016/j.bmcl.2006.10.047 10.1021/cr4005549 10.1021/acs.orglett.5b01612 10.1126/science.aaf7783 10.1021/jacs.0c09125 10.1039/C8CC09523J 10.1002/ange.202208323 10.2165/00003088-200544050-00002 10.1002/chem.201200367 10.1038/s41586-018-0669-y 10.1021/jacs.1c04968 10.1002/ange.201806931 10.1021/ol702759b 10.1021/jacs.2c06718 10.1021/ja012427r 10.1002/ange.202100601 10.1002/ange.202009527 10.1007/978-3-319-55621-5 10.1126/science.aaw1143 10.1126/science.aaf7230 10.1002/anie.201902191 10.1038/s41557-020-00609-7 10.1038/s41557-019-0343-5 10.1002/anie.201411409 10.1021/jacs.1c07726 10.1021/ja110534g 10.1038/nchem.2841 10.1021/acscentsci.7b00212 10.1002/anie.201900011 10.1038/NCHEM.1998 10.1039/c8cc09523j 10.31635/ccschem.019.20190064 10.1038/NCHEM.2841 10.1039/c4cc05376a 10.1039/c5gc00794a |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 17B 1KM 1KN BLEPL BNZSX DTL EGQ CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202214709 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science Core Collection Web of Science - Science Citation Index Expanded - 2023 Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) Web of Science CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36357331 000918794700001 10_1002_anie_202214709 ANIE202214709 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Guangdong Innovative Program funderid: 2019BT02Y335 – fundername: Shenzhen Science and Technology Program funderid: KQTD20210811090112004 – fundername: Guangdong Provincial Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology funderid: 2020B121201002 – fundername: Shenzhen Special Funds funderid: JCYJ20200109141001789 – fundername: National Key R&D Program of China funderid: 2021YFF0701604; 2021YFF0701704 – fundername: National Natural Science Foundation of China funderid: 22025103; 21831002; 21901106; 22001109; 22201127; 22271133; 22101186; 22101122 – fundername: National Key R&D Program of China grantid: 2021YFF0701604; 2021YFF0701704 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 22025103; 21831002; 21901106; 22001109; 22201127; 22271133; 22101186; 22101122 – fundername: Great Bay University – fundername: Shenzhen Special Funds grantid: JCYJ20200109141001789 – fundername: Shenzhen Science and Technology Program grantid: KQTD20210811090112004 – fundername: Guangdong Innovative Program grantid: 2019BT02Y335 – fundername: Guangdong Provincial Key Laboratory of Catalysis grantid: 2020B121201002 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3739-6ae67f587f3b7440791bc3bfd326b4ae171d892d719c6a274de26c2cd458d33c3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 72 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000918794700001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 02:39:55 EDT 2025 Sun Jul 13 04:44:00 EDT 2025 Thu Apr 03 07:03:48 EDT 2025 Wed Jul 09 18:14:03 EDT 2025 Fri Aug 29 16:17:46 EDT 2025 Tue Jul 01 01:46:58 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Wed Jan 22 16:19:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | TRANSITION-METAL CATALYSIS ASYMMETRIC-SYNTHESIS ENANTIOSELECTIVE SYNTHESIS beta-Lactam Radical Chemistry SUBSTITUTION-REACTIONS ARYLBORONIC ACIDS ALKYL-HALIDES Asymmetric Catalysis TRANSMETALATION Cross-Coupling Copper DERIVATIVES ACCESS CYCLIZATION β-Lactam |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3739-6ae67f587f3b7440791bc3bfd326b4ae171d892d719c6a274de26c2cd458d33c3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6978-6465 0000-0003-3405-1546 0000-0002-2043-5701 0009-0004-9601-2563 |
PMID | 36357331 |
PQID | 2759968461 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2735870687 pubmed_primary_36357331 webofscience_primary_000918794700001 crossref_primary_10_1002_anie_202214709 proquest_journals_2759968461 wiley_primary_10_1002_anie_202214709_ANIE202214709 webofscience_primary_000918794700001CitationCount crossref_citationtrail_10_1002_anie_202214709 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 9, 2023 |
PublicationDateYYYYMMDD | 2023-01-09 |
PublicationDate_xml | – month: 01 year: 2023 text: January 9, 2023 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 3 2018; 360 2021; 23 2020; 20 2009 2009; 48 121 2019; 11 2019; 55 2018; 563 2012; 18 2020; 12 2020; 10 2012; 14 2017; 356 2017; 9 2019; 364 2011; 353 2011; 111 2019; 363 2022; 364 2018; 9 2022 2022; 61 134 2018; 8 2020; 2 2001 2018 2018; 57 130 2004; 37 2005; 105 2015 2015; 54 127 2016; 353 2000; 122 2014; 50 2014; 6 2007; 17 2014; 515 1983; 256 2015; 17 2020; 142 1999; 29 2008; 16 1984; 108 2008; 10 2003 2003; 42 115 2008; 322 2021; 143 2019; 141 2014; 114 2005; 44 2019 2019; 58 131 2012; 31 2011; 133 2017; 139 2022; 144 2021; 13 2015; 115 2002; 124 2021 2021; 60 133 2022; 14 2017 2011 2011; 50 123 2014 2013 2016; 532 2021; 374 2003; 103 2014; 344 e_1_2_3_50_2 e_1_2_3_92_1 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_39_2 e_1_2_3_12_2 e_1_2_3_58_2 e_1_2_3_8_1 e_1_2_3_77_2 e_1_2_3_35_2 e_1_2_3_31_1 e_1_2_3_50_3 e_1_2_3_54_2 e_1_2_3_73_2 e_1_2_3_73_3 e_1_2_3_81_3 e_1_2_3_81_2 Dallacker F. (e_1_2_3_78_2) 1984; 108 e_1_2_3_28_2 e_1_2_3_24_2 e_1_2_3_47_2 e_1_2_3_89_2 e_1_2_3_66_1 e_1_2_3_20_2 e_1_2_3_43_2 e_1_2_3_62_2 e_1_2_3_85_2 e_1_2_3_62_3 e_1_2_3_72_2 e_1_2_3_91_2 e_1_2_3_19_2 e_1_2_3_38_2 e_1_2_3_3_2 e_1_2_3_34_2 e_1_2_3_7_2 e_1_2_3_15_1 e_1_2_3_57_2 e_1_2_3_76_1 e_1_2_3_30_2 e_1_2_3_11_1 e_1_2_3_53_2 e_1_2_3_61_2 e_1_2_3_80_2 e_1_2_3_27_2 e_1_2_3_69_1 e_1_2_3_23_2 e_1_2_3_23_3 e_1_2_3_46_2 e_1_2_3_65_1 e_1_2_3_88_1 e_1_2_3_42_3 e_1_2_3_42_2 e_1_2_3_84_2 e_1_2_3_71_2 e_1_2_3_90_2 e_1_2_3_18_3 e_1_2_3_37_3 e_1_2_3_37_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_56_2 e_1_2_3_79_2 e_1_2_3_33_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_56_3 e_1_2_3_75_2 e_1_2_3_52_1 e_1_2_3_10_1 e_1_2_3_60_2 e_1_2_3_83_1 e_1_2_3_49_2 e_1_2_3_22_2 e_1_2_3_45_2 e_1_2_3_68_2 e_1_2_3_22_3 e_1_2_3_26_1 e_1_2_3_41_2 e_1_2_3_64_2 e_1_2_3_87_2 e_1_2_3_70_2 (e_1_2_3_24_3) 2022; 134 e_1_2_3_1_1 e_1_2_3_5_2 e_1_2_3_17_2 e_1_2_3_9_1 e_1_2_3_59_1 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_51_2 e_1_2_3_32_2 e_1_2_3_55_1 e_1_2_3_74_2 e_1_2_3_82_1 e_1_2_3_48_2 e_1_2_3_29_2 e_1_2_3_21_3 e_1_2_3_44_2 e_1_2_3_25_2 e_1_2_3_67_2 e_1_2_3_40_2 e_1_2_3_86_2 e_1_2_3_21_2 e_1_2_3_63_2 Cherney, AH (WOS:000361254500015) 2015; 115 Dong, XY (WOS:000498875700019) 2019; 11 Zhang, XF (WOS:000552025400007) 2020; 20 Yang, Z.-Q. (000918794700001.82) 2011; 123 King, AE (WOS:000311466300030) 2012; 31 Magriotis, PA (WOS:000334783300002) 2014; 2014 Fujita, K (WOS:000631439700028) 2021; 23 Choi, J (WOS:000399013800025) 2017; 356 Sladojevich, F (WOS:000287831800026) 2011; 133 Zhong, XQ (WOS:000855023500001) 2022; 61 Shintani, r (000918794700001.16) 2003; 115 Nicewicz, DA (WOS:000259680200040) 2008; 322 Iwamoto, H (WOS:000478635100058) 2019; 58 Su (000918794700001.64) 2021; 133 Biegasiewicz, KF (WOS:000472175100038) 2019; 364 O'Driscoll, M (WOS:000258726300034) 2008; 16 Zhang, X (WOS:000456871800038) 2019; 363 Kern, N (WOS:000416026200010) 2017; 9 Zhang, YF (WOS:000700883200054) 2021; 143 Wang, ZB (WOS:000607026500001) 2021; 13 Zhang, YR (WOS:000252294500032) 2008; 10 Nakamura, S (WOS:000725442200001) 2022; 364 Qi, JL (WOS:000605575400001) 2021; 60 Wang, ZB (WOS:000450048400055) 2018; 563 Su, XL (WOS:000585931100001) 2021; 60 Hodous, BL (WOS:000173982500011) 2002; 124 Vasilopoulos, A (WOS:000403631200009) 2017; 139 Xie, JJ (WOS:000684586600040) 2021; 143 Yang, Y (WOS:000493326400007) 2019; 11 Huang, LZ (WOS:000441112400053) 2018; 8 Iwamoto, H. (000918794700001.53) 2019; 131 Taggi, AE (WOS:000088946100034) 2000; 122 Shu, L. (000918794700001.20) 2018; 130 Shu, T (WOS:000442863700033) 2018; 57 Richens, DT (WOS:000229729000003) 2005; 105 Proctor, RSJ (WOS:000430949600038) 2018; 360 Ma, S (WOS:000271130900014) 2009; 48 Benfatti, F (WOS:000245827900024) 2007; 17 Su, L. (000918794700001.74) 2019; 131 Iwamoto, T (WOS:000458544800025) 2019; 55 Li, CJ (WOS:000231188700005) 2005; 105 Wang, Y (WOS:000393541000007) 2017; 139 Wu, LQ (WOS:000458348300016) 2019; 141 Wang, GZ (WOS:000359393800011) 2015; 17 Pitts, CR (WOS:000340992200005) 2014; 114 DALLACKER, F (WOS:A1984TL38400006) 1984; 108 Qi, F. (000918794700001.22) 2021; 133 Hashimoto, T (WOS:000341371100013) 2014; 6 Gerardin-Charbonnier, C (WOS:000081707200004) 1999; 29 (000918794700001.38) 2015; 127 Li, CQ (WOS:000453348900045) 2018; 57 France, S (WOS:000223385800013) 2004; 37 Shintani, R (WOS:000185436600024) 2003; 42 Brimioulle, R (WOS:000351204600003) 2015; 54 Fu, GC (WOS:000406308200007) 2017; 3 Qi, JL (WOS:000649698400001) 2021; 60 Zhang, W (WOS:000382558900035) 2016; 353 Li, JT (WOS:000436049400005) 2018; 9 Zhang, WP (WOS:000465413400045) 2019; 58 Ma, X. (000918794700001.58) 2009; 121 Dong, XY (WOS:000875120200001) 2022 Bruggink, A (CCC:000170831700001) 2001 Murphy, JJ (WOS:000374415100036) 2016; 532 Lang, K (WOS:000599506900050) 2020; 142 Wu, LQ (WOS:000395493400012) 2017; 139 Hara, N (WOS:000297099100019) 2011; 353 Nakafuku, KM (WOS:000542087800001) 2020; 12 Yang, CT (WOS:000289514100015) 2011; 50 Wang, PF (WOS:000790698300035) 2022; 144 Huo, HH (WOS:000344187500037) 2014; 515 Zhong (000918794700001.26) 2022; 134 Qi, F. (000918794700001.24) 2021; 133 Hoffmann, I (WOS:000357620900024) 2015; 17 Kosoglou, T (WOS:000229397400002) 2005; 44 Banik, B.K. (000918794700001.5) 2017 Banik (000918794700001.4) 2013 Sibi, MP (WOS:000184821500020) 2003; 103 Imbach, P (WOS:000244012200013) 2007; 17 LAUER, M (WOS:A1983RS03100001) 1983; 256 Li, K. (000918794700001.44) 2018; 130 Du, JN (WOS:000334867800035) 2014; 344 Sun, YY (WOS:000340900400037) 2014; 50 Jiang, SP (WOS:000592911000027) 2020; 142 Zhou, Q (WOS:000736589300033) 2021; 374 Wu, L (WOS:000794105100015) 2020; 2 Hara, N (WOS:000306403200019) 2012; 18 Liang, QJ (WOS:000516887400026) 2020; 10 Chen, S (WOS:000302387800032) 2012; 14 Partyka, DV (WOS:000288820600009) 2011; 111 Wang, FL (WOS:000805517500001) 2022; 14 |
References_xml | – volume: 17 start-page: 358 year: 2007 end-page: 362 publication-title: Bioorg. Med. Chem. Lett. – volume: 17 start-page: 1946 year: 2007 end-page: 1950 publication-title: Bioorg. Med. Chem. Lett. – volume: 142 start-page: 20902 year: 2020 end-page: 20911 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2633 year: 2020 end-page: 2639 publication-title: ACS Catal. – volume: 44 start-page: 467 year: 2005 end-page: 494 publication-title: Clin. Pharmacokinet. – volume: 356 year: 2017 publication-title: Science – volume: 515 start-page: 100 year: 2014 end-page: 103 publication-title: Nature – volume: 139 start-page: 1049 year: 2017 end-page: 1052 publication-title: J. Am. Chem. Soc. – volume: 48 121 start-page: 8037 8181 year: 2009 2009 end-page: 8041 8185 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2001 – volume: 13 start-page: 236 year: 2021 end-page: 242 publication-title: Nat. Chem. – volume: 141 start-page: 1887 year: 2019 end-page: 1892 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 6442 year: 2022 end-page: 6452 publication-title: J. Am. Chem. Soc. – volume: 256 start-page: 1 year: 1983 end-page: 9 publication-title: J. Organomet. Chem. – volume: 58 131 start-page: 6425 6491 year: 2019 2019 end-page: 6429 6495 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 353 start-page: 2976 year: 2011 end-page: 2980 publication-title: Adv. Synth. Catal. – volume: 142 start-page: 19652 year: 2020 end-page: 19659 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 987 year: 2019 end-page: 993 publication-title: Nat. Chem. – volume: 12 start-page: 697 year: 2020 end-page: 704 publication-title: Nat. Chem. – volume: 124 start-page: 1578 year: 2002 end-page: 1579 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 257 year: 1999 end-page: 272 publication-title: Prep. Biochem. Biotechnol. – volume: 360 start-page: 419 year: 2018 end-page: 422 publication-title: Science – volume: 60 133 start-page: 380 384 year: 2021 2021 end-page: 384 388 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 144 start-page: 17319 year: 2022 end-page: 17329 publication-title: J. Am. Chem. Soc. – volume: 374 start-page: 1612 year: 2021 end-page: 1616 publication-title: Science – volume: 115 start-page: 9587 year: 2015 end-page: 9652 publication-title: Chem. Rev. – volume: 353 start-page: 1014 year: 2016 end-page: 1018 publication-title: Science – volume: 37 start-page: 592 year: 2004 end-page: 600 publication-title: Acc. Chem. Res. – volume: 322 start-page: 77 year: 2008 end-page: 80 publication-title: Science – volume: 143 start-page: 15413 year: 2021 end-page: 15419 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 7705 year: 2017 end-page: 7708 publication-title: J. Am. Chem. Soc. – start-page: 2647 year: 2014 end-page: 2657 publication-title: Eur. J. Org. Chem. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 start-page: 7948 year: 2012 end-page: 7957 publication-title: Organometallics – volume: 105 start-page: 3095 year: 2005 end-page: 3166 publication-title: Chem. Rev. – volume: 143 start-page: 11670 year: 2021 end-page: 11678 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2445 year: 2018 publication-title: Nat. Commun. – volume: 17 start-page: 3844 year: 2015 end-page: 3857 publication-title: Green Chem. – volume: 54 127 start-page: 3872 3944 year: 2015 2015 end-page: 3890 3963 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 start-page: 1128 year: 2019 end-page: 1131 publication-title: Chem. Commun. – volume: 532 start-page: 218 year: 2016 end-page: 222 publication-title: Nature – volume: 133 start-page: 1710 year: 2011 end-page: 1713 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 10985 11151 year: 2018 2018 end-page: 10988 11154 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 11060 year: 2014 end-page: 11062 publication-title: Chem. Commun. – volume: 9 start-page: 1198 year: 2017 end-page: 1204 publication-title: Nat. Chem. – volume: 108 start-page: 287 year: 1984 end-page: 288 publication-title: Chem.-Ztg. – volume: 139 start-page: 2904 year: 2017 end-page: 2907 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 16837 17079 year: 2018 2018 end-page: 16841 17083 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 13814 13933 year: 2021 2021 end-page: 13818 13937 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 114 start-page: 7930 year: 2014 end-page: 7953 publication-title: Chem. Rev. – volume: 10 start-page: 277 year: 2008 end-page: 280 publication-title: Org. Lett. – volume: 364 start-page: 1166 year: 2019 end-page: 1169 publication-title: Science – volume: 16 start-page: 7832 year: 2008 end-page: 7837 publication-title: Bioorg. Med. Chem. – volume: 122 start-page: 7831 year: 2000 end-page: 7832 publication-title: J. Am. Chem. Soc. – volume: 563 start-page: 379 year: 2018 end-page: 383 publication-title: Nature – volume: 14 start-page: 1784 year: 2012 end-page: 1787 publication-title: Org. Lett. – volume: 17 start-page: 3682 year: 2015 end-page: 3685 publication-title: Org. Lett. – volume: 111 start-page: 1529 year: 2011 end-page: 1595 publication-title: Chem. Rev. – volume: 2 start-page: 623 year: 2020 end-page: 631 publication-title: CCS Chem. – volume: 344 start-page: 392 year: 2014 end-page: 396 publication-title: Science – volume: 42 115 start-page: 4082 4216 year: 2003 2003 end-page: 4085 4219 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 4561 4611 year: 2021 2021 end-page: 4565 4615 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 949 year: 2022 end-page: 957 publication-title: Nat. Chem. – volume: 8 start-page: 7340 year: 2018 end-page: 7345 publication-title: ACS Catal. – volume: 50 123 start-page: 3904 3990 year: 2011 2011 end-page: 3907 3993 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 1468 year: 2020 end-page: 1480 publication-title: Curr. Top. Med. Chem. – volume: 58 131 start-page: 11112 11229 year: 2019 2019 end-page: 11117 11234 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 363 start-page: 400 year: 2019 end-page: 404 publication-title: Science – volume: 364 start-page: 781 year: 2022 end-page: 786 publication-title: Adv. Synth. Catal. – volume: 18 start-page: 9276 year: 2012 end-page: 9280 publication-title: Chem. Eur. J. – volume: 6 start-page: 702 year: 2014 end-page: 705 publication-title: Nat. Chem. – volume: 105 start-page: 1961 year: 2005 end-page: 2002 publication-title: Chem. Rev. – volume: 23 start-page: 2104 year: 2021 end-page: 2108 publication-title: Org. Lett. – volume: 11 start-page: 1158 year: 2019 end-page: 1166 publication-title: Nat. Chem. – volume: 103 start-page: 3263 year: 2003 end-page: 3296 publication-title: Chem. Rev. – year: 2017 – volume: 3 start-page: 692 year: 2017 end-page: 700 publication-title: ACS Cent. Sci. – year: 2013 – ident: e_1_2_3_65_1 doi: 10.1038/s41557-022-00954-9 – ident: e_1_2_3_27_2 doi: 10.1021/acs.chemrev.5b00162 – ident: e_1_2_3_88_1 – ident: e_1_2_3_79_2 doi: 10.1039/C4CC05376A – ident: e_1_2_3_7_2 doi: 10.1007/978-94-010-0850-1 – ident: e_1_2_3_38_2 doi: 10.1038/nature17438 – ident: e_1_2_3_34_2 doi: 10.1126/science.1251511 – ident: e_1_2_3_22_3 doi: 10.1002/ange.202013450 – ident: e_1_2_3_26_1 – ident: e_1_2_3_11_1 – ident: e_1_2_3_64_2 doi: 10.1021/jacs.2c00957 – ident: e_1_2_3_25_2 doi: 10.1021/acscatal.8b01687 – ident: e_1_2_3_86_2 doi: 10.1021/acs.orglett.1c00259 – ident: e_1_2_3_92_1 – ident: e_1_2_3_13_2 doi: 10.1080/10826069908544928 – ident: e_1_2_3_56_3 doi: 10.1002/ange.200902943 – ident: e_1_2_3_59_1 – ident: e_1_2_3_90_2 doi: 10.1021/cr1002276 – ident: e_1_2_3_91_2 doi: 10.1039/C5GC00794A – ident: e_1_2_3_75_2 doi: 10.1021/jacs.6b13299 – ident: e_1_2_3_32_2 doi: 10.1021/cr020044l – ident: e_1_2_3_57_2 doi: 10.1038/s41467-018-04885-3 – ident: e_1_2_3_89_2 doi: 10.1021/cr030009u – ident: e_1_2_3_46_2 doi: 10.1021/jacs.0c11103 – ident: e_1_2_3_50_2 doi: 10.1002/anie.201906011 – ident: e_1_2_3_81_2 doi: 10.1002/anie.201008007 – ident: e_1_2_3_14_2 doi: 10.1016/j.bmcl.2007.01.027 – ident: e_1_2_3_21_2 doi: 10.1002/anie.201806931 – ident: e_1_2_3_58_2 doi: 10.1126/science.aau7797 – ident: e_1_2_3_70_2 doi: 10.1021/cr030705u – ident: e_1_2_3_60_2 doi: 10.1038/s41557-019-0346-2 – ident: e_1_2_3_84_2 doi: 10.1002/adsc.201100410 – ident: e_1_2_3_23_2 doi: 10.1002/anie.202100601 – ident: e_1_2_3_47_2 doi: 10.1038/s41557-020-0482-8 – ident: e_1_2_3_18_2 doi: 10.1002/anie.200352103 – ident: e_1_2_3_37_3 doi: 10.1002/ange.201411409 – ident: e_1_2_3_35_2 doi: 10.1038/nchem.1998 – ident: e_1_2_3_72_2 doi: 10.1021/jacs.7b03387 – ident: e_1_2_3_41_2 doi: 10.1021/jacs.6b11336 – volume: 108 start-page: 287 year: 1984 ident: e_1_2_3_78_2 publication-title: Chem.-Ztg. – ident: e_1_2_3_42_2 doi: 10.1002/anie.201808923 – ident: e_1_2_3_20_2 doi: 10.1021/ol3003783 – ident: e_1_2_3_5_2 doi: 10.1007/978-3-642-33188-6 – ident: e_1_2_3_87_2 doi: 10.1002/adsc.202101114 – ident: e_1_2_3_51_2 doi: 10.31635/ccschem.019.201900064 – ident: e_1_2_3_52_1 – ident: e_1_2_3_22_2 doi: 10.1002/anie.202013450 – ident: e_1_2_3_55_1 – ident: e_1_2_3_4_2 doi: 10.1002/ejoc.201301720 – ident: e_1_2_3_71_2 doi: 10.1021/om300586p – ident: e_1_2_3_42_3 doi: 10.1002/ange.201808923 – ident: e_1_2_3_62_2 doi: 10.1002/anie.202009527 – ident: e_1_2_3_73_3 doi: 10.1002/ange.201902191 – ident: e_1_2_3_56_2 doi: 10.1002/anie.200902943 – ident: e_1_2_3_67_2 doi: 10.1021/acscatal.9b04887 – ident: e_1_2_3_3_2 doi: 10.1021/ar030055g – ident: e_1_2_3_9_1 doi: 10.1016/j.bmc.2008.06.035 – ident: e_1_2_3_50_3 doi: 10.1002/ange.201906011 – ident: e_1_2_3_81_3 doi: 10.1002/ange.201008007 – ident: e_1_2_3_24_2 doi: 10.1002/anie.202208323 – ident: e_1_2_3_36_2 doi: 10.1038/nature13892 – ident: e_1_2_3_43_2 doi: 10.1126/science.aar6376 – ident: e_1_2_3_74_2 doi: 10.1021/jacs.8b13052 – ident: e_1_2_3_49_2 doi: 10.1126/science.abk1603 – ident: e_1_2_3_16_2 doi: 10.1021/ja001754g – ident: e_1_2_3_18_3 doi: 10.1002/ange.200352103 – ident: e_1_2_3_83_1 – ident: e_1_2_3_33_2 doi: 10.1126/science.1161976 – ident: e_1_2_3_77_2 doi: 10.1016/S0022-328X(00)99290-8 – ident: e_1_2_3_8_1 doi: 10.2174/1568026620666200309161444 – ident: e_1_2_3_12_2 doi: 10.1016/j.bmcl.2006.10.047 – ident: e_1_2_3_2_2 doi: 10.1021/cr4005549 – ident: e_1_2_3_80_2 doi: 10.1021/acs.orglett.5b01612 – ident: e_1_2_3_39_2 doi: 10.1126/science.aaf7783 – ident: e_1_2_3_1_1 – ident: e_1_2_3_15_1 – ident: e_1_2_3_61_2 doi: 10.1021/jacs.0c09125 – ident: e_1_2_3_68_2 doi: 10.1039/C8CC09523J – volume: 134 year: 2022 ident: e_1_2_3_24_3 publication-title: Angew. Chem. doi: 10.1002/ange.202208323 – ident: e_1_2_3_10_1 doi: 10.2165/00003088-200544050-00002 – ident: e_1_2_3_31_1 – ident: e_1_2_3_85_2 doi: 10.1002/chem.201200367 – ident: e_1_2_3_53_2 doi: 10.1038/s41586-018-0669-y – ident: e_1_2_3_48_2 doi: 10.1021/jacs.1c04968 – ident: e_1_2_3_21_3 doi: 10.1002/ange.201806931 – ident: e_1_2_3_76_1 – ident: e_1_2_3_19_2 doi: 10.1021/ol702759b – ident: e_1_2_3_30_2 doi: 10.1021/jacs.2c06718 – ident: e_1_2_3_17_2 doi: 10.1021/ja012427r – ident: e_1_2_3_23_3 doi: 10.1002/ange.202100601 – ident: e_1_2_3_62_3 doi: 10.1002/ange.202009527 – ident: e_1_2_3_6_2 doi: 10.1007/978-3-319-55621-5 – ident: e_1_2_3_44_2 doi: 10.1126/science.aaw1143 – ident: e_1_2_3_28_2 doi: 10.1126/science.aaf7230 – ident: e_1_2_3_73_2 doi: 10.1002/anie.201902191 – ident: e_1_2_3_54_2 doi: 10.1038/s41557-020-00609-7 – ident: e_1_2_3_45_2 doi: 10.1038/s41557-019-0343-5 – ident: e_1_2_3_37_2 doi: 10.1002/anie.201411409 – ident: e_1_2_3_69_1 – ident: e_1_2_3_63_2 doi: 10.1021/jacs.1c07726 – ident: e_1_2_3_82_1 doi: 10.1021/ja110534g – ident: e_1_2_3_66_1 – ident: e_1_2_3_40_2 doi: 10.1038/nchem.2841 – ident: e_1_2_3_29_2 doi: 10.1021/acscentsci.7b00212 – volume: 14 start-page: 1784 year: 2012 ident: WOS:000302387800032 article-title: BINAPHANE-Catalyzed Asymmetric Synthesis of trans-β-Lactams from Disubstituted Ketenes and N-Tosyl Arylimines publication-title: ORGANIC LETTERS doi: 10.1021/ol3003783 – volume: 60 start-page: 380 year: 2021 ident: WOS:000585931100001 article-title: Copper-Catalyzed Enantioconvergent Cross-Coupling of Racemic Alkyl Bromides with Azole C(sp2)-H Bonds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202009527 – volume: 363 start-page: 400 year: 2019 ident: WOS:000456871800038 article-title: An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction publication-title: SCIENCE doi: 10.1126/science.aau7797 – volume: 123 start-page: 3990 year: 2011 ident: 000918794700001.82 publication-title: Angew. Chem – volume: 114 start-page: 7930 year: 2014 ident: WOS:000340992200005 article-title: Chemical Synthesis of β-Lactams: Asymmetric Catalysis and Other Recent Advances publication-title: CHEMICAL REVIEWS doi: 10.1021/cr4005549 – volume: 11 start-page: 1158 year: 2019 ident: WOS:000498875700019 article-title: A general asymmetric copper-catalysed Sonogashira C(sp3)-C(sp) coupling publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-019-0346-2 – volume: 10 start-page: 277 year: 2008 ident: WOS:000252294500032 article-title: Chiral N-heterocyclic carbene catalyzed Staudinger reaction of ketenes with imines:: Highly enantioselective synthesis of N-boc β-lactams publication-title: ORGANIC LETTERS doi: 10.1021/ol702759b – volume: 31 start-page: 7948 year: 2012 ident: WOS:000311466300030 article-title: Kinetic and Spectroscopic Studies of Aerobic Copper(II)-Catalyzed Methoxylation of Arylboronic Esters and Insights into Aryl Transmetalation to Copper(II) publication-title: ORGANOMETALLICS doi: 10.1021/om300586p – volume: 105 start-page: 3095 year: 2005 ident: WOS:000231188700005 article-title: Organic reactions in aqueous media with a focus on carbon-carbon bond formations: A decade update publication-title: CHEMICAL REVIEWS doi: 10.1021/cr030009u – volume: 364 start-page: 781 year: 2022 ident: WOS:000725442200001 article-title: Enantiodivergent Reaction of Ketimines with Malononitriles Using Single Cinchona Alkaloid Sulfonamide Catalysts publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.202101114 – volume: 141 start-page: 1887 year: 2019 ident: WOS:000458348300016 article-title: Enantioselective Construction of Quaternary All-Carbon Centers via Copper-Catalyzed Arylation of Tertiary Carbon-Centered Radicals publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b13052 – volume: 142 start-page: 19652 year: 2020 ident: WOS:000592911000027 article-title: Copper-Catalyzed Enantioconvergent Radical Suzuki-Miyaura C(sp3)-C(sp2) Cross-Coupling publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c09125 – volume: 143 start-page: 15413 year: 2021 ident: WOS:000700883200054 article-title: Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c07726 – volume: 17 start-page: 358 year: 2007 ident: WOS:000244012200013 article-title: Novel β-lactam derivatives:: Potent and selective inhibitors of the chymotrypsin-like activity of the human 20S proteasome publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS doi: 10.1016/j.bmcl.2006.10.047 – volume: 11 start-page: 987 year: 2019 ident: WOS:000493326400007 article-title: An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)-H bonds publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-019-0343-5 – volume: 115 start-page: 4216 year: 2003 ident: 000918794700001.16 publication-title: Angew. Chem – volume: 17 start-page: 3682 year: 2015 ident: WOS:000359393800011 article-title: Copper-Catalyzed Cross-Coupling Reaction of Allyl Boron Ester with 1°/2°/3°-Halogenated Alkanes publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.5b01612 – volume: 10 start-page: 2633 year: 2020 ident: WOS:000516887400026 article-title: Copper-Catalyzed Intermolecular Difunctionalization of Styrenes with Thiosulfonates and Arylboronic Acids via a Radical Relay Pathway publication-title: ACS CATALYSIS doi: 10.1021/acscatal.9b04887 – year: 2022 ident: WOS:000875120200001 article-title: Ligand Development for Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Racemic Alkyl Halides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c06718 – volume: 131 start-page: 11229 year: 2019 ident: 000918794700001.53 publication-title: Angew. Chem – volume: 139 start-page: 1049 year: 2017 ident: WOS:000393541000007 article-title: Asymmetric Radical Cyclopropanation of Alkenes with In Situ Generated Donor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b11336 – volume: 139 start-page: 2904 year: 2017 ident: WOS:000395493400012 article-title: Asymmetric Cu-Catalyzed Intermolecular Trifluoromethylarylation of Styrenes: Enantioselective Arylation of Benzylic Radicals publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b13299 – volume: 133 start-page: 384 year: 2021 ident: 000918794700001.64 publication-title: Angew. Chem – volume: 37 start-page: 592 year: 2004 ident: WOS:000223385800013 article-title: Advances in the catalytic, asymmetric synthesis of β-lactams publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar030055g – volume: 18 start-page: 9276 year: 2012 ident: WOS:000306403200019 article-title: Enantioselective Synthesis of AG-041R by using N-Heteroarenesulfonyl Cinchona Alkaloid Amides as Organocatalysts publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201200367 – volume: 144 start-page: 6442 year: 2022 ident: WOS:000790698300035 article-title: Design of Hemilabile N,N,N-Ligands in Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Benzyl/Propargyl Halides with Alkenylboronate Esters publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c00957 – volume: 131 start-page: 6491 year: 2019 ident: 000918794700001.74 publication-title: Angew. Chem – volume: 108 start-page: 287 year: 1984 ident: WOS:A1984TL38400006 article-title: THE SYNTHESIS OF 1,3-BENZODIOXOLBORON COMPOUNDS publication-title: CHEMIKER-ZEITUNG – volume: 143 start-page: 11670 year: 2021 ident: WOS:000684586600040 article-title: New Catalytic Radical Process Involving 1,4-Hydrogen Atom Abstraction: Asymmetric Construction of Cyclobutanones publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c04968 – volume: 44 start-page: 467 year: 2005 ident: WOS:000229397400002 article-title: Ezetimibe - A review of its metabolism, pharmacokinetics and drug interactions publication-title: CLINICAL PHARMACOKINETICS – volume: 122 start-page: 7831 year: 2000 ident: WOS:000088946100034 article-title: Catalytic, asymmetric synthesis of β-lactams publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja001754g – volume: 58 start-page: 6064 year: 2019 ident: WOS:000465413400045 article-title: A Polymer Coating Transfer Enrichment Method for Direct Mass Spectrometry Analysis of Lipids in Biofluid Samples publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201900011 – volume: 60 start-page: 4561 year: 2021 ident: WOS:000605575400001 article-title: Copper(I)-Catalyzed Asymmetric Interrupted Kinugasa Reaction: Synthesis of α-Thiofunctional Chiral β-Lactams publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202013450 – volume: 134 year: 2022 ident: 000918794700001.26 publication-title: Angew. Chem – volume: 23 start-page: 2104 year: 2021 ident: WOS:000631439700028 article-title: Enantioselective Reaction of 2H-Azirines with Oxazol-5-(4H)-ones Catalyzed by Cinchona Alkaloid Sulfonamide Catalysts publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.1c00259 – volume: 57 start-page: 16837 year: 2018 ident: WOS:000453348900045 article-title: Catalytic Radical Process for Enantioselective Amination of C(sp3)-H Bonds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201808923 – volume: 16 start-page: 7832 year: 2008 ident: WOS:000258726300034 article-title: Studies on the antifungal properties of N-thiolated β-lactams publication-title: BIOORGANIC & MEDICINAL CHEMISTRY doi: 10.1016/j.bmc.2008.06.035 – volume: 42 start-page: 4082 year: 2003 ident: WOS:000185436600024 article-title: Catalytic enantioselective synthesis of β-lactams:: Intramolecular Kinugasa reactions and interception of an intermediate in the reaction cascade publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200352103 – volume: 532 start-page: 218 year: 2016 ident: WOS:000374415100036 article-title: Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals publication-title: NATURE doi: 10.1038/nature17438 – volume: 6 start-page: 702 year: 2014 ident: WOS:000341371100013 article-title: An organic thiyl radical catalyst for enantioselective cyclization publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.1998 – volume: 130 start-page: 11151 year: 2018 ident: 000918794700001.20 publication-title: Angew. Chem – volume: 142 start-page: 20902 year: 2020 ident: WOS:000599506900050 article-title: Enantioconvergent Amination of Racemic Tertiary C-H Bonds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c11103 – volume: 322 start-page: 77 year: 2008 ident: WOS:000259680200040 article-title: Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes publication-title: SCIENCE doi: 10.1126/science.1161976 – year: 2013 ident: 000918794700001.4 publication-title: Beta-Lactams: Unique Structures of Distinction for Novel Molecules – volume: 356 start-page: ARTN eaaf7230 year: 2017 ident: WOS:000399013800025 article-title: Transition metal-catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry publication-title: SCIENCE doi: 10.1126/science.aaf7230 – volume: 256 start-page: 1 year: 1983 ident: WOS:A1983RS03100001 article-title: ARYLBORONIC ACIDS WITH INTRAMOLECULAR B-N INTERACTION - CONVENIENT SYNTHESIS THROUGH ORTHO-LITHIATION OF SUBSTITUTED BENZYLAMINES publication-title: JOURNAL OF ORGANOMETALLIC CHEMISTRY – volume: 133 start-page: 4611 year: 2021 ident: 000918794700001.22 publication-title: Angew. Chem – year: 2017 ident: 000918794700001.5 publication-title: Beta-Lactams: Novel Synthetic Pathways and Applications – volume: 103 start-page: 3263 year: 2003 ident: WOS:000184821500020 article-title: Enantioselective radical processes publication-title: CHEMICAL REVIEWS doi: 10.1021/cr020044l – volume: 55 start-page: 1128 year: 2019 ident: WOS:000458544800025 article-title: Iron-catalysed enantioselective Suzuki-Miyaura coupling of racemic alkyl bromides publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c8cc09523j – volume: 111 start-page: 1529 year: 2011 ident: WOS:000288820600009 article-title: Transmetalation of Unsaturated Carbon Nucleophiles from Boron-Containing Species to the Mid to Late d-Block Metals of Relevance to Catalytic C-X Coupling Reactions (X = C, F, N, O, Pb, S, Se, Te) publication-title: CHEMICAL REVIEWS doi: 10.1021/cr1002276 – start-page: 12 year: 2001 ident: CCC:000170831700001 article-title: Industrial synthesis of semisynthetic antibiotics publication-title: SYNTHESIS OF BETA-LACTAM ANTIBIOTICS: CHEMISTRY, BIOCATALYSIS & PROCESS INTEGRATION – volume: 17 start-page: 1946 year: 2007 ident: WOS:000245827900024 article-title: Synthesis and biological evaluation, of unprecedented classes of spiro-β-lactams and azido-β-lactams as acyl-CoA:cholesterol acyltransferase inhibitors publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS doi: 10.1016/j.bmcl.2007.01.027 – volume: 105 start-page: 1961 year: 2005 ident: WOS:000229729000003 article-title: Ligand substitution reactions at inorganic centers publication-title: CHEMICAL REVIEWS doi: 10.1021/cr030705u – volume: 115 start-page: 9587 year: 2015 ident: WOS:000361254500015 article-title: Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C-C Bonds publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00162 – volume: 60 start-page: 13814 year: 2021 ident: WOS:000649698400001 article-title: Modular Synthesis of α-Quaternary Chiral β-Lactams by a Synergistic Copper/Palladium-Catalyzed Multicomponent Reaction publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202100601 – volume: 3 start-page: 692 year: 2017 ident: WOS:000406308200007 article-title: Transition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Alternative to SN1 and SN2 Processes publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.7b00212 – volume: 515 start-page: 100 year: 2014 ident: WOS:000344187500037 article-title: Asymmetric photoredox transition-metal catalysis activated by visible light publication-title: NATURE doi: 10.1038/nature13892 – volume: 12 year: 2020 ident: WOS:000542087800001 article-title: Enantioselective radical C-H amination for the synthesis of β-amino alcohols publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-020-0482-8 – volume: 133 start-page: 13933 year: 2021 ident: 000918794700001.24 publication-title: Angew. Chem – volume: 48 start-page: 8037 year: 2009 ident: WOS:000271130900014 article-title: Catalytic Enantioselective Stereoablative Alkylation of 3-Halooxindoles: Facile Access to Oxindoles with C3 All-Carbon Quaternary Stereocenters publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200902943 – volume: 360 start-page: 419 year: 2018 ident: WOS:000430949600038 article-title: Catalytic enantioselective Minisci-type addition to heteroarenes publication-title: SCIENCE doi: 10.1126/science.aar6376 – volume: 2 start-page: 623 year: 2020 ident: WOS:000794105100015 article-title: Ni-Catalyzed Enantioconvergent Coupling of Epoxides with Alkenylboronic Acids: Construction of Oxindoles Bearing Quaternary Carbons publication-title: CCS CHEMISTRY doi: 10.31635/ccschem.019.20190064 – volume: 127 start-page: 3944 year: 2015 ident: 000918794700001.38 publication-title: Angew. Chem – volume: 353 start-page: 1014 year: 2016 ident: WOS:000382558900035 article-title: Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay publication-title: SCIENCE – volume: 364 start-page: 1166 year: 2019 ident: WOS:000472175100038 article-title: Photoexcitation of flavoenzymes enables a stereoselective radical cyclization publication-title: SCIENCE doi: 10.1126/science.aaw1143 – volume: 374 start-page: 1612 year: 2021 ident: WOS:000736589300033 article-title: Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450 publication-title: SCIENCE doi: 10.1126/science.abk1603 – volume: 61 start-page: ARTN e202208323 year: 2022 ident: WOS:000855023500001 article-title: Asymmetric Synthesis of Spiro[Azetidine-3,3′-Indoline]-2,2′-Diones via Copper(I)-Catalyzed Kinugasa/C-C Coupling Cascade Reaction publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202208323 – volume: 353 start-page: 2976 year: 2011 ident: WOS:000297099100019 article-title: Organocatalytic Enantioselective Decarboxylative Addition of Malonic Acids Half Thioesters to Isatins publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201100410 – volume: 8 start-page: 7340 year: 2018 ident: WOS:000441112400053 article-title: Asymmetric Rh(II)/Pd(0) Relay Catalysis: Synthesis of α-Quaternary Chiral β-Lactams through Enantioselective C-H Insertion/Diastereoselective Allylation of Diazoamides publication-title: ACS CATALYSIS doi: 10.1021/acscatal.8b01687 – volume: 9 start-page: 1198 year: 2017 ident: WOS:000416026200010 article-title: Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.2841 – volume: 13 start-page: 236 year: 2021 ident: WOS:000607026500001 article-title: Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-020-00609-7 – volume: 29 start-page: 257 year: 1999 ident: WOS:000081707200004 article-title: Preparation and antibiotic activity of monobactam analogues of nocardicins publication-title: PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY – volume: 133 start-page: 1710 year: 2011 ident: WOS:000287831800026 article-title: A New Family of Cinchona-Derived Amino Phosphine Precatalysts: Application to the Highly Enantio- and Diastereoselective Silver-Catalyzed Isocyanoacetate Aldol Reaction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja110534g – volume: 121 start-page: 8181 year: 2009 ident: 000918794700001.58 publication-title: Angew. Chem – volume: 563 start-page: 379 year: 2018 ident: WOS:000450048400055 article-title: Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins publication-title: NATURE doi: 10.1038/s41586-018-0669-y – volume: 9 start-page: ARTN 2445 year: 2018 ident: WOS:000436049400005 article-title: Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-018-04885-3 – volume: 54 start-page: 3872 year: 2015 ident: WOS:000351204600003 article-title: Enantioselective Catalysis of Photochemical Reactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201411409 – volume: 50 start-page: 3904 year: 2011 ident: WOS:000289514100015 article-title: Copper-Catalyzed Cross-Coupling Reaction of Organoboron Compounds with Primary Alkyl Halides and Pseudohalides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201008007 – volume: 50 start-page: 11060 year: 2014 ident: WOS:000340900400037 article-title: Cu-Catalyzed Suzuki-Miyaura reactions of primary and secondary benzyl halides with arylboronates publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c4cc05376a – volume: 20 start-page: 1468 year: 2020 ident: WOS:000552025400007 article-title: Recent Advances in β-lactam Derivatives as Potential Anticancer Agents publication-title: CURRENT TOPICS IN MEDICINAL CHEMISTRY doi: 10.2174/1568026620666200309161444 – volume: 17 start-page: 3844 year: 2015 ident: WOS:000357620900024 article-title: Suzuki cross-coupling in aqueous media publication-title: GREEN CHEMISTRY doi: 10.1039/c5gc00794a – volume: 2014 start-page: 2647 year: 2014 ident: WOS:000334783300002 article-title: Progress in Asymmetric Organocatalytic Synthesis of ∼- Lactams publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.201301720 – volume: 139 start-page: 7705 year: 2017 ident: WOS:000403631200009 article-title: Feedstocks to Pharmacophores: Cu-Catalyzed Oxidative Arylation of Inexpensive Alkylarenes Enabling Direct Access to Diarylalkanes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b03387 – volume: 344 start-page: 392 year: 2014 ident: WOS:000334867800035 article-title: A Dual-Catalysis Approach to Enantioselective [2+2] Photocycloadditions Using Visible Light publication-title: SCIENCE doi: 10.1126/science.1251511 – volume: 124 start-page: 1578 year: 2002 ident: WOS:000173982500011 article-title: Enantioselective Staudinger synthesis of β-lactams catalyzed by a planar-chiral nucleophile publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja012427r – volume: 58 start-page: 11112 year: 2019 ident: WOS:000478635100058 article-title: Copper(I)-Catalyzed Enantioconvergent Borylation of Racemic Benzyl Chlorides Enabled by Quadrant-by-Quadrant Structure Modification of Chiral Bisphosphine Ligands publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201906011 – volume: 57 start-page: 10985 year: 2018 ident: WOS:000442863700033 article-title: Asymmetric Synthesis of Spirocyclic-Lactams through Copper-Catalyzed Kinugasa/Michael Domino Reactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201806931 – volume: 130 start-page: 17079 year: 2018 ident: 000918794700001.44 publication-title: Angew. Chem – volume: 14 start-page: 949 year: 2022 ident: WOS:000805517500001 article-title: Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)-C(sp) cross-coupling of tertiary electrophiles with alkynes publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-022-00954-9 |
SSID | ssj0028806 |
Score | 2.617271 |
Snippet | The copper‐catalyzed enantioconvergent radical C(sp3)−C(sp2) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the... The copper‐catalyzed enantioconvergent radical C(sp 3 )−C(sp 2 ) cross‐coupling of tertiary α‐bromo‐β‐lactams with organoboronate esters could provide the... The copper-catalyzed enantioconvergent radical C(sp(3))-C(sp(2)) cross-coupling of tertiary alpha-bromo-beta-lactams with organoboronate esters could provide... The copper-catalyzed enantioconvergent radical C(sp )-C(sp ) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the... The copper-catalyzed enantioconvergent radical C(sp3 )-C(sp2 ) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202214709 |
SubjectTerms | Asymmetric Catalysis beta-Lactams Catalysis Catalysts Chemical reactions Chemistry Chemistry, Multidisciplinary Construction Copper Copper - chemistry Cross coupling Electrons Esters Physical Sciences Radical Chemistry Science & Technology β-Lactam |
Title | Synthesis of α‐Quaternary β‐Lactams via Copper‐Catalyzed Enantioconvergent Radical C(sp3)−C(sp2) Cross‐Coupling with Organoboronate Esters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202214709 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000918794700001 https://www.ncbi.nlm.nih.gov/pubmed/36357331 https://www.proquest.com/docview/2759968461 https://www.proquest.com/docview/2735870687 |
Volume | 62 |
WOS | 000918794700001 |
WOSCitedRecordID | wos000918794700001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL3Dh_ydQkJEqQQ9pN3YSx8cq2qogqEShUm-R7TjVCkhWmwRpe-LIEXHgPeBB-hB9EmacH7pFCASHSE5sy7E9tj-PPd8QsqE0Z0FcTGCTk0z8UEnlJ2EY-dIaABfM6lCggfPL_XjvMHx-FB2ds-Lv-CFGhRuODDdf4wBXut7-SRqKFtiwv2PoaMdZ8OGFLURFByN_FAPh7MyLOPfRC_3A2jhh26vZV1elX6DmhVVpFci6lWj3GlFDHboLKG-32kZvmZML9I7_U8nr5GoPU-lOJ1c3yCVb3iSX08E73C3y9fWyBOxYz2paFfT029nHz69a5bSLiyU9_Q7vL5Rp1PuafpgpmlbzuV3AxxTVRcsTm9MpXsGZVe7aO1qANvRAuUMjmj6t53zz7NMXDLBNmmKbYd6qRfvhY4rKY-qsSCuNDAxQLp0i40N9mxzuTt-ke37v48E3XHDpx8rGoogSUXCNXIVCBtpwXeQAK3WobCCCPJEsF4E0sYItdG5ZbJjJwyjJOTf8Dlkrq9LeIxRkUXEeyTDP4TFSwfIfKAGzjmFW5pFH_KGPM9MToKMfjndZR93MMmztbGxtjzwZ08876o_fplwfRCbrp4A6YwKZbwDeBR55PEZDL-GJjCpt1WIaHuFBcyI8crcTtbEojkyBnEPujfOyN8YjOkZX8fADCNQ9EvxNsrSvODIeNB5hTvj-UL1sZ__ZdHy7_y-ZHpArEOZOdyXXyVqzaO1DQHONfuRG7A8LSkc_ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKOZQL70eggJGKoIe0GzuJ4wOHKt1ql25XorRSb6njeNEK2Kw2WdD2xJEj4sD_KD-kB35CfwkzecEWIRBSDxwiJY6dh2fGnhl7viFkRcWcOf6gBUZO0LJdJZUduK5nS6NBuWAmdgUGOO_0_c6--_zAO1ggx3UsTIkP0TjcUDKK8RoFHB3S6z9QQzEEGww8hpl2WrLaV7ltZu_BasuedTeBxI8Z22rvhR27Sixgay64tH1lfDHwAjHgMQLkCenEmseDBHSZ2FXGEU4SSJYIR2pfgd2WGOZrphPXCxLONYfnXiAXMY04wvVv7jaIVQzEoQxo4tzGvPc1TmSLrc9_7_w8-Itye2YenFedi7lv6wr5VvdaueXl9do0j9f00RlAyf-qW6-Sy5UmTjdK0blGFszoOlkK6wR4N8iXl7MRqMfZMKPpgJ4cn3749GKqCgfqZEZPvsJ1T-lcvc3ou6GiYToemwkUhugRmx2ZhLZxl9EwLXb2Y5BrTndVsS5Gw6fZmK-efvyMJ2yVhkgkbJtOMUT6FUX_OC0CZdMYQSbgvbSNoBbZTbJ_Lt1yiyyO0pG5QyiIm-Lck26SwKGlAg3HUQIGVs2MTDyL2DVTRbrCeMdUI2-iEp2aRUjdqKGuRZ409ccluslvay7XPBpVo1wWMYHgPqDBOhZ51NwGKuGikxqZdIp1uIdr6YGwyO2St5tXcQRD5Bxar_zM7M19NACcAGYMUSxCWcT5m2ph9eMI6pBbhBXc_offizb63XZzdfdfGj0kS529nV7U6_a375FLUM4LV51cJov5ZGrug_Kaxw-K4YKSw_MWpO9jy6Sv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKkYAL70eggJGKoIe0GzsvHzhU2V11aamgUKm34NgOWgGb1SYL2p44ckQc-B3AD6nEX-gvYSYv2CIEQuqBQ6Q87M3GM2N_Hnu-IWRZJpw5ftqBSU7YsV0ppB26rmcLowBcMJO4AQY4P9r2N3bdh3ve3gL53MTCVPwQrcMNLaPsr9HAxzpd-0EaihHYML9jmGinI-ptlZtm9hYmbfmDQRckfJexfu9ZtGHXeQVsxQMubF8aP0i9MEh5gvx4gXASxZNUA5RJXGmcwNGhYDpwhPIlTNu0Yb5iSrteqDlXHH73BDnp-h2BySK6Oy1hFQNrqOKZOLcx7X1DE9lha_P_d34Y_AXbHhkG55FzOfT1z5FvTaNVO15erk6LZFXtH-GT_J9a9Tw5W-Nwul4ZzgWyYEYXyemoSX93iXx6OhsBOM6HOc1SevDl8N2HJ1NZuk8nM3rwFa63pCrk65y-GUoaZeOxmcDNCP1hs32jaQ_3GA2zcl8_hrgWdEeWq2I0up-P-crh-494wlZohDLCutkUA6RfUPSO0zJMNkuQYgLeS3tIaZFfJrvH0ixXyOIoG5lrhIKxSc494WoNhxIS8I0jA-hWFTNCexaxG52KVc3wjolGXsUVNzWLUbpxK12L3GvLjytuk9-WXGpUNK77uDxmAVL7AH51LHKnfQxSwiUnOTLZFMtwD1fSw8AiVyvVbl_FkQqRc6i9_LOut88R_jshjBdBuQRlEedvikX1hyOlQ2ERVir7Hz4vXt8e9Nqr6_9S6TY59bjbj7cG25s3yBm4zUs_nVgii8Vkam4Cci2SW2VnQcnz47aj78y-o14 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+%CE%B1%E2%80%90Quaternary+%CE%B2%E2%80%90Lactams+via+Copper%E2%80%90Catalyzed+Enantioconvergent+Radical+C%28sp3%29%E2%88%92C%28sp2%29+Cross%E2%80%90Coupling+with+Organoboronate+Esters&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fu%E2%80%90Li+Wang&rft.au=Liu%2C+Lin&rft.au=Chang%E2%80%90Jiang+Yang&rft.au=Cheng%2C+Luan&rft.date=2023-01-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=2&rft_id=info:doi/10.1002%2Fanie.202214709&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |