Intrinsically Stretchable Electroluminescent Elastomers with Self‐Confinement Effect for Highly Efficient Non‐Blended Stretchable OLEDs
Ultra‐flexible stretchable organic light‐emitting diodes (OLEDs) are emerging as a basic component of flexible electronics and human‐machine interfaces. However, the brightness and efficiency of stretchable OLEDs remain still far inferior to their rigid counterparts, owing to the scarcity of satisfa...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 2; pp. e202213749 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.01.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultra‐flexible stretchable organic light‐emitting diodes (OLEDs) are emerging as a basic component of flexible electronics and human‐machine interfaces. However, the brightness and efficiency of stretchable OLEDs remain still far inferior to their rigid counterparts, owing to the scarcity of satisfactory stretchable electroluminescent materials. Herein, we explore a general concept based on the self‐confinement effect to dramatically improve the stretchability of elastomers, without affecting electroluminescent properties. The balanced rigid/flexible chain dynamics under self‐confinement significantly reduces the modulus of the elastomers, resulting in the maximum strain reaching 806 %. Ultra‐flexible stretchable OLEDs have been constructed based on the resulting ISEEs, achieving unprecedented high‐performance non‐blended stretchable OLEDs. The results suggest an effective molecular design strategy for highly deformable stretchable displays and flexible electronics.
Achieving high‐performance electroluminescence under large deformation remains a grand challenge. In this contribution, a general concept based on the self‐confinement effect has been proposed for the design and synthesis of non‐blended intrinsically stretchable electroluminescent elastomers (ISEEs). High‐performance non‐blended stretchable OLEDs have been constructed based on the resulting ISEEs. |
---|---|
AbstractList | Ultra‐flexible stretchable organic light‐emitting diodes (OLEDs) are emerging as a basic component of flexible electronics and human‐machine interfaces. However, the brightness and efficiency of stretchable OLEDs remain still far inferior to their rigid counterparts, owing to the scarcity of satisfactory stretchable electroluminescent materials. Herein, we explore a general concept based on the self‐confinement effect to dramatically improve the stretchability of elastomers, without affecting electroluminescent properties. The balanced rigid/flexible chain dynamics under self‐confinement significantly reduces the modulus of the elastomers, resulting in the maximum strain reaching 806 %. Ultra‐flexible stretchable OLEDs have been constructed based on the resulting ISEEs, achieving unprecedented high‐performance non‐blended stretchable OLEDs. The results suggest an effective molecular design strategy for highly deformable stretchable displays and flexible electronics.
Achieving high‐performance electroluminescence under large deformation remains a grand challenge. In this contribution, a general concept based on the self‐confinement effect has been proposed for the design and synthesis of non‐blended intrinsically stretchable electroluminescent elastomers (ISEEs). High‐performance non‐blended stretchable OLEDs have been constructed based on the resulting ISEEs. Ultra‐flexible stretchable organic light‐emitting diodes (OLEDs) are emerging as a basic component of flexible electronics and human‐machine interfaces. However, the brightness and efficiency of stretchable OLEDs remain still far inferior to their rigid counterparts, owing to the scarcity of satisfactory stretchable electroluminescent materials. Herein, we explore a general concept based on the self‐confinement effect to dramatically improve the stretchability of elastomers, without affecting electroluminescent properties. The balanced rigid/flexible chain dynamics under self‐confinement significantly reduces the modulus of the elastomers, resulting in the maximum strain reaching 806 %. Ultra‐flexible stretchable OLEDs have been constructed based on the resulting ISEEs, achieving unprecedented high‐performance non‐blended stretchable OLEDs. The results suggest an effective molecular design strategy for highly deformable stretchable displays and flexible electronics. Ultra-flexible stretchable organic light-emitting diodes (OLEDs) are emerging as a basic component of flexible electronics and human-machine interfaces. However, the brightness and efficiency of stretchable OLEDs remain still far inferior to their rigid counterparts, owing to the scarcity of satisfactory stretchable electroluminescent materials. Herein, we explore a general concept based on the self-confinement effect to dramatically improve the stretchability of elastomers, without affecting electroluminescent properties. The balanced rigid/flexible chain dynamics under self-confinement significantly reduces the modulus of the elastomers, resulting in the maximum strain reaching 806 %. Ultra-flexible stretchable OLEDs have been constructed based on the resulting ISEEs, achieving unprecedented high-performance non-blended stretchable OLEDs. The results suggest an effective molecular design strategy for highly deformable stretchable displays and flexible electronics.Ultra-flexible stretchable organic light-emitting diodes (OLEDs) are emerging as a basic component of flexible electronics and human-machine interfaces. However, the brightness and efficiency of stretchable OLEDs remain still far inferior to their rigid counterparts, owing to the scarcity of satisfactory stretchable electroluminescent materials. Herein, we explore a general concept based on the self-confinement effect to dramatically improve the stretchability of elastomers, without affecting electroluminescent properties. The balanced rigid/flexible chain dynamics under self-confinement significantly reduces the modulus of the elastomers, resulting in the maximum strain reaching 806 %. Ultra-flexible stretchable OLEDs have been constructed based on the resulting ISEEs, achieving unprecedented high-performance non-blended stretchable OLEDs. The results suggest an effective molecular design strategy for highly deformable stretchable displays and flexible electronics. |
Author | Xue, Qian Chen, Jin Song, Wan Wang, Qian Lai, Wen‐Yong Li, Xiang‐Chun Yao, Lanqian Liu, Fang |
Author_xml | – sequence: 1 givenname: Xiang‐Chun surname: Li fullname: Li, Xiang‐Chun organization: Nanjing University of Posts & Telecommunications – sequence: 2 givenname: Lanqian surname: Yao fullname: Yao, Lanqian organization: Nanjing University of Posts & Telecommunications – sequence: 3 givenname: Wan surname: Song fullname: Song, Wan organization: Nanjing University of Posts & Telecommunications – sequence: 4 givenname: Fang surname: Liu fullname: Liu, Fang organization: Nanjing University of Posts & Telecommunications – sequence: 5 givenname: Qian surname: Wang fullname: Wang, Qian organization: Nanjing University of Posts & Telecommunications – sequence: 6 givenname: Jin surname: Chen fullname: Chen, Jin organization: Nanjing University of Posts & Telecommunications – sequence: 7 givenname: Qian surname: Xue fullname: Xue, Qian organization: Nanjing University of Posts & Telecommunications – sequence: 8 givenname: Wen‐Yong orcidid: 0000-0003-2381-1570 surname: Lai fullname: Lai, Wen‐Yong email: iamwylai@njupt.edu.cn organization: Northwestern Polytechnical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36350657$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1vUzEUhq9QEf2AlRFdiYUlwb729cdY0pRGitqhMFuOc0xc-drF9lWVjZ2F39hfgkNaEJUQk63j5zm2z3vcHIQYoGleYzTFCHXvdXAw7VDXYcKpfNYc4b7DE8I5Oah7SsiEix4fNsc531ReCMReNIeEkR6xnh813xehJBeyM9r7bXtdEhSz0SsP7dyDKSn6cXABsoFQaknnEgdIub1zZdNeg7f3337MYrCVGX4h1lattTG1F-7LpvasFWfc7uwyhkp_8BDWsP7rrqvl_Cy_bJ5b7TO8elhPms_n80-zi8ny6uNidrqcGMKJnDAuV7TXHAkie2kZF1hjiSTRxjIAsdbWaNv3YBkBa4UwqGOaixWnXFDByEnzbt_3NsWvI-SiBlf_570OEMesOk4ow5RyVNG3T9CbOKZQX1epXkomCOWVevNAjasB1uo2uUGnrXoccwXoHjAp5pzAKuOKLi7W4WvnFUZql6bapal-p1m16RPtsfM_BbkX7pyH7X9odXq5mP9xfwJ-qbWG |
CitedBy_id | crossref_primary_10_20517_ss_2024_26 crossref_primary_10_1002_adma_202411547 crossref_primary_10_20517_ss_2024_36 crossref_primary_10_1038_s41467_024_50358_1 crossref_primary_10_1002_adma_202303923 crossref_primary_10_1002_lpor_202400358 crossref_primary_10_1002_admt_202402114 crossref_primary_10_1021_acsami_4c15774 crossref_primary_10_1038_s41528_024_00332_0 crossref_primary_10_1002_smll_202304716 crossref_primary_10_1039_D4CS00541D crossref_primary_10_1021_jacs_2c13264 crossref_primary_10_1126_sciadv_adh1504 crossref_primary_10_1038_s41566_023_01335_5 crossref_primary_10_1002_adma_202420008 crossref_primary_10_1002_admi_202202487 crossref_primary_10_1002_aelm_202300763 |
Cites_doi | 10.1016/j.matt.2020.03.011 10.1002/ange.201916591 10.1002/adfm.202106564 10.1038/nphoton.2013.188 10.1021/acsami.1c18866 10.1021/acsmaterialslett.1c00216 10.1063/1.4947428 10.34133/2020/3405826 10.1021/acsami.1c24235 10.1088/1361-6528/aa6f55 10.1002/adma.202001989 10.1002/adma.201902743 10.1002/adma.201907143 10.1126/science.aah4496 10.1039/D0CS00035C 10.1038/s41467-021-23203-y 10.1023/A:1018678913914 10.1038/s41467-022-29759-7 10.1126/sciadv.abl8798 10.1021/jacs.2c00072 10.1038/s41467-021-27370-w 10.1021/acs.macromol.1c00268 10.1038/s41586-018-0576-2 10.1002/adma.201101986 10.1088/1757-899X/888/1/012065 10.1038/nphoton.2013.242 10.1038/s41467-019-13362-4 10.1002/(SICI)1099-0488(19991215)37:24<3488::AID-POLB9>3.0.CO;2-M 10.1038/s41586-022-04400-1 10.1038/s41566-019-0408-4 10.1021/acs.macromol.0c00428 10.1002/adma.202201844 10.1038/s41578-019-0167-3 10.1002/adfm.202105092 10.1002/adma.202101339 10.1038/ncomms11573 10.1038/s41467-019-09218-6 10.1016/j.progpolymsci.2019.101181 10.1126/science.abl8941 10.1021/acsmaterialslett.1c00763 10.1002/anie.201916591 10.34133/2020/2038560 10.1038/s41566-020-00744-0 10.1126/sciadv.abm3785 10.1126/sciadv.abd9715 10.1038/s41566-022-00958-4 10.1002/adfm.201501337 10.1002/adma.201908015 10.1126/sciadv.abn3863 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202213749 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36350657 10_1002_anie_202213749 ANIE202213749 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Excellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions funderid: TJ217038 – fundername: National Key Basic Research Program of China funderid: 2017YFB0404501, 2014CB648300 – fundername: Six Talent Peaks Project in Jiangsu Province funderid: TD-XCL-009 – fundername: Natural Science Foundation of Jiangsu Province funderid: BE2019120 – fundername: Leading Talent of Technological Innovation of National Ten-Thousands Talents Program of China – fundername: National Natural Science Foundation of China funderid: 21835003, 21674050, 62005126, 61704077 – fundername: Jiangsu Postdoctoral Research Foundation funderid: 1701135B – fundername: Project 333 of Jiangsu Province funderid: BRA2017402 – fundername: Synergetic Innovation Center for Organic Electronics and Information Displays – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: Postdoctoral Research Foundation of China grantid: 2019M650121, 2016M601784, 2017M620519, 2017T100358 – fundername: State Key Laboratory of Organic Electronics and Information Displays grantid: GZR2022010022 – fundername: Program for Jiangsu Specially-Appointed Professor grantid: RK030STP15001 – fundername: Six Talent Peaks Project in Jiangsu Province grantid: TD-XCL-009 – fundername: Excellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions grantid: TJ217038 – fundername: Nanjing University of Posts and Telecommunications grantid: NY220152, NY219021 – fundername: Natural Science Foundation of Jiangsu Province grantid: BE2019120 – fundername: National Natural Science Foundation of China grantid: 21835003, 21674050, 62005126, 61704077 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3739-679b45a7083959f6781a19093acf6ee8dafcaf55ef63eff88c026a78b74784863 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:19:59 EDT 2025 Sun Jul 13 04:27:06 EDT 2025 Wed Feb 19 02:24:57 EST 2025 Tue Jul 01 01:46:58 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Wed Jan 22 16:19:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Electroluminescent Elastomers Stretchable Electronics Flexible Electronics Organic Emitters Organic Light-Emitting Diodes (OLEDs) |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-679b45a7083959f6781a19093acf6ee8dafcaf55ef63eff88c026a78b74784863 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2381-1570 |
PMID | 36350657 |
PQID | 2759968347 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2734614470 proquest_journals_2759968347 pubmed_primary_36350657 crossref_citationtrail_10_1002_anie_202213749 crossref_primary_10_1002_anie_202213749 wiley_primary_10_1002_anie_202213749_ANIE202213749 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 9, 2023 |
PublicationDateYYYYMMDD | 2023-01-09 |
PublicationDate_xml | – month: 01 year: 2023 text: January 9, 2023 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 375 2018; 562 2021; 7 2021; 3 2017; 28 2019; 10 2019; 13 2020 2020; 59 132 2020; 888 2020; 100 2020; 32 2013; 7 2017; 355 2022; 144 2021; 15 2016; 7 2020; 5 2015; 25 2021; 54 2021; 31 2020; 2020 2020; 2 2021; 12 2016; 3 2020; 53 2022; 4 1997; 32 2022; 8 1999; 37 2022; 34 2020; 49 2022; 13 2022; 14 2011; 23 2022; 32 2022; 603 2022; 16 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_60_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_1 e_1_2_7_66_2 e_1_2_7_26_1 e_1_2_7_47_2 e_1_2_7_47_3 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_1 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_1 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_37_1 e_1_2_7_39_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_63_1 e_1_2_7_42_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_67_2 e_1_2_7_46_2 e_1_2_7_48_1 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_34_1 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_57_2 Li X.-C. (e_1_2_7_22_2) 2020; 2020 e_1_2_7_38_2 |
References_xml | – volume: 12 start-page: 2864 year: 2021 publication-title: Nat. Commun. – volume: 3 year: 2016 publication-title: Appl. Phys. Rev. – volume: 13 start-page: 406 year: 2019 end-page: 411 publication-title: Nat. Photonics – volume: 2020 year: 2020 publication-title: Research – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 100 year: 2020 publication-title: Prog. Polym. Sci. – volume: 32 start-page: 4749 year: 1997 end-page: 4758 publication-title: J. Mater. Sci. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 14 start-page: 5699 year: 2022 end-page: 5708 publication-title: ACS Appl. Mater. Interfaces – volume: 144 start-page: 4699 year: 2022 end-page: 4715 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 11573 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: 811 year: 2013 end-page: 816 publication-title: Nat. Photonics – volume: 16 start-page: 212 year: 2022 end-page: 218 publication-title: Nat. Photonics – volume: 53 start-page: 4030 year: 2020 end-page: 4037 publication-title: Macromolecules – volume: 7 start-page: 817 year: 2013 end-page: 824 publication-title: Nat. Photonics – volume: 49 start-page: 4466 year: 2020 end-page: 4495 publication-title: Chem. Soc. Rev. – volume: 603 start-page: 624 year: 2022 end-page: 630 publication-title: Nature – volume: 10 start-page: 5384 year: 2019 publication-title: Nat. Commun. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 5 start-page: 149 year: 2020 end-page: 165 publication-title: Nat. Rev. Mater. – volume: 562 start-page: 249 year: 2018 end-page: 253 publication-title: Nature – volume: 10 start-page: 1315 year: 2019 publication-title: Nat. Commun. – volume: 15 start-page: 187 year: 2021 end-page: 192 publication-title: Nat. Photonics – volume: 355 start-page: 59 year: 2017 end-page: 64 publication-title: Science – volume: 23 start-page: 3989 year: 2011 end-page: 3994 publication-title: Adv. Mater. – volume: 12 start-page: 7038 year: 2021 publication-title: Nat. Commun. – volume: 4 start-page: 634 year: 2022 end-page: 641 publication-title: ACS Mater. Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 28 year: 2017 publication-title: Nanotechnology – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 888 year: 2020 publication-title: IOP Conf. Series Mater. Sci. Eng. – volume: 37 start-page: 3488 year: 1999 end-page: 3493 publication-title: J. Polym. Sci. Part A – volume: 25 start-page: 4617 year: 2015 end-page: 4625 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 2744 year: 2022 publication-title: Nat. Commun. – volume: 3 start-page: 1104 year: 2021 end-page: 1111 publication-title: ACS Mater. Lett. – volume: 59 132 start-page: 9826 9910 year: 2020 2020 end-page: 9840 9924 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 375 start-page: 852 year: 2022 end-page: 859 publication-title: Science – volume: 14 start-page: 14165 year: 2022 end-page: 14173 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 794 year: 2020 end-page: 795 publication-title: Matter – volume: 54 start-page: 3907 year: 2021 end-page: 3926 publication-title: Macromolecules – ident: e_1_2_7_34_1 – ident: e_1_2_7_19_2 doi: 10.1016/j.matt.2020.03.011 – ident: e_1_2_7_47_3 doi: 10.1002/ange.201916591 – ident: e_1_2_7_61_2 doi: 10.1002/adfm.202106564 – ident: e_1_2_7_10_2 doi: 10.1038/nphoton.2013.188 – ident: e_1_2_7_56_1 – ident: e_1_2_7_14_2 doi: 10.1021/acsami.1c18866 – ident: e_1_2_7_16_2 doi: 10.1021/acsmaterialslett.1c00216 – ident: e_1_2_7_50_2 doi: 10.1063/1.4947428 – ident: e_1_2_7_62_1 doi: 10.34133/2020/3405826 – ident: e_1_2_7_4_1 – ident: e_1_2_7_13_2 doi: 10.1021/acsami.1c24235 – ident: e_1_2_7_54_2 doi: 10.1088/1361-6528/aa6f55 – ident: e_1_2_7_55_2 doi: 10.1002/adma.202001989 – ident: e_1_2_7_52_1 – ident: e_1_2_7_43_2 doi: 10.1002/adma.201902743 – ident: e_1_2_7_8_1 – ident: e_1_2_7_53_2 doi: 10.1002/adma.201907143 – ident: e_1_2_7_41_1 – ident: e_1_2_7_30_1 – ident: e_1_2_7_36_2 doi: 10.1126/science.aah4496 – ident: e_1_2_7_25_2 doi: 10.1039/D0CS00035C – ident: e_1_2_7_44_1 doi: 10.1038/s41467-021-23203-y – ident: e_1_2_7_49_1 – ident: e_1_2_7_66_2 doi: 10.1023/A:1018678913914 – ident: e_1_2_7_29_2 doi: 10.1038/s41467-022-29759-7 – ident: e_1_2_7_27_2 doi: 10.1126/sciadv.abl8798 – ident: e_1_2_7_65_1 – ident: e_1_2_7_60_2 doi: 10.1021/jacs.2c00072 – ident: e_1_2_7_31_2 doi: 10.1038/s41467-021-27370-w – ident: e_1_2_7_37_1 – ident: e_1_2_7_51_2 doi: 10.1021/acs.macromol.1c00268 – ident: e_1_2_7_21_2 doi: 10.1038/s41586-018-0576-2 – ident: e_1_2_7_39_2 doi: 10.1002/adma.201101986 – ident: e_1_2_7_64_1 doi: 10.1088/1757-899X/888/1/012065 – ident: e_1_2_7_9_2 doi: 10.1038/nphoton.2013.242 – ident: e_1_2_7_45_1 – ident: e_1_2_7_59_1 – ident: e_1_2_7_24_2 doi: 10.1038/s41467-019-13362-4 – ident: e_1_2_7_67_2 doi: 10.1002/(SICI)1099-0488(19991215)37:24<3488::AID-POLB9>3.0.CO;2-M – ident: e_1_2_7_35_2 doi: 10.1038/s41586-022-04400-1 – ident: e_1_2_7_20_2 doi: 10.1038/s41566-019-0408-4 – ident: e_1_2_7_63_1 doi: 10.1021/acs.macromol.0c00428 – ident: e_1_2_7_1_1 – volume: 2020 year: 2020 ident: e_1_2_7_22_2 publication-title: Research – ident: e_1_2_7_40_2 doi: 10.1002/adma.202201844 – ident: e_1_2_7_42_2 doi: 10.1038/s41578-019-0167-3 – ident: e_1_2_7_58_2 doi: 10.1002/adfm.202105092 – ident: e_1_2_7_32_2 doi: 10.1002/adma.202101339 – ident: e_1_2_7_11_2 doi: 10.1038/ncomms11573 – ident: e_1_2_7_46_2 doi: 10.1038/s41467-019-09218-6 – ident: e_1_2_7_57_2 doi: 10.1016/j.progpolymsci.2019.101181 – ident: e_1_2_7_2_2 doi: 10.1126/science.abl8941 – ident: e_1_2_7_17_2 doi: 10.1021/acsmaterialslett.1c00763 – ident: e_1_2_7_47_2 doi: 10.1002/anie.201916591 – ident: e_1_2_7_5_2 doi: 10.34133/2020/2038560 – ident: e_1_2_7_7_2 doi: 10.1038/s41566-020-00744-0 – ident: e_1_2_7_18_1 – ident: e_1_2_7_3_2 doi: 10.1126/sciadv.abm3785 – ident: e_1_2_7_38_2 doi: 10.1126/sciadv.abd9715 – ident: e_1_2_7_28_2 doi: 10.1038/s41566-022-00958-4 – ident: e_1_2_7_26_1 – ident: e_1_2_7_12_1 – ident: e_1_2_7_23_1 – ident: e_1_2_7_48_1 doi: 10.1002/adfm.201501337 – ident: e_1_2_7_6_2 doi: 10.1002/adma.201908015 – ident: e_1_2_7_33_2 doi: 10.1126/sciadv.abn3863 – ident: e_1_2_7_15_1 |
SSID | ssj0028806 |
Score | 2.6660533 |
Snippet | Ultra‐flexible stretchable organic light‐emitting diodes (OLEDs) are emerging as a basic component of flexible electronics and human‐machine interfaces.... Ultra-flexible stretchable organic light-emitting diodes (OLEDs) are emerging as a basic component of flexible electronics and human-machine interfaces.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202213749 |
SubjectTerms | Chain dynamics Confinement Deformation effects Elastomers Electroluminescence Electroluminescent Elastomers Electronics Flexible components Flexible Electronics Formability Interfaces Organic Emitters Organic light emitting diodes Organic Light-Emitting Diodes (OLEDs) Stretchability Stretchable Electronics |
Title | Intrinsically Stretchable Electroluminescent Elastomers with Self‐Confinement Effect for Highly Efficient Non‐Blended Stretchable OLEDs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202213749 https://www.ncbi.nlm.nih.gov/pubmed/36350657 https://www.proquest.com/docview/2759968347 https://www.proquest.com/docview/2734614470 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQF7i0pUBJu6AgIXEKZG0nto88smIRLBKw0t4ix2tLVbfZah-H9tR7L_2N_BJmnE3KgqpK9JbHOE7isf15PPMNIQew4rLcmSSKxdBEXMI4qBx3UdtIRW0hrfA7pte99KLPLwfJ4EkUf8UP0RjcsGf48Ro7uC6mx39IQzECG9Z3lLaZ4BjBhw5biIpuG_4oCspZhRcxFmEW-pq1MabHy8WXZ6UXUHMZufqpp_OW6PqlK4-TL0fzWXFkfjzjc_yfr3pH3ixwaXhSKdIGWbHle7J2VqeD2yS_uuVs8rn0jTr6HuJuNjQ4Bl6FWZVKB4Y59KFHd0-4pAFVok08REtveGdH7uHnb4wvBJmvXsR7koQAmkN0NoFnZp7OAu_1xiVIn468fX6prpur7Hy6Rfqd7P7sIlpkcogME0xFqVAFT7QAvKcS5WCCbGtAIopp41Jr5VA7o12SWJcy65yUBpaGWsgC2f25TNk2WS3Hpd0hoU0VdcPYojsP5wkv0lgzOmzDvCqEsTQgUd2SuVnQnGO2jVFeETTTHH9x3vzigBw28t8qgo-_SrZqxcgXHX2aU4H8NpJxEZD95jY0De676NKO5yjDOK67RRyQD5VCNVUxAHyAAqE09Wrxj3fIT3rdrDn7-JpCn8g6HDNvRlItsjqbzO0uAKtZsec7zyNEsxyv |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n-WFggSiFParO3E8YFD6abapdtFglbqLXW8toRYsqi7K9SeuHPhVXiVPkKfhBnnBy0IISH1wDHJJLHsmfHMeOYbgGfocVnhTBxGcmxCkaIeVE64sGtSxWyRWulPTPdHSf9QvD6Kj1bge1MLU-FDtAE3kgyvr0nAKSC99RM1lEqw0cFjrMulUHVe5Z49_Yxe2-zloIdL_Jyx3exgpx_WjQVCwyVXYSJVIWIt0fxQsXKor7saN0bFtXGJtelYO6NdHFuXcOtcmhr0VLRMCwKbF2nC8btX4Cq1ESe4_t7bFrGKoThUBU2ch9T3vsGJjNjW8niX98HfjNtlW9lvdrs34LyZpirH5cPmYl5smrNfECT_q3m8Cddr0zvYrmTlFqzY8jas7TQd7-7A10E5P3lfer6dnAZ0YI88TbVlQVZ1C0JNTmUClNGKtzQazhT2DyiYHbyzE3fx5RuVUCLNR0_ik2UC9AsCyqfBb2YesYOejaYlUr-a-COIpX-9GWa92V04vJS5uAer5bS0DyCwiWJuHFnKWBIiFkUSac7GXTQdpDSWdSBsWCc3NZI7NRSZ5BUGNctpSfN2STvwoqX_VGGY_JFyo-HEvNZls5xJgvBJuZAdeNo-xqWhoyVd2umCaLig0IKMOnC_4uD2VxxtWjR08W3m-fAvY8i3R4OsvXr4Ly89gbX-wf4wHw5Ge-twDe9zHzVTG7A6P1nYR2hHzovHXnIDOL5sFv8BWLp6Fg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIkEv_P8sFAgSiFParO3E8YFD6WbVpWVBQKXeUsexpYolW3V3hcqJOxcehVfhFXgSZpwftCCEhNQDxySTxLJnxjPjmW8AHqHHZYUzcRjJ0oQiRT2onHBh36SK2SK10p-YvhgnO_vi-UF8sAJf21qYGh-iC7iRZHh9TQJ-XLrNn6ChVIGN_h1jfS6FatIqd-3pB3TaZk9HA1zhx4wNs7fbO2HTVyA0XHIVJlIVItYSrQ8VK4fquq9xX1RcG5dYm5baGe3i2LqEW-fS1KCjomVaENa8SBOO3z0H50USKWoWMXjdAVYxlIa6nonzkNretzCREdtcHu_yNvibbbtsKvu9bngZvrWzVKe4vNtYzIsN8_EXAMn_aRqvwKXG8A62akm5Ciu2ugYXt9t-d9fh86ianxxVnmsnpwEd1yNHU2VZkNW9glCPU5EA5bPiLY1mMwX9AwplB2_sxH3_9IUKKJHmvSfxqTIBegUBZdPgNzOP10HPxtMKqZ9N_AHE0r9e7mWD2Q3YP5O5uAmr1bSytyGwiWKujCzlKwkRiyKJNGdlHw0HKY1lPQhbzslNg-NO7UQmeY1AzXJa0rxb0h486eiPawSTP1Kut4yYN5psljNJAD4pF7IHD7vHuDR0sKQrO10QDRcUWJBRD27VDNz9iqNFi2Yuvs08G_5lDPnWeJR1V3f-5aUHcOHVYJjvjca7d2ENb3MfMlPrsDo_Wdh7aETOi_tebgM4PGsO_wFZdnjF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsically+Stretchable+Electroluminescent+Elastomers+with+Self%E2%80%90Confinement+Effect+for+Highly+Efficient+Non%E2%80%90Blended+Stretchable+OLEDs&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Xiang%E2%80%90Chun&rft.au=Yao%2C+Lanqian&rft.au=Song%2C+Wan&rft.au=Liu%2C+Fang&rft.date=2023-01-09&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=2&rft_id=info:doi/10.1002%2Fanie.202213749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202213749 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |