Harnessing the Power of Stimuli‐Responsive Nanoparticles as an Effective Therapeutic Drug Delivery System
The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic appr...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 24; pp. e2312939 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli‐reactive nanosystems in biomedicine and outlines future development prospects.
Stimuli responsive nanoparticles have gained immense popularity in detection and treatment of several ailments. The article provides a brief overview of available endogenous and exogenous stimuli. Further section discusses their applications in combatting major life‐threatening diseases. Major challenges and future prospects of stimuli responsive nanoparticles are also discussed. |
---|---|
AbstractList | The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli‐reactive nanosystems in biomedicine and outlines future development prospects. The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli-reactive nanosystems in biomedicine and outlines future development prospects.The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli-reactive nanosystems in biomedicine and outlines future development prospects. The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli‐reactive nanosystems in biomedicine and outlines future development prospects. Stimuli responsive nanoparticles have gained immense popularity in detection and treatment of several ailments. The article provides a brief overview of available endogenous and exogenous stimuli. Further section discusses their applications in combatting major life‐threatening diseases. Major challenges and future prospects of stimuli responsive nanoparticles are also discussed. |
Author | Khan, Tasneem Almalki, Waleed H. Kesharwani, Prashant Sahebkar, Amirhossein Fatima, Mahak |
Author_xml | – sequence: 1 givenname: Mahak surname: Fatima fullname: Fatima, Mahak organization: Jamia Hamdard – sequence: 2 givenname: Waleed H. surname: Almalki fullname: Almalki, Waleed H. organization: Umm Al‐Qura University – sequence: 3 givenname: Tasneem surname: Khan fullname: Khan, Tasneem organization: Jamia Hamdard – sequence: 4 givenname: Amirhossein surname: Sahebkar fullname: Sahebkar, Amirhossein organization: Mashhad University of Medical Sciences – sequence: 5 givenname: Prashant orcidid: 0000-0002-0890-769X surname: Kesharwani fullname: Kesharwani, Prashant email: prashantdops@gmail.com organization: Jamia Hamdard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38447161$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd9qFDEUh4O02G311ksJeOPNbPNvMsnl0q1WaKvYeh2y2ZM2dSYZkxnL3vkIPqNP4izbKhRECBzI-b5Dcn6HaC-mCAi9omROCWHHdt3ZOSOMU6a5foZmtGa0EkTXe2hGNK8rLYU6QIel3BFCtCTyOTrgSoiGSjpDX89sjlBKiDd4uAX8Kd1DxsnjqyF0Yxt-_fj5GUqfYgnfAV_amHqbh-BaKNhOJ-JT78EN2-71LWTbwzi18TKPN3gJ7XSfN_hqUwboXqB9b9sCLx_qEfry7vT65Kw6__j-w8nivHK84bqqNafT37SSVDdCrhWxtfdeOwugpBAOVl7ShrpGKCJq5b3zwNcrquRKe2v5EXq7m9vn9G2EMpguFAdtayOksRimBaNKs4ZN6Jsn6F0ac5xeZziRDWNSEz5Rrx-ocdXB2vQ5dDZvzOMaJ0DsAJdTKRm8cWGwQ0hxyDa0hhKzTcts0zJ_0pq0-RPtcfI_Bb0T7kMLm__QZrG8WPx1fwMPUqif |
CitedBy_id | crossref_primary_10_1039_D4TB02818J crossref_primary_10_2147_IJN_S469742 crossref_primary_10_1016_j_carbpol_2025_123375 crossref_primary_10_1016_j_lfs_2025_123424 crossref_primary_10_3762_bjnano_15_118 crossref_primary_10_1016_j_ccr_2024_216054 crossref_primary_10_1016_j_jconrel_2025_113652 crossref_primary_10_1186_s12951_024_02841_6 crossref_primary_10_1021_acs_nanolett_4c03788 crossref_primary_10_1186_s12951_024_02892_9 crossref_primary_10_1016_j_ijbiomac_2024_138424 crossref_primary_10_1016_j_ijbiomac_2025_140318 crossref_primary_10_1021_acs_biomac_4c01257 crossref_primary_10_26599_NR_2025_94907124 crossref_primary_10_1016_j_fbio_2025_106023 crossref_primary_10_1021_acs_molpharmaceut_4c01325 crossref_primary_10_1002_advs_202415207 crossref_primary_10_1039_D4SM01239A crossref_primary_10_1016_j_jconrel_2025_02_006 |
Cites_doi | 10.1016/j.bioactmat.2022.07.025 10.3390/pharmaceutics15071837 10.3390/polym14235249 10.1016/j.colsurfa.2023.131763 10.3390/gels8070454 10.3390/pharmaceutics15071928 10.1021/acsaem.2c03937 10.1016/j.eurpolymj.2022.111156 10.1016/j.ultsonch.2021.105805 10.1016/j.ijpharm.2022.121874 10.1016/j.actbio.2019.01.001 10.1016/j.jddst.2023.104562 10.3390/nano10091816 10.3390/pharmaceutics12070630 10.1016/j.actbio.2023.07.025 10.1016/j.progpolymsci.2016.09.008 10.1016/j.trac.2021.116379 10.1016/j.progpolymsci.2013.07.005 10.1080/1061186X.2023.2205609 10.1016/j.medidd.2022.100134 10.1016/j.cis.2024.103087 10.1016/j.isci.2020.101365 10.1016/j.mtbio.2023.100597 10.1016/j.addr.2021.05.024 10.1007/978-981-19-5558-7_9 10.2147/JIR.S275595 10.1021/acsnano.9b06395 10.1080/17425247.2021.1828339 10.1016/j.mattod.2015.06.003 10.3390/cells10061472 10.1016/j.fshw.2019.12.003 10.1039/C8NR00693H 10.1021/acsnano.8b05151 10.1016/j.mtbio.2023.100678 10.1016/j.ijpharm.2021.120652 10.1016/j.colsurfb.2019.110718 10.1186/s12943-023-01798-8 10.3389/fchem.2021.649048 10.3390/polym14050925 10.1016/j.jddst.2022.103554 10.1038/s42003-020-0817-4 10.1016/j.apmt.2018.02.003 10.1016/j.matdes.2023.112350 10.3390/diagnostics13040681 10.1002/adtp.202100118 10.1016/j.isci.2022.105390 10.1016/j.colsurfb.2017.07.041 10.1039/D3RA02620E 10.1155/2022/1225578 10.1016/j.jphotochemrev.2021.100420 10.1016/bs.mie.2019.04.006 10.1038/s41392-022-01151-3 10.3390/biomimetics7040206 10.1016/j.biomaterials.2020.120645 10.1016/j.tet.2023.133550 10.2174/1871520621666210708123750 10.3390/pharmaceutics14112432 10.1208/s12249-019-1613-7 10.1016/j.mtbio.2021.100181 10.1016/j.jare.2022.01.018 10.3390/polym14040658 10.1002/adma.201506025 10.1016/j.jddst.2022.103552 10.2174/1389450123666220526155144 10.1016/j.nantod.2018.11.001 10.1016/j.mattod.2022.12.004 10.3390/polym14040687 10.1016/j.bioactmat.2021.03.012 10.1016/j.jconrel.2017.03.012 10.1038/s41392-019-0068-3 10.3390/ijms21249739 10.1016/j.bioactmat.2021.03.043 10.1016/j.apsb.2023.07.021 10.1080/08982104.2021.1999974 10.1016/j.mtbio.2022.100360 10.1016/j.jddst.2022.103691 10.1016/j.molcel.2021.08.018 10.1016/j.colsurfb.2020.110941 10.1016/j.drup.2023.100948 10.1016/j.apsb.2019.07.004 10.1016/j.jmst.2020.10.027 10.3390/gels8050316 10.1016/j.bioactmat.2022.03.041 10.1177/15330338231152083 10.1517/17425247.2016.1140147 10.1021/acsami.9b20999 10.1016/j.ejpb.2018.06.020 10.1016/j.ejps.2022.106367 10.3390/antiox10020313 10.1016/j.cjche.2021.07.019 10.2174/1381612827666211208150210 10.1016/j.jddst.2023.104720 10.1016/j.drudis.2022.103353 10.3390/molecules26195905 10.1016/B978-0-12-817830-0.00001-1 10.1016/j.pmatsci.2019.03.003 10.1016/S1872-2040(20)60066-4 10.1016/j.carbpol.2017.12.021 10.1016/j.colsurfa.2022.129312 10.3390/biom12081110 10.3389/fimmu.2023.1074863 10.1016/j.matdes.2023.111931 10.1186/s40643-018-0206-8 10.1016/j.ijbiomac.2018.11.147 10.1016/j.jsps.2022.11.004 10.1039/D1MA01197A 10.1016/j.msec.2021.112164 10.1016/j.carbpol.2019.04.029 10.1016/j.nantod.2022.101582 10.3390/pharmaceutics13111972 10.1016/j.biopha.2019.109340 10.1039/D2TB00615D 10.1016/j.ijpharm.2023.122938 10.1186/s11671-019-3208-3 10.1016/j.ejps.2021.105812 10.3390/polym12061397 10.1016/j.matpr.2018.06.498 10.3389/fbioe.2017.00080 10.1016/j.ijpharm.2021.120836 10.1002/chem.201501101 10.1615/CritRevBiomedEng.v40.i5.10 10.1016/B978-0-323-89868-3.00006-9 10.1016/j.taap.2022.115989 10.1007/s40204-019-00125-z 10.3390/gels7040221 10.3390/molecules24061117 10.1016/j.mtchem.2022.100963 10.1016/j.biomaterials.2012.06.068 10.1021/jacs.8b03977 10.1016/j.biomaterials.2017.07.035 10.1016/j.biomaterials.2017.06.003 10.1016/j.heliyon.2023.e17488 10.1016/j.jcis.2019.09.120 10.3389/fchem.2022.952675 10.3390/ijerph17144923 10.1021/acsami.9b12620 10.1016/j.biomaterials.2015.01.053 10.3389/fmolb.2020.597634 10.1016/j.biomaterials.2019.119730 10.3390/pr9030470 10.1016/j.progpolymsci.2019.101164 10.1016/j.eurpolymj.2022.111759 10.1016/j.ijpharm.2020.119516 10.1016/j.drudis.2014.12.012 10.3390/ijms23084421 10.1016/B978-0-323-85881-6.00018-X 10.1016/j.mtbio.2023.100610 10.1016/j.actbio.2021.04.026 10.3389/fmicb.2020.02097 10.1016/j.nano.2018.06.010 10.1038/s41573-020-0090-8 10.1016/j.bioactmat.2020.07.002 10.1186/s40035-020-00196-0 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202312939 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 38447161 10_1002_adma_202312939 ADMA202312939 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Indian Council of Medical Research |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3739-593110098619746d80a5fff9caee8644cebf6171c7480458ffcfe3db186b9faa3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:55:50 EDT 2025 Sun Jul 13 04:43:22 EDT 2025 Mon Jul 21 06:02:04 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 Tue Jul 01 00:54:47 EDT 2025 Sun Jul 06 04:45:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | smart nanomaterials cancer drug delivery biomedical applications stimuli‐responsive |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-593110098619746d80a5fff9caee8644cebf6171c7480458ffcfe3db186b9faa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0890-769X |
PMID | 38447161 |
PQID | 3067226903 |
PQPubID | 2045203 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_2942189272 proquest_journals_3067226903 pubmed_primary_38447161 crossref_citationtrail_10_1002_adma_202312939 crossref_primary_10_1002_adma_202312939 wiley_primary_10_1002_adma_202312939_ADMA202312939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 606 2023; 181 2020; 20 2022; 170 2019; 99 2019; 11 2023; 183 2019; 13 2019; 14 2021; 602 2022; 23 2020; 17 2021; 162 2022; 25 2020; 14 2020; 13 2020; 12 2020; 11 2023; 229 2020; 10 2017; 158 2022; 27 2022; 441 2023; 63 2023; 68 2021; 75 2018; 5 2019; 24 2022; 32 2021; 81 2021; 80 2021; 47 2019; 8 2017; 64 2019; 9 2019; 4 2021; 269 2019; 33 2015; 50 2023; 168 2018; 189 2019; 103 2017; 252 2021; 143 2019; 624 2018; 23 2012; 33 2016; 13 2017; 139 2022; 3 2022; 7 2022; 8 2023; 672 2022; 12 2022; 13 2022; 14 2022; 15 2020; 23 2022; 10 2019; 216 2014; 39 2020; 21 2017; 143 2018; 11 2016; 28 2018; 10 2022; 16 2022; 622 2020; 559 2018; 14 2012; 40 2023; 31 2017; 5 2021; 26 2021; 22 2023; 6 2021; 126 2020; 121 2021; 128 2023; 9 2021; 28 2023; 143 2019; 123 2020; 8 2023; 20 2020; 7 2018; 130 2020; 5 2020; 3 2023; 25 2023; 22 2020; 1 2020; 9 2020; 48 2022; 74 2022; 75 2019; 118 2022; 648 2019; 232 2021; 9 2021; 7 2021; 6 2023; 13 2021; 4 2023; 14 2018; 140 2015; 18 2024; 324 2023; 15 2020; 186 2022; 51 2023; 19 2022; 46 2020; 585 2022; 41 2023; 86 2021; 13 2023; 84 2020; 190 2021; 10 2022; 2022 2023 2019; 86 2022 2020 2015; 20 2023; 234 2021; 18 2015; 21 2023; 638 2021; 175 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Cruz‐López K. G. (e_1_2_9_144_1) 2019; 9 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 Zhang L. (e_1_2_9_119_1) 2020; 121 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 Shi Z. (e_1_2_9_60_1) 2020; 1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 Jain P. (e_1_2_9_150_1) 2022 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 Xia T. (e_1_2_9_147_1) 2019; 33 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 Kenguva G. (e_1_2_9_118_1) 2022 e_1_2_9_93_1 Li M. (e_1_2_9_61_1) 2020; 8 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_161_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 Wu Y. (e_1_2_9_108_1) 2019; 14 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 3 start-page: 3023 year: 2022 publication-title: Mater. Adv. – volume: 14 year: 2018 – volume: 123 start-page: 968 year: 2019 publication-title: Int. J. Biol. Macromol. – volume: 14 start-page: 488 year: 2020 publication-title: ACS Nano – volume: 25 year: 2022 publication-title: Mater. Today Chem. – volume: 11 start-page: 207 year: 2018 publication-title: Appl. Mater. Today – volume: 40 start-page: 363 year: 2012 publication-title: Crit. Rev. Biomed. Eng. – volume: 75 start-page: 216 year: 2021 publication-title: J. Mater. Sci. Technol. – volume: 8 start-page: 223 year: 2019 publication-title: Prog. Biomater. – volume: 32 start-page: 250 year: 2022 publication-title: J. Liposome Res. – volume: 234 year: 2023 publication-title: Mater. Des. – start-page: 169 year: 2022 – volume: 86 year: 2023 publication-title: J. Drug Delivery Sci. Technol. – volume: 9 year: 2021 publication-title: Front. Chem. – volume: 17 start-page: 4923 year: 2020 publication-title: Int. J. Environ. Res. Public Health – volume: 103 start-page: 484 year: 2019 publication-title: Prog. Mater. Sci. – volume: 638 year: 2023 publication-title: Int. J. Pharm. – volume: 18 start-page: 565 year: 2015 publication-title: Mater. Today – volume: 22 start-page: 1 year: 2023 publication-title: Technol. Cancer Res. Treat. – volume: 24 start-page: 1117 year: 2019 publication-title: Molecules – volume: 8 start-page: 454 year: 2022 publication-title: Gels – volume: 139 start-page: 187 year: 2017 publication-title: Biomaterials – volume: 9 year: 2019 publication-title: Front. Oncol. – volume: 6 start-page: 2924 year: 2023 publication-title: ACS Appl. Energy Mater. – volume: 175 year: 2021 publication-title: Adv. Drug Delivery Rev. – volume: 9 start-page: 17 year: 2020 publication-title: Transl. Neurodegener. – volume: 21 start-page: 9739 year: 2020 publication-title: Int. J. Mol. Sci. – volume: 51 start-page: 35 year: 2022 publication-title: Chin. J. Chem. Eng. – volume: 33 start-page: 1161 year: 2019 publication-title: J. Reticuloendothel. Soc. – volume: 84 year: 2023 publication-title: J. Drug Delivery Sci. Technol. – volume: 143 year: 2023 publication-title: Tetrahedron – volume: 8 year: 2020 publication-title: Front. Chem. – volume: 14 start-page: 390 year: 2019 publication-title: Nanoscale Res. Lett. – volume: 8 start-page: 316 year: 2022 publication-title: Gels – volume: 269 year: 2021 publication-title: Biomaterials – volume: 10 start-page: 1816 year: 2020 publication-title: Nanomaterials – volume: 21 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 20 start-page: 536 year: 2015 publication-title: Drug Discovery Today – volume: 31 start-page: 486 year: 2023 publication-title: J. Drug Targeting – volume: 5 year: 2018 publication-title: Mater. Today: Proc. – volume: 99 year: 2019 publication-title: Prog. Polym. Sci. – volume: 189 start-page: 352 year: 2018 publication-title: Carbohydr. Polym. – volume: 18 start-page: 205 year: 2021 publication-title: Expert Opin. Drug Delivery – volume: 19 year: 2023 publication-title: Mater. Today Bio – volume: 130 start-page: 39 year: 2018 publication-title: Eur. J. Pharm. Biopharm. – volume: 47 year: 2021 publication-title: J. Photochem. Photobiol., C – volume: 606 year: 2021 publication-title: Int. J. Pharm. – volume: 33 start-page: 7138 year: 2012 publication-title: Biomaterials – volume: 14 start-page: 5249 year: 2022 publication-title: Polymers – volume: 602 year: 2021 publication-title: Int. J. Pharm. – volume: 4 year: 2021 publication-title: Adv. Ther. – volume: 14 start-page: 2432 year: 2022 publication-title: Pharmaceutics – volume: 2022 year: 2022 publication-title: Oxid. Med. Cell. Longevity – volume: 126 year: 2021 publication-title: Mater. Sci. Eng. C – volume: 9 start-page: 470 year: 2021 publication-title: Processes – volume: 7 start-page: 305 year: 2022 publication-title: Signal Transduction Targeted Ther. – volume: 31 start-page: 29 year: 2023 publication-title: Saudi Pharm. J. – volume: 14 start-page: 41 year: 2019 publication-title: Asian J. Pharm. Sci. – volume: 143 start-page: 93 year: 2017 publication-title: Biomaterials – volume: 15 start-page: 1928 year: 2023 publication-title: Pharmaceutics – volume: 118 year: 2019 publication-title: Biomed. Pharmacother. – volume: 46 year: 2022 publication-title: Nano Today – volume: 7 start-page: 206 year: 2022 publication-title: Biomimetics – volume: 15 year: 2022 publication-title: Med. Drug Discovery – volume: 12 start-page: 1397 year: 2020 publication-title: Polymers (Basel) – volume: 28 start-page: 910 year: 2021 publication-title: Curr. Pharm. Des. – start-page: 41 year: 2022 – volume: 13 start-page: 1057 year: 2020 publication-title: J. Inflammation Res. – volume: 585 year: 2020 publication-title: Int. J. Pharm. – volume: 170 year: 2022 publication-title: Eur. Polym. J. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 187 year: 2019 publication-title: ACS Nano – volume: 183 year: 2023 publication-title: Eur. Polym. J. – volume: 13 start-page: 1972 year: 2021 publication-title: Pharmaceutics – volume: 20 year: 2023 publication-title: Mater. Today Bio – volume: 64 start-page: 154 year: 2017 publication-title: Prog. Polym. Sci. – volume: 13 start-page: 5016 year: 2023 publication-title: Acta Pharm. Sin. B – volume: 48 year: 2020 publication-title: Chin. J. Anal. Chem. – volume: 28 start-page: 3115 year: 2016 publication-title: Adv. Mater. – start-page: 277 year: 2023 – volume: 9 year: 2023 publication-title: Heliyon – volume: 14 year: 2023 publication-title: Front. Immunol. – volume: 23 start-page: 4421 year: 2022 publication-title: Int. J. Mol. Sci. – volume: 14 start-page: 658 year: 2022 publication-title: Polymers (Basel) – volume: 15 start-page: 1837 year: 2023 publication-title: Pharmaceutics – volume: 7 start-page: 221 year: 2021 publication-title: Gels – volume: 672 year: 2023 publication-title: Colloids Surf., A – volume: 7 year: 2020 publication-title: Front. Mol. Biosci. – volume: 12 start-page: 1110 year: 2022 publication-title: Biomolecules – volume: 12 start-page: 630 year: 2020 publication-title: Pharmaceutics – volume: 14 start-page: 925 year: 2022 publication-title: Polymers (Basel) – volume: 41 start-page: 159 year: 2022 publication-title: J. Adv. Res. – volume: 441 year: 2022 publication-title: Toxicol. Appl. Pharmacol. – volume: 10 year: 2022 publication-title: Front. Chem. – volume: 9 start-page: 8 year: 2020 publication-title: Food Sci. Hum. Wellness – volume: 13 year: 2023 publication-title: RSC Adv. – volume: 252 start-page: 62 year: 2017 publication-title: J. Controlled Release – volume: 3 start-page: 95 year: 2020 publication-title: Commun. Biol. – volume: 181 year: 2023 publication-title: Eur. J. Pharm. Sci. – volume: 13 start-page: 681 year: 2023 publication-title: Diagnostics – volume: 158 start-page: 547 year: 2017 publication-title: Colloids Surf., B – volume: 74 year: 2022 publication-title: J. Drug Delivery Sci. Technol. – volume: 16 year: 2022 publication-title: Mater. Today Bio – volume: 4 start-page: 33 year: 2019 publication-title: Signal Transduction Targeted Ther. – volume: 190 year: 2020 publication-title: Colloids Surf., B – volume: 23 start-page: 978 year: 2022 publication-title: Curr. Drug Targets – volume: 22 start-page: 668 year: 2021 publication-title: Anticancer Agents Med. Chem. – volume: 128 start-page: 462 year: 2021 publication-title: Acta Biomaterialia – volume: 186 year: 2020 publication-title: Colloids Surf., B – volume: 162 year: 2021 publication-title: Eur. J. Pharm. Sci. – volume: 10 start-page: 358 year: 2020 publication-title: Acta Pharm. Sin. B – volume: 75 year: 2022 publication-title: J. Drug Delivery Sci. Technol. – volume: 25 year: 2022 publication-title: iScience – volume: 232 year: 2019 publication-title: Biomaterials – volume: 39 start-page: 268 year: 2014 publication-title: Prg. Polym. Sci. – volume: 23 year: 2020 publication-title: iScience – volume: 5 start-page: 1113 year: 2020 publication-title: Bioact. Mater. – volume: 5 start-page: 80 year: 2017 publication-title: Front. Bioeng. Biotechnol. – volume: 13 year: 2022 publication-title: Mater. Today Bio – volume: 216 start-page: 113 year: 2019 publication-title: Carbohydr. Polym. – volume: 68 year: 2023 publication-title: Drug Resistance Updates – volume: 121 start-page: 541 year: 2020 publication-title: Acta Biomater. – volume: 19 start-page: 115 year: 2023 publication-title: Bioact. Mater. – volume: 80 year: 2021 publication-title: Ultrason. Sonochem. – volume: 63 start-page: 210 year: 2023 publication-title: Mater. Today – volume: 6 start-page: 3328 year: 2021 publication-title: Bioact. Mater. – volume: 324 year: 2024 publication-title: Adv. Colloid Interface Sci. – volume: 22 start-page: 98 year: 2023 publication-title: Mol. Cancer – volume: 10 start-page: 6402 year: 2018 publication-title: Nanoscale – volume: 622 year: 2022 publication-title: Int. J. Pharm. – volume: 13 start-page: 311 year: 2016 publication-title: Expert Opin. Drug Delivery – volume: 50 start-page: 67 year: 2015 publication-title: Biomaterials – volume: 10 start-page: 313 year: 2021 publication-title: Antioxidants – volume: 14 start-page: 687 year: 2022 publication-title: Polymers – volume: 143 year: 2021 publication-title: TrAC, Trends Anal. Chem. – volume: 1 start-page: 32 year: 2020 publication-title: Smart Polym. Mater. Biomed. Appl. – volume: 229 year: 2023 publication-title: Mater. Des. – volume: 10 start-page: 1472 year: 2021 publication-title: Cells – volume: 559 start-page: 51 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 20 start-page: 101 year: 2020 publication-title: Nat. Rev. Drug Discovery – volume: 12 start-page: 4821 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 485 year: 2023 publication-title: Bioact. Mater. – volume: 168 start-page: 22 year: 2023 publication-title: Acta Biomater. – volume: 86 start-page: 235 year: 2019 publication-title: Acta Biomater. – volume: 81 start-page: 3691 year: 2021 publication-title: Mol. Cell – volume: 6 start-page: 4110 year: 2021 publication-title: Bioact. Mater. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – year: 2020 – volume: 624 start-page: 129 year: 2019 publication-title: Methods Enzymol. – volume: 23 start-page: 59 year: 2018 publication-title: Nano Today – volume: 5 start-page: 17 year: 2018 publication-title: Bioresour. Bioprocess. – volume: 10 start-page: 7206 year: 2022 publication-title: J. Mater. Chem. B – volume: 26 start-page: 5905 year: 2021 publication-title: Molecules – volume: 648 year: 2022 publication-title: Colloids Surf., A – volume: 11 year: 2020 publication-title: Front. Microbiol. – volume: 21 start-page: 76 year: 2020 publication-title: AAPS PharmSciTech – volume: 27 year: 2022 publication-title: Drug Discovery Today – ident: e_1_2_9_104_1 doi: 10.1016/j.bioactmat.2022.07.025 – ident: e_1_2_9_46_1 doi: 10.3390/pharmaceutics15071837 – ident: e_1_2_9_79_1 doi: 10.3390/polym14235249 – ident: e_1_2_9_155_1 doi: 10.1016/j.colsurfa.2023.131763 – ident: e_1_2_9_77_1 doi: 10.3390/gels8070454 – ident: e_1_2_9_89_1 doi: 10.3390/pharmaceutics15071928 – ident: e_1_2_9_67_1 doi: 10.1021/acsaem.2c03937 – ident: e_1_2_9_146_1 doi: 10.1016/j.eurpolymj.2022.111156 – ident: e_1_2_9_81_1 doi: 10.1016/j.ultsonch.2021.105805 – ident: e_1_2_9_120_1 doi: 10.1016/j.ijpharm.2022.121874 – ident: e_1_2_9_110_1 doi: 10.1016/j.actbio.2019.01.001 – ident: e_1_2_9_9_1 doi: 10.1016/j.jddst.2023.104562 – ident: e_1_2_9_53_1 doi: 10.3390/nano10091816 – ident: e_1_2_9_69_1 doi: 10.3390/pharmaceutics12070630 – ident: e_1_2_9_45_1 doi: 10.1016/j.actbio.2023.07.025 – ident: e_1_2_9_20_1 doi: 10.1016/j.progpolymsci.2016.09.008 – ident: e_1_2_9_57_1 doi: 10.1016/j.trac.2021.116379 – ident: e_1_2_9_2_1 doi: 10.1016/j.progpolymsci.2013.07.005 – ident: e_1_2_9_5_1 doi: 10.1080/1061186X.2023.2205609 – ident: e_1_2_9_22_1 doi: 10.1016/j.medidd.2022.100134 – ident: e_1_2_9_102_1 doi: 10.1016/j.cis.2024.103087 – ident: e_1_2_9_139_1 doi: 10.1016/j.isci.2020.101365 – ident: e_1_2_9_117_1 doi: 10.1016/j.mtbio.2023.100597 – ident: e_1_2_9_47_1 doi: 10.1016/j.addr.2021.05.024 – start-page: 169 volume-title: Hormone Related Cancer Mechanistic Nanomedicines year: 2022 ident: e_1_2_9_150_1 doi: 10.1007/978-981-19-5558-7_9 – ident: e_1_2_9_36_1 doi: 10.2147/JIR.S275595 – ident: e_1_2_9_66_1 doi: 10.1021/acsnano.9b06395 – ident: e_1_2_9_91_1 doi: 10.1080/17425247.2021.1828339 – ident: e_1_2_9_142_1 – ident: e_1_2_9_19_1 doi: 10.1016/j.mattod.2015.06.003 – ident: e_1_2_9_62_1 doi: 10.3390/cells10061472 – ident: e_1_2_9_3_1 doi: 10.1016/j.fshw.2019.12.003 – ident: e_1_2_9_83_1 doi: 10.1039/C8NR00693H – ident: e_1_2_9_54_1 doi: 10.1021/acsnano.8b05151 – ident: e_1_2_9_112_1 doi: 10.1016/j.mtbio.2023.100678 – ident: e_1_2_9_159_1 doi: 10.1016/j.ijpharm.2021.120652 – ident: e_1_2_9_128_1 doi: 10.1016/j.colsurfb.2019.110718 – ident: e_1_2_9_154_1 doi: 10.1186/s12943-023-01798-8 – ident: e_1_2_9_35_1 doi: 10.3389/fchem.2021.649048 – ident: e_1_2_9_76_1 doi: 10.3390/polym14050925 – ident: e_1_2_9_148_1 doi: 10.1016/j.jddst.2022.103554 – ident: e_1_2_9_42_1 doi: 10.1038/s42003-020-0817-4 – ident: e_1_2_9_63_1 doi: 10.1016/j.apmt.2018.02.003 – ident: e_1_2_9_78_1 doi: 10.1016/j.matdes.2023.112350 – ident: e_1_2_9_111_1 doi: 10.3390/diagnostics13040681 – ident: e_1_2_9_65_1 doi: 10.1002/adtp.202100118 – ident: e_1_2_9_131_1 doi: 10.1016/j.isci.2022.105390 – ident: e_1_2_9_74_1 doi: 10.1016/j.colsurfb.2017.07.041 – ident: e_1_2_9_75_1 doi: 10.1039/D3RA02620E – ident: e_1_2_9_31_1 doi: 10.1155/2022/1225578 – ident: e_1_2_9_17_1 doi: 10.1016/j.jphotochemrev.2021.100420 – ident: e_1_2_9_30_1 doi: 10.3390/pharmaceutics12070630 – ident: e_1_2_9_73_1 doi: 10.1016/bs.mie.2019.04.006 – ident: e_1_2_9_143_1 doi: 10.1038/s41392-022-01151-3 – ident: e_1_2_9_16_1 doi: 10.3390/biomimetics7040206 – ident: e_1_2_9_145_1 doi: 10.1016/j.biomaterials.2020.120645 – ident: e_1_2_9_38_1 doi: 10.1016/j.tet.2023.133550 – ident: e_1_2_9_157_1 doi: 10.2174/1871520621666210708123750 – ident: e_1_2_9_12_1 doi: 10.3390/pharmaceutics14112432 – ident: e_1_2_9_106_1 doi: 10.1208/s12249-019-1613-7 – ident: e_1_2_9_135_1 doi: 10.1016/j.mtbio.2021.100181 – ident: e_1_2_9_149_1 doi: 10.1016/j.jare.2022.01.018 – ident: e_1_2_9_41_1 doi: 10.3390/polym14040658 – ident: e_1_2_9_137_1 doi: 10.1002/adma.201506025 – ident: e_1_2_9_152_1 doi: 10.1016/j.jddst.2022.103552 – ident: e_1_2_9_8_1 doi: 10.2174/1389450123666220526155144 – ident: e_1_2_9_44_1 doi: 10.1016/j.nantod.2018.11.001 – ident: e_1_2_9_80_1 doi: 10.1016/j.mattod.2022.12.004 – ident: e_1_2_9_40_1 doi: 10.3390/polym14040687 – ident: e_1_2_9_96_1 doi: 10.1016/j.bioactmat.2021.03.012 – ident: e_1_2_9_121_1 doi: 10.1016/j.jconrel.2017.03.012 – ident: e_1_2_9_92_1 doi: 10.1038/s41392-019-0068-3 – ident: e_1_2_9_99_1 doi: 10.3390/ijms21249739 – volume: 121 start-page: 541 year: 2020 ident: e_1_2_9_119_1 publication-title: Acta Biomater. – ident: e_1_2_9_103_1 doi: 10.1016/j.bioactmat.2021.03.043 – ident: e_1_2_9_123_1 doi: 10.1016/j.apsb.2023.07.021 – ident: e_1_2_9_50_1 doi: 10.1080/08982104.2021.1999974 – ident: e_1_2_9_113_1 doi: 10.1016/j.mtbio.2022.100360 – ident: e_1_2_9_14_1 doi: 10.1016/j.jddst.2022.103691 – ident: e_1_2_9_32_1 doi: 10.1016/j.molcel.2021.08.018 – ident: e_1_2_9_94_1 doi: 10.1016/j.colsurfb.2020.110941 – ident: e_1_2_9_13_1 doi: 10.1016/j.drup.2023.100948 – ident: e_1_2_9_160_1 doi: 10.1016/j.apsb.2019.07.004 – ident: e_1_2_9_105_1 doi: 10.1016/j.jmst.2020.10.027 – ident: e_1_2_9_107_1 doi: 10.3390/gels8050316 – ident: e_1_2_9_129_1 doi: 10.1016/j.bioactmat.2022.03.041 – ident: e_1_2_9_15_1 doi: 10.1177/15330338231152083 – ident: e_1_2_9_85_1 doi: 10.1517/17425247.2016.1140147 – ident: e_1_2_9_93_1 doi: 10.1021/acsami.9b20999 – volume: 14 start-page: 41 year: 2019 ident: e_1_2_9_108_1 publication-title: Asian J. Pharm. Sci. – ident: e_1_2_9_122_1 doi: 10.1016/j.ejpb.2018.06.020 – ident: e_1_2_9_124_1 doi: 10.1016/j.ejps.2022.106367 – ident: e_1_2_9_34_1 doi: 10.3390/antiox10020313 – ident: e_1_2_9_136_1 doi: 10.1016/j.cjche.2021.07.019 – ident: e_1_2_9_33_1 doi: 10.2174/1381612827666211208150210 – ident: e_1_2_9_70_1 doi: 10.1016/j.jddst.2023.104720 – ident: e_1_2_9_151_1 doi: 10.1016/j.drudis.2022.103353 – ident: e_1_2_9_6_1 doi: 10.3390/molecules26195905 – ident: e_1_2_9_28_1 doi: 10.1016/B978-0-12-817830-0.00001-1 – ident: e_1_2_9_7_1 doi: 10.1016/j.pmatsci.2019.03.003 – ident: e_1_2_9_130_1 doi: 10.1016/S1872-2040(20)60066-4 – volume: 1 start-page: 32 year: 2020 ident: e_1_2_9_60_1 publication-title: Smart Polym. Mater. Biomed. Appl. – ident: e_1_2_9_114_1 doi: 10.1016/j.carbpol.2017.12.021 – ident: e_1_2_9_55_1 doi: 10.1016/j.colsurfa.2022.129312 – ident: e_1_2_9_140_1 doi: 10.3390/biom12081110 – ident: e_1_2_9_97_1 doi: 10.3389/fimmu.2023.1074863 – ident: e_1_2_9_127_1 doi: 10.1016/j.matdes.2023.111931 – ident: e_1_2_9_58_1 doi: 10.1186/s40643-018-0206-8 – volume: 8 year: 2020 ident: e_1_2_9_61_1 publication-title: Front. Chem. – ident: e_1_2_9_138_1 doi: 10.1016/j.ijbiomac.2018.11.147 – ident: e_1_2_9_158_1 doi: 10.1016/j.jsps.2022.11.004 – ident: e_1_2_9_82_1 doi: 10.1039/D1MA01197A – ident: e_1_2_9_132_1 doi: 10.1016/j.msec.2021.112164 – ident: e_1_2_9_48_1 doi: 10.1016/j.carbpol.2019.04.029 – ident: e_1_2_9_161_1 doi: 10.1016/j.nantod.2022.101582 – ident: e_1_2_9_21_1 doi: 10.3390/pharmaceutics13111972 – volume: 9 year: 2019 ident: e_1_2_9_144_1 publication-title: Front. Oncol. – ident: e_1_2_9_141_1 doi: 10.1016/j.biopha.2019.109340 – ident: e_1_2_9_39_1 doi: 10.1039/D2TB00615D – ident: e_1_2_9_10_1 doi: 10.1016/j.ijpharm.2023.122938 – ident: e_1_2_9_87_1 doi: 10.1186/s11671-019-3208-3 – ident: e_1_2_9_43_1 doi: 10.1016/j.ejps.2021.105812 – ident: e_1_2_9_37_1 doi: 10.3390/polym12061397 – ident: e_1_2_9_26_1 doi: 10.1016/j.matpr.2018.06.498 – ident: e_1_2_9_29_1 doi: 10.3389/fbioe.2017.00080 – ident: e_1_2_9_115_1 doi: 10.1016/j.ijpharm.2021.120836 – ident: e_1_2_9_90_1 doi: 10.1002/chem.201501101 – ident: e_1_2_9_98_1 doi: 10.1615/CritRevBiomedEng.v40.i5.10 – start-page: 41 volume-title: Polymeric Micelles Drug Delivery year: 2022 ident: e_1_2_9_118_1 doi: 10.1016/B978-0-323-89868-3.00006-9 – ident: e_1_2_9_156_1 doi: 10.1016/j.taap.2022.115989 – ident: e_1_2_9_101_1 doi: 10.1007/s40204-019-00125-z – ident: e_1_2_9_95_1 doi: 10.3390/gels7040221 – ident: e_1_2_9_68_1 doi: 10.3390/molecules24061117 – ident: e_1_2_9_72_1 doi: 10.1016/j.mtchem.2022.100963 – ident: e_1_2_9_23_1 doi: 10.1016/j.biomaterials.2012.06.068 – ident: e_1_2_9_71_1 doi: 10.1021/jacs.8b03977 – ident: e_1_2_9_134_1 doi: 10.1016/j.biomaterials.2017.07.035 – ident: e_1_2_9_84_1 doi: 10.1016/j.biomaterials.2017.06.003 – ident: e_1_2_9_1_1 doi: 10.1016/j.heliyon.2023.e17488 – ident: e_1_2_9_153_1 doi: 10.1016/j.jcis.2019.09.120 – ident: e_1_2_9_27_1 doi: 10.3389/fchem.2022.952675 – ident: e_1_2_9_100_1 doi: 10.3390/ijerph17144923 – ident: e_1_2_9_51_1 doi: 10.1021/acsami.9b12620 – ident: e_1_2_9_86_1 doi: 10.1016/j.biomaterials.2015.01.053 – ident: e_1_2_9_88_1 doi: 10.3389/fmolb.2020.597634 – ident: e_1_2_9_126_1 doi: 10.1016/j.biomaterials.2019.119730 – ident: e_1_2_9_18_1 doi: 10.3390/pr9030470 – ident: e_1_2_9_25_1 doi: 10.1016/j.progpolymsci.2019.101164 – ident: e_1_2_9_64_1 doi: 10.1016/j.eurpolymj.2022.111759 – ident: e_1_2_9_49_1 doi: 10.1016/j.ijpharm.2020.119516 – volume: 33 start-page: 1161 year: 2019 ident: e_1_2_9_147_1 publication-title: J. Reticuloendothel. Soc. – ident: e_1_2_9_24_1 doi: 10.1016/j.drudis.2014.12.012 – ident: e_1_2_9_56_1 doi: 10.3390/ijms23084421 – ident: e_1_2_9_11_1 doi: 10.1016/B978-0-323-85881-6.00018-X – ident: e_1_2_9_116_1 doi: 10.1016/j.mtbio.2023.100610 – ident: e_1_2_9_125_1 doi: 10.1016/j.actbio.2021.04.026 – ident: e_1_2_9_59_1 doi: 10.3389/fmicb.2020.02097 – ident: e_1_2_9_133_1 doi: 10.1016/j.nano.2018.06.010 – ident: e_1_2_9_4_1 doi: 10.1038/s41573-020-0090-8 – ident: e_1_2_9_109_1 doi: 10.1016/j.bioactmat.2020.07.002 – ident: e_1_2_9_52_1 doi: 10.1186/s40035-020-00196-0 |
SSID | ssj0009606 |
Score | 2.594111 |
SecondaryResourceType | review_article |
Snippet | The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2312939 |
SubjectTerms | Animals biomedical applications cancer Chronic conditions Drug Carriers - chemistry drug delivery Drug delivery systems Drug Delivery Systems - methods Humans Medical research Nanoparticles - chemistry Pharmacology smart nanomaterials Stimuli stimuli‐responsive |
Title | Harnessing the Power of Stimuli‐Responsive Nanoparticles as an Effective Therapeutic Drug Delivery System |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202312939 https://www.ncbi.nlm.nih.gov/pubmed/38447161 https://www.proquest.com/docview/3067226903 https://www.proquest.com/docview/2942189272 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KTumhTfp0uykqBHpysivJtnRcsglLIaXkAbkZSZZKSfCWfQSSU39CfmN-SWYsrzfbUgot-GAjCcuSRvONNfMNwC6iZCF8sCmuFTRQiuBSJUyechFk4Jmylad45-Mv-fhcfr7ILh5F8Ud-iO6HG0lGs1-TgBs721-Rhpqq4Q1CfIIaiyL4yGGLUNHJij-K4HlDtieyVOdSLVkb-3x_vfm6VvoNaq4j10b1HD0Hs-x09Di53FvM7Z67_YXP8X--aguetbiUDeNC2oYnvn4BTx-xFb6Ey7GZ0saIDwxhI_tKCdbYJLDT-Xdysrr_eXfSetxee4bbNtrjrdsdM3jVLFIlU-nZKuyLjaaLb2yE_UapumGRQv0VnB8dnh2M0zZXQ-pEIXSaaUHkc1qhQVbIvFJ9k4UQtDPeK8RcztuAYGngCqnobDYEF7yo7EDlVgdjxGvYqCe1fwvMO2P7RmpKVYbaUlkpq5BVmfDcBjfQCaTLuSpdS2RO-TSuykjBzEsaxLIbxAQ-dfV_RAqPP9bsLae-bEV5VpJNhRhV90UCH7tiFEI6WTG1nyxmJdcSoZLmBU_gTVwy3auEkggA8kECvJn4v_ShHI6Oh93Tu39p9B428V5Gh7YebMynC7-D0GluPzTi8QCcwhG0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_n9CCxgJiVPa3dhJ7OOKpVqgW6GylbhZtmOjqlUWbXeR4MQj8Iw8SWfiJMuCEBJIuTi2Fcf2eL6xx98APEeUzLkPNsW5ggZKGVwquSnSjAcRslzaytN95-lhMTkWbz7knTch3YWJ_BD9hhtJRrNek4DThvTemjXUVA1xEAIUVFnqMlyhsN5Enz8-WjNIEUBv6PZ4nqpCyI63cZDtbdbf1Eu_gc1N7Noon_2bYLtmR5-T093V0u66r78wOv7Xf92CGy00ZaM4l27DJV_fges_ERbehdOJWdDaiAmGyJG9oxhrbB7Y--UJ-Vn9-Pb9qHW6_ewZrtxokreed8zgU7PIlky5s_XNLzZerD6yMTYcBesLiyzq9-B4_9Xs5SRtwzWkjpdcpbnixD-nJNpkpSgqOTB5CEE5471E2OW8DYiXhq4Uko5nQ3DB88oOZWFVMIbfh616XvuHwLwzdmCEomhlqDClFaIKeZVzn9nghiqBtBss7VoucwqpcaYjC3OmqRN134kJvOjLf4osHn8sudONvW6l-VyTWYUwVQ14As_6bJRDOlwxtZ-vznWmBKIllZVZAg_inOk_xaVADFAME8iakf9LG_RoPB31qUf_UukpXJ3Mpgf64PXh2224hu9F9G_bga3lYuUfI5Ja2ieNrFwAr_YV0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAcym8htICRkDilzdpOYh9XhNXy06oqrdSbZTs2QkXZartbqT3xCDwjT9JxnM12QQgJpFwc24pjezzf2ONvAF4jSmbMeZPiXEEDpfQ2FUwXKWWee5oLU7tw33l3rxgf8Q_H-fG1W_yRH6LfcAuS0a7XQcBPa7-zJA3VdcsbhPgENZa8Cbd4kckQvKE6WBJIBXzesu2xPJUFFwvaxozurNZfVUu_Yc1V6NrqntE90ItWR5eTk-35zGzby18IHf_nt-7DegdMyTDOpAdwwzUP4e41usJHcDLW07AyYoIgbiT7IcIamXjyefY1eFn9_P7joHO5PXcE1200yDu_O6LxaUjkSg65h8t7X6Sazr-QCtuNYnVBIof6YzgavTt8O067YA2pZSWTaS5ZYJ-TAi2ykhe1yHTuvZdWOycQdFlnPKKlgS25CIez3lvvWG0GojDSa802YK2ZNO4pEGe1yTSXIVYZqkthOK99XufMUePtQCaQLsZK2Y7JPATU-KYiBzNVoRNV34kJvOnLn0YOjz-W3FoMvepk-UwFowpBqsxYAq_6bJTCcLSiGzeZnykqOWIlSUuawJM4ZfpPMcERARSDBGg78H9pgxpWu8M-9exfKr2E2_vVSH16v_dxE-7gax6d27ZgbTadu-cIo2bmRSspV1u0FH8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+the+Power+of+Stimuli%E2%80%90Responsive+Nanoparticles+as+an+Effective+Therapeutic+Drug+Delivery+System&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Fatima%2C+Mahak&rft.au=Almalki%2C+Waleed+H.&rft.au=Khan%2C+Tasneem&rft.au=Sahebkar%2C+Amirhossein&rft.date=2024-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=24&rft_id=info:doi/10.1002%2Fadma.202312939&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202312939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |