Harnessing the Power of Stimuli‐Responsive Nanoparticles as an Effective Therapeutic Drug Delivery System

The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic appr...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 24; pp. e2312939 - n/a
Main Authors Fatima, Mahak, Almalki, Waleed H., Khan, Tasneem, Sahebkar, Amirhossein, Kesharwani, Prashant
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli‐reactive nanosystems in biomedicine and outlines future development prospects. Stimuli responsive nanoparticles have gained immense popularity in detection and treatment of several ailments. The article provides a brief overview of available endogenous and exogenous stimuli. Further section discusses their applications in combatting major life‐threatening diseases. Major challenges and future prospects of stimuli responsive nanoparticles are also discussed.
AbstractList The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli‐reactive nanosystems in biomedicine and outlines future development prospects.
The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli-reactive nanosystems in biomedicine and outlines future development prospects.The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli-reactive nanosystems in biomedicine and outlines future development prospects.
The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli‐reactive nanosystems in biomedicine and outlines future development prospects. Stimuli responsive nanoparticles have gained immense popularity in detection and treatment of several ailments. The article provides a brief overview of available endogenous and exogenous stimuli. Further section discusses their applications in combatting major life‐threatening diseases. Major challenges and future prospects of stimuli responsive nanoparticles are also discussed.
Author Khan, Tasneem
Almalki, Waleed H.
Kesharwani, Prashant
Sahebkar, Amirhossein
Fatima, Mahak
Author_xml – sequence: 1
  givenname: Mahak
  surname: Fatima
  fullname: Fatima, Mahak
  organization: Jamia Hamdard
– sequence: 2
  givenname: Waleed H.
  surname: Almalki
  fullname: Almalki, Waleed H.
  organization: Umm Al‐Qura University
– sequence: 3
  givenname: Tasneem
  surname: Khan
  fullname: Khan, Tasneem
  organization: Jamia Hamdard
– sequence: 4
  givenname: Amirhossein
  surname: Sahebkar
  fullname: Sahebkar, Amirhossein
  organization: Mashhad University of Medical Sciences
– sequence: 5
  givenname: Prashant
  orcidid: 0000-0002-0890-769X
  surname: Kesharwani
  fullname: Kesharwani, Prashant
  email: prashantdops@gmail.com
  organization: Jamia Hamdard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38447161$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9qFDEUh4O02G311ksJeOPNbPNvMsnl0q1WaKvYeh2y2ZM2dSYZkxnL3vkIPqNP4izbKhRECBzI-b5Dcn6HaC-mCAi9omROCWHHdt3ZOSOMU6a5foZmtGa0EkTXe2hGNK8rLYU6QIel3BFCtCTyOTrgSoiGSjpDX89sjlBKiDd4uAX8Kd1DxsnjqyF0Yxt-_fj5GUqfYgnfAV_amHqbh-BaKNhOJ-JT78EN2-71LWTbwzi18TKPN3gJ7XSfN_hqUwboXqB9b9sCLx_qEfry7vT65Kw6__j-w8nivHK84bqqNafT37SSVDdCrhWxtfdeOwugpBAOVl7ShrpGKCJq5b3zwNcrquRKe2v5EXq7m9vn9G2EMpguFAdtayOksRimBaNKs4ZN6Jsn6F0ac5xeZziRDWNSEz5Rrx-ocdXB2vQ5dDZvzOMaJ0DsAJdTKRm8cWGwQ0hxyDa0hhKzTcts0zJ_0pq0-RPtcfI_Bb0T7kMLm__QZrG8WPx1fwMPUqif
CitedBy_id crossref_primary_10_1039_D4TB02818J
crossref_primary_10_2147_IJN_S469742
crossref_primary_10_1016_j_carbpol_2025_123375
crossref_primary_10_1016_j_lfs_2025_123424
crossref_primary_10_3762_bjnano_15_118
crossref_primary_10_1016_j_ccr_2024_216054
crossref_primary_10_1016_j_jconrel_2025_113652
crossref_primary_10_1186_s12951_024_02841_6
crossref_primary_10_1021_acs_nanolett_4c03788
crossref_primary_10_1186_s12951_024_02892_9
crossref_primary_10_1016_j_ijbiomac_2024_138424
crossref_primary_10_1016_j_ijbiomac_2025_140318
crossref_primary_10_1021_acs_biomac_4c01257
crossref_primary_10_26599_NR_2025_94907124
crossref_primary_10_1016_j_fbio_2025_106023
crossref_primary_10_1021_acs_molpharmaceut_4c01325
crossref_primary_10_1002_advs_202415207
crossref_primary_10_1039_D4SM01239A
crossref_primary_10_1016_j_jconrel_2025_02_006
Cites_doi 10.1016/j.bioactmat.2022.07.025
10.3390/pharmaceutics15071837
10.3390/polym14235249
10.1016/j.colsurfa.2023.131763
10.3390/gels8070454
10.3390/pharmaceutics15071928
10.1021/acsaem.2c03937
10.1016/j.eurpolymj.2022.111156
10.1016/j.ultsonch.2021.105805
10.1016/j.ijpharm.2022.121874
10.1016/j.actbio.2019.01.001
10.1016/j.jddst.2023.104562
10.3390/nano10091816
10.3390/pharmaceutics12070630
10.1016/j.actbio.2023.07.025
10.1016/j.progpolymsci.2016.09.008
10.1016/j.trac.2021.116379
10.1016/j.progpolymsci.2013.07.005
10.1080/1061186X.2023.2205609
10.1016/j.medidd.2022.100134
10.1016/j.cis.2024.103087
10.1016/j.isci.2020.101365
10.1016/j.mtbio.2023.100597
10.1016/j.addr.2021.05.024
10.1007/978-981-19-5558-7_9
10.2147/JIR.S275595
10.1021/acsnano.9b06395
10.1080/17425247.2021.1828339
10.1016/j.mattod.2015.06.003
10.3390/cells10061472
10.1016/j.fshw.2019.12.003
10.1039/C8NR00693H
10.1021/acsnano.8b05151
10.1016/j.mtbio.2023.100678
10.1016/j.ijpharm.2021.120652
10.1016/j.colsurfb.2019.110718
10.1186/s12943-023-01798-8
10.3389/fchem.2021.649048
10.3390/polym14050925
10.1016/j.jddst.2022.103554
10.1038/s42003-020-0817-4
10.1016/j.apmt.2018.02.003
10.1016/j.matdes.2023.112350
10.3390/diagnostics13040681
10.1002/adtp.202100118
10.1016/j.isci.2022.105390
10.1016/j.colsurfb.2017.07.041
10.1039/D3RA02620E
10.1155/2022/1225578
10.1016/j.jphotochemrev.2021.100420
10.1016/bs.mie.2019.04.006
10.1038/s41392-022-01151-3
10.3390/biomimetics7040206
10.1016/j.biomaterials.2020.120645
10.1016/j.tet.2023.133550
10.2174/1871520621666210708123750
10.3390/pharmaceutics14112432
10.1208/s12249-019-1613-7
10.1016/j.mtbio.2021.100181
10.1016/j.jare.2022.01.018
10.3390/polym14040658
10.1002/adma.201506025
10.1016/j.jddst.2022.103552
10.2174/1389450123666220526155144
10.1016/j.nantod.2018.11.001
10.1016/j.mattod.2022.12.004
10.3390/polym14040687
10.1016/j.bioactmat.2021.03.012
10.1016/j.jconrel.2017.03.012
10.1038/s41392-019-0068-3
10.3390/ijms21249739
10.1016/j.bioactmat.2021.03.043
10.1016/j.apsb.2023.07.021
10.1080/08982104.2021.1999974
10.1016/j.mtbio.2022.100360
10.1016/j.jddst.2022.103691
10.1016/j.molcel.2021.08.018
10.1016/j.colsurfb.2020.110941
10.1016/j.drup.2023.100948
10.1016/j.apsb.2019.07.004
10.1016/j.jmst.2020.10.027
10.3390/gels8050316
10.1016/j.bioactmat.2022.03.041
10.1177/15330338231152083
10.1517/17425247.2016.1140147
10.1021/acsami.9b20999
10.1016/j.ejpb.2018.06.020
10.1016/j.ejps.2022.106367
10.3390/antiox10020313
10.1016/j.cjche.2021.07.019
10.2174/1381612827666211208150210
10.1016/j.jddst.2023.104720
10.1016/j.drudis.2022.103353
10.3390/molecules26195905
10.1016/B978-0-12-817830-0.00001-1
10.1016/j.pmatsci.2019.03.003
10.1016/S1872-2040(20)60066-4
10.1016/j.carbpol.2017.12.021
10.1016/j.colsurfa.2022.129312
10.3390/biom12081110
10.3389/fimmu.2023.1074863
10.1016/j.matdes.2023.111931
10.1186/s40643-018-0206-8
10.1016/j.ijbiomac.2018.11.147
10.1016/j.jsps.2022.11.004
10.1039/D1MA01197A
10.1016/j.msec.2021.112164
10.1016/j.carbpol.2019.04.029
10.1016/j.nantod.2022.101582
10.3390/pharmaceutics13111972
10.1016/j.biopha.2019.109340
10.1039/D2TB00615D
10.1016/j.ijpharm.2023.122938
10.1186/s11671-019-3208-3
10.1016/j.ejps.2021.105812
10.3390/polym12061397
10.1016/j.matpr.2018.06.498
10.3389/fbioe.2017.00080
10.1016/j.ijpharm.2021.120836
10.1002/chem.201501101
10.1615/CritRevBiomedEng.v40.i5.10
10.1016/B978-0-323-89868-3.00006-9
10.1016/j.taap.2022.115989
10.1007/s40204-019-00125-z
10.3390/gels7040221
10.3390/molecules24061117
10.1016/j.mtchem.2022.100963
10.1016/j.biomaterials.2012.06.068
10.1021/jacs.8b03977
10.1016/j.biomaterials.2017.07.035
10.1016/j.biomaterials.2017.06.003
10.1016/j.heliyon.2023.e17488
10.1016/j.jcis.2019.09.120
10.3389/fchem.2022.952675
10.3390/ijerph17144923
10.1021/acsami.9b12620
10.1016/j.biomaterials.2015.01.053
10.3389/fmolb.2020.597634
10.1016/j.biomaterials.2019.119730
10.3390/pr9030470
10.1016/j.progpolymsci.2019.101164
10.1016/j.eurpolymj.2022.111759
10.1016/j.ijpharm.2020.119516
10.1016/j.drudis.2014.12.012
10.3390/ijms23084421
10.1016/B978-0-323-85881-6.00018-X
10.1016/j.mtbio.2023.100610
10.1016/j.actbio.2021.04.026
10.3389/fmicb.2020.02097
10.1016/j.nano.2018.06.010
10.1038/s41573-020-0090-8
10.1016/j.bioactmat.2020.07.002
10.1186/s40035-020-00196-0
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202312939
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 38447161
10_1002_adma_202312939
ADMA202312939
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Indian Council of Medical Research
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3739-593110098619746d80a5fff9caee8644cebf6171c7480458ffcfe3db186b9faa3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:55:50 EDT 2025
Sun Jul 13 04:43:22 EDT 2025
Mon Jul 21 06:02:04 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Tue Jul 01 00:54:47 EDT 2025
Sun Jul 06 04:45:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords smart nanomaterials
cancer
drug delivery
biomedical applications
stimuli‐responsive
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-593110098619746d80a5fff9caee8644cebf6171c7480458ffcfe3db186b9faa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0890-769X
PMID 38447161
PQID 3067226903
PQPubID 2045203
PageCount 32
ParticipantIDs proquest_miscellaneous_2942189272
proquest_journals_3067226903
pubmed_primary_38447161
crossref_citationtrail_10_1002_adma_202312939
crossref_primary_10_1002_adma_202312939
wiley_primary_10_1002_adma_202312939_ADMA202312939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 606
2023; 181
2020; 20
2022; 170
2019; 99
2019; 11
2023; 183
2019; 13
2019; 14
2021; 602
2022; 23
2020; 17
2021; 162
2022; 25
2020; 14
2020; 13
2020; 12
2020; 11
2023; 229
2020; 10
2017; 158
2022; 27
2022; 441
2023; 63
2023; 68
2021; 75
2018; 5
2019; 24
2022; 32
2021; 81
2021; 80
2021; 47
2019; 8
2017; 64
2019; 9
2019; 4
2021; 269
2019; 33
2015; 50
2023; 168
2018; 189
2019; 103
2017; 252
2021; 143
2019; 624
2018; 23
2012; 33
2016; 13
2017; 139
2022; 3
2022; 7
2022; 8
2023; 672
2022; 12
2022; 13
2022; 14
2022; 15
2020; 23
2022; 10
2019; 216
2014; 39
2020; 21
2017; 143
2018; 11
2016; 28
2018; 10
2022; 16
2022; 622
2020; 559
2018; 14
2012; 40
2023; 31
2017; 5
2021; 26
2021; 22
2023; 6
2021; 126
2020; 121
2021; 128
2023; 9
2021; 28
2023; 143
2019; 123
2020; 8
2023; 20
2020; 7
2018; 130
2020; 5
2020; 3
2023; 25
2023; 22
2020; 1
2020; 9
2020; 48
2022; 74
2022; 75
2019; 118
2022; 648
2019; 232
2021; 9
2021; 7
2021; 6
2023; 13
2021; 4
2023; 14
2018; 140
2015; 18
2024; 324
2023; 15
2020; 186
2022; 51
2023; 19
2022; 46
2020; 585
2022; 41
2023; 86
2021; 13
2023; 84
2020; 190
2021; 10
2022; 2022
2023
2019; 86
2022
2020
2015; 20
2023; 234
2021; 18
2015; 21
2023; 638
2021; 175
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Cruz‐López K. G. (e_1_2_9_144_1) 2019; 9
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
Zhang L. (e_1_2_9_119_1) 2020; 121
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
Shi Z. (e_1_2_9_60_1) 2020; 1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
Jain P. (e_1_2_9_150_1) 2022
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
Xia T. (e_1_2_9_147_1) 2019; 33
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
Kenguva G. (e_1_2_9_118_1) 2022
e_1_2_9_93_1
Li M. (e_1_2_9_61_1) 2020; 8
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_161_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
Wu Y. (e_1_2_9_108_1) 2019; 14
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 3
  start-page: 3023
  year: 2022
  publication-title: Mater. Adv.
– volume: 14
  year: 2018
– volume: 123
  start-page: 968
  year: 2019
  publication-title: Int. J. Biol. Macromol.
– volume: 14
  start-page: 488
  year: 2020
  publication-title: ACS Nano
– volume: 25
  year: 2022
  publication-title: Mater. Today Chem.
– volume: 11
  start-page: 207
  year: 2018
  publication-title: Appl. Mater. Today
– volume: 40
  start-page: 363
  year: 2012
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 75
  start-page: 216
  year: 2021
  publication-title: J. Mater. Sci. Technol.
– volume: 8
  start-page: 223
  year: 2019
  publication-title: Prog. Biomater.
– volume: 32
  start-page: 250
  year: 2022
  publication-title: J. Liposome Res.
– volume: 234
  year: 2023
  publication-title: Mater. Des.
– start-page: 169
  year: 2022
– volume: 86
  year: 2023
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 9
  year: 2021
  publication-title: Front. Chem.
– volume: 17
  start-page: 4923
  year: 2020
  publication-title: Int. J. Environ. Res. Public Health
– volume: 103
  start-page: 484
  year: 2019
  publication-title: Prog. Mater. Sci.
– volume: 638
  year: 2023
  publication-title: Int. J. Pharm.
– volume: 18
  start-page: 565
  year: 2015
  publication-title: Mater. Today
– volume: 22
  start-page: 1
  year: 2023
  publication-title: Technol. Cancer Res. Treat.
– volume: 24
  start-page: 1117
  year: 2019
  publication-title: Molecules
– volume: 8
  start-page: 454
  year: 2022
  publication-title: Gels
– volume: 139
  start-page: 187
  year: 2017
  publication-title: Biomaterials
– volume: 9
  year: 2019
  publication-title: Front. Oncol.
– volume: 6
  start-page: 2924
  year: 2023
  publication-title: ACS Appl. Energy Mater.
– volume: 175
  year: 2021
  publication-title: Adv. Drug Delivery Rev.
– volume: 9
  start-page: 17
  year: 2020
  publication-title: Transl. Neurodegener.
– volume: 21
  start-page: 9739
  year: 2020
  publication-title: Int. J. Mol. Sci.
– volume: 51
  start-page: 35
  year: 2022
  publication-title: Chin. J. Chem. Eng.
– volume: 33
  start-page: 1161
  year: 2019
  publication-title: J. Reticuloendothel. Soc.
– volume: 84
  year: 2023
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 143
  year: 2023
  publication-title: Tetrahedron
– volume: 8
  year: 2020
  publication-title: Front. Chem.
– volume: 14
  start-page: 390
  year: 2019
  publication-title: Nanoscale Res. Lett.
– volume: 8
  start-page: 316
  year: 2022
  publication-title: Gels
– volume: 269
  year: 2021
  publication-title: Biomaterials
– volume: 10
  start-page: 1816
  year: 2020
  publication-title: Nanomaterials
– volume: 21
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 20
  start-page: 536
  year: 2015
  publication-title: Drug Discovery Today
– volume: 31
  start-page: 486
  year: 2023
  publication-title: J. Drug Targeting
– volume: 5
  year: 2018
  publication-title: Mater. Today: Proc.
– volume: 99
  year: 2019
  publication-title: Prog. Polym. Sci.
– volume: 189
  start-page: 352
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 18
  start-page: 205
  year: 2021
  publication-title: Expert Opin. Drug Delivery
– volume: 19
  year: 2023
  publication-title: Mater. Today Bio
– volume: 130
  start-page: 39
  year: 2018
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 47
  year: 2021
  publication-title: J. Photochem. Photobiol., C
– volume: 606
  year: 2021
  publication-title: Int. J. Pharm.
– volume: 33
  start-page: 7138
  year: 2012
  publication-title: Biomaterials
– volume: 14
  start-page: 5249
  year: 2022
  publication-title: Polymers
– volume: 602
  year: 2021
  publication-title: Int. J. Pharm.
– volume: 4
  year: 2021
  publication-title: Adv. Ther.
– volume: 14
  start-page: 2432
  year: 2022
  publication-title: Pharmaceutics
– volume: 2022
  year: 2022
  publication-title: Oxid. Med. Cell. Longevity
– volume: 126
  year: 2021
  publication-title: Mater. Sci. Eng. C
– volume: 9
  start-page: 470
  year: 2021
  publication-title: Processes
– volume: 7
  start-page: 305
  year: 2022
  publication-title: Signal Transduction Targeted Ther.
– volume: 31
  start-page: 29
  year: 2023
  publication-title: Saudi Pharm. J.
– volume: 14
  start-page: 41
  year: 2019
  publication-title: Asian J. Pharm. Sci.
– volume: 143
  start-page: 93
  year: 2017
  publication-title: Biomaterials
– volume: 15
  start-page: 1928
  year: 2023
  publication-title: Pharmaceutics
– volume: 118
  year: 2019
  publication-title: Biomed. Pharmacother.
– volume: 46
  year: 2022
  publication-title: Nano Today
– volume: 7
  start-page: 206
  year: 2022
  publication-title: Biomimetics
– volume: 15
  year: 2022
  publication-title: Med. Drug Discovery
– volume: 12
  start-page: 1397
  year: 2020
  publication-title: Polymers (Basel)
– volume: 28
  start-page: 910
  year: 2021
  publication-title: Curr. Pharm. Des.
– start-page: 41
  year: 2022
– volume: 13
  start-page: 1057
  year: 2020
  publication-title: J. Inflammation Res.
– volume: 585
  year: 2020
  publication-title: Int. J. Pharm.
– volume: 170
  year: 2022
  publication-title: Eur. Polym. J.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 187
  year: 2019
  publication-title: ACS Nano
– volume: 183
  year: 2023
  publication-title: Eur. Polym. J.
– volume: 13
  start-page: 1972
  year: 2021
  publication-title: Pharmaceutics
– volume: 20
  year: 2023
  publication-title: Mater. Today Bio
– volume: 64
  start-page: 154
  year: 2017
  publication-title: Prog. Polym. Sci.
– volume: 13
  start-page: 5016
  year: 2023
  publication-title: Acta Pharm. Sin. B
– volume: 48
  year: 2020
  publication-title: Chin. J. Anal. Chem.
– volume: 28
  start-page: 3115
  year: 2016
  publication-title: Adv. Mater.
– start-page: 277
  year: 2023
– volume: 9
  year: 2023
  publication-title: Heliyon
– volume: 14
  year: 2023
  publication-title: Front. Immunol.
– volume: 23
  start-page: 4421
  year: 2022
  publication-title: Int. J. Mol. Sci.
– volume: 14
  start-page: 658
  year: 2022
  publication-title: Polymers (Basel)
– volume: 15
  start-page: 1837
  year: 2023
  publication-title: Pharmaceutics
– volume: 7
  start-page: 221
  year: 2021
  publication-title: Gels
– volume: 672
  year: 2023
  publication-title: Colloids Surf., A
– volume: 7
  year: 2020
  publication-title: Front. Mol. Biosci.
– volume: 12
  start-page: 1110
  year: 2022
  publication-title: Biomolecules
– volume: 12
  start-page: 630
  year: 2020
  publication-title: Pharmaceutics
– volume: 14
  start-page: 925
  year: 2022
  publication-title: Polymers (Basel)
– volume: 41
  start-page: 159
  year: 2022
  publication-title: J. Adv. Res.
– volume: 441
  year: 2022
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 10
  year: 2022
  publication-title: Front. Chem.
– volume: 9
  start-page: 8
  year: 2020
  publication-title: Food Sci. Hum. Wellness
– volume: 13
  year: 2023
  publication-title: RSC Adv.
– volume: 252
  start-page: 62
  year: 2017
  publication-title: J. Controlled Release
– volume: 3
  start-page: 95
  year: 2020
  publication-title: Commun. Biol.
– volume: 181
  year: 2023
  publication-title: Eur. J. Pharm. Sci.
– volume: 13
  start-page: 681
  year: 2023
  publication-title: Diagnostics
– volume: 158
  start-page: 547
  year: 2017
  publication-title: Colloids Surf., B
– volume: 74
  year: 2022
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 16
  year: 2022
  publication-title: Mater. Today Bio
– volume: 4
  start-page: 33
  year: 2019
  publication-title: Signal Transduction Targeted Ther.
– volume: 190
  year: 2020
  publication-title: Colloids Surf., B
– volume: 23
  start-page: 978
  year: 2022
  publication-title: Curr. Drug Targets
– volume: 22
  start-page: 668
  year: 2021
  publication-title: Anticancer Agents Med. Chem.
– volume: 128
  start-page: 462
  year: 2021
  publication-title: Acta Biomaterialia
– volume: 186
  year: 2020
  publication-title: Colloids Surf., B
– volume: 162
  year: 2021
  publication-title: Eur. J. Pharm. Sci.
– volume: 10
  start-page: 358
  year: 2020
  publication-title: Acta Pharm. Sin. B
– volume: 75
  year: 2022
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 25
  year: 2022
  publication-title: iScience
– volume: 232
  year: 2019
  publication-title: Biomaterials
– volume: 39
  start-page: 268
  year: 2014
  publication-title: Prg. Polym. Sci.
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 5
  start-page: 1113
  year: 2020
  publication-title: Bioact. Mater.
– volume: 5
  start-page: 80
  year: 2017
  publication-title: Front. Bioeng. Biotechnol.
– volume: 13
  year: 2022
  publication-title: Mater. Today Bio
– volume: 216
  start-page: 113
  year: 2019
  publication-title: Carbohydr. Polym.
– volume: 68
  year: 2023
  publication-title: Drug Resistance Updates
– volume: 121
  start-page: 541
  year: 2020
  publication-title: Acta Biomater.
– volume: 19
  start-page: 115
  year: 2023
  publication-title: Bioact. Mater.
– volume: 80
  year: 2021
  publication-title: Ultrason. Sonochem.
– volume: 63
  start-page: 210
  year: 2023
  publication-title: Mater. Today
– volume: 6
  start-page: 3328
  year: 2021
  publication-title: Bioact. Mater.
– volume: 324
  year: 2024
  publication-title: Adv. Colloid Interface Sci.
– volume: 22
  start-page: 98
  year: 2023
  publication-title: Mol. Cancer
– volume: 10
  start-page: 6402
  year: 2018
  publication-title: Nanoscale
– volume: 622
  year: 2022
  publication-title: Int. J. Pharm.
– volume: 13
  start-page: 311
  year: 2016
  publication-title: Expert Opin. Drug Delivery
– volume: 50
  start-page: 67
  year: 2015
  publication-title: Biomaterials
– volume: 10
  start-page: 313
  year: 2021
  publication-title: Antioxidants
– volume: 14
  start-page: 687
  year: 2022
  publication-title: Polymers
– volume: 143
  year: 2021
  publication-title: TrAC, Trends Anal. Chem.
– volume: 1
  start-page: 32
  year: 2020
  publication-title: Smart Polym. Mater. Biomed. Appl.
– volume: 229
  year: 2023
  publication-title: Mater. Des.
– volume: 10
  start-page: 1472
  year: 2021
  publication-title: Cells
– volume: 559
  start-page: 51
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 20
  start-page: 101
  year: 2020
  publication-title: Nat. Rev. Drug Discovery
– volume: 12
  start-page: 4821
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 485
  year: 2023
  publication-title: Bioact. Mater.
– volume: 168
  start-page: 22
  year: 2023
  publication-title: Acta Biomater.
– volume: 86
  start-page: 235
  year: 2019
  publication-title: Acta Biomater.
– volume: 81
  start-page: 3691
  year: 2021
  publication-title: Mol. Cell
– volume: 6
  start-page: 4110
  year: 2021
  publication-title: Bioact. Mater.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– year: 2020
– volume: 624
  start-page: 129
  year: 2019
  publication-title: Methods Enzymol.
– volume: 23
  start-page: 59
  year: 2018
  publication-title: Nano Today
– volume: 5
  start-page: 17
  year: 2018
  publication-title: Bioresour. Bioprocess.
– volume: 10
  start-page: 7206
  year: 2022
  publication-title: J. Mater. Chem. B
– volume: 26
  start-page: 5905
  year: 2021
  publication-title: Molecules
– volume: 648
  year: 2022
  publication-title: Colloids Surf., A
– volume: 11
  year: 2020
  publication-title: Front. Microbiol.
– volume: 21
  start-page: 76
  year: 2020
  publication-title: AAPS PharmSciTech
– volume: 27
  year: 2022
  publication-title: Drug Discovery Today
– ident: e_1_2_9_104_1
  doi: 10.1016/j.bioactmat.2022.07.025
– ident: e_1_2_9_46_1
  doi: 10.3390/pharmaceutics15071837
– ident: e_1_2_9_79_1
  doi: 10.3390/polym14235249
– ident: e_1_2_9_155_1
  doi: 10.1016/j.colsurfa.2023.131763
– ident: e_1_2_9_77_1
  doi: 10.3390/gels8070454
– ident: e_1_2_9_89_1
  doi: 10.3390/pharmaceutics15071928
– ident: e_1_2_9_67_1
  doi: 10.1021/acsaem.2c03937
– ident: e_1_2_9_146_1
  doi: 10.1016/j.eurpolymj.2022.111156
– ident: e_1_2_9_81_1
  doi: 10.1016/j.ultsonch.2021.105805
– ident: e_1_2_9_120_1
  doi: 10.1016/j.ijpharm.2022.121874
– ident: e_1_2_9_110_1
  doi: 10.1016/j.actbio.2019.01.001
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jddst.2023.104562
– ident: e_1_2_9_53_1
  doi: 10.3390/nano10091816
– ident: e_1_2_9_69_1
  doi: 10.3390/pharmaceutics12070630
– ident: e_1_2_9_45_1
  doi: 10.1016/j.actbio.2023.07.025
– ident: e_1_2_9_20_1
  doi: 10.1016/j.progpolymsci.2016.09.008
– ident: e_1_2_9_57_1
  doi: 10.1016/j.trac.2021.116379
– ident: e_1_2_9_2_1
  doi: 10.1016/j.progpolymsci.2013.07.005
– ident: e_1_2_9_5_1
  doi: 10.1080/1061186X.2023.2205609
– ident: e_1_2_9_22_1
  doi: 10.1016/j.medidd.2022.100134
– ident: e_1_2_9_102_1
  doi: 10.1016/j.cis.2024.103087
– ident: e_1_2_9_139_1
  doi: 10.1016/j.isci.2020.101365
– ident: e_1_2_9_117_1
  doi: 10.1016/j.mtbio.2023.100597
– ident: e_1_2_9_47_1
  doi: 10.1016/j.addr.2021.05.024
– start-page: 169
  volume-title: Hormone Related Cancer Mechanistic Nanomedicines
  year: 2022
  ident: e_1_2_9_150_1
  doi: 10.1007/978-981-19-5558-7_9
– ident: e_1_2_9_36_1
  doi: 10.2147/JIR.S275595
– ident: e_1_2_9_66_1
  doi: 10.1021/acsnano.9b06395
– ident: e_1_2_9_91_1
  doi: 10.1080/17425247.2021.1828339
– ident: e_1_2_9_142_1
– ident: e_1_2_9_19_1
  doi: 10.1016/j.mattod.2015.06.003
– ident: e_1_2_9_62_1
  doi: 10.3390/cells10061472
– ident: e_1_2_9_3_1
  doi: 10.1016/j.fshw.2019.12.003
– ident: e_1_2_9_83_1
  doi: 10.1039/C8NR00693H
– ident: e_1_2_9_54_1
  doi: 10.1021/acsnano.8b05151
– ident: e_1_2_9_112_1
  doi: 10.1016/j.mtbio.2023.100678
– ident: e_1_2_9_159_1
  doi: 10.1016/j.ijpharm.2021.120652
– ident: e_1_2_9_128_1
  doi: 10.1016/j.colsurfb.2019.110718
– ident: e_1_2_9_154_1
  doi: 10.1186/s12943-023-01798-8
– ident: e_1_2_9_35_1
  doi: 10.3389/fchem.2021.649048
– ident: e_1_2_9_76_1
  doi: 10.3390/polym14050925
– ident: e_1_2_9_148_1
  doi: 10.1016/j.jddst.2022.103554
– ident: e_1_2_9_42_1
  doi: 10.1038/s42003-020-0817-4
– ident: e_1_2_9_63_1
  doi: 10.1016/j.apmt.2018.02.003
– ident: e_1_2_9_78_1
  doi: 10.1016/j.matdes.2023.112350
– ident: e_1_2_9_111_1
  doi: 10.3390/diagnostics13040681
– ident: e_1_2_9_65_1
  doi: 10.1002/adtp.202100118
– ident: e_1_2_9_131_1
  doi: 10.1016/j.isci.2022.105390
– ident: e_1_2_9_74_1
  doi: 10.1016/j.colsurfb.2017.07.041
– ident: e_1_2_9_75_1
  doi: 10.1039/D3RA02620E
– ident: e_1_2_9_31_1
  doi: 10.1155/2022/1225578
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jphotochemrev.2021.100420
– ident: e_1_2_9_30_1
  doi: 10.3390/pharmaceutics12070630
– ident: e_1_2_9_73_1
  doi: 10.1016/bs.mie.2019.04.006
– ident: e_1_2_9_143_1
  doi: 10.1038/s41392-022-01151-3
– ident: e_1_2_9_16_1
  doi: 10.3390/biomimetics7040206
– ident: e_1_2_9_145_1
  doi: 10.1016/j.biomaterials.2020.120645
– ident: e_1_2_9_38_1
  doi: 10.1016/j.tet.2023.133550
– ident: e_1_2_9_157_1
  doi: 10.2174/1871520621666210708123750
– ident: e_1_2_9_12_1
  doi: 10.3390/pharmaceutics14112432
– ident: e_1_2_9_106_1
  doi: 10.1208/s12249-019-1613-7
– ident: e_1_2_9_135_1
  doi: 10.1016/j.mtbio.2021.100181
– ident: e_1_2_9_149_1
  doi: 10.1016/j.jare.2022.01.018
– ident: e_1_2_9_41_1
  doi: 10.3390/polym14040658
– ident: e_1_2_9_137_1
  doi: 10.1002/adma.201506025
– ident: e_1_2_9_152_1
  doi: 10.1016/j.jddst.2022.103552
– ident: e_1_2_9_8_1
  doi: 10.2174/1389450123666220526155144
– ident: e_1_2_9_44_1
  doi: 10.1016/j.nantod.2018.11.001
– ident: e_1_2_9_80_1
  doi: 10.1016/j.mattod.2022.12.004
– ident: e_1_2_9_40_1
  doi: 10.3390/polym14040687
– ident: e_1_2_9_96_1
  doi: 10.1016/j.bioactmat.2021.03.012
– ident: e_1_2_9_121_1
  doi: 10.1016/j.jconrel.2017.03.012
– ident: e_1_2_9_92_1
  doi: 10.1038/s41392-019-0068-3
– ident: e_1_2_9_99_1
  doi: 10.3390/ijms21249739
– volume: 121
  start-page: 541
  year: 2020
  ident: e_1_2_9_119_1
  publication-title: Acta Biomater.
– ident: e_1_2_9_103_1
  doi: 10.1016/j.bioactmat.2021.03.043
– ident: e_1_2_9_123_1
  doi: 10.1016/j.apsb.2023.07.021
– ident: e_1_2_9_50_1
  doi: 10.1080/08982104.2021.1999974
– ident: e_1_2_9_113_1
  doi: 10.1016/j.mtbio.2022.100360
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jddst.2022.103691
– ident: e_1_2_9_32_1
  doi: 10.1016/j.molcel.2021.08.018
– ident: e_1_2_9_94_1
  doi: 10.1016/j.colsurfb.2020.110941
– ident: e_1_2_9_13_1
  doi: 10.1016/j.drup.2023.100948
– ident: e_1_2_9_160_1
  doi: 10.1016/j.apsb.2019.07.004
– ident: e_1_2_9_105_1
  doi: 10.1016/j.jmst.2020.10.027
– ident: e_1_2_9_107_1
  doi: 10.3390/gels8050316
– ident: e_1_2_9_129_1
  doi: 10.1016/j.bioactmat.2022.03.041
– ident: e_1_2_9_15_1
  doi: 10.1177/15330338231152083
– ident: e_1_2_9_85_1
  doi: 10.1517/17425247.2016.1140147
– ident: e_1_2_9_93_1
  doi: 10.1021/acsami.9b20999
– volume: 14
  start-page: 41
  year: 2019
  ident: e_1_2_9_108_1
  publication-title: Asian J. Pharm. Sci.
– ident: e_1_2_9_122_1
  doi: 10.1016/j.ejpb.2018.06.020
– ident: e_1_2_9_124_1
  doi: 10.1016/j.ejps.2022.106367
– ident: e_1_2_9_34_1
  doi: 10.3390/antiox10020313
– ident: e_1_2_9_136_1
  doi: 10.1016/j.cjche.2021.07.019
– ident: e_1_2_9_33_1
  doi: 10.2174/1381612827666211208150210
– ident: e_1_2_9_70_1
  doi: 10.1016/j.jddst.2023.104720
– ident: e_1_2_9_151_1
  doi: 10.1016/j.drudis.2022.103353
– ident: e_1_2_9_6_1
  doi: 10.3390/molecules26195905
– ident: e_1_2_9_28_1
  doi: 10.1016/B978-0-12-817830-0.00001-1
– ident: e_1_2_9_7_1
  doi: 10.1016/j.pmatsci.2019.03.003
– ident: e_1_2_9_130_1
  doi: 10.1016/S1872-2040(20)60066-4
– volume: 1
  start-page: 32
  year: 2020
  ident: e_1_2_9_60_1
  publication-title: Smart Polym. Mater. Biomed. Appl.
– ident: e_1_2_9_114_1
  doi: 10.1016/j.carbpol.2017.12.021
– ident: e_1_2_9_55_1
  doi: 10.1016/j.colsurfa.2022.129312
– ident: e_1_2_9_140_1
  doi: 10.3390/biom12081110
– ident: e_1_2_9_97_1
  doi: 10.3389/fimmu.2023.1074863
– ident: e_1_2_9_127_1
  doi: 10.1016/j.matdes.2023.111931
– ident: e_1_2_9_58_1
  doi: 10.1186/s40643-018-0206-8
– volume: 8
  year: 2020
  ident: e_1_2_9_61_1
  publication-title: Front. Chem.
– ident: e_1_2_9_138_1
  doi: 10.1016/j.ijbiomac.2018.11.147
– ident: e_1_2_9_158_1
  doi: 10.1016/j.jsps.2022.11.004
– ident: e_1_2_9_82_1
  doi: 10.1039/D1MA01197A
– ident: e_1_2_9_132_1
  doi: 10.1016/j.msec.2021.112164
– ident: e_1_2_9_48_1
  doi: 10.1016/j.carbpol.2019.04.029
– ident: e_1_2_9_161_1
  doi: 10.1016/j.nantod.2022.101582
– ident: e_1_2_9_21_1
  doi: 10.3390/pharmaceutics13111972
– volume: 9
  year: 2019
  ident: e_1_2_9_144_1
  publication-title: Front. Oncol.
– ident: e_1_2_9_141_1
  doi: 10.1016/j.biopha.2019.109340
– ident: e_1_2_9_39_1
  doi: 10.1039/D2TB00615D
– ident: e_1_2_9_10_1
  doi: 10.1016/j.ijpharm.2023.122938
– ident: e_1_2_9_87_1
  doi: 10.1186/s11671-019-3208-3
– ident: e_1_2_9_43_1
  doi: 10.1016/j.ejps.2021.105812
– ident: e_1_2_9_37_1
  doi: 10.3390/polym12061397
– ident: e_1_2_9_26_1
  doi: 10.1016/j.matpr.2018.06.498
– ident: e_1_2_9_29_1
  doi: 10.3389/fbioe.2017.00080
– ident: e_1_2_9_115_1
  doi: 10.1016/j.ijpharm.2021.120836
– ident: e_1_2_9_90_1
  doi: 10.1002/chem.201501101
– ident: e_1_2_9_98_1
  doi: 10.1615/CritRevBiomedEng.v40.i5.10
– start-page: 41
  volume-title: Polymeric Micelles Drug Delivery
  year: 2022
  ident: e_1_2_9_118_1
  doi: 10.1016/B978-0-323-89868-3.00006-9
– ident: e_1_2_9_156_1
  doi: 10.1016/j.taap.2022.115989
– ident: e_1_2_9_101_1
  doi: 10.1007/s40204-019-00125-z
– ident: e_1_2_9_95_1
  doi: 10.3390/gels7040221
– ident: e_1_2_9_68_1
  doi: 10.3390/molecules24061117
– ident: e_1_2_9_72_1
  doi: 10.1016/j.mtchem.2022.100963
– ident: e_1_2_9_23_1
  doi: 10.1016/j.biomaterials.2012.06.068
– ident: e_1_2_9_71_1
  doi: 10.1021/jacs.8b03977
– ident: e_1_2_9_134_1
  doi: 10.1016/j.biomaterials.2017.07.035
– ident: e_1_2_9_84_1
  doi: 10.1016/j.biomaterials.2017.06.003
– ident: e_1_2_9_1_1
  doi: 10.1016/j.heliyon.2023.e17488
– ident: e_1_2_9_153_1
  doi: 10.1016/j.jcis.2019.09.120
– ident: e_1_2_9_27_1
  doi: 10.3389/fchem.2022.952675
– ident: e_1_2_9_100_1
  doi: 10.3390/ijerph17144923
– ident: e_1_2_9_51_1
  doi: 10.1021/acsami.9b12620
– ident: e_1_2_9_86_1
  doi: 10.1016/j.biomaterials.2015.01.053
– ident: e_1_2_9_88_1
  doi: 10.3389/fmolb.2020.597634
– ident: e_1_2_9_126_1
  doi: 10.1016/j.biomaterials.2019.119730
– ident: e_1_2_9_18_1
  doi: 10.3390/pr9030470
– ident: e_1_2_9_25_1
  doi: 10.1016/j.progpolymsci.2019.101164
– ident: e_1_2_9_64_1
  doi: 10.1016/j.eurpolymj.2022.111759
– ident: e_1_2_9_49_1
  doi: 10.1016/j.ijpharm.2020.119516
– volume: 33
  start-page: 1161
  year: 2019
  ident: e_1_2_9_147_1
  publication-title: J. Reticuloendothel. Soc.
– ident: e_1_2_9_24_1
  doi: 10.1016/j.drudis.2014.12.012
– ident: e_1_2_9_56_1
  doi: 10.3390/ijms23084421
– ident: e_1_2_9_11_1
  doi: 10.1016/B978-0-323-85881-6.00018-X
– ident: e_1_2_9_116_1
  doi: 10.1016/j.mtbio.2023.100610
– ident: e_1_2_9_125_1
  doi: 10.1016/j.actbio.2021.04.026
– ident: e_1_2_9_59_1
  doi: 10.3389/fmicb.2020.02097
– ident: e_1_2_9_133_1
  doi: 10.1016/j.nano.2018.06.010
– ident: e_1_2_9_4_1
  doi: 10.1038/s41573-020-0090-8
– ident: e_1_2_9_109_1
  doi: 10.1016/j.bioactmat.2020.07.002
– ident: e_1_2_9_52_1
  doi: 10.1186/s40035-020-00196-0
SSID ssj0009606
Score 2.594111
SecondaryResourceType review_article
Snippet The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2312939
SubjectTerms Animals
biomedical applications
cancer
Chronic conditions
Drug Carriers - chemistry
drug delivery
Drug delivery systems
Drug Delivery Systems - methods
Humans
Medical research
Nanoparticles - chemistry
Pharmacology
smart nanomaterials
Stimuli
stimuli‐responsive
Title Harnessing the Power of Stimuli‐Responsive Nanoparticles as an Effective Therapeutic Drug Delivery System
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202312939
https://www.ncbi.nlm.nih.gov/pubmed/38447161
https://www.proquest.com/docview/3067226903
https://www.proquest.com/docview/2942189272
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KTumhTfp0uykqBHpysivJtnRcsglLIaXkAbkZSZZKSfCWfQSSU39CfmN-SWYsrzfbUgot-GAjCcuSRvONNfMNwC6iZCF8sCmuFTRQiuBSJUyechFk4Jmylad45-Mv-fhcfr7ILh5F8Ud-iO6HG0lGs1-TgBs721-Rhpqq4Q1CfIIaiyL4yGGLUNHJij-K4HlDtieyVOdSLVkb-3x_vfm6VvoNaq4j10b1HD0Hs-x09Di53FvM7Z67_YXP8X--aguetbiUDeNC2oYnvn4BTx-xFb6Ey7GZ0saIDwxhI_tKCdbYJLDT-Xdysrr_eXfSetxee4bbNtrjrdsdM3jVLFIlU-nZKuyLjaaLb2yE_UapumGRQv0VnB8dnh2M0zZXQ-pEIXSaaUHkc1qhQVbIvFJ9k4UQtDPeK8RcztuAYGngCqnobDYEF7yo7EDlVgdjxGvYqCe1fwvMO2P7RmpKVYbaUlkpq5BVmfDcBjfQCaTLuSpdS2RO-TSuykjBzEsaxLIbxAQ-dfV_RAqPP9bsLae-bEV5VpJNhRhV90UCH7tiFEI6WTG1nyxmJdcSoZLmBU_gTVwy3auEkggA8kECvJn4v_ShHI6Oh93Tu39p9B428V5Gh7YebMynC7-D0GluPzTi8QCcwhG0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_n9CCxgJiVPa3dhJ7OOKpVqgW6GylbhZtmOjqlUWbXeR4MQj8Iw8SWfiJMuCEBJIuTi2Fcf2eL6xx98APEeUzLkPNsW5ggZKGVwquSnSjAcRslzaytN95-lhMTkWbz7knTch3YWJ_BD9hhtJRrNek4DThvTemjXUVA1xEAIUVFnqMlyhsN5Enz8-WjNIEUBv6PZ4nqpCyI63cZDtbdbf1Eu_gc1N7Noon_2bYLtmR5-T093V0u66r78wOv7Xf92CGy00ZaM4l27DJV_fges_ERbehdOJWdDaiAmGyJG9oxhrbB7Y--UJ-Vn9-Pb9qHW6_ewZrtxokreed8zgU7PIlky5s_XNLzZerD6yMTYcBesLiyzq9-B4_9Xs5SRtwzWkjpdcpbnixD-nJNpkpSgqOTB5CEE5471E2OW8DYiXhq4Uko5nQ3DB88oOZWFVMIbfh616XvuHwLwzdmCEomhlqDClFaIKeZVzn9nghiqBtBss7VoucwqpcaYjC3OmqRN134kJvOjLf4osHn8sudONvW6l-VyTWYUwVQ14As_6bJRDOlwxtZ-vznWmBKIllZVZAg_inOk_xaVADFAME8iakf9LG_RoPB31qUf_UukpXJ3Mpgf64PXh2224hu9F9G_bga3lYuUfI5Ja2ieNrFwAr_YV0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAcym8htICRkDilzdpOYh9XhNXy06oqrdSbZTs2QkXZartbqT3xCDwjT9JxnM12QQgJpFwc24pjezzf2ONvAF4jSmbMeZPiXEEDpfQ2FUwXKWWee5oLU7tw33l3rxgf8Q_H-fG1W_yRH6LfcAuS0a7XQcBPa7-zJA3VdcsbhPgENZa8Cbd4kckQvKE6WBJIBXzesu2xPJUFFwvaxozurNZfVUu_Yc1V6NrqntE90ItWR5eTk-35zGzby18IHf_nt-7DegdMyTDOpAdwwzUP4e41usJHcDLW07AyYoIgbiT7IcIamXjyefY1eFn9_P7joHO5PXcE1200yDu_O6LxaUjkSg65h8t7X6Sazr-QCtuNYnVBIof6YzgavTt8O067YA2pZSWTaS5ZYJ-TAi2ykhe1yHTuvZdWOycQdFlnPKKlgS25CIez3lvvWG0GojDSa802YK2ZNO4pEGe1yTSXIVYZqkthOK99XufMUePtQCaQLsZK2Y7JPATU-KYiBzNVoRNV34kJvOnLn0YOjz-W3FoMvepk-UwFowpBqsxYAq_6bJTCcLSiGzeZnykqOWIlSUuawJM4ZfpPMcERARSDBGg78H9pgxpWu8M-9exfKr2E2_vVSH16v_dxE-7gax6d27ZgbTadu-cIo2bmRSspV1u0FH8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+the+Power+of+Stimuli%E2%80%90Responsive+Nanoparticles+as+an+Effective+Therapeutic+Drug+Delivery+System&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Fatima%2C+Mahak&rft.au=Almalki%2C+Waleed+H.&rft.au=Khan%2C+Tasneem&rft.au=Sahebkar%2C+Amirhossein&rft.date=2024-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=24&rft_id=info:doi/10.1002%2Fadma.202312939&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202312939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon