Layer‐By‐Layer Assembly of Atomically Precise Alloy Nanoclusters Photosystems for Solar Water Oxidation

Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short ca...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 7; pp. e2307619 - n/a
Main Authors Su, Peng, Tang, Bo, Xiao, Fang‐Xing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide‐spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag‐doped glutathione (GSH)‐capped gold NCs, i.e., alloy Au1−xAgx@GSH NCs and non‐conjugated insulating polymer of poly(diallyl‐dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer‐by‐layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in‐between Au1−xAgx@GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1−xAgx@GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1−xAgx@GSH NCs to the MO substrate, substantially improving the visible‐light‐driven photoelectrochemical water oxidation performances of MO/(PDDA‐Au1−xAgx)n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs‐based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion. Cascade charge transfer channel is elaborately designed over alloy nanoclusters via a facile, easily accessible, and efficient layer‐by‐layer assembly strategy for boosted photoelectrochemical water oxidation. The favorable energy level alignment between metal oxide and atomically precise alloy nanoclusters stimulates the advantageous interfacial charge migration and separation, prolonging the charge lifetime.
AbstractList Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide‐spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag‐doped glutathione (GSH)‐capped gold NCs, i.e., alloy Au1−xAgx@GSH NCs and non‐conjugated insulating polymer of poly(diallyl‐dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer‐by‐layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in‐between Au1−xAgx@GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1−xAgx@GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1−xAgx@GSH NCs to the MO substrate, substantially improving the visible‐light‐driven photoelectrochemical water oxidation performances of MO/(PDDA‐Au1−xAgx)n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs‐based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.
Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide‐spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag‐doped glutathione (GSH)‐capped gold NCs, i.e., alloy Au1−xAgx@GSH NCs and non‐conjugated insulating polymer of poly(diallyl‐dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer‐by‐layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in‐between Au1−xAgx@GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1−xAgx@GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1−xAgx@GSH NCs to the MO substrate, substantially improving the visible‐light‐driven photoelectrochemical water oxidation performances of MO/(PDDA‐Au1−xAgx)n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs‐based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion. Cascade charge transfer channel is elaborately designed over alloy nanoclusters via a facile, easily accessible, and efficient layer‐by‐layer assembly strategy for boosted photoelectrochemical water oxidation. The favorable energy level alignment between metal oxide and atomically precise alloy nanoclusters stimulates the advantageous interfacial charge migration and separation, prolonging the charge lifetime.
Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide-spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag-doped glutathione (GSH)-capped gold NCs, i.e., alloy Au1- x Agx @GSH NCs and non-conjugated insulating polymer of poly(diallyl-dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer-by-layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in-between Au1- x Agx @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1- x Agx @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1- x Agx @GSH NCs to the MO substrate, substantially improving the visible-light-driven photoelectrochemical water oxidation performances of MO/(PDDA-Au1- x Agx )n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs-based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide-spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag-doped glutathione (GSH)-capped gold NCs, i.e., alloy Au1- x Agx @GSH NCs and non-conjugated insulating polymer of poly(diallyl-dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer-by-layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in-between Au1- x Agx @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1- x Agx @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1- x Agx @GSH NCs to the MO substrate, substantially improving the visible-light-driven photoelectrochemical water oxidation performances of MO/(PDDA-Au1- x Agx )n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs-based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.
Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide‐spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag‐doped glutathione (GSH)‐capped gold NCs, i.e., alloy Au 1− x Ag x @GSH NCs and non‐conjugated insulating polymer of poly(diallyl‐dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer‐by‐layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in‐between Au 1− x Ag x @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au 1− x Ag x @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au 1− x Ag x @GSH NCs to the MO substrate, substantially improving the visible‐light‐driven photoelectrochemical water oxidation performances of MO/(PDDA‐Au 1− x Ag x ) n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs‐based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.
Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide-spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag-doped glutathione (GSH)-capped gold NCs, i.e., alloy Au Ag @GSH NCs and non-conjugated insulating polymer of poly(diallyl-dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer-by-layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in-between Au Ag @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au Ag @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au Ag @GSH NCs to the MO substrate, substantially improving the visible-light-driven photoelectrochemical water oxidation performances of MO/(PDDA-Au Ag ) multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs-based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.
Author Su, Peng
Xiao, Fang‐Xing
Tang, Bo
Author_xml – sequence: 1
  givenname: Peng
  surname: Su
  fullname: Su, Peng
  organization: Fuzhou University
– sequence: 2
  givenname: Bo
  surname: Tang
  fullname: Tang, Bo
  organization: Fuzhou University
– sequence: 3
  givenname: Fang‐Xing
  orcidid: 0000-0001-5673-5362
  surname: Xiao
  fullname: Xiao, Fang‐Xing
  email: fxxiao@fzu.edu.cn
  organization: Fuzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37803332$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1TAQhi1URC-wZYkssWFzDr4ltpeHikulQCsVxNJynIlwceJiJ4LseASekSep21NOpUoVG49_zfePrfkP0d4YR0DoOSVrSgh7nYcQ1owwTmRN9SN0QGvKV7Viem93p2QfHeZ8QQinTMgnaJ9LRTjn7AB9b-wC6e_vP2-WctwIvMkZhjYsOPZ4M8XBOxuKOkvgfAa8CSEu-JMdowtzniBlfPYtTjEvRQwZ9zHh8xhswl9t6eLTX76zk4_jU_S4tyHDs9t6hL68e_v5-MOqOX1_crxpVo5LrlfCKQek6hnwXrct1XWlHbhaW1IpQSh0XNGWtwKU7DonuKYV7RhUgjvKnONH6NV27mWKP2bIkxl8dhCCHSHO2TAlBau5FKSgL--hF3FOY_mdYbowlVRSFerFLTW3A3TmMvnBpsX8W2MB1lvApZhzgn6HUGKuczLXOZldTsUg7hmcn26WNCXrw8M2vbX99AGW_zxizj82zZ33CgR3qhg
CitedBy_id crossref_primary_10_1002_smll_202409513
crossref_primary_10_1002_smll_202410843
crossref_primary_10_1039_D4TA08327J
crossref_primary_10_1021_acs_inorgchem_4c05541
crossref_primary_10_1002_smll_202400958
crossref_primary_10_1039_D4NR01411A
crossref_primary_10_1021_acsami_4c23033
crossref_primary_10_1016_j_mcat_2025_115000
crossref_primary_10_1039_D4MH90096K
crossref_primary_10_1002_smll_202412630
Cites_doi 10.1039/D2TA08547J
10.1149/2.0551610jes
10.1039/C6CS00015K
10.1039/C5NR03256C
10.1039/C7NR06697J
10.1021/ja042218h
10.1039/C8TA08841A
10.1016/j.apsusc.2017.04.191
10.1039/C5CC04858C
10.1021/jz300892w
10.1039/C6TA05469B
10.1021/acsami.9b14543
10.1002/admi.201701098
10.1002/smll.202302372
10.1002/adfm.201908492
10.1039/b927175a
10.1021/acsami.9b00049
10.1039/C8TA02802H
10.1039/C9TA11579J
10.1021/ja1112904
10.1039/D2TA00572G
10.1039/C7TA04333C
10.1016/j.molcata.2015.04.004
10.1039/D2TA02755K
10.1021/acs.jpcc.5b09429
10.1039/C9NA00234K
10.1007/s12274-022-4445-9
10.1016/j.jhazmat.2011.05.066
10.1002/smll.202300804
10.1016/j.jelechem.2013.05.009
10.1021/acs.jpcc.8b02554
10.1039/C9TA07569K
10.1039/C9TA01144G
10.1039/C9TA08107K
10.1021/acs.chemmater.7b01443
10.1002/asia.201700023
10.1039/D0TA02122A
10.1039/D1TA10284B
10.1039/D0TA05297C
10.1039/D2TA07813A
10.1039/D0TA07235D
10.1002/adfm.202110848
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202307619
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 37803332
10_1002_smll_202307619
SMLL202307619
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21703038; 22072025
– fundername: National Natural Science Foundation of China
  grantid: 22072025
– fundername: National Natural Science Foundation of China
  grantid: 21703038
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3739-4c8ce05f2e3f9bb19659cec69a058401ed381b3b4e87ddc439151d2e543c12cc3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 06:10:23 EDT 2025
Tue Aug 12 16:41:06 EDT 2025
Wed Feb 19 02:08:12 EST 2025
Thu Apr 24 23:03:37 EDT 2025
Tue Jul 01 02:54:44 EDT 2025
Wed Jan 22 16:15:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords photoelectrochemical water oxidations
metal oxides
bimetallic nanoclusters
nonconjugated polymers
charge transfer
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-4c8ce05f2e3f9bb19659cec69a058401ed381b3b4e87ddc439151d2e543c12cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5673-5362
PMID 37803332
PQID 2926357878
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2874263740
proquest_journals_2926357878
pubmed_primary_37803332
crossref_primary_10_1002_smll_202307619
crossref_citationtrail_10_1002_smll_202307619
wiley_primary_10_1002_smll_202307619_SMLL202307619
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2017; 416
2017; 5
2019; 7
2018; 122
2023; 11
2013; 702
2019; 11
2015; 51
2019; 1
2023; 19
2017; 46
2011; 192
2017; 29
2020; 12
2015; 7
2017; 9
2016; 120
2016; 163
2015; 404–405
2011; 133
2020; 8
2016; 4
2018; 6
2012; 3
2018; 5
2020; 30
2005; 127
2017; 12
2022; 15
2022; 10
2022; 32
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
Jiang K.‐Y. (e_1_2_8_42_1) 2017; 9
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 11
  start-page: 2402
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 133
  start-page: 5182
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 4373
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 6606
  year: 2017
  publication-title: Chem. Mater.
– volume: 15
  start-page: 8573
  year: 2022
  publication-title: Nano Res.
– volume: 7
  start-page: 8938
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 6219
  year: 2010
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 4032
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 9
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 163
  start-page: H943
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 8
  start-page: 8360
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 7006
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 1839
  year: 2017
  publication-title: Chem. ‐ Asian J.
– volume: 11
  start-page: 589
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 416
  start-page: 133
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 177
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 2209
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 192
  start-page: 651
  year: 2011
  publication-title: J. Hazard. Mater.
– volume: 1
  start-page: 2529
  year: 2019
  publication-title: Nanoscale Adv.
– volume: 702
  start-page: 37
  year: 2013
  publication-title: J. Electroanal. Chem.
– volume: 404–405
  start-page: 27
  year: 2015
  publication-title: J. Mol. Catal. A: Chem.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 127
  start-page: 5261
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 120
  start-page: 1284
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 46
  start-page: 3716
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_8_2_1
  doi: 10.1039/D2TA08547J
– ident: e_1_2_8_25_1
  doi: 10.1149/2.0551610jes
– ident: e_1_2_8_34_1
  doi: 10.1039/C6CS00015K
– ident: e_1_2_8_20_1
  doi: 10.1039/C5NR03256C
– ident: e_1_2_8_21_1
  doi: 10.1039/C7NR06697J
– ident: e_1_2_8_3_1
  doi: 10.1021/ja042218h
– ident: e_1_2_8_39_1
  doi: 10.1039/C8TA08841A
– ident: e_1_2_8_12_1
  doi: 10.1016/j.apsusc.2017.04.191
– ident: e_1_2_8_27_1
  doi: 10.1039/C5CC04858C
– ident: e_1_2_8_7_1
  doi: 10.1021/jz300892w
– ident: e_1_2_8_37_1
  doi: 10.1039/C6TA05469B
– ident: e_1_2_8_26_1
  doi: 10.1021/acsami.9b14543
– ident: e_1_2_8_41_1
  doi: 10.1002/admi.201701098
– ident: e_1_2_8_6_1
  doi: 10.1002/smll.202302372
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.201908492
– ident: e_1_2_8_8_1
  doi: 10.1039/b927175a
– ident: e_1_2_8_5_1
  doi: 10.1021/acsami.9b00049
– ident: e_1_2_8_40_1
  doi: 10.1039/C8TA02802H
– ident: e_1_2_8_36_1
  doi: 10.1039/C9TA11579J
– ident: e_1_2_8_31_1
  doi: 10.1021/ja1112904
– ident: e_1_2_8_4_1
  doi: 10.1039/D2TA00572G
– ident: e_1_2_8_43_1
  doi: 10.1039/C7TA04333C
– ident: e_1_2_8_28_1
  doi: 10.1016/j.molcata.2015.04.004
– ident: e_1_2_8_32_1
  doi: 10.1039/D2TA02755K
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.jpcc.5b09429
– ident: e_1_2_8_10_1
  doi: 10.1039/C9NA00234K
– ident: e_1_2_8_15_1
  doi: 10.1007/s12274-022-4445-9
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jhazmat.2011.05.066
– ident: e_1_2_8_22_1
  doi: 10.1002/smll.202300804
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jelechem.2013.05.009
– volume: 9
  year: 2017
  ident: e_1_2_8_42_1
  publication-title: J. Mater. Chem. A
– ident: e_1_2_8_9_1
  doi: 10.1021/acs.jpcc.8b02554
– ident: e_1_2_8_24_1
  doi: 10.1039/C9TA07569K
– ident: e_1_2_8_19_1
  doi: 10.1039/C9TA01144G
– ident: e_1_2_8_38_1
  doi: 10.1039/C9TA08107K
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.chemmater.7b01443
– ident: e_1_2_8_13_1
  doi: 10.1002/asia.201700023
– ident: e_1_2_8_33_1
  doi: 10.1039/D0TA02122A
– ident: e_1_2_8_17_1
  doi: 10.1039/D1TA10284B
– ident: e_1_2_8_30_1
  doi: 10.1039/D0TA05297C
– ident: e_1_2_8_1_1
  doi: 10.1039/D2TA07813A
– ident: e_1_2_8_18_1
  doi: 10.1039/D0TA07235D
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.202110848
SSID ssj0031247
Score 2.5375743
Snippet Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique...
Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2307619
SubjectTerms Assembly
bimetallic nanoclusters
Carrier lifetime
Charge transfer
Configuration management
Controllability
Glutathione
Metal oxides
Multilayers
Nanoalloys
Nanoclusters
nonconjugated polymers
Oxidation
photoelectrochemical water oxidations
Photoelectrons
Quantum confinement
Solar energy
Solar energy conversion
Substrates
Title Layer‐By‐Layer Assembly of Atomically Precise Alloy Nanoclusters Photosystems for Solar Water Oxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307619
https://www.ncbi.nlm.nih.gov/pubmed/37803332
https://www.proquest.com/docview/2926357878
https://www.proquest.com/docview/2874263740
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dbtMwFMcttCu4YHxTNiYjTeIqnRO7iXNZ0KYJdayiVOwu8lc0tKxBSyqtu9oj7Bn3JJxjt2EFISR2E8WKEzu2j88_sf0zIbt5LkqBK3qUKG0kUq0iZaSOpJWW5YYZ43C989Hn9HAqPp0MTu6s4g98iO6HG1qG76_RwJVu9n5BQ5vzCocOcCJz6rmfOGELVdGXjh_FwXn53VXAZ0UI3lpRG1myt377ulf6Q2quK1fveg42iVplOsw4OevPW903V7_xHO_zVk_I46UupcPQkJ6SB272jDy6Qyt8Ts5GCvT57fXNhwUcfIDimPG5rha0LumwrT17AEJjZGY0jg6rql5Q6MFrU80RydDQ8Wnd1oEf3VBQzHSCH9f0G2jeC3p8-T3s8fSCTA_2v348jJZ7NUSGZziYbKRxbFAmjpe51p5TaJxJc8VA4rDYWZAGmmvhZGatwfW-g9gmbiC4iRNj-EuyMatn7jWhQmQafGQZszITNo9lmWp4aJpa7nIlZI9Eq7oqzBJkjvtpVEVAMCcFFmLRFWKPvO_i_wgIj7_G3F5VfbE05aZIcuT1QL8GCb_rLoMR4siKmrl6DnFkhuD7TLAeeRWaTJcUzyTjnCc9kviK_0ceisnRaNSF3vzPTVvkIZyLMLd8m2y0F3P3FqRTq3e8efwEgJETgw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIatql0UFtByHSjFSEis0jqxJ3GWU0Q1QKZUtBXsovgSgZpOUJOROqz6CH3GPknPsSeBASEk2ERy4iROnOPzx5fvEPIyTUUpcEVPIUoTiFgVQaGlCqSRhqWaaW1xvfPkIB6fiHefh91sQlwL4_kQfYcbWoZrr9HAsUN69wc1tDmrcOwAZzLHCP5cw7De7q_qY0-Q4uC-XHwV8FoBorc6biOLdpfPX_ZLv4nNZe3qnM_-XaK6Yvs5J6c7s1bt6O-_EB3_67k2yJ2FNKUj_y1tkhU7vUdu_wQsvE9OswIk-vXl1d4cNi5Bcdj4TFVzWpd01NYOPwCpQ8RmNJaOqqqeU2jEa13NkMrQ0MMvdVt7hHRDQTTTI_y_pp9A9p7TDxdffZinB-Rk_83x63GwCNcQaJ7geLKW2rJhGVlepko5VKG2Ok4LBiqHhdaAOlBcCSsTYzQu-R2GJrJDwXUYac0fktVpPbWPCRUiUeAmy5CViTBpKMtYwUXj2HCbFkIOSNBVVq4XLHMMqVHlnsIc5fgS8_4lDsirPv83T_H4Y86tru7zhTU3eZQisgeaNrjxi_4w2CEOrhRTW88gj0yQfZ8INiCP_DfT34onknHOowGJXM3_pQz50STL-tSTfznpOVkfH0-yPHt78P4puQX7hZ9qvkVW2_OZfQZKqlXbzlZuAKktF54
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMeP0JAQPHC_FAYYCYmnbE7sJs5jYVQDulExJvYWxTeBljXTkkqUJz4Cn5FPwjlxG1YQQoKXSE6c2LF9fP6J7Z8Bnua59JJW9JTS20imuoxKo3SkrLI8N9wYR-ud9_bT3UP5-mh4dG4Vf-BD9D_cyDK6_poM_NT67Z_Q0OakoqEDmsicEvfzoky5ona9864HSAn0Xt32Kui0IiJvrbCNPNlev3_dLf2mNdela-d7xtegXOU6TDk53pq3est8-QXo-D-vdR2uLoUpG4WWdAMuuNlNuHIOV3gLjiclCvTvX789X-ChCzAaND7R1YLVno3auoMPYGhK0IzGsVFV1QuGXXhtqjkxGRo2_Vi3dQBINwwlMzugr2v2AUXvGXv7-VPY5Ok2HI5fvn-xGy03a4iMyGg02Sjj-NAnTvhc6w5UaJxJ85KjxuGxs6gNtNDSqcxaQwt-h7FN3FAKEyfGiDuwMatn7h4wKTONTtLH3GfS5rHyqcaHpqkVLi-lGkC0qqvCLEnmtKFGVQQGc1JQIRZ9IQ7gWR__NDA8_hhzc1X1xdKWmyLJCdiDHRsm_KS_jFZIQyvlzNVzjKMyIt9nkg_gbmgyfVIiU1wIkQwg6Sr-L3koDvYmkz50_19uegyXpjvjYvJq_80DuIynZZhnvgkb7dncPUQZ1epHnaX8AG4KFlY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer%E2%80%90By%E2%80%90Layer+Assembly+of+Atomically+Precise+Alloy+Nanoclusters+Photosystems+for+Solar+Water+Oxidation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Su%2C+Peng&rft.au=Tang%2C+Bo&rft.au=Fang%E2%80%90Xing+Xiao&rft.date=2024-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=7&rft_id=info:doi/10.1002%2Fsmll.202307619&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon