Layer‐By‐Layer Assembly of Atomically Precise Alloy Nanoclusters Photosystems for Solar Water Oxidation
Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short ca...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 7; pp. e2307619 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide‐spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag‐doped glutathione (GSH)‐capped gold NCs, i.e., alloy Au1−xAgx@GSH NCs and non‐conjugated insulating polymer of poly(diallyl‐dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer‐by‐layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in‐between Au1−xAgx@GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1−xAgx@GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1−xAgx@GSH NCs to the MO substrate, substantially improving the visible‐light‐driven photoelectrochemical water oxidation performances of MO/(PDDA‐Au1−xAgx)n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs‐based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.
Cascade charge transfer channel is elaborately designed over alloy nanoclusters via a facile, easily accessible, and efficient layer‐by‐layer assembly strategy for boosted photoelectrochemical water oxidation. The favorable energy level alignment between metal oxide and atomically precise alloy nanoclusters stimulates the advantageous interfacial charge migration and separation, prolonging the charge lifetime. |
---|---|
AbstractList | Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide‐spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag‐doped glutathione (GSH)‐capped gold NCs, i.e., alloy Au1−xAgx@GSH NCs and non‐conjugated insulating polymer of poly(diallyl‐dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer‐by‐layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in‐between Au1−xAgx@GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1−xAgx@GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1−xAgx@GSH NCs to the MO substrate, substantially improving the visible‐light‐driven photoelectrochemical water oxidation performances of MO/(PDDA‐Au1−xAgx)n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs‐based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion. Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide‐spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag‐doped glutathione (GSH)‐capped gold NCs, i.e., alloy Au1−xAgx@GSH NCs and non‐conjugated insulating polymer of poly(diallyl‐dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer‐by‐layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in‐between Au1−xAgx@GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1−xAgx@GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1−xAgx@GSH NCs to the MO substrate, substantially improving the visible‐light‐driven photoelectrochemical water oxidation performances of MO/(PDDA‐Au1−xAgx)n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs‐based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion. Cascade charge transfer channel is elaborately designed over alloy nanoclusters via a facile, easily accessible, and efficient layer‐by‐layer assembly strategy for boosted photoelectrochemical water oxidation. The favorable energy level alignment between metal oxide and atomically precise alloy nanoclusters stimulates the advantageous interfacial charge migration and separation, prolonging the charge lifetime. Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide-spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag-doped glutathione (GSH)-capped gold NCs, i.e., alloy Au1- x Agx @GSH NCs and non-conjugated insulating polymer of poly(diallyl-dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer-by-layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in-between Au1- x Agx @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1- x Agx @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1- x Agx @GSH NCs to the MO substrate, substantially improving the visible-light-driven photoelectrochemical water oxidation performances of MO/(PDDA-Au1- x Agx )n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs-based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide-spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag-doped glutathione (GSH)-capped gold NCs, i.e., alloy Au1- x Agx @GSH NCs and non-conjugated insulating polymer of poly(diallyl-dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer-by-layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in-between Au1- x Agx @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1- x Agx @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1- x Agx @GSH NCs to the MO substrate, substantially improving the visible-light-driven photoelectrochemical water oxidation performances of MO/(PDDA-Au1- x Agx )n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs-based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion. Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide‐spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag‐doped glutathione (GSH)‐capped gold NCs, i.e., alloy Au 1− x Ag x @GSH NCs and non‐conjugated insulating polymer of poly(diallyl‐dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer‐by‐layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in‐between Au 1− x Ag x @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au 1− x Ag x @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au 1− x Ag x @GSH NCs to the MO substrate, substantially improving the visible‐light‐driven photoelectrochemical water oxidation performances of MO/(PDDA‐Au 1− x Ag x ) n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs‐based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion. Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide-spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag-doped glutathione (GSH)-capped gold NCs, i.e., alloy Au Ag @GSH NCs and non-conjugated insulating polymer of poly(diallyl-dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer-by-layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in-between Au Ag @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au Ag @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au Ag @GSH NCs to the MO substrate, substantially improving the visible-light-driven photoelectrochemical water oxidation performances of MO/(PDDA-Au Ag ) multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs-based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion. |
Author | Su, Peng Xiao, Fang‐Xing Tang, Bo |
Author_xml | – sequence: 1 givenname: Peng surname: Su fullname: Su, Peng organization: Fuzhou University – sequence: 2 givenname: Bo surname: Tang fullname: Tang, Bo organization: Fuzhou University – sequence: 3 givenname: Fang‐Xing orcidid: 0000-0001-5673-5362 surname: Xiao fullname: Xiao, Fang‐Xing email: fxxiao@fzu.edu.cn organization: Fuzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37803332$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1TAQhi1URC-wZYkssWFzDr4ltpeHikulQCsVxNJynIlwceJiJ4LseASekSep21NOpUoVG49_zfePrfkP0d4YR0DoOSVrSgh7nYcQ1owwTmRN9SN0QGvKV7Viem93p2QfHeZ8QQinTMgnaJ9LRTjn7AB9b-wC6e_vP2-WctwIvMkZhjYsOPZ4M8XBOxuKOkvgfAa8CSEu-JMdowtzniBlfPYtTjEvRQwZ9zHh8xhswl9t6eLTX76zk4_jU_S4tyHDs9t6hL68e_v5-MOqOX1_crxpVo5LrlfCKQek6hnwXrct1XWlHbhaW1IpQSh0XNGWtwKU7DonuKYV7RhUgjvKnONH6NV27mWKP2bIkxl8dhCCHSHO2TAlBau5FKSgL--hF3FOY_mdYbowlVRSFerFLTW3A3TmMvnBpsX8W2MB1lvApZhzgn6HUGKuczLXOZldTsUg7hmcn26WNCXrw8M2vbX99AGW_zxizj82zZ33CgR3qhg |
CitedBy_id | crossref_primary_10_1002_smll_202409513 crossref_primary_10_1002_smll_202410843 crossref_primary_10_1039_D4TA08327J crossref_primary_10_1021_acs_inorgchem_4c05541 crossref_primary_10_1002_smll_202400958 crossref_primary_10_1039_D4NR01411A crossref_primary_10_1021_acsami_4c23033 crossref_primary_10_1016_j_mcat_2025_115000 crossref_primary_10_1039_D4MH90096K crossref_primary_10_1002_smll_202412630 |
Cites_doi | 10.1039/D2TA08547J 10.1149/2.0551610jes 10.1039/C6CS00015K 10.1039/C5NR03256C 10.1039/C7NR06697J 10.1021/ja042218h 10.1039/C8TA08841A 10.1016/j.apsusc.2017.04.191 10.1039/C5CC04858C 10.1021/jz300892w 10.1039/C6TA05469B 10.1021/acsami.9b14543 10.1002/admi.201701098 10.1002/smll.202302372 10.1002/adfm.201908492 10.1039/b927175a 10.1021/acsami.9b00049 10.1039/C8TA02802H 10.1039/C9TA11579J 10.1021/ja1112904 10.1039/D2TA00572G 10.1039/C7TA04333C 10.1016/j.molcata.2015.04.004 10.1039/D2TA02755K 10.1021/acs.jpcc.5b09429 10.1039/C9NA00234K 10.1007/s12274-022-4445-9 10.1016/j.jhazmat.2011.05.066 10.1002/smll.202300804 10.1016/j.jelechem.2013.05.009 10.1021/acs.jpcc.8b02554 10.1039/C9TA07569K 10.1039/C9TA01144G 10.1039/C9TA08107K 10.1021/acs.chemmater.7b01443 10.1002/asia.201700023 10.1039/D0TA02122A 10.1039/D1TA10284B 10.1039/D0TA05297C 10.1039/D2TA07813A 10.1039/D0TA07235D 10.1002/adfm.202110848 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202307619 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 37803332 10_1002_smll_202307619 SMLL202307619 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21703038; 22072025 – fundername: National Natural Science Foundation of China grantid: 22072025 – fundername: National Natural Science Foundation of China grantid: 21703038 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3739-4c8ce05f2e3f9bb19659cec69a058401ed381b3b4e87ddc439151d2e543c12cc3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 06:10:23 EDT 2025 Tue Aug 12 16:41:06 EDT 2025 Wed Feb 19 02:08:12 EST 2025 Thu Apr 24 23:03:37 EDT 2025 Tue Jul 01 02:54:44 EDT 2025 Wed Jan 22 16:15:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | photoelectrochemical water oxidations metal oxides bimetallic nanoclusters nonconjugated polymers charge transfer |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-4c8ce05f2e3f9bb19659cec69a058401ed381b3b4e87ddc439151d2e543c12cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5673-5362 |
PMID | 37803332 |
PQID | 2926357878 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2874263740 proquest_journals_2926357878 pubmed_primary_37803332 crossref_primary_10_1002_smll_202307619 crossref_citationtrail_10_1002_smll_202307619 wiley_primary_10_1002_smll_202307619_SMLL202307619 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2017; 416 2017; 5 2019; 7 2018; 122 2023; 11 2013; 702 2019; 11 2015; 51 2019; 1 2023; 19 2017; 46 2011; 192 2017; 29 2020; 12 2015; 7 2017; 9 2016; 120 2016; 163 2015; 404–405 2011; 133 2020; 8 2016; 4 2018; 6 2012; 3 2018; 5 2020; 30 2005; 127 2017; 12 2022; 15 2022; 10 2022; 32 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 Jiang K.‐Y. (e_1_2_8_42_1) 2017; 9 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 11 start-page: 2402 year: 2023 publication-title: J. Mater. Chem. A – volume: 133 start-page: 5182 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 4373 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 29 start-page: 6606 year: 2017 publication-title: Chem. Mater. – volume: 15 start-page: 8573 year: 2022 publication-title: Nano Res. – volume: 7 start-page: 8938 year: 2019 publication-title: J. Mater. Chem. A – volume: 12 start-page: 6219 year: 2010 publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 4032 year: 2022 publication-title: J. Mater. Chem. A – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 9 year: 2017 publication-title: J. Mater. Chem. A – volume: 163 start-page: H943 year: 2016 publication-title: J. Electrochem. Soc. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 8360 year: 2020 publication-title: J. Mater. Chem. A – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 7006 year: 2022 publication-title: J. Mater. Chem. A – volume: 12 start-page: 1839 year: 2017 publication-title: Chem. ‐ Asian J. – volume: 11 start-page: 589 year: 2023 publication-title: J. Mater. Chem. A – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 416 start-page: 133 year: 2017 publication-title: Appl. Surf. Sci. – volume: 8 start-page: 177 year: 2020 publication-title: J. Mater. Chem. A – volume: 3 start-page: 2209 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 192 start-page: 651 year: 2011 publication-title: J. Hazard. Mater. – volume: 1 start-page: 2529 year: 2019 publication-title: Nanoscale Adv. – volume: 702 start-page: 37 year: 2013 publication-title: J. Electroanal. Chem. – volume: 404–405 start-page: 27 year: 2015 publication-title: J. Mol. Catal. A: Chem. – volume: 19 year: 2023 publication-title: Small – volume: 7 year: 2015 publication-title: Nanoscale – volume: 127 start-page: 5261 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 120 start-page: 1284 year: 2016 publication-title: J. Phys. Chem. C – volume: 46 start-page: 3716 year: 2017 publication-title: Chem. Soc. Rev. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_8_2_1 doi: 10.1039/D2TA08547J – ident: e_1_2_8_25_1 doi: 10.1149/2.0551610jes – ident: e_1_2_8_34_1 doi: 10.1039/C6CS00015K – ident: e_1_2_8_20_1 doi: 10.1039/C5NR03256C – ident: e_1_2_8_21_1 doi: 10.1039/C7NR06697J – ident: e_1_2_8_3_1 doi: 10.1021/ja042218h – ident: e_1_2_8_39_1 doi: 10.1039/C8TA08841A – ident: e_1_2_8_12_1 doi: 10.1016/j.apsusc.2017.04.191 – ident: e_1_2_8_27_1 doi: 10.1039/C5CC04858C – ident: e_1_2_8_7_1 doi: 10.1021/jz300892w – ident: e_1_2_8_37_1 doi: 10.1039/C6TA05469B – ident: e_1_2_8_26_1 doi: 10.1021/acsami.9b14543 – ident: e_1_2_8_41_1 doi: 10.1002/admi.201701098 – ident: e_1_2_8_6_1 doi: 10.1002/smll.202302372 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201908492 – ident: e_1_2_8_8_1 doi: 10.1039/b927175a – ident: e_1_2_8_5_1 doi: 10.1021/acsami.9b00049 – ident: e_1_2_8_40_1 doi: 10.1039/C8TA02802H – ident: e_1_2_8_36_1 doi: 10.1039/C9TA11579J – ident: e_1_2_8_31_1 doi: 10.1021/ja1112904 – ident: e_1_2_8_4_1 doi: 10.1039/D2TA00572G – ident: e_1_2_8_43_1 doi: 10.1039/C7TA04333C – ident: e_1_2_8_28_1 doi: 10.1016/j.molcata.2015.04.004 – ident: e_1_2_8_32_1 doi: 10.1039/D2TA02755K – ident: e_1_2_8_29_1 doi: 10.1021/acs.jpcc.5b09429 – ident: e_1_2_8_10_1 doi: 10.1039/C9NA00234K – ident: e_1_2_8_15_1 doi: 10.1007/s12274-022-4445-9 – ident: e_1_2_8_23_1 doi: 10.1016/j.jhazmat.2011.05.066 – ident: e_1_2_8_22_1 doi: 10.1002/smll.202300804 – ident: e_1_2_8_14_1 doi: 10.1016/j.jelechem.2013.05.009 – volume: 9 year: 2017 ident: e_1_2_8_42_1 publication-title: J. Mater. Chem. A – ident: e_1_2_8_9_1 doi: 10.1021/acs.jpcc.8b02554 – ident: e_1_2_8_24_1 doi: 10.1039/C9TA07569K – ident: e_1_2_8_19_1 doi: 10.1039/C9TA01144G – ident: e_1_2_8_38_1 doi: 10.1039/C9TA08107K – ident: e_1_2_8_11_1 doi: 10.1021/acs.chemmater.7b01443 – ident: e_1_2_8_13_1 doi: 10.1002/asia.201700023 – ident: e_1_2_8_33_1 doi: 10.1039/D0TA02122A – ident: e_1_2_8_17_1 doi: 10.1039/D1TA10284B – ident: e_1_2_8_30_1 doi: 10.1039/D0TA05297C – ident: e_1_2_8_1_1 doi: 10.1039/D2TA07813A – ident: e_1_2_8_18_1 doi: 10.1039/D0TA07235D – ident: e_1_2_8_35_1 doi: 10.1002/adfm.202110848 |
SSID | ssj0031247 |
Score | 2.5375743 |
Snippet | Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light‐harvesting antennas in heterogeneous photocatalysis due to unique... Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2307619 |
SubjectTerms | Assembly bimetallic nanoclusters Carrier lifetime Charge transfer Configuration management Controllability Glutathione Metal oxides Multilayers Nanoalloys Nanoclusters nonconjugated polymers Oxidation photoelectrochemical water oxidations Photoelectrons Quantum confinement Solar energy Solar energy conversion Substrates |
Title | Layer‐By‐Layer Assembly of Atomically Precise Alloy Nanoclusters Photosystems for Solar Water Oxidation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307619 https://www.ncbi.nlm.nih.gov/pubmed/37803332 https://www.proquest.com/docview/2926357878 https://www.proquest.com/docview/2874263740 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dbtMwFMcttCu4YHxTNiYjTeIqnRO7iXNZ0KYJdayiVOwu8lc0tKxBSyqtu9oj7Bn3JJxjt2EFISR2E8WKEzu2j88_sf0zIbt5LkqBK3qUKG0kUq0iZaSOpJWW5YYZ43C989Hn9HAqPp0MTu6s4g98iO6HG1qG76_RwJVu9n5BQ5vzCocOcCJz6rmfOGELVdGXjh_FwXn53VXAZ0UI3lpRG1myt377ulf6Q2quK1fveg42iVplOsw4OevPW903V7_xHO_zVk_I46UupcPQkJ6SB272jDy6Qyt8Ts5GCvT57fXNhwUcfIDimPG5rha0LumwrT17AEJjZGY0jg6rql5Q6MFrU80RydDQ8Wnd1oEf3VBQzHSCH9f0G2jeC3p8-T3s8fSCTA_2v348jJZ7NUSGZziYbKRxbFAmjpe51p5TaJxJc8VA4rDYWZAGmmvhZGatwfW-g9gmbiC4iRNj-EuyMatn7jWhQmQafGQZszITNo9lmWp4aJpa7nIlZI9Eq7oqzBJkjvtpVEVAMCcFFmLRFWKPvO_i_wgIj7_G3F5VfbE05aZIcuT1QL8GCb_rLoMR4siKmrl6DnFkhuD7TLAeeRWaTJcUzyTjnCc9kviK_0ceisnRaNSF3vzPTVvkIZyLMLd8m2y0F3P3FqRTq3e8efwEgJETgw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIatql0UFtByHSjFSEis0jqxJ3GWU0Q1QKZUtBXsovgSgZpOUJOROqz6CH3GPknPsSeBASEk2ERy4iROnOPzx5fvEPIyTUUpcEVPIUoTiFgVQaGlCqSRhqWaaW1xvfPkIB6fiHefh91sQlwL4_kQfYcbWoZrr9HAsUN69wc1tDmrcOwAZzLHCP5cw7De7q_qY0-Q4uC-XHwV8FoBorc6biOLdpfPX_ZLv4nNZe3qnM_-XaK6Yvs5J6c7s1bt6O-_EB3_67k2yJ2FNKUj_y1tkhU7vUdu_wQsvE9OswIk-vXl1d4cNi5Bcdj4TFVzWpd01NYOPwCpQ8RmNJaOqqqeU2jEa13NkMrQ0MMvdVt7hHRDQTTTI_y_pp9A9p7TDxdffZinB-Rk_83x63GwCNcQaJ7geLKW2rJhGVlepko5VKG2Ok4LBiqHhdaAOlBcCSsTYzQu-R2GJrJDwXUYac0fktVpPbWPCRUiUeAmy5CViTBpKMtYwUXj2HCbFkIOSNBVVq4XLHMMqVHlnsIc5fgS8_4lDsirPv83T_H4Y86tru7zhTU3eZQisgeaNrjxi_4w2CEOrhRTW88gj0yQfZ8INiCP_DfT34onknHOowGJXM3_pQz50STL-tSTfznpOVkfH0-yPHt78P4puQX7hZ9qvkVW2_OZfQZKqlXbzlZuAKktF54 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMeP0JAQPHC_FAYYCYmnbE7sJs5jYVQDulExJvYWxTeBljXTkkqUJz4Cn5FPwjlxG1YQQoKXSE6c2LF9fP6J7Z8Bnua59JJW9JTS20imuoxKo3SkrLI8N9wYR-ud9_bT3UP5-mh4dG4Vf-BD9D_cyDK6_poM_NT67Z_Q0OakoqEDmsicEvfzoky5ona9864HSAn0Xt32Kui0IiJvrbCNPNlev3_dLf2mNdela-d7xtegXOU6TDk53pq3est8-QXo-D-vdR2uLoUpG4WWdAMuuNlNuHIOV3gLjiclCvTvX789X-ChCzAaND7R1YLVno3auoMPYGhK0IzGsVFV1QuGXXhtqjkxGRo2_Vi3dQBINwwlMzugr2v2AUXvGXv7-VPY5Ok2HI5fvn-xGy03a4iMyGg02Sjj-NAnTvhc6w5UaJxJ85KjxuGxs6gNtNDSqcxaQwt-h7FN3FAKEyfGiDuwMatn7h4wKTONTtLH3GfS5rHyqcaHpqkVLi-lGkC0qqvCLEnmtKFGVQQGc1JQIRZ9IQ7gWR__NDA8_hhzc1X1xdKWmyLJCdiDHRsm_KS_jFZIQyvlzNVzjKMyIt9nkg_gbmgyfVIiU1wIkQwg6Sr-L3koDvYmkz50_19uegyXpjvjYvJq_80DuIynZZhnvgkb7dncPUQZ1epHnaX8AG4KFlY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer%E2%80%90By%E2%80%90Layer+Assembly+of+Atomically+Precise+Alloy+Nanoclusters+Photosystems+for+Solar+Water+Oxidation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Su%2C+Peng&rft.au=Tang%2C+Bo&rft.au=Fang%E2%80%90Xing+Xiao&rft.date=2024-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=7&rft_id=info:doi/10.1002%2Fsmll.202307619&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |