Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage
Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium‐ba...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 21; pp. e1800639 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium‐based metal–organic frameworks (MOFs). High‐temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit‐like 2D pores in vanadium oxide/porous carbon nanorods (VOx/PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VOx/PCs demonstrate high‐rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs‐derived composites with hierarchical porous architectures for energy storage.
A unique bonding guidance in vanadium‐based metal–organic frameworks is investigated for achieving oriented 2D pores. Benefiting from its typical loose morphology, the hierarchical vanadium oxide/porous carbon composite with oriented pores endows sodium‐ion anode with superior electrochemical performance. |
---|---|
AbstractList | Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium‐based metal–organic frameworks (MOFs). High‐temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit‐like 2D pores in vanadium oxide/porous carbon nanorods (VO
x
/PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VO
x
/PCs demonstrate high‐rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs‐derived composites with hierarchical porous architectures for energy storage. Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium-based metal-organic frameworks (MOFs). High-temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit-like 2D pores in vanadium oxide/porous carbon nanorods (VOx /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VOx /PCs demonstrate high-rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs-derived composites with hierarchical porous architectures for energy storage.Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium-based metal-organic frameworks (MOFs). High-temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit-like 2D pores in vanadium oxide/porous carbon nanorods (VOx /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VOx /PCs demonstrate high-rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs-derived composites with hierarchical porous architectures for energy storage. Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium‐based metal–organic frameworks (MOFs). High‐temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit‐like 2D pores in vanadium oxide/porous carbon nanorods (VOx/PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VOx/PCs demonstrate high‐rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs‐derived composites with hierarchical porous architectures for energy storage. Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium-based metal-organic frameworks (MOFs). High-temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit-like 2D pores in vanadium oxide/porous carbon nanorods (VO /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VO /PCs demonstrate high-rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs-derived composites with hierarchical porous architectures for energy storage. Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium‐based metal–organic frameworks (MOFs). High‐temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit‐like 2D pores in vanadium oxide/porous carbon nanorods (VOx/PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VOx/PCs demonstrate high‐rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs‐derived composites with hierarchical porous architectures for energy storage. A unique bonding guidance in vanadium‐based metal–organic frameworks is investigated for achieving oriented 2D pores. Benefiting from its typical loose morphology, the hierarchical vanadium oxide/porous carbon composite with oriented pores endows sodium‐ion anode with superior electrochemical performance. |
Author | Xie, Chen‐Chao Zhou, Zhen Kong, Lingjun Liu, Jian Bu, Xian‐He Wang, Chao‐Peng Zhu, Jian Zhou, Xianlong Li, Zhao‐Yang Gu, Haichen |
Author_xml | – sequence: 1 givenname: Lingjun surname: Kong fullname: Kong, Lingjun organization: Nankai University – sequence: 2 givenname: Chen‐Chao surname: Xie fullname: Xie, Chen‐Chao organization: Nankai University – sequence: 3 givenname: Haichen surname: Gu fullname: Gu, Haichen organization: Nankai University – sequence: 4 givenname: Chao‐Peng surname: Wang fullname: Wang, Chao‐Peng organization: Nankai University – sequence: 5 givenname: Xianlong surname: Zhou fullname: Zhou, Xianlong organization: Nankai University – sequence: 6 givenname: Jian surname: Liu fullname: Liu, Jian organization: Nankai University – sequence: 7 givenname: Zhen surname: Zhou fullname: Zhou, Zhen email: zhouzhen@nankai.edu.cn organization: Nankai University – sequence: 8 givenname: Zhao‐Yang surname: Li fullname: Li, Zhao‐Yang organization: Nankai University – sequence: 9 givenname: Jian surname: Zhu fullname: Zhu, Jian organization: Nankai University – sequence: 10 givenname: Xian‐He orcidid: 0000-0002-2646-7974 surname: Bu fullname: Bu, Xian‐He email: buxh@nankai.edu.cn organization: Collaborative Innovation Center of Chemical Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29673118$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LIzEYhoNUbP1x3eMysBcvrUkmmSTHRV0tVBSq55CZ-WYbySRuMoP0v9-UqgvC4ilvyPN8hO89RhMfPCD0jeAFwZhepN65BcVEYlyV6gDNSEXKeSWpmnxkgqfoOKVnjEtCmThCU6oqURIiZ2j5uIHYG1csfRpMbZ0dtjm3YwNtcR8t-CEHelU8hAip6EIsrv3G-N3zOrR27Iv1EKL5DafosDMuwdnbeYKefl0_Xt7OV_c3y8ufq3lTilLNGZWiY7UhsqaECQGcE8pxLbuq4UYCsIYCNFWFO1ViRTnNV9MyXouaKSPKE3S-n_sSw58R0qB7mxpwzngIY9IUU6k4Z5Jl9Mcn9DmM0effZYoJhvMeeKa-v1Fj3UOrX6LtTdzq9yVlgO2BJoaUInS6sYMZbPBDNNZpgvWuC73rQn90kbXFJ-198n8FtRderYPtF7Re361W_9y_CzaaJQ |
CitedBy_id | crossref_primary_10_1021_acsami_9b18851 crossref_primary_10_1016_j_jssc_2019_120949 crossref_primary_10_1002_smll_202405719 crossref_primary_10_1002_adfm_202421224 crossref_primary_10_3390_catal11101163 crossref_primary_10_1002_aenm_202100154 crossref_primary_10_1021_acsami_2c23314 crossref_primary_10_1002_inf2_12517 crossref_primary_10_1002_aenm_202100172 crossref_primary_10_1021_acsami_0c13601 crossref_primary_10_1016_j_jelechem_2022_117095 crossref_primary_10_1039_D1TC01905H crossref_primary_10_1007_s10853_018_2892_1 crossref_primary_10_1039_C8CS00324F crossref_primary_10_1002_smm2_1091 crossref_primary_10_1016_j_chemosphere_2022_134932 crossref_primary_10_1002_smll_202107869 crossref_primary_10_1039_C8QI00910D crossref_primary_10_1002_smll_202303473 crossref_primary_10_1016_j_jpowsour_2018_10_016 crossref_primary_10_1039_C9QI01268K crossref_primary_10_1039_D3NJ02280C crossref_primary_10_1016_j_cej_2019_123596 crossref_primary_10_1016_j_jechem_2020_11_028 crossref_primary_10_1007_s10853_018_3064_z crossref_primary_10_1016_j_seppur_2023_123998 crossref_primary_10_1002_smll_202401789 crossref_primary_10_1016_j_cej_2023_142289 crossref_primary_10_1016_j_est_2024_110947 crossref_primary_10_1016_j_ensm_2018_12_015 crossref_primary_10_1039_D1TA00185J crossref_primary_10_1002_smll_201804058 crossref_primary_10_1016_j_enchem_2022_100090 crossref_primary_10_1016_j_apsusc_2024_161399 crossref_primary_10_1016_j_jmat_2020_10_008 crossref_primary_10_1002_smll_201903410 crossref_primary_10_1016_j_jcis_2022_08_043 crossref_primary_10_1021_acscatal_1c01447 crossref_primary_10_1021_acsami_1c15661 crossref_primary_10_1007_s10853_020_05355_2 crossref_primary_10_1002_aenm_202202052 crossref_primary_10_1002_smll_202002811 crossref_primary_10_1016_j_ccr_2019_02_021 crossref_primary_10_1002_aenm_201801515 crossref_primary_10_1002_smtd_201900163 crossref_primary_10_1016_j_ccr_2019_02_029 crossref_primary_10_1021_acs_inorgchem_1c00164 crossref_primary_10_1002_tcr_202300109 |
Cites_doi | 10.1021/acsnano.7b02796 10.1002/adma.201604080 10.1039/C4EE02281E 10.1016/j.chempr.2016.12.002 10.1039/C5EE03772G 10.1002/aenm.201601492 10.1126/science.aag2421 10.1039/C6SC02272C 10.1002/ejic.201200860 10.1039/c3ta10897j 10.1126/science.1234621 10.1002/aenm.201700518 10.1038/srep14341 10.1039/C7TA10500B 10.1039/C2CS35378D 10.1002/aenm.201600423 10.1002/adfm.201504202 10.1039/C5CC06924F 10.1021/jp9084876 10.1021/ja208940u 10.1039/C6TA08331E 10.1021/acs.chemmater.7b00029 10.1088/1468-6996/16/5/054203 10.1002/adma.201605096 10.1038/natrevmats.2016.98 10.1016/j.jpowsour.2015.09.104 10.1126/science.aab0492 10.1039/C4TA01656D 10.1002/adma.201604007 10.1002/smll.201500865 10.1002/smll.201600633 10.1021/la047675q 10.1021/nn3052378 10.1002/aenm.201600755 10.1039/C7SC03960C 10.1038/nchem.2515 10.1016/j.nanoen.2016.03.018 10.1039/C5TB00346F 10.1021/jacs.6b11641 10.1002/aenm.201602898 10.1126/science.aaa8075 10.1039/C7EE00488E 10.1002/adma.201204453 10.1016/j.apcata.2016.03.011 10.1021/jacs.6b08821 10.1002/adma.201700989 10.1002/adma.201600979 10.1039/C4EE03912B 10.1007/s12598-015-0501-x |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201800639 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 29673118 10_1002_smll_201800639 SMLL201800639 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Tianjin funderid: 15JCZDJC38800 – fundername: National Natural Science Foundation of China funderid: 21421001; 21531005 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3739-4287f4ba18b21477e551250b8f6c5a8ee4c2eec660f93092522eead45b7b49a73 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 10:47:07 EDT 2025 Fri Jul 25 12:09:21 EDT 2025 Wed Feb 19 02:34:50 EST 2025 Tue Jul 01 02:10:35 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Wed Jan 22 17:04:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | anodes sodium storage vanadium oxide oriented 2D pores metal-organic frameworks |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-4287f4ba18b21477e551250b8f6c5a8ee4c2eec660f93092522eead45b7b49a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2646-7974 |
PMID | 29673118 |
PQID | 2047402965 |
PQPubID | 1046358 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2028955484 proquest_journals_2047402965 pubmed_primary_29673118 crossref_citationtrail_10_1002_smll_201800639 crossref_primary_10_1002_smll_201800639 wiley_primary_10_1002_smll_201800639_SMLL201800639 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-May |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-May |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2015; 16 2015; 3 2015; 11 2016 2017 2015 2012 2016; 7 10 5 134 4 2017; 29 2015; 349 2015; 348 2015; 8 2016; 12 2015 2014; 51 2 2015 2015; 34 300 2016; 517 2013 2017; 25 29 2017; 11 2016 2016 2017; 6 28 2 2017 2013 2017 2016; 139 340 29 6 2016 2017; 353 2 2013 2017; 7 7 2013 2010; 2013 114 2016; 138 2018 2015 2018; 6 8 9 2005 2013; 21 1 2013 2017; 42 7 2016; 26 2016; 8 2016; 25 2016; 9 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_15_5 e_1_2_7_19_1 e_1_2_7_15_4 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_20_1 |
References_xml | – volume: 349 start-page: 54 year: 2015 publication-title: Science – volume: 139 340 29 6 start-page: 517 832 1605096 1600755 year: 2017 2013 2017 2016 publication-title: J. Am. Chem. Soc. Science Adv. Mater. Adv. Energy Mater. – volume: 7 start-page: 1602898 year: 2017 publication-title: Adv. Energy Mater. – volume: 138 start-page: 14434 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1700989 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 862 year: 2016 publication-title: Energ. Environ. Sci. – volume: 353 2 start-page: 1137 16098 year: 2016 2017 publication-title: Science Nat. Rev. Mater. – volume: 517 start-page: 141 year: 2016 publication-title: Appl. Catal., A – volume: 29 start-page: 1604007 year: 2017 publication-title: Adv. Mater. – volume: 25 start-page: 145 year: 2016 publication-title: Nano Energy – volume: 42 7 start-page: 3876 1601492 year: 2013 2017 publication-title: Chem. Soc. Rev. Adv. Energy Mater. – volume: 25 29 start-page: 2452 2332 year: 2013 2017 publication-title: Adv. Mater. Chem. Mater. – volume: 6 28 2 start-page: 1600423 6391 52 year: 2016 2016 2017 publication-title: Adv. Energy. Mater. Adv. Mater. Chem. – volume: 8 start-page: 718 year: 2016 publication-title: Nat. Chem. – volume: 21 1 start-page: 2887 6462 year: 2005 2013 publication-title: Langmuir J. Mater. Chem. A – volume: 26 start-page: 2046 year: 2016 publication-title: Adv. Funct. Mater. – volume: 7 10 5 134 4 start-page: 7101 1777 14341 2864 19078 year: 2016 2017 2015 2012 2016 publication-title: Chem. Sci. Energy Environ. Sci. Sci. Rep. J. Am. Chem. Soc. J. Mater. Chem. A – volume: 16 start-page: 054203 year: 2015 publication-title: Sci. Technol. Adv. Mater. – volume: 11 start-page: 4334 year: 2015 publication-title: Small – volume: 6 8 9 start-page: 3284 1660 666 year: 2018 2015 2018 publication-title: J. Mater. Chem. A Energ. Environ. Sci. Chem. Sci. – volume: 348 start-page: 6238 year: 2015 publication-title: Science – volume: 12 start-page: 3048 year: 2016 publication-title: Small – volume: 11 start-page: 5293 year: 2017 publication-title: ACS Nano – volume: 51 2 start-page: 16413 11606 year: 2015 2014 publication-title: Chem. Commun. J. Mater. Chem. A – volume: 2013 114 start-page: 241 412 year: 2013 2010 publication-title: Eur. J. Inorg. Chem. J. Phys. Chem. C – volume: 8 start-page: 568 year: 2015 publication-title: Energy Environ. Sci. – volume: 29 start-page: 1604080 year: 2017 publication-title: Adv. Mater. – volume: 7 7 start-page: 1464 1700518 year: 2013 2017 publication-title: ACS Nano Adv. Energy Mater. – volume: 34 300 start-page: 498 483 year: 2015 2015 publication-title: Rare Met. J. Power Source – volume: 3 start-page: 4205 year: 2015 publication-title: J. Mater. Chem. B – ident: e_1_2_7_6_1 doi: 10.1021/acsnano.7b02796 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201604080 – ident: e_1_2_7_12_1 doi: 10.1039/C4EE02281E – ident: e_1_2_7_13_3 doi: 10.1016/j.chempr.2016.12.002 – ident: e_1_2_7_3_1 doi: 10.1039/C5EE03772G – ident: e_1_2_7_1_2 doi: 10.1002/aenm.201601492 – ident: e_1_2_7_10_1 doi: 10.1126/science.aag2421 – ident: e_1_2_7_15_1 doi: 10.1039/C6SC02272C – ident: e_1_2_7_22_1 doi: 10.1002/ejic.201200860 – ident: e_1_2_7_24_2 doi: 10.1039/c3ta10897j – ident: e_1_2_7_4_2 doi: 10.1126/science.1234621 – ident: e_1_2_7_16_2 doi: 10.1002/aenm.201700518 – ident: e_1_2_7_15_3 doi: 10.1038/srep14341 – ident: e_1_2_7_18_1 doi: 10.1039/C7TA10500B – ident: e_1_2_7_1_1 doi: 10.1039/C2CS35378D – ident: e_1_2_7_13_1 doi: 10.1002/aenm.201600423 – ident: e_1_2_7_8_1 doi: 10.1002/adfm.201504202 – ident: e_1_2_7_14_1 doi: 10.1039/C5CC06924F – ident: e_1_2_7_22_2 doi: 10.1021/jp9084876 – ident: e_1_2_7_15_4 doi: 10.1021/ja208940u – ident: e_1_2_7_15_5 doi: 10.1039/C6TA08331E – ident: e_1_2_7_7_2 doi: 10.1021/acs.chemmater.7b00029 – ident: e_1_2_7_30_1 doi: 10.1088/1468-6996/16/5/054203 – ident: e_1_2_7_4_3 doi: 10.1002/adma.201605096 – ident: e_1_2_7_10_2 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_7_23_2 doi: 10.1016/j.jpowsour.2015.09.104 – ident: e_1_2_7_2_1 doi: 10.1126/science.aab0492 – ident: e_1_2_7_14_2 doi: 10.1039/C4TA01656D – ident: e_1_2_7_28_1 doi: 10.1002/adma.201604007 – ident: e_1_2_7_5_1 doi: 10.1002/smll.201500865 – ident: e_1_2_7_26_1 doi: 10.1002/smll.201600633 – ident: e_1_2_7_24_1 doi: 10.1021/la047675q – ident: e_1_2_7_16_1 doi: 10.1021/nn3052378 – ident: e_1_2_7_4_4 doi: 10.1002/aenm.201600755 – ident: e_1_2_7_18_3 doi: 10.1039/C7SC03960C – ident: e_1_2_7_20_1 doi: 10.1038/nchem.2515 – ident: e_1_2_7_29_1 doi: 10.1016/j.nanoen.2016.03.018 – ident: e_1_2_7_17_1 doi: 10.1039/C5TB00346F – ident: e_1_2_7_4_1 doi: 10.1021/jacs.6b11641 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201602898 – ident: e_1_2_7_11_1 doi: 10.1126/science.aaa8075 – ident: e_1_2_7_15_2 doi: 10.1039/C7EE00488E – ident: e_1_2_7_7_1 doi: 10.1002/adma.201204453 – ident: e_1_2_7_21_1 doi: 10.1016/j.apcata.2016.03.011 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.6b08821 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201700989 – ident: e_1_2_7_13_2 doi: 10.1002/adma.201600979 – ident: e_1_2_7_18_2 doi: 10.1039/C4EE03912B – ident: e_1_2_7_23_1 doi: 10.1007/s12598-015-0501-x |
SSID | ssj0031247 |
Score | 2.4530191 |
Snippet | Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800639 |
SubjectTerms | anodes Cycles Energy storage Metal-organic frameworks Molecular chains Nanomaterials Nanorods Nanotechnology oriented 2D pores Porosity sodium storage Structural hierarchy Thermal instability vanadium oxide Vanadium oxides Water chemistry |
Title | Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201800639 https://www.ncbi.nlm.nih.gov/pubmed/29673118 https://www.proquest.com/docview/2047402965 https://www.proquest.com/docview/2028955484 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7InvTB-6U6JYLgU7e2SS95FN2Ysqk4B3srSZuiuHXitgf99Z70plNE0LeWJDRNzuU7zel3AE5iEcTC8aQZJwjfmEpcU6IfMhMeoP-hPKAZb0Hv2usM2NXQHX76iz_nh6g-uGnNyOy1VnAhp80P0tDpeKSPDuwg87JohHXClkZFdxV_FEXnlVVXQZ9lauKtkrXRcpqLwxe90jeouYhcM9fTXgNRTjrPOHlqzGeyEb194XP8z1utw2qBS8lZLkgbsKTSTVj5xFa4BZcoUmjGR0QnGOT03q9El_6IVExuNF8yolfiXJDbCcbwBNEwaaUPWYYB6U_ix_mY9DHCRwO2DYN26_68YxaVGMyI-vqoGOOqhElhB1LXNfIV4izETjJIvMgVgVIscpSKPM9KOLW4g6BOoYgyV_qSceHTHailk1TtAeHKZokteexFnLm-kpZiIpZUWig01LcNMMudCKOCplxXyxiFOcGyE-olCqslMuC06v-cE3T82LNebmxYKOoUW5mPITT3XAOOq2ZUMX1uIlI1mes-GJUi7AqYAbu5QFSPwpE-xSDNACfb1l_mEPZ73W51t_-XQQewrK_zpMs61GYvc3WIwGgmjzLhfwc1OwNH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeyrsNFDASiFPaxHYePnBAbKtdulsQ20q9hTiZtIhtFnV3hcq_4q_wi5jJCxaEkJB64JjYThyPx_ONPfkG4GmexnkqQ-vmBcE3jUXgWrJDbmFisj_KxKriLRgdhP0j_fo4OF6Br-2_MDU_RLfhxppRrdes4LwhvfODNXR2NuGzAz-uzGwTV7mPF5_Ja5u9GPRIxM-k3Ns9fNV3m8QCbqYiPvkkN6HQNvVjy2l6IiTYQFDAxkWYBWmMqDOJmIWhVxjlGUkYBWnEdWAjq00aKXruFbjKacSZrr_3rmOsUmQuq3wuZCVdpvpqeSI9ubPc32U7-Bu4XcbKlbHbuwHf2mGqY1w-bi_mdjv78guD5H81jjdhvYHe4mWtK7dgBcvbsPYTIeMdGJDWkKWaCI6hqBnMLwRnN8kwF2-YEpoAupA98XZ6jjNBgF_slqdVEIUYT_MPizMxnpNSneBdOLqUb7kHq-W0xE0QBn1d-NbkYWZ0EKH1UKe5VdYjvVCR74Dbij7JGiZ2TggySWoOaZmwSJJOJA487-p_qjlI_lhzq51JSbMWzahUR9qTJgwceNIV0yrCR0NpidMF1yHHm5BlrB3YqGdg9ypqGSnyQx2Q1Tz6Sx-S8Wg47K7u_0ujx3CtfzgaJsPBwf4DuM736xjTLVidny_wIeHAuX1UaZ6A95c9Rb8DuM9gFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RkFA5tKUtkJYWV2rVUyCxnYcPHBDLii3LQ90icQtxMgHEkkXsrir6q_gr_CPGecG2QpUqcegxiZ04nhnPN_HkG4DPaRymMfe1nWYE3yRmnq3JD9mZCsn_CBWKgrdgd8_fPpTfjryjKbip_4Up-SGaD27GMor12hj4ZZqt3ZOGDi_6ZuvADQsvW6VV7uD1TwrahuudFkn4C-ftrR-b23ZVV8BORGA2PilKyKSO3VCbKj0BEmogJKDDzE-8OESUCUdMfN_JlHAUJ4iCNOHS04GWKg4E3fcZzEjfUaZYROt7Q1glyFsW5VzISdqG6aumiXT42uR4J93gH9h2EioXvq79Em7rWSpTXM5XxyO9mvz6jUDyf5rGV_CiAt5so7SUeZjC_DXMPaBjfAMdshnyU31mMihK_vJrZmqbJJiyfUMITfCc8RY7GFzhkBHcZ1v5aZFCwXqD9Gx8wXojMqkTfAuHT_IuCzCdD3JcAqbQlZmrVeonSnoBagdlnGqhHbIKEbgW2LXko6TiYTflQPpRySDNIyOSqBGJBV-b9pclA8mjLZdrRYqqlWhIV2UgHa58z4JPzWVaQ8zGUJzjYGzaUNhNuDKUFiyWCtg8inoGgqJQC3ihRn8ZQ9Tb7Xabo3f_0mkFZg9a7ajb2dt5D8_N6TLBdBmmR1dj_EAgcKQ_FnbH4PipNfQOEMhexA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+Instability+Induced+Oriented+2D+Pores+for+Enhanced+Sodium+Storage&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Kong%2C+Lingjun&rft.au=Xie%2C+Chen-Chao&rft.au=Gu%2C+Haichen&rft.au=Wang%2C+Chao-Peng&rft.date=2018-05-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=14&rft.issue=21&rft.spage=e1800639&rft_id=info:doi/10.1002%2Fsmll.201800639&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |