Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage

Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium‐ba...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 21; pp. e1800639 - n/a
Main Authors Kong, Lingjun, Xie, Chen‐Chao, Gu, Haichen, Wang, Chao‐Peng, Zhou, Xianlong, Liu, Jian, Zhou, Zhen, Li, Zhao‐Yang, Zhu, Jian, Bu, Xian‐He
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium‐based metal–organic frameworks (MOFs). High‐temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit‐like 2D pores in vanadium oxide/porous carbon nanorods (VOx/PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VOx/PCs demonstrate high‐rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs‐derived composites with hierarchical porous architectures for energy storage. A unique bonding guidance in vanadium‐based metal–organic frameworks is investigated for achieving oriented 2D pores. Benefiting from its typical loose morphology, the hierarchical vanadium oxide/porous carbon composite with oriented pores endows sodium‐ion anode with superior electrochemical performance.
AbstractList Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium‐based metal–organic frameworks (MOFs). High‐temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit‐like 2D pores in vanadium oxide/porous carbon nanorods (VO x /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VO x /PCs demonstrate high‐rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs‐derived composites with hierarchical porous architectures for energy storage.
Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium-based metal-organic frameworks (MOFs). High-temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit-like 2D pores in vanadium oxide/porous carbon nanorods (VOx /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VOx /PCs demonstrate high-rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs-derived composites with hierarchical porous architectures for energy storage.Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium-based metal-organic frameworks (MOFs). High-temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit-like 2D pores in vanadium oxide/porous carbon nanorods (VOx /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VOx /PCs demonstrate high-rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs-derived composites with hierarchical porous architectures for energy storage.
Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium‐based metal–organic frameworks (MOFs). High‐temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit‐like 2D pores in vanadium oxide/porous carbon nanorods (VOx/PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VOx/PCs demonstrate high‐rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs‐derived composites with hierarchical porous architectures for energy storage.
Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium-based metal-organic frameworks (MOFs). High-temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit-like 2D pores in vanadium oxide/porous carbon nanorods (VO /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VO /PCs demonstrate high-rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs-derived composites with hierarchical porous architectures for energy storage.
Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium‐based metal–organic frameworks (MOFs). High‐temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit‐like 2D pores in vanadium oxide/porous carbon nanorods (VOx/PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VOx/PCs demonstrate high‐rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs‐derived composites with hierarchical porous architectures for energy storage. A unique bonding guidance in vanadium‐based metal–organic frameworks is investigated for achieving oriented 2D pores. Benefiting from its typical loose morphology, the hierarchical vanadium oxide/porous carbon composite with oriented pores endows sodium‐ion anode with superior electrochemical performance.
Author Xie, Chen‐Chao
Zhou, Zhen
Kong, Lingjun
Liu, Jian
Bu, Xian‐He
Wang, Chao‐Peng
Zhu, Jian
Zhou, Xianlong
Li, Zhao‐Yang
Gu, Haichen
Author_xml – sequence: 1
  givenname: Lingjun
  surname: Kong
  fullname: Kong, Lingjun
  organization: Nankai University
– sequence: 2
  givenname: Chen‐Chao
  surname: Xie
  fullname: Xie, Chen‐Chao
  organization: Nankai University
– sequence: 3
  givenname: Haichen
  surname: Gu
  fullname: Gu, Haichen
  organization: Nankai University
– sequence: 4
  givenname: Chao‐Peng
  surname: Wang
  fullname: Wang, Chao‐Peng
  organization: Nankai University
– sequence: 5
  givenname: Xianlong
  surname: Zhou
  fullname: Zhou, Xianlong
  organization: Nankai University
– sequence: 6
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
  organization: Nankai University
– sequence: 7
  givenname: Zhen
  surname: Zhou
  fullname: Zhou, Zhen
  email: zhouzhen@nankai.edu.cn
  organization: Nankai University
– sequence: 8
  givenname: Zhao‐Yang
  surname: Li
  fullname: Li, Zhao‐Yang
  organization: Nankai University
– sequence: 9
  givenname: Jian
  surname: Zhu
  fullname: Zhu, Jian
  organization: Nankai University
– sequence: 10
  givenname: Xian‐He
  orcidid: 0000-0002-2646-7974
  surname: Bu
  fullname: Bu, Xian‐He
  email: buxh@nankai.edu.cn
  organization: Collaborative Innovation Center of Chemical Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29673118$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LIzEYhoNUbP1x3eMysBcvrUkmmSTHRV0tVBSq55CZ-WYbySRuMoP0v9-UqgvC4ilvyPN8hO89RhMfPCD0jeAFwZhepN65BcVEYlyV6gDNSEXKeSWpmnxkgqfoOKVnjEtCmThCU6oqURIiZ2j5uIHYG1csfRpMbZ0dtjm3YwNtcR8t-CEHelU8hAip6EIsrv3G-N3zOrR27Iv1EKL5DafosDMuwdnbeYKefl0_Xt7OV_c3y8ufq3lTilLNGZWiY7UhsqaECQGcE8pxLbuq4UYCsIYCNFWFO1ViRTnNV9MyXouaKSPKE3S-n_sSw58R0qB7mxpwzngIY9IUU6k4Z5Jl9Mcn9DmM0effZYoJhvMeeKa-v1Fj3UOrX6LtTdzq9yVlgO2BJoaUInS6sYMZbPBDNNZpgvWuC73rQn90kbXFJ-198n8FtRderYPtF7Re361W_9y_CzaaJQ
CitedBy_id crossref_primary_10_1021_acsami_9b18851
crossref_primary_10_1016_j_jssc_2019_120949
crossref_primary_10_1002_smll_202405719
crossref_primary_10_1002_adfm_202421224
crossref_primary_10_3390_catal11101163
crossref_primary_10_1002_aenm_202100154
crossref_primary_10_1021_acsami_2c23314
crossref_primary_10_1002_inf2_12517
crossref_primary_10_1002_aenm_202100172
crossref_primary_10_1021_acsami_0c13601
crossref_primary_10_1016_j_jelechem_2022_117095
crossref_primary_10_1039_D1TC01905H
crossref_primary_10_1007_s10853_018_2892_1
crossref_primary_10_1039_C8CS00324F
crossref_primary_10_1002_smm2_1091
crossref_primary_10_1016_j_chemosphere_2022_134932
crossref_primary_10_1002_smll_202107869
crossref_primary_10_1039_C8QI00910D
crossref_primary_10_1002_smll_202303473
crossref_primary_10_1016_j_jpowsour_2018_10_016
crossref_primary_10_1039_C9QI01268K
crossref_primary_10_1039_D3NJ02280C
crossref_primary_10_1016_j_cej_2019_123596
crossref_primary_10_1016_j_jechem_2020_11_028
crossref_primary_10_1007_s10853_018_3064_z
crossref_primary_10_1016_j_seppur_2023_123998
crossref_primary_10_1002_smll_202401789
crossref_primary_10_1016_j_cej_2023_142289
crossref_primary_10_1016_j_est_2024_110947
crossref_primary_10_1016_j_ensm_2018_12_015
crossref_primary_10_1039_D1TA00185J
crossref_primary_10_1002_smll_201804058
crossref_primary_10_1016_j_enchem_2022_100090
crossref_primary_10_1016_j_apsusc_2024_161399
crossref_primary_10_1016_j_jmat_2020_10_008
crossref_primary_10_1002_smll_201903410
crossref_primary_10_1016_j_jcis_2022_08_043
crossref_primary_10_1021_acscatal_1c01447
crossref_primary_10_1021_acsami_1c15661
crossref_primary_10_1007_s10853_020_05355_2
crossref_primary_10_1002_aenm_202202052
crossref_primary_10_1002_smll_202002811
crossref_primary_10_1016_j_ccr_2019_02_021
crossref_primary_10_1002_aenm_201801515
crossref_primary_10_1002_smtd_201900163
crossref_primary_10_1016_j_ccr_2019_02_029
crossref_primary_10_1021_acs_inorgchem_1c00164
crossref_primary_10_1002_tcr_202300109
Cites_doi 10.1021/acsnano.7b02796
10.1002/adma.201604080
10.1039/C4EE02281E
10.1016/j.chempr.2016.12.002
10.1039/C5EE03772G
10.1002/aenm.201601492
10.1126/science.aag2421
10.1039/C6SC02272C
10.1002/ejic.201200860
10.1039/c3ta10897j
10.1126/science.1234621
10.1002/aenm.201700518
10.1038/srep14341
10.1039/C7TA10500B
10.1039/C2CS35378D
10.1002/aenm.201600423
10.1002/adfm.201504202
10.1039/C5CC06924F
10.1021/jp9084876
10.1021/ja208940u
10.1039/C6TA08331E
10.1021/acs.chemmater.7b00029
10.1088/1468-6996/16/5/054203
10.1002/adma.201605096
10.1038/natrevmats.2016.98
10.1016/j.jpowsour.2015.09.104
10.1126/science.aab0492
10.1039/C4TA01656D
10.1002/adma.201604007
10.1002/smll.201500865
10.1002/smll.201600633
10.1021/la047675q
10.1021/nn3052378
10.1002/aenm.201600755
10.1039/C7SC03960C
10.1038/nchem.2515
10.1016/j.nanoen.2016.03.018
10.1039/C5TB00346F
10.1021/jacs.6b11641
10.1002/aenm.201602898
10.1126/science.aaa8075
10.1039/C7EE00488E
10.1002/adma.201204453
10.1016/j.apcata.2016.03.011
10.1021/jacs.6b08821
10.1002/adma.201700989
10.1002/adma.201600979
10.1039/C4EE03912B
10.1007/s12598-015-0501-x
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201800639
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 29673118
10_1002_smll_201800639
SMLL201800639
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Tianjin
  funderid: 15JCZDJC38800
– fundername: National Natural Science Foundation of China
  funderid: 21421001; 21531005
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3739-4287f4ba18b21477e551250b8f6c5a8ee4c2eec660f93092522eead45b7b49a73
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 10:47:07 EDT 2025
Fri Jul 25 12:09:21 EDT 2025
Wed Feb 19 02:34:50 EST 2025
Tue Jul 01 02:10:35 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Wed Jan 22 17:04:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords anodes
sodium storage
vanadium oxide
oriented 2D pores
metal-organic frameworks
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-4287f4ba18b21477e551250b8f6c5a8ee4c2eec660f93092522eead45b7b49a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2646-7974
PMID 29673118
PQID 2047402965
PQPubID 1046358
PageCount 7
ParticipantIDs proquest_miscellaneous_2028955484
proquest_journals_2047402965
pubmed_primary_29673118
crossref_citationtrail_10_1002_smll_201800639
crossref_primary_10_1002_smll_201800639
wiley_primary_10_1002_smll_201800639_SMLL201800639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-May
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2015; 16
2015; 3
2015; 11
2016 2017 2015 2012 2016; 7 10 5 134 4
2017; 29
2015; 349
2015; 348
2015; 8
2016; 12
2015 2014; 51 2
2015 2015; 34 300
2016; 517
2013 2017; 25 29
2017; 11
2016 2016 2017; 6 28 2
2017 2013 2017 2016; 139 340 29 6
2016 2017; 353 2
2013 2017; 7 7
2013 2010; 2013 114
2016; 138
2018 2015 2018; 6 8 9
2005 2013; 21 1
2013 2017; 42 7
2016; 26
2016; 8
2016; 25
2016; 9
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_15_5
e_1_2_7_19_1
e_1_2_7_15_4
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_13_3
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_20_1
References_xml – volume: 349
  start-page: 54
  year: 2015
  publication-title: Science
– volume: 139 340 29 6
  start-page: 517 832 1605096 1600755
  year: 2017 2013 2017 2016
  publication-title: J. Am. Chem. Soc. Science Adv. Mater. Adv. Energy Mater.
– volume: 7
  start-page: 1602898
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 138
  start-page: 14434
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1700989
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 862
  year: 2016
  publication-title: Energ. Environ. Sci.
– volume: 353 2
  start-page: 1137 16098
  year: 2016 2017
  publication-title: Science Nat. Rev. Mater.
– volume: 517
  start-page: 141
  year: 2016
  publication-title: Appl. Catal., A
– volume: 29
  start-page: 1604007
  year: 2017
  publication-title: Adv. Mater.
– volume: 25
  start-page: 145
  year: 2016
  publication-title: Nano Energy
– volume: 42 7
  start-page: 3876 1601492
  year: 2013 2017
  publication-title: Chem. Soc. Rev. Adv. Energy Mater.
– volume: 25 29
  start-page: 2452 2332
  year: 2013 2017
  publication-title: Adv. Mater. Chem. Mater.
– volume: 6 28 2
  start-page: 1600423 6391 52
  year: 2016 2016 2017
  publication-title: Adv. Energy. Mater. Adv. Mater. Chem.
– volume: 8
  start-page: 718
  year: 2016
  publication-title: Nat. Chem.
– volume: 21 1
  start-page: 2887 6462
  year: 2005 2013
  publication-title: Langmuir J. Mater. Chem. A
– volume: 26
  start-page: 2046
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 7 10 5 134 4
  start-page: 7101 1777 14341 2864 19078
  year: 2016 2017 2015 2012 2016
  publication-title: Chem. Sci. Energy Environ. Sci. Sci. Rep. J. Am. Chem. Soc. J. Mater. Chem. A
– volume: 16
  start-page: 054203
  year: 2015
  publication-title: Sci. Technol. Adv. Mater.
– volume: 11
  start-page: 4334
  year: 2015
  publication-title: Small
– volume: 6 8 9
  start-page: 3284 1660 666
  year: 2018 2015 2018
  publication-title: J. Mater. Chem. A Energ. Environ. Sci. Chem. Sci.
– volume: 348
  start-page: 6238
  year: 2015
  publication-title: Science
– volume: 12
  start-page: 3048
  year: 2016
  publication-title: Small
– volume: 11
  start-page: 5293
  year: 2017
  publication-title: ACS Nano
– volume: 51 2
  start-page: 16413 11606
  year: 2015 2014
  publication-title: Chem. Commun. J. Mater. Chem. A
– volume: 2013 114
  start-page: 241 412
  year: 2013 2010
  publication-title: Eur. J. Inorg. Chem. J. Phys. Chem. C
– volume: 8
  start-page: 568
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 1604080
  year: 2017
  publication-title: Adv. Mater.
– volume: 7 7
  start-page: 1464 1700518
  year: 2013 2017
  publication-title: ACS Nano Adv. Energy Mater.
– volume: 34 300
  start-page: 498 483
  year: 2015 2015
  publication-title: Rare Met. J. Power Source
– volume: 3
  start-page: 4205
  year: 2015
  publication-title: J. Mater. Chem. B
– ident: e_1_2_7_6_1
  doi: 10.1021/acsnano.7b02796
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201604080
– ident: e_1_2_7_12_1
  doi: 10.1039/C4EE02281E
– ident: e_1_2_7_13_3
  doi: 10.1016/j.chempr.2016.12.002
– ident: e_1_2_7_3_1
  doi: 10.1039/C5EE03772G
– ident: e_1_2_7_1_2
  doi: 10.1002/aenm.201601492
– ident: e_1_2_7_10_1
  doi: 10.1126/science.aag2421
– ident: e_1_2_7_15_1
  doi: 10.1039/C6SC02272C
– ident: e_1_2_7_22_1
  doi: 10.1002/ejic.201200860
– ident: e_1_2_7_24_2
  doi: 10.1039/c3ta10897j
– ident: e_1_2_7_4_2
  doi: 10.1126/science.1234621
– ident: e_1_2_7_16_2
  doi: 10.1002/aenm.201700518
– ident: e_1_2_7_15_3
  doi: 10.1038/srep14341
– ident: e_1_2_7_18_1
  doi: 10.1039/C7TA10500B
– ident: e_1_2_7_1_1
  doi: 10.1039/C2CS35378D
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.201600423
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.201504202
– ident: e_1_2_7_14_1
  doi: 10.1039/C5CC06924F
– ident: e_1_2_7_22_2
  doi: 10.1021/jp9084876
– ident: e_1_2_7_15_4
  doi: 10.1021/ja208940u
– ident: e_1_2_7_15_5
  doi: 10.1039/C6TA08331E
– ident: e_1_2_7_7_2
  doi: 10.1021/acs.chemmater.7b00029
– ident: e_1_2_7_30_1
  doi: 10.1088/1468-6996/16/5/054203
– ident: e_1_2_7_4_3
  doi: 10.1002/adma.201605096
– ident: e_1_2_7_10_2
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_7_23_2
  doi: 10.1016/j.jpowsour.2015.09.104
– ident: e_1_2_7_2_1
  doi: 10.1126/science.aab0492
– ident: e_1_2_7_14_2
  doi: 10.1039/C4TA01656D
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201604007
– ident: e_1_2_7_5_1
  doi: 10.1002/smll.201500865
– ident: e_1_2_7_26_1
  doi: 10.1002/smll.201600633
– ident: e_1_2_7_24_1
  doi: 10.1021/la047675q
– ident: e_1_2_7_16_1
  doi: 10.1021/nn3052378
– ident: e_1_2_7_4_4
  doi: 10.1002/aenm.201600755
– ident: e_1_2_7_18_3
  doi: 10.1039/C7SC03960C
– ident: e_1_2_7_20_1
  doi: 10.1038/nchem.2515
– ident: e_1_2_7_29_1
  doi: 10.1016/j.nanoen.2016.03.018
– ident: e_1_2_7_17_1
  doi: 10.1039/C5TB00346F
– ident: e_1_2_7_4_1
  doi: 10.1021/jacs.6b11641
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201602898
– ident: e_1_2_7_11_1
  doi: 10.1126/science.aaa8075
– ident: e_1_2_7_15_2
  doi: 10.1039/C7EE00488E
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201204453
– ident: e_1_2_7_21_1
  doi: 10.1016/j.apcata.2016.03.011
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.6b08821
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201700989
– ident: e_1_2_7_13_2
  doi: 10.1002/adma.201600979
– ident: e_1_2_7_18_2
  doi: 10.1039/C4EE03912B
– ident: e_1_2_7_23_1
  doi: 10.1007/s12598-015-0501-x
SSID ssj0031247
Score 2.4530191
Snippet Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800639
SubjectTerms anodes
Cycles
Energy storage
Metal-organic frameworks
Molecular chains
Nanomaterials
Nanorods
Nanotechnology
oriented 2D pores
Porosity
sodium storage
Structural hierarchy
Thermal instability
vanadium oxide
Vanadium oxides
Water chemistry
Title Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201800639
https://www.ncbi.nlm.nih.gov/pubmed/29673118
https://www.proquest.com/docview/2047402965
https://www.proquest.com/docview/2028955484
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7InvTB-6U6JYLgU7e2SS95FN2Ysqk4B3srSZuiuHXitgf99Z70plNE0LeWJDRNzuU7zel3AE5iEcTC8aQZJwjfmEpcU6IfMhMeoP-hPKAZb0Hv2usM2NXQHX76iz_nh6g-uGnNyOy1VnAhp80P0tDpeKSPDuwg87JohHXClkZFdxV_FEXnlVVXQZ9lauKtkrXRcpqLwxe90jeouYhcM9fTXgNRTjrPOHlqzGeyEb194XP8z1utw2qBS8lZLkgbsKTSTVj5xFa4BZcoUmjGR0QnGOT03q9El_6IVExuNF8yolfiXJDbCcbwBNEwaaUPWYYB6U_ix_mY9DHCRwO2DYN26_68YxaVGMyI-vqoGOOqhElhB1LXNfIV4izETjJIvMgVgVIscpSKPM9KOLW4g6BOoYgyV_qSceHTHailk1TtAeHKZokteexFnLm-kpZiIpZUWig01LcNMMudCKOCplxXyxiFOcGyE-olCqslMuC06v-cE3T82LNebmxYKOoUW5mPITT3XAOOq2ZUMX1uIlI1mes-GJUi7AqYAbu5QFSPwpE-xSDNACfb1l_mEPZ73W51t_-XQQewrK_zpMs61GYvc3WIwGgmjzLhfwc1OwNH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeyrsNFDASiFPaxHYePnBAbKtdulsQ20q9hTiZtIhtFnV3hcq_4q_wi5jJCxaEkJB64JjYThyPx_ONPfkG4GmexnkqQ-vmBcE3jUXgWrJDbmFisj_KxKriLRgdhP0j_fo4OF6Br-2_MDU_RLfhxppRrdes4LwhvfODNXR2NuGzAz-uzGwTV7mPF5_Ja5u9GPRIxM-k3Ns9fNV3m8QCbqYiPvkkN6HQNvVjy2l6IiTYQFDAxkWYBWmMqDOJmIWhVxjlGUkYBWnEdWAjq00aKXruFbjKacSZrr_3rmOsUmQuq3wuZCVdpvpqeSI9ubPc32U7-Bu4XcbKlbHbuwHf2mGqY1w-bi_mdjv78guD5H81jjdhvYHe4mWtK7dgBcvbsPYTIeMdGJDWkKWaCI6hqBnMLwRnN8kwF2-YEpoAupA98XZ6jjNBgF_slqdVEIUYT_MPizMxnpNSneBdOLqUb7kHq-W0xE0QBn1d-NbkYWZ0EKH1UKe5VdYjvVCR74Dbij7JGiZ2TggySWoOaZmwSJJOJA487-p_qjlI_lhzq51JSbMWzahUR9qTJgwceNIV0yrCR0NpidMF1yHHm5BlrB3YqGdg9ypqGSnyQx2Q1Tz6Sx-S8Wg47K7u_0ujx3CtfzgaJsPBwf4DuM736xjTLVidny_wIeHAuX1UaZ6A95c9Rb8DuM9gFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RkFA5tKUtkJYWV2rVUyCxnYcPHBDLii3LQ90icQtxMgHEkkXsrir6q_gr_CPGecG2QpUqcegxiZ04nhnPN_HkG4DPaRymMfe1nWYE3yRmnq3JD9mZCsn_CBWKgrdgd8_fPpTfjryjKbip_4Up-SGaD27GMor12hj4ZZqt3ZOGDi_6ZuvADQsvW6VV7uD1TwrahuudFkn4C-ftrR-b23ZVV8BORGA2PilKyKSO3VCbKj0BEmogJKDDzE-8OESUCUdMfN_JlHAUJ4iCNOHS04GWKg4E3fcZzEjfUaZYROt7Q1glyFsW5VzISdqG6aumiXT42uR4J93gH9h2EioXvq79Em7rWSpTXM5XxyO9mvz6jUDyf5rGV_CiAt5so7SUeZjC_DXMPaBjfAMdshnyU31mMihK_vJrZmqbJJiyfUMITfCc8RY7GFzhkBHcZ1v5aZFCwXqD9Gx8wXojMqkTfAuHT_IuCzCdD3JcAqbQlZmrVeonSnoBagdlnGqhHbIKEbgW2LXko6TiYTflQPpRySDNIyOSqBGJBV-b9pclA8mjLZdrRYqqlWhIV2UgHa58z4JPzWVaQ8zGUJzjYGzaUNhNuDKUFiyWCtg8inoGgqJQC3ihRn8ZQ9Tb7Xabo3f_0mkFZg9a7ajb2dt5D8_N6TLBdBmmR1dj_EAgcKQ_FnbH4PipNfQOEMhexA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+Instability+Induced+Oriented+2D+Pores+for+Enhanced+Sodium+Storage&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Kong%2C+Lingjun&rft.au=Xie%2C+Chen-Chao&rft.au=Gu%2C+Haichen&rft.au=Wang%2C+Chao-Peng&rft.date=2018-05-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=14&rft.issue=21&rft.spage=e1800639&rft_id=info:doi/10.1002%2Fsmll.201800639&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon