Nanoengineered Neutrophils as a Cellular Sonosensitizer for Visual Sonodynamic Therapy of Malignant Tumors

The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to gene...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 15; pp. e2109969 - n/a
Main Authors Sun, Lei, Zhou, Jing‐e, Luo, Tengshuo, Wang, Jing, Kang, Liqing, Wang, Yeying, Luo, Shenggen, Wang, Zhehao, Zhou, Ziyu, Zhu, Jiaxi, Yu, Jiahui, Yu, Lei, Yan, Zhiqiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen‐carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2, for the visual diagnosis and treatment of cancer. Specifically, oxygen‐carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C‐ML/HPT/O2), which are then loaded into live neutrophils to obtain Acouscyte/O2. Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation‐triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor‐bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin‐mediated fluorescence imaging and perfluorocarbon (PFC)‐microbubble‐enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2, are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors. Nanoengineered neutrophil sonosensitizers are developed for visual sonodynamic therapy (SDT) of solid malignant tumors. Acouscyte/O2 not only has an enhanced multilevel active targeting but also provides oxygen to enhance SDT effects to eliminate tumors, maintain the appearance, and real‐time multimode imaging, which provides a promising theranostic strategy for solid malignant tumors.
AbstractList The rapid evolution of cell-based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen-carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O , for the visual diagnosis and treatment of cancer. Specifically, oxygen-carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C-ML/HPT/O ), which are then loaded into live neutrophils to obtain Acouscyte/O . Acouscyte/O can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation-triggered recruitment, and decomposition. Importantly, Acouscyte/O can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor-bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin-mediated fluorescence imaging and perfluorocarbon (PFC)-microbubble-enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O , are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors.
The rapid evolution of cell-based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen-carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2 , for the visual diagnosis and treatment of cancer. Specifically, oxygen-carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C-ML/HPT/O2 ), which are then loaded into live neutrophils to obtain Acouscyte/O2 . Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation-triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor-bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin-mediated fluorescence imaging and perfluorocarbon (PFC)-microbubble-enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2 , are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors.The rapid evolution of cell-based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen-carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2 , for the visual diagnosis and treatment of cancer. Specifically, oxygen-carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C-ML/HPT/O2 ), which are then loaded into live neutrophils to obtain Acouscyte/O2 . Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation-triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor-bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin-mediated fluorescence imaging and perfluorocarbon (PFC)-microbubble-enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2 , are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors.
The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen‐carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2, for the visual diagnosis and treatment of cancer. Specifically, oxygen‐carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C‐ML/HPT/O2), which are then loaded into live neutrophils to obtain Acouscyte/O2. Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation‐triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor‐bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin‐mediated fluorescence imaging and perfluorocarbon (PFC)‐microbubble‐enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2, are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors. Nanoengineered neutrophil sonosensitizers are developed for visual sonodynamic therapy (SDT) of solid malignant tumors. Acouscyte/O2 not only has an enhanced multilevel active targeting but also provides oxygen to enhance SDT effects to eliminate tumors, maintain the appearance, and real‐time multimode imaging, which provides a promising theranostic strategy for solid malignant tumors.
The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen‐carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2, for the visual diagnosis and treatment of cancer. Specifically, oxygen‐carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C‐ML/HPT/O2), which are then loaded into live neutrophils to obtain Acouscyte/O2. Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation‐triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor‐bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin‐mediated fluorescence imaging and perfluorocarbon (PFC)‐microbubble‐enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2, are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors.
The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen‐carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O 2 , for the visual diagnosis and treatment of cancer. Specifically, oxygen‐carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C‐ML/HPT/O 2 ), which are then loaded into live neutrophils to obtain Acouscyte/O 2 . Acouscyte/O 2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation‐triggered recruitment, and decomposition. Importantly, Acouscyte/O 2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor‐bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin‐mediated fluorescence imaging and perfluorocarbon (PFC)‐microbubble‐enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O 2 , are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors.
Author Wang, Zhehao
Zhu, Jiaxi
Kang, Liqing
Luo, Tengshuo
Zhou, Jing‐e
Wang, Yeying
Yu, Jiahui
Wang, Jing
Yu, Lei
Zhou, Ziyu
Luo, Shenggen
Yan, Zhiqiang
Sun, Lei
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0001-9599-608X
  surname: Sun
  fullname: Sun, Lei
  organization: Department of NanoEngineering and Chemical Engineering Program University of California
– sequence: 2
  givenname: Jing‐e
  surname: Zhou
  fullname: Zhou, Jing‐e
  organization: East China Normal University
– sequence: 3
  givenname: Tengshuo
  surname: Luo
  fullname: Luo, Tengshuo
  organization: East China Normal University
– sequence: 4
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: East China Normal University
– sequence: 5
  givenname: Liqing
  surname: Kang
  fullname: Kang, Liqing
  organization: Shanghai Unicar‐Therapy Bio‐medicine Technology Co. Ltd
– sequence: 6
  givenname: Yeying
  surname: Wang
  fullname: Wang, Yeying
  organization: East China Normal University
– sequence: 7
  givenname: Shenggen
  surname: Luo
  fullname: Luo, Shenggen
  organization: East China Normal University
– sequence: 8
  givenname: Zhehao
  surname: Wang
  fullname: Wang, Zhehao
  organization: East China Normal University
– sequence: 9
  givenname: Ziyu
  surname: Zhou
  fullname: Zhou, Ziyu
  organization: East China Normal University
– sequence: 10
  givenname: Jiaxi
  surname: Zhu
  fullname: Zhu, Jiaxi
  organization: Shanghai Jiao Tong University School of Medicine
– sequence: 11
  givenname: Jiahui
  surname: Yu
  fullname: Yu, Jiahui
  organization: East China Normal University
– sequence: 12
  givenname: Lei
  surname: Yu
  fullname: Yu, Lei
  organization: East China Normal University
– sequence: 13
  givenname: Zhiqiang
  orcidid: 0000-0002-3176-5757
  surname: Yan
  fullname: Yan, Zhiqiang
  email: zqyan@sat.ecnu.edu.cn
  organization: East China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35174915$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFK0dkiQuXLLaTOJnjasuX1JYDC9do1pm0Xjn2YidCy6_HZUuRKiGkkebg5xnb856xEx88MfZSiqUUQr3FfsSlEkoKAA1P2ELWShaVgPqELQSUdQG6ak_ZWUo7IQRooZ-x07KWTQWyXrDdNfpA_sZ6okg9v6Z5imF_a13imIuvybnZYeRfgg-JfLKT_UmRDyHybzbN6H6f9AePozV8c0sR9wceBn6Fzt549BPfzGOI6Tl7OqBL9OK-n7Ov799t1h-Ly88fPq1Xl4UpmxKKEkrdgiRlTENoNGqSIKqtEGQUDULl6o2mSkkDld4SDUNjatColEHZl-fszXHuPobvM6WpG20y-RvoKcypU1pBq3Vbyoy-foTuwhx9fl2mKmjz7nSTqVf31Lwdqe_20Y4YD92fLWZgeQRMDClFGh4QKbq7mLq7mLqHmLJQPRKMnXCywU8Rrfu3Bkfth3V0-M8l3eriavXX_QXlQqhX
CitedBy_id crossref_primary_10_1002_adma_202409663
crossref_primary_10_1002_adma_202405165
crossref_primary_10_1038_s41467_023_37580_z
crossref_primary_10_1016_j_nantod_2025_102701
crossref_primary_10_1002_mabi_202300048
crossref_primary_10_1080_21655979_2022_2096303
crossref_primary_10_1021_acs_molpharmaceut_3c00116
crossref_primary_10_1016_j_jconrel_2023_08_003
crossref_primary_10_1016_j_cej_2024_157232
crossref_primary_10_2217_nnm_2022_0187
crossref_primary_10_3390_pharmaceutics14061282
crossref_primary_10_1002_adhm_202201607
crossref_primary_10_1002_EXP_20230100
crossref_primary_10_1016_j_ijbiomac_2025_141737
crossref_primary_10_1038_s41392_024_01889_y
crossref_primary_10_1002_smll_202304607
crossref_primary_10_1186_s12943_025_02249_2
crossref_primary_10_1002_adfm_202302579
crossref_primary_10_1002_adma_202310318
crossref_primary_10_1016_j_mtbio_2022_100245
crossref_primary_10_3389_fphar_2022_1065438
crossref_primary_10_1016_j_ultsonch_2024_106928
crossref_primary_10_1002_smll_202203952
crossref_primary_10_1002_adtp_202200033
crossref_primary_10_1016_j_partic_2022_08_001
crossref_primary_10_1038_s41392_022_01250_1
crossref_primary_10_1016_j_jcis_2024_05_113
crossref_primary_10_1002_mog2_27
crossref_primary_10_1039_D3SC03438K
crossref_primary_10_1002_adma_202307929
crossref_primary_10_1177_15330338241263197
crossref_primary_10_1021_acs_molpharmaceut_3c00289
crossref_primary_10_1021_acsnano_3c10625
crossref_primary_10_1039_D3TB00670K
crossref_primary_10_34133_bmr_0028
crossref_primary_10_1002_adma_202303180
crossref_primary_10_1002_adma_202401513
crossref_primary_10_1021_acsnano_3c07763
crossref_primary_10_1002_adfm_202311857
crossref_primary_10_1016_j_engmed_2024_100027
crossref_primary_10_1186_s12951_023_01765_x
crossref_primary_10_34133_bmef_0067
crossref_primary_10_1002_adma_202208817
crossref_primary_10_1021_acssensors_2c02129
crossref_primary_10_1021_acsami_2c15327
crossref_primary_10_1111_php_13730
crossref_primary_10_1002_advs_202206181
Cites_doi 10.1186/s12951-021-01087-w
10.1038/s41592-021-01229-w
10.1016/j.bbrc.2020.02.156
10.1152/physrev.00012.2018
10.1080/14686996.2019.1590126
10.1038/s41577-019-0127-6
10.1038/s41591-018-0014-x
10.1038/nrd4002
10.1002/adma.201701429
10.1038/mt.2009.29
10.7863/jum.2011.30.10.1321
10.1016/j.biomaterials.2021.121250
10.1016/j.cell.2016.01.021
10.1021/acs.nanolett.9b02448
10.1002/adma.201706307
10.1038/nnano.2017.54
10.1002/adma.201606617
10.1016/j.biomaterials.2019.01.002
10.1002/smll.201803266
10.4155/tde-2018-0050
10.1038/s41577-020-0285-6
10.1002/adma.202005363
10.1021/acsnano.1c07898
10.1002/adhm.201801254
10.1016/j.carbpol.2017.11.098
10.1002/adma.202003598
10.1038/s41467-019-09389-2
10.1039/C9CS00648F
10.1126/sciadv.aba5628
10.1016/j.ijpharm.2020.119606
10.1021/acs.nanolett.6b02365
10.1016/j.jconrel.2021.02.032
10.1021/acs.nanolett.0c01098
10.1002/advs.202002243
10.1016/j.jconrel.2019.05.035
10.1016/j.ejps.2010.04.005
10.1002/adma.202002054
10.1016/j.surneu.2003.09.036
10.1002/adma.202005295
10.1002/smll.202101976
10.1002/hep.28021
10.1016/j.colsurfb.2016.07.034
10.1002/adma.201806444
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202109969
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35174915
10_1002_adma_202109969
ADMA202109969
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81872812; 82073800
– fundername: China Postdoctoral Science Fundation
  funderid: 2021M691040; 2021TQ0111
– fundername: National Natural Science Foundation of China
  grantid: 82073800
– fundername: China Postdoctoral Science Fundation
  grantid: 2021M691040
– fundername: China Postdoctoral Science Fundation
  grantid: 2021TQ0111
– fundername: National Natural Science Foundation of China
  grantid: 81872812
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3739-3936891e2cc7eac6a6e1904b00ec2ef02f02dc6e421c946beeff7c596a22ca1d3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:39:02 EDT 2025
Fri Jul 25 06:02:21 EDT 2025
Wed Feb 19 02:27:35 EST 2025
Tue Jul 01 02:33:14 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Wed Jan 22 16:26:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords multimode imaging
malignant tumors
sonodynamic therapy
sonosensitizers
nanoengineered neutrophils
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-3936891e2cc7eac6a6e1904b00ec2ef02f02dc6e421c946beeff7c596a22ca1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9599-608X
0000-0002-3176-5757
PMID 35174915
PQID 2649896467
PQPubID 2045203
PageCount 14
ParticipantIDs proquest_miscellaneous_2629866831
proquest_journals_2649896467
pubmed_primary_35174915
crossref_primary_10_1002_adma_202109969
crossref_citationtrail_10_1002_adma_202109969
wiley_primary_10_1002_adma_202109969_ADMA202109969
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2004; 61
2018; 181
2020; 20
2019; 31
2019; 99
2019; 10
2016; 146
2011; 30
2021; 280
2019; 19
2020; 525
2016; 165
2017; 29
2020; 12
2019; 304
2020; 32
2020; 586
2016; 16
2010; 40
2018; 24
2020; 7
2020; 6
2018; 9
2021; 15
2021; 33
2019; 20
2021; 332
2015; 62
2017; 16
2013; 12
2021; 18
2021; 17
2017; 12
2021; 19
2020; 49
2018; 30
2018; 14
2019; 197
2009; 17
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
Batchelor D. V. B. (e_1_2_8_35_1) 2020; 12
e_1_2_8_27_1
Crunkhorn S. (e_1_2_8_10_1) 2017; 16
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 19
  start-page: 369
  year: 2019
  publication-title: Nat. Rev. Immunol.
– volume: 17
  start-page: 837
  year: 2009
  publication-title: Mol. Ther.
– volume: 19
  start-page: 8409
  year: 2019
  publication-title: Nano Lett.
– volume: 9
  start-page: 823
  year: 2018
  publication-title: Ther. Delivery
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 166
  year: 2017
  publication-title: Nat. Rev. Drug Discovery
– volume: 10
  start-page: 1580
  year: 2019
  publication-title: Nat. Commun.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 20
  start-page: 324
  year: 2019
  publication-title: Sci. Technol. Adv. Mater.
– volume: 525
  start-page: 836
  year: 2020
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 24
  start-page: 541
  year: 2018
  publication-title: Nat. Med.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 61
  start-page: 216
  year: 2004
  publication-title: Surg. Neurol.
– volume: 49
  start-page: 3244
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 146
  start-page: 833
  year: 2016
  publication-title: Colloids Surf., B
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 181
  start-page: 659
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 586
  year: 2020
  publication-title: Int. J. Pharm.
– volume: 40
  start-page: 305
  year: 2010
  publication-title: Eur. J. Pharm. Sci.
– volume: 19
  start-page: 345
  year: 2021
  publication-title: J. Nanobiotechnol.
– volume: 12
  start-page: 931
  year: 2013
  publication-title: Nat. Rev. Drug Discovery
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 280
  year: 2021
  publication-title: Biomaterials
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 99
  start-page: 1223
  year: 2019
  publication-title: Physiol. Rev.
– volume: 165
  start-page: 100
  year: 2016
  publication-title: Cell
– volume: 20
  start-page: 3943
  year: 2020
  publication-title: Nano Lett.
– volume: 197
  start-page: 129
  year: 2019
  publication-title: Biomaterials
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 332
  start-page: 448
  year: 2021
  publication-title: J. Controlled Release
– volume: 16
  start-page: 6145
  year: 2016
  publication-title: Nano Lett.
– volume: 20
  start-page: 375
  year: 2020
  publication-title: Nat. Rev. Immunol.
– volume: 18
  start-page: 945
  year: 2021
  publication-title: Nat. Methods
– volume: 30
  start-page: 1321
  year: 2011
  publication-title: J. Ultrasound Med.
– volume: 304
  start-page: 268
  year: 2019
  publication-title: J. Controlled Release
– volume: 62
  start-page: 1342
  year: 2015
  publication-title: Hepatology
– volume: 12
  start-page: 692
  year: 2017
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_8_41_1
  doi: 10.1186/s12951-021-01087-w
– ident: e_1_2_8_15_1
  doi: 10.1038/s41592-021-01229-w
– ident: e_1_2_8_45_1
  doi: 10.1016/j.bbrc.2020.02.156
– ident: e_1_2_8_4_1
  doi: 10.1152/physrev.00012.2018
– ident: e_1_2_8_39_1
  doi: 10.1080/14686996.2019.1590126
– volume: 12
  year: 2020
  ident: e_1_2_8_35_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_2_1
  doi: 10.1038/s41577-019-0127-6
– ident: e_1_2_8_5_1
  doi: 10.1038/s41591-018-0014-x
– ident: e_1_2_8_42_1
  doi: 10.1038/nrd4002
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201701429
– ident: e_1_2_8_44_1
  doi: 10.1038/mt.2009.29
– ident: e_1_2_8_20_1
  doi: 10.7863/jum.2011.30.10.1321
– ident: e_1_2_8_21_1
  doi: 10.1016/j.biomaterials.2021.121250
– ident: e_1_2_8_3_1
  doi: 10.1016/j.cell.2016.01.021
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.nanolett.9b02448
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.201706307
– ident: e_1_2_8_40_1
  doi: 10.1038/nnano.2017.54
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201606617
– ident: e_1_2_8_38_1
  doi: 10.1016/j.biomaterials.2019.01.002
– ident: e_1_2_8_36_1
  doi: 10.1002/smll.201803266
– ident: e_1_2_8_28_1
  doi: 10.4155/tde-2018-0050
– ident: e_1_2_8_1_1
  doi: 10.1038/s41577-020-0285-6
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.202005363
– ident: e_1_2_8_13_1
  doi: 10.1021/acsnano.1c07898
– ident: e_1_2_8_19_1
  doi: 10.1002/adhm.201801254
– ident: e_1_2_8_29_1
  doi: 10.1016/j.carbpol.2017.11.098
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202003598
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-019-09389-2
– ident: e_1_2_8_23_1
  doi: 10.1039/C9CS00648F
– volume: 16
  start-page: 166
  year: 2017
  ident: e_1_2_8_10_1
  publication-title: Nat. Rev. Drug Discovery
– ident: e_1_2_8_26_1
  doi: 10.1126/sciadv.aba5628
– ident: e_1_2_8_34_1
  doi: 10.1016/j.ijpharm.2020.119606
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.nanolett.6b02365
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jconrel.2021.02.032
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.nanolett.0c01098
– ident: e_1_2_8_31_1
  doi: 10.1002/advs.202002243
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jconrel.2019.05.035
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ejps.2010.04.005
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.202002054
– ident: e_1_2_8_7_1
  doi: 10.1016/j.surneu.2003.09.036
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.202005295
– ident: e_1_2_8_14_1
  doi: 10.1002/smll.202101976
– ident: e_1_2_8_37_1
  doi: 10.1002/hep.28021
– ident: e_1_2_8_30_1
  doi: 10.1016/j.colsurfb.2016.07.034
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201806444
SSID ssj0009606
Score 2.578668
Snippet The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the...
The rapid evolution of cell-based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2109969
SubjectTerms Animals
Biomedical materials
Cell Line, Tumor
Diagnosis
Fluorocarbons
Liposomes
Liposomes - therapeutic use
malignant tumors
Materials science
Medical imaging
Mice
Multilayers
multimode imaging
nanoengineered neutrophils
Nanoengineering
Neoplasms - diagnostic imaging
Neoplasms - drug therapy
Neutrophils
Oxygen
Perfluorocarbons
Reactive Oxygen Species - therapeutic use
sonodynamic therapy
sonosensitizers
Tumors
Ultrasonic imaging
Ultrasonic Therapy - methods
Title Nanoengineered Neutrophils as a Cellular Sonosensitizer for Visual Sonodynamic Therapy of Malignant Tumors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109969
https://www.ncbi.nlm.nih.gov/pubmed/35174915
https://www.proquest.com/docview/2649896467
https://www.proquest.com/docview/2629866831
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbQTnAAxo9RNpCRJu2ULbETJz5Wg6lC6g7Qod0ix34ZhS6pmuSw_vV7L0nTFYSQQPIl8XPs2H7PX_KePzN27MuYUIWP1i_XXpibzDOhBQRyMnaxczJrXTHTSzW5Cj9fR9cPdvF3_BDDDzfSjNZek4KbrDrbkoYa1_IGCXLtKNrBRwFbhIq-bPmjCJ63ZHsy8rQKkw1roy_Odovvrkq_Qc1d5NouPRfPmNk0uos4-Xna1NmpXf_C5_g_b_WcPe1xKR93E2mfPYLiBXvygK3wJfuBlriE_g44fglNvSqX3-eLihtM_BwWC4pq5V_LoqwoMr6er2HFERfzb_OqwedTjrsrzO3c8llHaMDLnE_xa-CGQnL4rLktV9UrdnXxaXY-8fqjGjwrY6k9qaVKdADC2hhNuTIKEGmEqNNgBeS-wOSsglAEVocqA8jz2EZaGSGsCZx8zfaKsoA3jCvnkszXwkJkUVwaCPMEJAR-bnXmxyPmbYYqtT2POR2nsUg7BmaRUh-mQx-O2Mkgv-wYPP4oebQZ-bTX5CpFwKgTnDsKK_4wZKMOkmPFFFA2JCN0olQigxE76GbMUJUkKnAdRCMm2nH_SxvS8cfpeLh6-y-FDtljQXs02vCiI7ZXrxp4h8ipzt632nEPOGoQ-A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeeD8WChgJxCltYidOfOCw6lJtaXcPsEW9Bcee0IVtUm0SofZf8Vf4Rdh5lQUhJKQekHxJPLEde162x58BXrgstF6Fa7RfKhw_lYkjfYXGkWOhDrVmSb0VM5ny8aH_9ig4WoNv3VmYBh-iX3CzklHrayvgdkF6-wI1VOoaOIjavR0u2rjKfTz7amZtxeu9kRnil5TuvpntjJ32YgFHsZAJhwnGI-EhVSo0iodLjsYu-oYDUVFMXWqSVhx96inh8wQxTUMVCC4pVdLTzJR7Ba7aa8QtXP_o3QVilZ0Q1PB-LHAE96MOJ9Kl26vtXbWDvzm3q75ybex2b8L3rpuaGJcvW1WZbKnzXxAk_6t-vAU3WtebDBtZuQ1rmN2BjZ8AGe_CZ2NscmzfoCZTrMplfno8XxREmkR2cLGwgbvkfZ7lhQ3-L-fnuCTG9Scf5kVlyrc5-iyTJ3NFZg1mA8lTMjETnk826ojMqpN8WdyDw0v52fuwnuUZPgTCtY4SV1CFgTLkTKKfRsjQc1MlEjccgNPxRqxaqHZ7Y8gibkCmaWzHLO7HbACvevrTBqTkj5SbHavFrbIqYuMTi8gwKzcVP--zjZqxe0cyw7yyNFREnEfMG8CDhkX7qphFOxdeMABaM9pf2hAPR5Nh__ToXz56BtfGs8lBfLA33X8M16k9klJHU23Cerms8IlxFMvkaS2aBD5eNg__AANPcGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKkRAceD8WChgJxCltYidOfOCw6rJqKbtCsEW9BceewMI2WW0SofZX8Vf4R4zzKgtCSEg9IPmSeBI79njmczz-TMhTl4cWVbho_VLp-KlKHOVrQCDHQxMaw5N6KWYyFXuH_quj4GiDfOv2wjT8EP0PNzsyanttB_jSpDtnpKHK1LxBzC7tCNmGVR7AyVectBUv9kfYw88YG7-c7e457bkCjuYhlw6XXETSA6Z1iHZHKAHoFn1UQNAMUpdhMlqAzzwtfZEApGmoAykUY1p5huN7L5CLvnClPSxi9PaMsMrOB2p2Px44UvhRRxPpsp31-q67wd-w7TpUrn3d-Br53rVSE-LyZbsqk219-guB5P_UjNfJ1RZ402EzUm6QDchukis_0THeIp_R1eTQ3gFDp1CVq3z5ab4oqMJEd2GxsGG79F2e5YUN_S_np7CiCPzp-3lR4fttjjnJ1PFc01nD2EDzlE5wuvPRxhzRWXWcr4rb5PBcPvYO2czyDO4RKoyJElcyDYFGca7ATyPg4LmplokbDojTqUasW6J2e17IIm4oplls-yzu-2xAnvfyy4ai5I-SW52mxa2pKmJExDJCXRVY8JM-G42MXTlSGeSVlWEyEiLi3oDcbTS0L4pbrnPpBQPCaj37Sx3i4Wgy7K_u_8tDj8mlN6Nx_Hp_evCAXGZ2P0odSrVFNstVBQ8RJZbJo3pgUvLhvFX4Byufbw8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoengineered+Neutrophils+as+a+Cellular+Sonosensitizer+for+Visual+Sonodynamic+Therapy+of+Malignant+Tumors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Sun%2C+Lei&rft.au=Zhou%2C+Jing%E2%80%90e&rft.au=Luo%2C+Tengshuo&rft.au=Wang%2C+Jing&rft.date=2022-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=15&rft_id=info:doi/10.1002%2Fadma.202109969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202109969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon