Nanoengineered Neutrophils as a Cellular Sonosensitizer for Visual Sonodynamic Therapy of Malignant Tumors
The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to gene...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 15; pp. e2109969 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen‐carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2, for the visual diagnosis and treatment of cancer. Specifically, oxygen‐carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C‐ML/HPT/O2), which are then loaded into live neutrophils to obtain Acouscyte/O2. Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation‐triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor‐bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin‐mediated fluorescence imaging and perfluorocarbon (PFC)‐microbubble‐enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2, are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors.
Nanoengineered neutrophil sonosensitizers are developed for visual sonodynamic therapy (SDT) of solid malignant tumors. Acouscyte/O2 not only has an enhanced multilevel active targeting but also provides oxygen to enhance SDT effects to eliminate tumors, maintain the appearance, and real‐time multimode imaging, which provides a promising theranostic strategy for solid malignant tumors. |
---|---|
AbstractList | The rapid evolution of cell-based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen-carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O
, for the visual diagnosis and treatment of cancer. Specifically, oxygen-carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C-ML/HPT/O
), which are then loaded into live neutrophils to obtain Acouscyte/O
. Acouscyte/O
can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation-triggered recruitment, and decomposition. Importantly, Acouscyte/O
can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor-bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin-mediated fluorescence imaging and perfluorocarbon (PFC)-microbubble-enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O
, are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors. The rapid evolution of cell-based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen-carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2 , for the visual diagnosis and treatment of cancer. Specifically, oxygen-carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C-ML/HPT/O2 ), which are then loaded into live neutrophils to obtain Acouscyte/O2 . Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation-triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor-bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin-mediated fluorescence imaging and perfluorocarbon (PFC)-microbubble-enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2 , are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors.The rapid evolution of cell-based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen-carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2 , for the visual diagnosis and treatment of cancer. Specifically, oxygen-carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C-ML/HPT/O2 ), which are then loaded into live neutrophils to obtain Acouscyte/O2 . Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation-triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor-bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin-mediated fluorescence imaging and perfluorocarbon (PFC)-microbubble-enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2 , are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors. The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen‐carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2, for the visual diagnosis and treatment of cancer. Specifically, oxygen‐carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C‐ML/HPT/O2), which are then loaded into live neutrophils to obtain Acouscyte/O2. Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation‐triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor‐bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin‐mediated fluorescence imaging and perfluorocarbon (PFC)‐microbubble‐enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2, are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors. Nanoengineered neutrophil sonosensitizers are developed for visual sonodynamic therapy (SDT) of solid malignant tumors. Acouscyte/O2 not only has an enhanced multilevel active targeting but also provides oxygen to enhance SDT effects to eliminate tumors, maintain the appearance, and real‐time multimode imaging, which provides a promising theranostic strategy for solid malignant tumors. The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen‐carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2, for the visual diagnosis and treatment of cancer. Specifically, oxygen‐carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C‐ML/HPT/O2), which are then loaded into live neutrophils to obtain Acouscyte/O2. Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation‐triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor‐bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin‐mediated fluorescence imaging and perfluorocarbon (PFC)‐microbubble‐enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2, are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors. The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen‐carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O 2 , for the visual diagnosis and treatment of cancer. Specifically, oxygen‐carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C‐ML/HPT/O 2 ), which are then loaded into live neutrophils to obtain Acouscyte/O 2 . Acouscyte/O 2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation‐triggered recruitment, and decomposition. Importantly, Acouscyte/O 2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor‐bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin‐mediated fluorescence imaging and perfluorocarbon (PFC)‐microbubble‐enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O 2 , are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors. |
Author | Wang, Zhehao Zhu, Jiaxi Kang, Liqing Luo, Tengshuo Zhou, Jing‐e Wang, Yeying Yu, Jiahui Wang, Jing Yu, Lei Zhou, Ziyu Luo, Shenggen Yan, Zhiqiang Sun, Lei |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0001-9599-608X surname: Sun fullname: Sun, Lei organization: Department of NanoEngineering and Chemical Engineering Program University of California – sequence: 2 givenname: Jing‐e surname: Zhou fullname: Zhou, Jing‐e organization: East China Normal University – sequence: 3 givenname: Tengshuo surname: Luo fullname: Luo, Tengshuo organization: East China Normal University – sequence: 4 givenname: Jing surname: Wang fullname: Wang, Jing organization: East China Normal University – sequence: 5 givenname: Liqing surname: Kang fullname: Kang, Liqing organization: Shanghai Unicar‐Therapy Bio‐medicine Technology Co. Ltd – sequence: 6 givenname: Yeying surname: Wang fullname: Wang, Yeying organization: East China Normal University – sequence: 7 givenname: Shenggen surname: Luo fullname: Luo, Shenggen organization: East China Normal University – sequence: 8 givenname: Zhehao surname: Wang fullname: Wang, Zhehao organization: East China Normal University – sequence: 9 givenname: Ziyu surname: Zhou fullname: Zhou, Ziyu organization: East China Normal University – sequence: 10 givenname: Jiaxi surname: Zhu fullname: Zhu, Jiaxi organization: Shanghai Jiao Tong University School of Medicine – sequence: 11 givenname: Jiahui surname: Yu fullname: Yu, Jiahui organization: East China Normal University – sequence: 12 givenname: Lei surname: Yu fullname: Yu, Lei organization: East China Normal University – sequence: 13 givenname: Zhiqiang orcidid: 0000-0002-3176-5757 surname: Yan fullname: Yan, Zhiqiang email: zqyan@sat.ecnu.edu.cn organization: East China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35174915$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFK0dkiQuXLLaTOJnjasuX1JYDC9do1pm0Xjn2YidCy6_HZUuRKiGkkebg5xnb856xEx88MfZSiqUUQr3FfsSlEkoKAA1P2ELWShaVgPqELQSUdQG6ak_ZWUo7IQRooZ-x07KWTQWyXrDdNfpA_sZ6okg9v6Z5imF_a13imIuvybnZYeRfgg-JfLKT_UmRDyHybzbN6H6f9AePozV8c0sR9wceBn6Fzt549BPfzGOI6Tl7OqBL9OK-n7Ov799t1h-Ly88fPq1Xl4UpmxKKEkrdgiRlTENoNGqSIKqtEGQUDULl6o2mSkkDld4SDUNjatColEHZl-fszXHuPobvM6WpG20y-RvoKcypU1pBq3Vbyoy-foTuwhx9fl2mKmjz7nSTqVf31Lwdqe_20Y4YD92fLWZgeQRMDClFGh4QKbq7mLq7mLqHmLJQPRKMnXCywU8Rrfu3Bkfth3V0-M8l3eriavXX_QXlQqhX |
CitedBy_id | crossref_primary_10_1002_adma_202409663 crossref_primary_10_1002_adma_202405165 crossref_primary_10_1038_s41467_023_37580_z crossref_primary_10_1016_j_nantod_2025_102701 crossref_primary_10_1002_mabi_202300048 crossref_primary_10_1080_21655979_2022_2096303 crossref_primary_10_1021_acs_molpharmaceut_3c00116 crossref_primary_10_1016_j_jconrel_2023_08_003 crossref_primary_10_1016_j_cej_2024_157232 crossref_primary_10_2217_nnm_2022_0187 crossref_primary_10_3390_pharmaceutics14061282 crossref_primary_10_1002_adhm_202201607 crossref_primary_10_1002_EXP_20230100 crossref_primary_10_1016_j_ijbiomac_2025_141737 crossref_primary_10_1038_s41392_024_01889_y crossref_primary_10_1002_smll_202304607 crossref_primary_10_1186_s12943_025_02249_2 crossref_primary_10_1002_adfm_202302579 crossref_primary_10_1002_adma_202310318 crossref_primary_10_1016_j_mtbio_2022_100245 crossref_primary_10_3389_fphar_2022_1065438 crossref_primary_10_1016_j_ultsonch_2024_106928 crossref_primary_10_1002_smll_202203952 crossref_primary_10_1002_adtp_202200033 crossref_primary_10_1016_j_partic_2022_08_001 crossref_primary_10_1038_s41392_022_01250_1 crossref_primary_10_1016_j_jcis_2024_05_113 crossref_primary_10_1002_mog2_27 crossref_primary_10_1039_D3SC03438K crossref_primary_10_1002_adma_202307929 crossref_primary_10_1177_15330338241263197 crossref_primary_10_1021_acs_molpharmaceut_3c00289 crossref_primary_10_1021_acsnano_3c10625 crossref_primary_10_1039_D3TB00670K crossref_primary_10_34133_bmr_0028 crossref_primary_10_1002_adma_202303180 crossref_primary_10_1002_adma_202401513 crossref_primary_10_1021_acsnano_3c07763 crossref_primary_10_1002_adfm_202311857 crossref_primary_10_1016_j_engmed_2024_100027 crossref_primary_10_1186_s12951_023_01765_x crossref_primary_10_34133_bmef_0067 crossref_primary_10_1002_adma_202208817 crossref_primary_10_1021_acssensors_2c02129 crossref_primary_10_1021_acsami_2c15327 crossref_primary_10_1111_php_13730 crossref_primary_10_1002_advs_202206181 |
Cites_doi | 10.1186/s12951-021-01087-w 10.1038/s41592-021-01229-w 10.1016/j.bbrc.2020.02.156 10.1152/physrev.00012.2018 10.1080/14686996.2019.1590126 10.1038/s41577-019-0127-6 10.1038/s41591-018-0014-x 10.1038/nrd4002 10.1002/adma.201701429 10.1038/mt.2009.29 10.7863/jum.2011.30.10.1321 10.1016/j.biomaterials.2021.121250 10.1016/j.cell.2016.01.021 10.1021/acs.nanolett.9b02448 10.1002/adma.201706307 10.1038/nnano.2017.54 10.1002/adma.201606617 10.1016/j.biomaterials.2019.01.002 10.1002/smll.201803266 10.4155/tde-2018-0050 10.1038/s41577-020-0285-6 10.1002/adma.202005363 10.1021/acsnano.1c07898 10.1002/adhm.201801254 10.1016/j.carbpol.2017.11.098 10.1002/adma.202003598 10.1038/s41467-019-09389-2 10.1039/C9CS00648F 10.1126/sciadv.aba5628 10.1016/j.ijpharm.2020.119606 10.1021/acs.nanolett.6b02365 10.1016/j.jconrel.2021.02.032 10.1021/acs.nanolett.0c01098 10.1002/advs.202002243 10.1016/j.jconrel.2019.05.035 10.1016/j.ejps.2010.04.005 10.1002/adma.202002054 10.1016/j.surneu.2003.09.036 10.1002/adma.202005295 10.1002/smll.202101976 10.1002/hep.28021 10.1016/j.colsurfb.2016.07.034 10.1002/adma.201806444 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202109969 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35174915 10_1002_adma_202109969 ADMA202109969 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81872812; 82073800 – fundername: China Postdoctoral Science Fundation funderid: 2021M691040; 2021TQ0111 – fundername: National Natural Science Foundation of China grantid: 82073800 – fundername: China Postdoctoral Science Fundation grantid: 2021M691040 – fundername: China Postdoctoral Science Fundation grantid: 2021TQ0111 – fundername: National Natural Science Foundation of China grantid: 81872812 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3739-3936891e2cc7eac6a6e1904b00ec2ef02f02dc6e421c946beeff7c596a22ca1d3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:39:02 EDT 2025 Fri Jul 25 06:02:21 EDT 2025 Wed Feb 19 02:27:35 EST 2025 Tue Jul 01 02:33:14 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Wed Jan 22 16:26:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | multimode imaging malignant tumors sonodynamic therapy sonosensitizers nanoengineered neutrophils |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-3936891e2cc7eac6a6e1904b00ec2ef02f02dc6e421c946beeff7c596a22ca1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9599-608X 0000-0002-3176-5757 |
PMID | 35174915 |
PQID | 2649896467 |
PQPubID | 2045203 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2629866831 proquest_journals_2649896467 pubmed_primary_35174915 crossref_primary_10_1002_adma_202109969 crossref_citationtrail_10_1002_adma_202109969 wiley_primary_10_1002_adma_202109969_ADMA202109969 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2004; 61 2018; 181 2020; 20 2019; 31 2019; 99 2019; 10 2016; 146 2011; 30 2021; 280 2019; 19 2020; 525 2016; 165 2017; 29 2020; 12 2019; 304 2020; 32 2020; 586 2016; 16 2010; 40 2018; 24 2020; 7 2020; 6 2018; 9 2021; 15 2021; 33 2019; 20 2021; 332 2015; 62 2017; 16 2013; 12 2021; 18 2021; 17 2017; 12 2021; 19 2020; 49 2018; 30 2018; 14 2019; 197 2009; 17 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 Batchelor D. V. B. (e_1_2_8_35_1) 2020; 12 e_1_2_8_27_1 Crunkhorn S. (e_1_2_8_10_1) 2017; 16 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 19 start-page: 369 year: 2019 publication-title: Nat. Rev. Immunol. – volume: 17 start-page: 837 year: 2009 publication-title: Mol. Ther. – volume: 19 start-page: 8409 year: 2019 publication-title: Nano Lett. – volume: 9 start-page: 823 year: 2018 publication-title: Ther. Delivery – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 166 year: 2017 publication-title: Nat. Rev. Drug Discovery – volume: 10 start-page: 1580 year: 2019 publication-title: Nat. Commun. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 14 year: 2018 publication-title: Small – volume: 20 start-page: 324 year: 2019 publication-title: Sci. Technol. Adv. Mater. – volume: 525 start-page: 836 year: 2020 publication-title: Biochem. Biophys. Res. Commun. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 24 start-page: 541 year: 2018 publication-title: Nat. Med. – volume: 17 year: 2021 publication-title: Small – volume: 61 start-page: 216 year: 2004 publication-title: Surg. Neurol. – volume: 49 start-page: 3244 year: 2020 publication-title: Chem. Soc. Rev. – volume: 146 start-page: 833 year: 2016 publication-title: Colloids Surf., B – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 181 start-page: 659 year: 2018 publication-title: Carbohydr. Polym. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 586 year: 2020 publication-title: Int. J. Pharm. – volume: 40 start-page: 305 year: 2010 publication-title: Eur. J. Pharm. Sci. – volume: 19 start-page: 345 year: 2021 publication-title: J. Nanobiotechnol. – volume: 12 start-page: 931 year: 2013 publication-title: Nat. Rev. Drug Discovery – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 280 year: 2021 publication-title: Biomaterials – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 99 start-page: 1223 year: 2019 publication-title: Physiol. Rev. – volume: 165 start-page: 100 year: 2016 publication-title: Cell – volume: 20 start-page: 3943 year: 2020 publication-title: Nano Lett. – volume: 197 start-page: 129 year: 2019 publication-title: Biomaterials – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 332 start-page: 448 year: 2021 publication-title: J. Controlled Release – volume: 16 start-page: 6145 year: 2016 publication-title: Nano Lett. – volume: 20 start-page: 375 year: 2020 publication-title: Nat. Rev. Immunol. – volume: 18 start-page: 945 year: 2021 publication-title: Nat. Methods – volume: 30 start-page: 1321 year: 2011 publication-title: J. Ultrasound Med. – volume: 304 start-page: 268 year: 2019 publication-title: J. Controlled Release – volume: 62 start-page: 1342 year: 2015 publication-title: Hepatology – volume: 12 start-page: 692 year: 2017 publication-title: Nat. Nanotechnol. – ident: e_1_2_8_41_1 doi: 10.1186/s12951-021-01087-w – ident: e_1_2_8_15_1 doi: 10.1038/s41592-021-01229-w – ident: e_1_2_8_45_1 doi: 10.1016/j.bbrc.2020.02.156 – ident: e_1_2_8_4_1 doi: 10.1152/physrev.00012.2018 – ident: e_1_2_8_39_1 doi: 10.1080/14686996.2019.1590126 – volume: 12 year: 2020 ident: e_1_2_8_35_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_2_1 doi: 10.1038/s41577-019-0127-6 – ident: e_1_2_8_5_1 doi: 10.1038/s41591-018-0014-x – ident: e_1_2_8_42_1 doi: 10.1038/nrd4002 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201701429 – ident: e_1_2_8_44_1 doi: 10.1038/mt.2009.29 – ident: e_1_2_8_20_1 doi: 10.7863/jum.2011.30.10.1321 – ident: e_1_2_8_21_1 doi: 10.1016/j.biomaterials.2021.121250 – ident: e_1_2_8_3_1 doi: 10.1016/j.cell.2016.01.021 – ident: e_1_2_8_22_1 doi: 10.1021/acs.nanolett.9b02448 – ident: e_1_2_8_27_1 doi: 10.1002/adma.201706307 – ident: e_1_2_8_40_1 doi: 10.1038/nnano.2017.54 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201606617 – ident: e_1_2_8_38_1 doi: 10.1016/j.biomaterials.2019.01.002 – ident: e_1_2_8_36_1 doi: 10.1002/smll.201803266 – ident: e_1_2_8_28_1 doi: 10.4155/tde-2018-0050 – ident: e_1_2_8_1_1 doi: 10.1038/s41577-020-0285-6 – ident: e_1_2_8_6_1 doi: 10.1002/adma.202005363 – ident: e_1_2_8_13_1 doi: 10.1021/acsnano.1c07898 – ident: e_1_2_8_19_1 doi: 10.1002/adhm.201801254 – ident: e_1_2_8_29_1 doi: 10.1016/j.carbpol.2017.11.098 – ident: e_1_2_8_12_1 doi: 10.1002/adma.202003598 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-019-09389-2 – ident: e_1_2_8_23_1 doi: 10.1039/C9CS00648F – volume: 16 start-page: 166 year: 2017 ident: e_1_2_8_10_1 publication-title: Nat. Rev. Drug Discovery – ident: e_1_2_8_26_1 doi: 10.1126/sciadv.aba5628 – ident: e_1_2_8_34_1 doi: 10.1016/j.ijpharm.2020.119606 – ident: e_1_2_8_32_1 doi: 10.1021/acs.nanolett.6b02365 – ident: e_1_2_8_33_1 doi: 10.1016/j.jconrel.2021.02.032 – ident: e_1_2_8_43_1 doi: 10.1021/acs.nanolett.0c01098 – ident: e_1_2_8_31_1 doi: 10.1002/advs.202002243 – ident: e_1_2_8_24_1 doi: 10.1016/j.jconrel.2019.05.035 – ident: e_1_2_8_25_1 doi: 10.1016/j.ejps.2010.04.005 – ident: e_1_2_8_9_1 doi: 10.1002/adma.202002054 – ident: e_1_2_8_7_1 doi: 10.1016/j.surneu.2003.09.036 – ident: e_1_2_8_11_1 doi: 10.1002/adma.202005295 – ident: e_1_2_8_14_1 doi: 10.1002/smll.202101976 – ident: e_1_2_8_37_1 doi: 10.1002/hep.28021 – ident: e_1_2_8_30_1 doi: 10.1016/j.colsurfb.2016.07.034 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201806444 |
SSID | ssj0009606 |
Score | 2.578668 |
Snippet | The rapid evolution of cell‐based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the... The rapid evolution of cell-based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2109969 |
SubjectTerms | Animals Biomedical materials Cell Line, Tumor Diagnosis Fluorocarbons Liposomes Liposomes - therapeutic use malignant tumors Materials science Medical imaging Mice Multilayers multimode imaging nanoengineered neutrophils Nanoengineering Neoplasms - diagnostic imaging Neoplasms - drug therapy Neutrophils Oxygen Perfluorocarbons Reactive Oxygen Species - therapeutic use sonodynamic therapy sonosensitizers Tumors Ultrasonic imaging Ultrasonic Therapy - methods |
Title | Nanoengineered Neutrophils as a Cellular Sonosensitizer for Visual Sonodynamic Therapy of Malignant Tumors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109969 https://www.ncbi.nlm.nih.gov/pubmed/35174915 https://www.proquest.com/docview/2649896467 https://www.proquest.com/docview/2629866831 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbQTnAAxo9RNpCRJu2ULbETJz5Wg6lC6g7Qod0ix34ZhS6pmuSw_vV7L0nTFYSQQPIl8XPs2H7PX_KePzN27MuYUIWP1i_XXpibzDOhBQRyMnaxczJrXTHTSzW5Cj9fR9cPdvF3_BDDDzfSjNZek4KbrDrbkoYa1_IGCXLtKNrBRwFbhIq-bPmjCJ63ZHsy8rQKkw1roy_Odovvrkq_Qc1d5NouPRfPmNk0uos4-Xna1NmpXf_C5_g_b_WcPe1xKR93E2mfPYLiBXvygK3wJfuBlriE_g44fglNvSqX3-eLihtM_BwWC4pq5V_LoqwoMr6er2HFERfzb_OqwedTjrsrzO3c8llHaMDLnE_xa-CGQnL4rLktV9UrdnXxaXY-8fqjGjwrY6k9qaVKdADC2hhNuTIKEGmEqNNgBeS-wOSsglAEVocqA8jz2EZaGSGsCZx8zfaKsoA3jCvnkszXwkJkUVwaCPMEJAR-bnXmxyPmbYYqtT2POR2nsUg7BmaRUh-mQx-O2Mkgv-wYPP4oebQZ-bTX5CpFwKgTnDsKK_4wZKMOkmPFFFA2JCN0olQigxE76GbMUJUkKnAdRCMm2nH_SxvS8cfpeLh6-y-FDtljQXs02vCiI7ZXrxp4h8ipzt632nEPOGoQ-A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeeD8WChgJxCltYidOfOCw6lJtaXcPsEW9Bcee0IVtUm0SofZf8Vf4Rdh5lQUhJKQekHxJPLEde162x58BXrgstF6Fa7RfKhw_lYkjfYXGkWOhDrVmSb0VM5ny8aH_9ig4WoNv3VmYBh-iX3CzklHrayvgdkF6-wI1VOoaOIjavR0u2rjKfTz7amZtxeu9kRnil5TuvpntjJ32YgFHsZAJhwnGI-EhVSo0iodLjsYu-oYDUVFMXWqSVhx96inh8wQxTUMVCC4pVdLTzJR7Ba7aa8QtXP_o3QVilZ0Q1PB-LHAE96MOJ9Kl26vtXbWDvzm3q75ybex2b8L3rpuaGJcvW1WZbKnzXxAk_6t-vAU3WtebDBtZuQ1rmN2BjZ8AGe_CZ2NscmzfoCZTrMplfno8XxREmkR2cLGwgbvkfZ7lhQ3-L-fnuCTG9Scf5kVlyrc5-iyTJ3NFZg1mA8lTMjETnk826ojMqpN8WdyDw0v52fuwnuUZPgTCtY4SV1CFgTLkTKKfRsjQc1MlEjccgNPxRqxaqHZ7Y8gibkCmaWzHLO7HbACvevrTBqTkj5SbHavFrbIqYuMTi8gwKzcVP--zjZqxe0cyw7yyNFREnEfMG8CDhkX7qphFOxdeMABaM9pf2hAPR5Nh__ToXz56BtfGs8lBfLA33X8M16k9klJHU23Cerms8IlxFMvkaS2aBD5eNg__AANPcGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKkRAceD8WChgJxCltYidOfOCw6rJqKbtCsEW9BceewMI2WW0SofZX8Vf4R4zzKgtCSEg9IPmSeBI79njmczz-TMhTl4cWVbho_VLp-KlKHOVrQCDHQxMaw5N6KWYyFXuH_quj4GiDfOv2wjT8EP0PNzsyanttB_jSpDtnpKHK1LxBzC7tCNmGVR7AyVectBUv9kfYw88YG7-c7e457bkCjuYhlw6XXETSA6Z1iHZHKAHoFn1UQNAMUpdhMlqAzzwtfZEApGmoAykUY1p5huN7L5CLvnClPSxi9PaMsMrOB2p2Px44UvhRRxPpsp31-q67wd-w7TpUrn3d-Br53rVSE-LyZbsqk219-guB5P_UjNfJ1RZ402EzUm6QDchukis_0THeIp_R1eTQ3gFDp1CVq3z5ab4oqMJEd2GxsGG79F2e5YUN_S_np7CiCPzp-3lR4fttjjnJ1PFc01nD2EDzlE5wuvPRxhzRWXWcr4rb5PBcPvYO2czyDO4RKoyJElcyDYFGca7ATyPg4LmplokbDojTqUasW6J2e17IIm4oplls-yzu-2xAnvfyy4ai5I-SW52mxa2pKmJExDJCXRVY8JM-G42MXTlSGeSVlWEyEiLi3oDcbTS0L4pbrnPpBQPCaj37Sx3i4Wgy7K_u_8tDj8mlN6Nx_Hp_evCAXGZ2P0odSrVFNstVBQ8RJZbJo3pgUvLhvFX4Byufbw8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoengineered+Neutrophils+as+a+Cellular+Sonosensitizer+for+Visual+Sonodynamic+Therapy+of+Malignant+Tumors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Sun%2C+Lei&rft.au=Zhou%2C+Jing%E2%80%90e&rft.au=Luo%2C+Tengshuo&rft.au=Wang%2C+Jing&rft.date=2022-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=15&rft_id=info:doi/10.1002%2Fadma.202109969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202109969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |