Synthetic K+ Channels Constructed by Rebuilding the Core Modules of Natural K+ Channels in an Artificial System
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ ove...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 8; pp. e202217859 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
13.02.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+, disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.
Rebuilding the core modules of natural K+ channels in an artificial system has led to a biomimetic K+ channel. This channel possesses similar structural features as the natural version, which enables it to replicate the transport behavior and biological function of natural K+ channels. |
---|---|
AbstractList | Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+, disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.
Rebuilding the core modules of natural K+ channels in an artificial system has led to a biomimetic K+ channel. This channel possesses similar structural features as the natural version, which enables it to replicate the transport behavior and biological function of natural K+ channels. Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+, disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels. Different types of natural K + channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K + channels by rebuilding the core modules of natural K + channels in artificial systems. All the channels displayed high selectivity for K + over Na + and exhibited a selectivity sequence of K + ≈Rb + during the transport process, which is highly consistent with the cation permeability characteristics of natural K + channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K + , disrupting the cellular K + homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K + channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K + channels can be mimicked in synthetic channels. Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+ ≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+ , disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+ ≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+ , disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels. Different types of natural K channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K channels by rebuilding the core modules of natural K channels in artificial systems. All the channels displayed high selectivity for K over Na and exhibited a selectivity sequence of K ≈Rb during the transport process, which is highly consistent with the cation permeability characteristics of natural K channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K , disrupting the cellular K homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K channels can be mimicked in synthetic channels. |
Author | Guo, Jingjing Pei, Yan Xin, Pengyang Xu, Linqi Bi, Jingjing Dong, Wenpei Chen, Chang‐Po Zhang, Shouwei Mao, Linlin |
Author_xml | – sequence: 1 givenname: Pengyang orcidid: 0000-0003-4947-7953 surname: Xin fullname: Xin, Pengyang email: pyxin27@163.com organization: Henan Normal University – sequence: 2 givenname: Linqi surname: Xu fullname: Xu, Linqi organization: Henan Normal University – sequence: 3 givenname: Wenpei surname: Dong fullname: Dong, Wenpei organization: Henan Normal University – sequence: 4 givenname: Linlin surname: Mao fullname: Mao, Linlin organization: Henan Normal University – sequence: 5 givenname: Jingjing orcidid: 0000-0002-4632-4364 surname: Guo fullname: Guo, Jingjing email: jguo@ipm.edu.mo organization: Macao Polytechnic University – sequence: 6 givenname: Jingjing surname: Bi fullname: Bi, Jingjing organization: Henan Normal University – sequence: 7 givenname: Shouwei surname: Zhang fullname: Zhang, Shouwei organization: Henan Normal University – sequence: 8 givenname: Yan surname: Pei fullname: Pei, Yan organization: Henan Normal University – sequence: 9 givenname: Chang‐Po surname: Chen fullname: Chen, Chang‐Po email: changpochen@yahoo.com organization: Henan Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36583482$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7IduXUrATUHmdiaZmSTLy6VqaW3B6nrIx4lNyU1qkkHm35tya6UFcZWQ8zznhPMeor0QAyD0tmtXXduSExkcrEhLSMf4IF6gg24gXUMZo3v13lPa1PduHx3mfFt5ztvxFdqn48Bpz8kBitdLKDdQnMbnH_DmRoYAPuNNDLmkWRcwWC34K6jZeePCD1zhWk2Av0Qze8g4Wnwpy5ykf9LBBSwDXqfirNOuFq-XXGD7Gr200md483Aeoe8fT79tPjcXV5_ONuuLRlNGRdNBzzkI0AwMY0b1kgimAEZLtaJi5J3VFgwFZQbDiSJqMFoTa2k_akMUPULHu753Kf6cIZdp67IG72WAOOeJsEGIQbCWV_T9M_Q2zinU31WK9XW3Ymwr9e6BmtUWzHSX3FamZfqzygqsdoBOMecE9hHp2uk-q-k-q-kxqyr0zwTtiiwuhpKk8__WxE775Tws_xkyrS_PTv-6vwG3q6lt |
CitedBy_id | crossref_primary_10_1002_ange_202319919 crossref_primary_10_1002_ange_202313712 crossref_primary_10_1016_j_cbpa_2024_102544 crossref_primary_10_1021_acs_jpcb_3c07417 crossref_primary_10_1016_j_cej_2024_151006 crossref_primary_10_1016_j_fmre_2024_06_012 crossref_primary_10_1021_acs_nanolett_4c01884 crossref_primary_10_1021_jacs_4c03203 crossref_primary_10_1039_D4RA05676K crossref_primary_10_1002_adma_202312352 crossref_primary_10_1002_chem_202403943 crossref_primary_10_1039_D4TB01508H crossref_primary_10_1039_D3CC04488B crossref_primary_10_1039_D4SC06893A crossref_primary_10_1002_anie_202403667 crossref_primary_10_1021_jacs_3c14736 crossref_primary_10_1002_adfm_202400432 crossref_primary_10_1002_anie_202414354 crossref_primary_10_3390_membranes13040434 crossref_primary_10_1002_anie_202313712 crossref_primary_10_1002_anie_202319919 crossref_primary_10_1021_jacs_4c00603 crossref_primary_10_1002_adma_202313273 crossref_primary_10_1002_wcms_1679 crossref_primary_10_1002_ange_202403667 crossref_primary_10_1002_ange_202414354 |
Cites_doi | 10.1021/ar400014r 10.1021/ar400007w 10.1002/ange.201311249 10.1002/ange.200400662 10.1002/cjoc.201800451 10.1021/ja003141 10.1002/ange.202102838 10.1021/jacs.0c00601 10.1002/ange.201906341 10.1021/jacs.0c02134 10.1007/s00018-015-1948-5 10.1021/ar400129t 10.1246/cl.1995.435 10.1002/ange.200502570 10.1038/s41565-020-00796-x 10.1002/anie.201506430 10.1021/ja205884y 10.1021/ar400030e 10.1021/jacs.8b09580 10.1002/(SICI)1097-0320(19991101)37:3<197::AID-CYTO6>3.0.CO;2-L 10.1021/ar4000295 10.1039/D1SC03545B 10.1002/anie.201915287 10.1021/jacs.7b04335 10.1002/anie.201813797 10.1021/jacs.6b10379 10.1021/ar400026x 10.1021/jacs.0c07977 10.1007/BF01871143 10.1021/jacs.5b11743 10.1002/adma.200802982 10.1038/nchem.2021 10.1093/oso/9780199634750.001.0001 10.1021/ct100707s 10.1002/anie.201608428 10.1021/ja909876h 10.1021/ar400032c 10.1021/jacs.0c12128 10.1016/S0955-0674(00)00228-3 10.1021/jacs.6b12094 10.1016/j.jmb.2011.04.043 10.1016/j.femsre.2005.03.003 10.1126/science.280.5360.69 10.1002/ange.201802570 10.1021/ja010761h 10.1021/acs.accounts.5b00143 10.1007/BF01870364 10.1002/anie.202000961 10.1113/jphysiol.1992.sp018938 10.1002/ange.201506430 10.1038/nchem.2706 10.1039/c0cc00366b 10.1038/35102009 10.1038/nnano.2017.99 10.1002/anie.201802570 10.1021/ar8001393 10.1002/ange.19951070613 10.1021/ar400044k 10.1038/s41570-020-00233-6 10.1021/ar400025e 10.1021/acs.accounts.8b00302 10.1002/anie.202102838 10.1021/ja00121a002 10.1038/s41565-021-00915-2 10.1021/jacs.1c06000 10.1021/jacs.6b01723 10.1039/C1CS15099E 10.1021/ar400061d 10.1016/j.bbamcr.2013.06.001 10.1021/bi00138a014 10.1002/anie.200502570 10.1021/ar300337f 10.1002/ange.200501625 10.1002/(SICI)1521-3757(19990215)111:4<523::AID-ANGE523>3.0.CO;2-Q 10.1002/ange.201608428 10.1016/S0040-4039(00)85664-6 10.1021/ja308342g 10.1021/ar00028a009 10.1002/ange.19921041244 10.1080/01926230701320337 10.1038/307465a0 10.1021/ja044748j 10.1039/D0CC08073J 10.1021/jacs.0c02881 10.1002/ange.202000961 10.1002/anie.200501625 10.1002/anie.201311249 10.1016/S0301-0082(03)00090-X 10.1038/294371a0 10.1021/cr970022c 10.1002/anie.200400662 10.1021/ja056888e 10.1021/jo961267c 10.1002/anie.199506931 10.1002/ange.201915287 10.1021/ja503376s 10.1002/(SICI)1521-3773(19990215)38:4<540::AID-ANIE540>3.0.CO;2-N 10.1002/anie.201906341 10.1002/ange.201813797 10.1002/anie.199216371 10.1126/science.1279807 10.1021/acs.accounts.6b00051 10.1111/j.1749-6632.1999.tb11293.x 10.1021/ja972648q |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202217859 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36583482 10_1002_anie_202217859 ANIE202217859 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Research Foundation of Henan Normal University funderid: 20200155 – fundername: National Natural Science Foundation of China funderid: U2004188; 22271079; U1804283; 82130103; 21977025 – fundername: Special Project for Fundamental Research in University of Henan Province funderid: 21ZX005 – fundername: Natural Science Foundation of Henan Province funderid: 212300410053 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3739-1e488e9ec7ed77db4a297bee6f3cb39681fcfed3ebd5d82b2b5dcc2ff346cd2b3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 18:12:38 EDT 2025 Sun Jul 13 05:15:56 EDT 2025 Wed Feb 19 02:24:51 EST 2025 Tue Jul 01 01:47:02 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Wed Jan 22 16:24:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Transmembrane Transport Cyclodextrins Ion Channels Potassium Supramolecular Chemistry |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-1e488e9ec7ed77db4a297bee6f3cb39681fcfed3ebd5d82b2b5dcc2ff346cd2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4947-7953 0000-0002-4632-4364 |
PMID | 36583482 |
PQID | 2774022960 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2759959708 proquest_journals_2774022960 pubmed_primary_36583482 crossref_primary_10_1002_anie_202217859 crossref_citationtrail_10_1002_anie_202217859 wiley_primary_10_1002_anie_202217859_ANIE202217859 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 13, 2023 |
PublicationDateYYYYMMDD | 2023-02-13 |
PublicationDate_xml | – month: 02 year: 2023 text: February 13, 2023 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1993; 26 2014 2014; 53 126 1998; 280 2004; 126 2015; 72 1999 1999; 38 111 1992; 445 2020 2020; 59 132 2005; 29 2014; 136 2017; 9 2007; 35 1982; 23 2015; 48 2012; 134 2001 2011; 409 2018 2018; 57 130 1995; 24 1996; 61 2015 2015; 54 127 2005 2005; 44 117 2016; 49 1998; 98 2001; 13 2006; 128 2014; 6 2001; 414 1998; 120 2013; 1833 2001; 123 2004 2004; 43 116 2021; 5 2018; 140 2009; 21 2013; 46 2020; 142 2019; 37 1995; 117 1983; 76 1984; 307 1995 1992 2021; 143 1992; 31 1992 1992; 31 104 2019 2019; 58 131 2011; 133 2011; 7 2017; 139 1999; 868 2006 2006; 45 118 2021; 57 2021; 16 1981; 294 2016 2016; 55 128 2021; 12 2003; 70 2010; 46 1995 1995; 34 107 1978; 40 1999; 37 1992; 258 2017; 12 2010; 132 2021 2021; 60 133 2018; 51 2016; 138 2008; 41 2012; 41 e_1_2_3_50_2 e_1_2_3_92_1 e_1_2_3_16_1 e_1_2_3_4_2 e_1_2_3_39_3 e_1_2_3_39_2 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_54_3 e_1_2_3_58_2 e_1_2_3_77_2 e_1_2_3_35_2 e_1_2_3_50_3 e_1_2_3_54_2 e_1_2_3_73_2 e_1_2_3_96_2 e_1_2_3_31_2 e_1_2_3_81_2 e_1_2_3_102_1 e_1_2_3_28_2 e_1_2_3_24_2 e_1_2_3_66_2 e_1_2_3_47_1 e_1_2_3_89_1 e_1_2_3_20_2 e_1_2_3_43_2 e_1_2_3_62_2 e_1_2_3_85_2 e_1_2_3_72_1 e_1_2_3_91_2 e_1_2_3_19_2 Ashley R. H. (e_1_2_3_86_1) 1995 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_11_2 e_1_2_3_34_1 e_1_2_3_7_1 e_1_2_3_57_2 e_1_2_3_99_1 e_1_2_3_30_2 e_1_2_3_76_2 e_1_2_3_53_2 e_1_2_3_95_2 e_1_2_3_61_2 e_1_2_3_80_2 e_1_2_3_103_1 e_1_2_3_27_2 e_1_2_3_23_2 e_1_2_3_69_2 e_1_2_3_46_3 e_1_2_3_65_3 e_1_2_3_46_2 e_1_2_3_88_1 e_1_2_3_65_2 e_1_2_3_42_2 e_1_2_3_84_2 e_1_2_3_71_2 e_1_2_3_71_3 e_1_2_3_94_1 e_1_2_3_90_2 Hille B. (e_1_2_3_6_1) 2001 e_1_2_3_14_3 e_1_2_3_37_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_56_2 e_1_2_3_79_2 e_1_2_3_33_2 e_1_2_3_79_3 e_1_2_3_14_2 e_1_2_3_56_3 e_1_2_3_52_2 e_1_2_3_98_1 e_1_2_3_10_1 e_1_2_3_75_1 e_1_2_3_83_1 e_1_2_3_60_1 e_1_2_3_104_1 e_1_2_3_26_2 e_1_2_3_49_2 e_1_2_3_49_3 e_1_2_3_100_1 e_1_2_3_22_2 e_1_2_3_45_2 e_1_2_3_68_2 e_1_2_3_41_2 e_1_2_3_64_2 e_1_2_3_87_1 e_1_2_3_41_3 e_1_2_3_93_1 e_1_2_3_70_2 e_1_2_3_1_1 e_1_2_3_5_2 e_1_2_3_17_2 e_1_2_3_59_2 e_1_2_3_9_2 e_1_2_3_78_3 e_1_2_3_55_2 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_78_2 e_1_2_3_51_3 e_1_2_3_74_3 e_1_2_3_51_2 e_1_2_3_97_2 e_1_2_3_32_2 e_1_2_3_74_2 e_1_2_3_82_1 Ribera A. B. (e_1_2_3_3_2) 1992 e_1_2_3_48_3 e_1_2_3_48_2 e_1_2_3_101_1 e_1_2_3_29_2 e_1_2_3_44_2 e_1_2_3_67_1 e_1_2_3_25_2 e_1_2_3_40_2 e_1_2_3_21_2 e_1_2_3_63_2 |
References_xml | – volume: 41 start-page: 1428 year: 2008 end-page: 1438 publication-title: Acc. Chem. Res. – volume: 46 start-page: 2847 year: 2013 end-page: 2855 publication-title: Acc. Chem. Res. – volume: 126 start-page: 15944 year: 2004 end-page: 15945 publication-title: J. Am. Chem. Soc. – volume: 294 start-page: 371 year: 1981 end-page: 373 publication-title: Nature – volume: 133 start-page: 14136 year: 2011 end-page: 14148 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 1440 1456 year: 2020 2020 end-page: 1444 1460 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 619 year: 2017 end-page: 630 publication-title: Nat. Nanotechnol. – volume: 142 start-page: 13273 year: 2020 end-page: 13277 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 18859 year: 2020 end-page: 18865 publication-title: J. Am. Chem. Soc. – volume: 44 117 start-page: 7584 7756 year: 2005 2005 end-page: 7587 7759 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2001 – volume: 7 start-page: 1943 year: 2011 end-page: 1950 publication-title: J. Chem. Theory Comput. – volume: 128 start-page: 38 year: 2006 end-page: 39 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 14836 14962 year: 2021 2021 end-page: 14840 14966 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 307 start-page: 465 year: 1984 end-page: 468 publication-title: Nature – volume: 46 start-page: 2878 year: 2013 end-page: 2887 publication-title: Acc. Chem. Res. – volume: 49 start-page: 922 year: 2016 end-page: 930 publication-title: Acc. Chem. Res. – volume: 140 start-page: 17992 year: 2018 end-page: 17998 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 46 year: 2021 end-page: 61 publication-title: Nat. Chem. Rev. – volume: 35 start-page: 495 year: 2007 end-page: 516 publication-title: Toxicol. Pathol. – volume: 445 start-page: 537 year: 1992 end-page: 548 publication-title: J. Physiol. – volume: 46 start-page: 2856 year: 2013 end-page: 2866 publication-title: Acc. Chem. Res. – volume: 46 start-page: 2814 year: 2013 end-page: 2823 publication-title: Acc. Chem. Res. – volume: 34 107 start-page: 693 717 year: 1995 1995 end-page: 694 719 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 138 start-page: 16443 year: 2016 end-page: 16451 publication-title: J. Am. Chem. Soc. – volume: 72 start-page: 3677 year: 2015 end-page: 3693 publication-title: Cell. Mol. Life Sci. – volume: 414 start-page: 43 year: 2001 end-page: 48 publication-title: Nature – volume: 120 start-page: 2997 year: 1998 end-page: 3003 publication-title: J. Am. Chem. Soc. – volume: 31 104 start-page: 1637 1695 year: 1992 1992 end-page: 1640 1697 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 123 start-page: 12152 year: 2001 end-page: 12159 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 961 year: 2005 end-page: 985 publication-title: FEMS Microbiol. Rev. – volume: 24 start-page: 435 year: 1995 end-page: 436 publication-title: Chem. Lett. – volume: 59 132 start-page: 7944 8018 year: 2020 2020 end-page: 7952 8026 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 4054 year: 2009 end-page: 4057 publication-title: Adv. Mater. – volume: 139 start-page: 3721 year: 2017 end-page: 3727 publication-title: J. Am. Chem. Soc. – volume: 409 start-page: 867 year: 2011 end-page: 878 publication-title: J. Mol. Biol. – volume: 132 start-page: 1766 year: 2010 end-page: 1767 publication-title: J. Am. Chem. Soc. – volume: 76 start-page: 197 year: 1983 end-page: 225 publication-title: J. Membr. Biol. – volume: 46 start-page: 2824 year: 2013 end-page: 2833 publication-title: Acc. Chem. Res. – volume: 16 start-page: 911 year: 2021 end-page: 917 publication-title: Nat. Nanotechnol. – volume: 139 start-page: 12338 year: 2017 end-page: 12341 publication-title: J. Am. Chem. Soc. – volume: 61 start-page: 8866 year: 1996 end-page: 8874 publication-title: J. Org. Chem. – volume: 41 start-page: 148 year: 2012 end-page: 175 publication-title: Chem. Soc. Rev. – volume: 46 start-page: 2773 year: 2013 end-page: 2780 publication-title: Acc. Chem. Res. – volume: 51 start-page: 2730 year: 2018 end-page: 2738 publication-title: Acc. Chem. Res. – volume: 12 start-page: 11252 year: 2021 end-page: 11274 publication-title: Chem. Sci. – volume: 6 start-page: 885 year: 2014 end-page: 892 publication-title: Nat. Chem. – volume: 138 start-page: 7558 year: 2016 end-page: 7567 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 19788 year: 2012 end-page: 19794 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 4578 4666 year: 2014 2014 end-page: 4581 4669 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 123 start-page: 2517 year: 2001 end-page: 2524 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 1097 year: 2021 end-page: 1100 publication-title: Chem. Commun. – volume: 258 start-page: 1152 year: 1992 end-page: 1155 publication-title: Science – volume: 143 start-page: 11332 year: 2021 end-page: 11336 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 191 year: 1993 end-page: 197 publication-title: Acc. Chem. Res. – volume: 143 start-page: 3284 year: 2021 end-page: 3288 publication-title: J. Am. Chem. Soc. – volume: 43 116 start-page: 4265 4363 year: 2004 2004 end-page: 4277 4376 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 405 year: 2001 end-page: 411 publication-title: Curr. Opin. Cell Biol. – volume: 98 start-page: 1743 year: 1998 end-page: 1754 publication-title: Chem. Rev. – volume: 1833 start-page: 3448 year: 2013 end-page: 3459 publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 46 start-page: 2934 year: 2013 end-page: 2943 publication-title: Acc. Chem. Res. – volume: 142 start-page: 10769 year: 2020 end-page: 10779 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 97 year: 1978 end-page: 116 publication-title: J. Membr. Biol. – volume: 136 start-page: 13078 year: 2014 end-page: 13081 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 2779 2805 year: 2019 2019 end-page: 2784 2810 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 14473 14681 year: 2015 2015 end-page: 14477 14685 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 70 start-page: 363 year: 2003 end-page: 386 publication-title: Prog. Neurobiol. – volume: 23 start-page: 4601 year: 1982 end-page: 4604 publication-title: Tetrahedron Lett. – volume: 46 start-page: 2998 year: 2013 end-page: 3008 publication-title: Acc. Chem. Res. – volume: 37 start-page: 25 year: 2019 end-page: 29 publication-title: Chin. J. Chem. – volume: 48 start-page: 1612 year: 2015 end-page: 1619 publication-title: Acc. Chem. Res. – volume: 46 start-page: 2763 year: 2013 end-page: 2772 publication-title: Acc. Chem. Res. – volume: 868 start-page: 233 year: 1999 end-page: 285 publication-title: Ann. N. Y. Acad. Sci. – volume: 46 start-page: 2955 year: 2013 end-page: 2965 publication-title: Acc. Chem. Res. – volume: 57 130 start-page: 10520 10680 year: 2018 2018 end-page: 10524 10684 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 start-page: 4169 year: 2010 end-page: 4171 publication-title: Chem. Commun. – volume: 46 start-page: 2791 year: 2013 end-page: 2800 publication-title: Acc. Chem. Res. – volume: 117 start-page: 4448 year: 1995 end-page: 4454 publication-title: J. Am. Chem. Soc. – start-page: 1 year: 1992 end-page: 38 – volume: 55 128 start-page: 14678 14898 year: 2016 2016 end-page: 14682 14902 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 667 year: 2017 end-page: 675 publication-title: Nat. Chem. – volume: 31 start-page: 5340 year: 1992 end-page: 5350 publication-title: Biochemistry – volume: 16 start-page: 190 year: 2021 end-page: 196 publication-title: Nat. Nanotechnol. – volume: 280 start-page: 69 year: 1998 end-page: 77 publication-title: Science – volume: 142 start-page: 15638 year: 2020 end-page: 15643 publication-title: J. Am. Chem. Soc. – year: 1995 – volume: 45 118 start-page: 501 515 year: 2006 2006 end-page: 504 518 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 566 574 year: 2021 2021 end-page: 597 606 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 37 start-page: 197 year: 1999 end-page: 204 publication-title: Cytometry – volume: 38 111 start-page: 540 523 year: 1999 1999 end-page: 543 526 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 426 year: 2016 end-page: 432 publication-title: J. Am. Chem. Soc. – ident: e_1_2_3_19_2 doi: 10.1021/ar400014r – ident: e_1_2_3_22_2 doi: 10.1021/ar400007w – ident: e_1_2_3_65_3 doi: 10.1002/ange.201311249 – ident: e_1_2_3_14_3 doi: 10.1002/ange.200400662 – ident: e_1_2_3_38_2 doi: 10.1002/cjoc.201800451 – ident: e_1_2_3_60_1 – ident: e_1_2_3_64_2 doi: 10.1021/ja003141 – ident: e_1_2_3_46_3 doi: 10.1002/ange.202102838 – ident: e_1_2_3_42_2 doi: 10.1021/jacs.0c00601 – ident: e_1_2_3_56_3 doi: 10.1002/ange.201906341 – ident: e_1_2_3_104_1 doi: 10.1021/jacs.0c02134 – ident: e_1_2_3_9_2 doi: 10.1007/s00018-015-1948-5 – ident: e_1_2_3_23_2 doi: 10.1021/ar400129t – ident: e_1_2_3_61_2 doi: 10.1246/cl.1995.435 – ident: e_1_2_3_50_3 doi: 10.1002/ange.200502570 – ident: e_1_2_3_44_2 doi: 10.1038/s41565-020-00796-x – ident: e_1_2_3_75_1 – ident: e_1_2_3_72_1 – ident: e_1_2_3_89_1 – ident: e_1_2_3_10_1 – ident: e_1_2_3_51_2 doi: 10.1002/anie.201506430 – ident: e_1_2_3_85_2 doi: 10.1021/ja205884y – ident: e_1_2_3_25_2 doi: 10.1021/ar400030e – ident: e_1_2_3_55_2 doi: 10.1021/jacs.8b09580 – ident: e_1_2_3_101_1 doi: 10.1002/(SICI)1097-0320(19991101)37:3<197::AID-CYTO6>3.0.CO;2-L – ident: e_1_2_3_24_2 doi: 10.1021/ar4000295 – ident: e_1_2_3_59_2 doi: 10.1039/D1SC03545B – ident: e_1_2_3_39_2 doi: 10.1002/anie.201915287 – ident: e_1_2_3_53_2 doi: 10.1021/jacs.7b04335 – ident: e_1_2_3_74_2 doi: 10.1002/anie.201813797 – ident: e_1_2_3_99_1 doi: 10.1021/jacs.6b10379 – ident: e_1_2_3_21_2 doi: 10.1021/ar400026x – ident: e_1_2_3_40_2 doi: 10.1021/jacs.0c07977 – ident: e_1_2_3_91_2 doi: 10.1007/BF01871143 – ident: e_1_2_3_73_2 doi: 10.1021/jacs.5b11743 – ident: e_1_2_3_80_2 doi: 10.1002/adma.200802982 – ident: e_1_2_3_95_2 doi: 10.1038/nchem.2021 – volume-title: Ion Channels: A Practical Approach year: 1995 ident: e_1_2_3_86_1 doi: 10.1093/oso/9780199634750.001.0001 – ident: e_1_2_3_93_1 doi: 10.1021/ct100707s – ident: e_1_2_3_71_2 doi: 10.1002/anie.201608428 – ident: e_1_2_3_70_2 doi: 10.1021/ja909876h – ident: e_1_2_3_26_2 doi: 10.1021/ar400032c – ident: e_1_2_3_57_2 doi: 10.1021/jacs.0c12128 – ident: e_1_2_3_98_1 doi: 10.1016/S0955-0674(00)00228-3 – ident: e_1_2_3_52_2 doi: 10.1021/jacs.6b12094 – ident: e_1_2_3_92_1 doi: 10.1016/j.jmb.2011.04.043 – ident: e_1_2_3_15_2 doi: 10.1016/j.femsre.2005.03.003 – ident: e_1_2_3_12_2 doi: 10.1126/science.280.5360.69 – ident: e_1_2_3_54_3 doi: 10.1002/ange.201802570 – ident: e_1_2_3_69_2 doi: 10.1021/ja010761h – ident: e_1_2_3_30_2 doi: 10.1021/acs.accounts.5b00143 – ident: e_1_2_3_90_2 doi: 10.1007/BF01870364 – ident: e_1_2_3_41_2 doi: 10.1002/anie.202000961 – ident: e_1_2_3_2_2 doi: 10.1113/jphysiol.1992.sp018938 – ident: e_1_2_3_51_3 doi: 10.1002/ange.201506430 – ident: e_1_2_3_96_2 doi: 10.1038/nchem.2706 – ident: e_1_2_3_81_2 doi: 10.1039/c0cc00366b – ident: e_1_2_3_34_1 – ident: e_1_2_3_13_2 doi: 10.1038/35102009 – ident: e_1_2_3_32_2 doi: 10.1038/nnano.2017.99 – ident: e_1_2_3_54_2 doi: 10.1002/anie.201802570 – ident: e_1_2_3_18_2 doi: 10.1021/ar8001393 – ident: e_1_2_3_48_3 doi: 10.1002/ange.19951070613 – ident: e_1_2_3_27_2 doi: 10.1021/ar400044k – ident: e_1_2_3_58_2 doi: 10.1038/s41570-020-00233-6 – ident: e_1_2_3_67_1 – ident: e_1_2_3_20_2 doi: 10.1021/ar400025e – start-page: 1 volume-title: Ion Channels, Vol. 3 year: 1992 ident: e_1_2_3_3_2 – ident: e_1_2_3_33_2 doi: 10.1021/acs.accounts.8b00302 – ident: e_1_2_3_83_1 – ident: e_1_2_3_46_2 doi: 10.1002/anie.202102838 – ident: e_1_2_3_62_2 doi: 10.1021/ja00121a002 – ident: e_1_2_3_94_1 – ident: e_1_2_3_45_2 doi: 10.1038/s41565-021-00915-2 – ident: e_1_2_3_66_2 doi: 10.1021/jacs.1c06000 – ident: e_1_2_3_102_1 doi: 10.1021/jacs.6b01723 – ident: e_1_2_3_87_1 doi: 10.1039/C1CS15099E – ident: e_1_2_3_28_2 doi: 10.1021/ar400061d – ident: e_1_2_3_100_1 doi: 10.1016/j.bbamcr.2013.06.001 – volume-title: Ionic Channels of Excitable Membranes year: 2001 ident: e_1_2_3_6_1 – ident: e_1_2_3_82_1 doi: 10.1021/bi00138a014 – ident: e_1_2_3_16_1 – ident: e_1_2_3_50_2 doi: 10.1002/anie.200502570 – ident: e_1_2_3_29_2 doi: 10.1021/ar300337f – ident: e_1_2_3_79_3 doi: 10.1002/ange.200501625 – ident: e_1_2_3_49_3 doi: 10.1002/(SICI)1521-3757(19990215)111:4<523::AID-ANGE523>3.0.CO;2-Q – ident: e_1_2_3_71_3 doi: 10.1002/ange.201608428 – ident: e_1_2_3_77_2 doi: 10.1016/S0040-4039(00)85664-6 – ident: e_1_2_3_1_1 – ident: e_1_2_3_7_1 – ident: e_1_2_3_36_2 doi: 10.1021/ja308342g – ident: e_1_2_3_17_2 doi: 10.1021/ar00028a009 – ident: e_1_2_3_78_3 doi: 10.1002/ange.19921041244 – ident: e_1_2_3_103_1 doi: 10.1080/01926230701320337 – ident: e_1_2_3_4_2 doi: 10.1038/307465a0 – ident: e_1_2_3_84_2 doi: 10.1021/ja044748j – ident: e_1_2_3_97_2 doi: 10.1039/D0CC08073J – ident: e_1_2_3_43_2 doi: 10.1021/jacs.0c02881 – ident: e_1_2_3_41_3 doi: 10.1002/ange.202000961 – ident: e_1_2_3_79_2 doi: 10.1002/anie.200501625 – ident: e_1_2_3_65_2 doi: 10.1002/anie.201311249 – ident: e_1_2_3_5_2 doi: 10.1016/S0301-0082(03)00090-X – ident: e_1_2_3_68_2 doi: 10.1038/294371a0 – ident: e_1_2_3_76_2 doi: 10.1021/cr970022c – ident: e_1_2_3_14_2 doi: 10.1002/anie.200400662 – ident: e_1_2_3_35_2 doi: 10.1021/ja056888e – ident: e_1_2_3_88_1 doi: 10.1021/jo961267c – ident: e_1_2_3_48_2 doi: 10.1002/anie.199506931 – ident: e_1_2_3_39_3 doi: 10.1002/ange.201915287 – ident: e_1_2_3_37_2 doi: 10.1021/ja503376s – ident: e_1_2_3_49_2 doi: 10.1002/(SICI)1521-3773(19990215)38:4<540::AID-ANIE540>3.0.CO;2-N – ident: e_1_2_3_56_2 doi: 10.1002/anie.201906341 – ident: e_1_2_3_74_3 doi: 10.1002/ange.201813797 – ident: e_1_2_3_78_2 doi: 10.1002/anie.199216371 – ident: e_1_2_3_11_2 doi: 10.1126/science.1279807 – ident: e_1_2_3_31_2 doi: 10.1021/acs.accounts.6b00051 – ident: e_1_2_3_47_1 – ident: e_1_2_3_8_2 doi: 10.1111/j.1749-6632.1999.tb11293.x – ident: e_1_2_3_63_2 doi: 10.1021/ja972648q |
SSID | ssj0028806 |
Score | 2.5173903 |
Snippet | Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+... Different types of natural K + channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K... Different types of natural K channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202217859 |
SubjectTerms | Apoptosis Biological Transport Cations Cell membranes Channels Cyclodextrins Homeostasis Ion Channels Modules Permeability Potassium Potassium - metabolism Rebuilding Rubidium Selectivity Sodium Supramolecular Chemistry Transmembrane Transport Transport processes |
Title | Synthetic K+ Channels Constructed by Rebuilding the Core Modules of Natural K+ Channels in an Artificial System |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202217859 https://www.ncbi.nlm.nih.gov/pubmed/36583482 https://www.proquest.com/docview/2774022960 https://www.proquest.com/docview/2759959708 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7iRS_uy7gRQfAgGW3SaaZHEQcXnIMLeCtZQRxacWYO46_3vaatjiKC3lry0qTJe8mX5X2PkAMfeR1Zr5iNFCxQlOywlHvDYFhQGiAC2BjuQ970k4uH-Oqx8_jJiz_wQzQbbmgZ5XiNBq708PiDNBQ9sGF9xznGl0cPPrywhajotuGP4qCcwb1ICIZR6GvWxhN-PJ19elb6BjWnkWs59fQWiaorHW6cPLfHI902b1_4HP_zV0tkocKl9DQo0jKZcfkKmTurw8GtkuJukgNYhGR6fUTRKQGKGlIM-FlS0DpL9YRCb1VxtikIQ-qrozeFHQ_ckBae9lVJ8zH1haecqrwsOJBZ0ECivkYeeuf3ZxesitbAjJAiZZGDscClzkhnpbQ6VjyV2rnEC6NFmnQjb7yzwmnbsV2uue5YY7j3Ik6M5Vqsk9m8yN0moYA5pJAmTZRJYsuVgmWZELGxyKuqTrotwureykxFZY4RNQZZIGHmGTZj1jRjixw28i-BxONHyZ2687PKmIcZB4gMArDWa5H9JhmaH89WVO6KMcqUzG0SK7cRlKYpCvSyixxCLcLLrv-lDtlp__K8edv6S6ZtMg_PeEDPIrFDZkEP3C6Ap5HeKw3kHRjZETE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoALfQBlW9q6UiUOyEDsbLw5IgRaCruHFiRukZ8SAiUVyx7g13fGTlJtK1SJHhOPY8f22N_Ynm8AvoYsmMwFzV2m0UDRashLESzHaUEbhAioY7QPOZkW48v829Wwu01IvjCJH6LfcCPNiPM1KThtSO__Zg0lF2w08ISgAPPlEryksN7RqvreM0gJHJ7JwUhKTnHoO97GA7G_mH9xXfoLbC5i17j4nLwC01U73Tm52Zvfmz37-Aej43_912tYa6EpO0xj6Q288PVbWDnqIsKtQ_PjoUa8iMnsbJeRXwKWNWMU8zOy0HrHzAPDDmtDbTMUxtQ7zyaNm9_6GWsCm-rI9LHwheua6ToWnPgsWOJR34DLk-OLozFvAzZwK5UseeZxOvClt8o7pZzJtSiV8b4I0hpZFqMs2OCd9MYN3UgYYYbOWhGCzAvrhJGbsFw3td8ChrBDSWXLQtsid0JrtMykzK0jalV9MBoA77qrsi2bOQXVuK0SD7OoqBmrvhkHsNPL_0w8Hk9Kbne9X7X6PKsEomQUQHNvAF_6ZGx-Ol7RtW_mJBPJ2xRV7l0aNX1REoEe0QgNQMS-_0cdqsPp6XH_9P45mT7Dyvhicl6dn07PPsAqvqfzep7JbVjGMeE_Ipa6N5-itvwCJsUVTA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VkKCXQqGPbaF1pUockGFjZ-PNEQErKGWFeEjcIj-lqihBXfZAf31n4iSwRQipPSYex45nxvnGjr8B-BqSYBIXNHeJxgBFqwHPRbAcpwVtECKgj9E65Mk4O7xMv10Nrh6c4o_8EN2CG3lGPV-Tg9-4sHNPGkonsDG-E4Lyy-dzsJBm_SHZ9f5ZRyAl0Drj-SIpOaWhb2kb-2Jntv7sZ-kR1pyFrvW3Z7QMuu11_OXk5_b01mzb338ROv7Pa63AqwaYst1oSa_hhS9XYWmvzQe3BtX5XYloEYvZ8RajUwnY1IRRxs-ag9Y7Zu4YqqtJtM1QGEt_eXZSuem1n7AqsLGueT5mnvCjZLqsG45sFiyyqL-By9HBxd4hb9I1cCuVzHnicTLwubfKO6WcSbXIlfE-C9IamWfDJNjgnfTGDdxQGGEGzloRgkwz64SRb2G-rEr_HhiCDiWVzTNts9QJrTEukzK1johVdX_YA95qq7ANlzml1LguIguzKGgYi24Ye7DZyd9EFo8nJddb5ReNN08KgRgZBTDY68GXrhiHnzZXdOmrKcnU1G2KOvcuGk3XlESYRyRCPRC16p_pQ7E7Pjrorj78S6XPsHi6Pyq-H42PP8JLvE2b9TyR6zCPJuE3EEjdmk-1r_wB7MwUBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+K%2B+Channels+Constructed+by+Rebuilding+the+Core+Modules+of+Natural+K%2B+Channels+in+an+Artificial+System&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xin%2C+Pengyang&rft.au=Xu%2C+Linqi&rft.au=Dong%2C+Wenpei&rft.au=Mao%2C+Linlin&rft.date=2023-02-13&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=62&rft.issue=8&rft.spage=e202217859&rft_id=info:doi/10.1002%2Fanie.202217859&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |