Synthetic K+ Channels Constructed by Rebuilding the Core Modules of Natural K+ Channels in an Artificial System

Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ ove...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 8; pp. e202217859 - n/a
Main Authors Xin, Pengyang, Xu, Linqi, Dong, Wenpei, Mao, Linlin, Guo, Jingjing, Bi, Jingjing, Zhang, Shouwei, Pei, Yan, Chen, Chang‐Po
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 13.02.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+, disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels. Rebuilding the core modules of natural K+ channels in an artificial system has led to a biomimetic K+ channel. This channel possesses similar structural features as the natural version, which enables it to replicate the transport behavior and biological function of natural K+ channels.
AbstractList Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+, disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels. Rebuilding the core modules of natural K+ channels in an artificial system has led to a biomimetic K+ channel. This channel possesses similar structural features as the natural version, which enables it to replicate the transport behavior and biological function of natural K+ channels.
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+, disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.
Different types of natural K + channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K + channels by rebuilding the core modules of natural K + channels in artificial systems. All the channels displayed high selectivity for K + over Na + and exhibited a selectivity sequence of K + ≈Rb + during the transport process, which is highly consistent with the cation permeability characteristics of natural K + channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K + , disrupting the cellular K + homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K + channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K + channels can be mimicked in synthetic channels.
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+ ≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+ , disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+ ≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+ , disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.
Different types of natural K channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K channels by rebuilding the core modules of natural K channels in artificial systems. All the channels displayed high selectivity for K over Na and exhibited a selectivity sequence of K ≈Rb during the transport process, which is highly consistent with the cation permeability characteristics of natural K channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K , disrupting the cellular K homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K channels can be mimicked in synthetic channels.
Author Guo, Jingjing
Pei, Yan
Xin, Pengyang
Xu, Linqi
Bi, Jingjing
Dong, Wenpei
Chen, Chang‐Po
Zhang, Shouwei
Mao, Linlin
Author_xml – sequence: 1
  givenname: Pengyang
  orcidid: 0000-0003-4947-7953
  surname: Xin
  fullname: Xin, Pengyang
  email: pyxin27@163.com
  organization: Henan Normal University
– sequence: 2
  givenname: Linqi
  surname: Xu
  fullname: Xu, Linqi
  organization: Henan Normal University
– sequence: 3
  givenname: Wenpei
  surname: Dong
  fullname: Dong, Wenpei
  organization: Henan Normal University
– sequence: 4
  givenname: Linlin
  surname: Mao
  fullname: Mao, Linlin
  organization: Henan Normal University
– sequence: 5
  givenname: Jingjing
  orcidid: 0000-0002-4632-4364
  surname: Guo
  fullname: Guo, Jingjing
  email: jguo@ipm.edu.mo
  organization: Macao Polytechnic University
– sequence: 6
  givenname: Jingjing
  surname: Bi
  fullname: Bi, Jingjing
  organization: Henan Normal University
– sequence: 7
  givenname: Shouwei
  surname: Zhang
  fullname: Zhang, Shouwei
  organization: Henan Normal University
– sequence: 8
  givenname: Yan
  surname: Pei
  fullname: Pei, Yan
  organization: Henan Normal University
– sequence: 9
  givenname: Chang‐Po
  surname: Chen
  fullname: Chen, Chang‐Po
  email: changpochen@yahoo.com
  organization: Henan Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36583482$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7IduXUrATUHmdiaZmSTLy6VqaW3B6nrIx4lNyU1qkkHm35tya6UFcZWQ8zznhPMeor0QAyD0tmtXXduSExkcrEhLSMf4IF6gg24gXUMZo3v13lPa1PduHx3mfFt5ztvxFdqn48Bpz8kBitdLKDdQnMbnH_DmRoYAPuNNDLmkWRcwWC34K6jZeePCD1zhWk2Av0Qze8g4Wnwpy5ykf9LBBSwDXqfirNOuFq-XXGD7Gr200md483Aeoe8fT79tPjcXV5_ONuuLRlNGRdNBzzkI0AwMY0b1kgimAEZLtaJi5J3VFgwFZQbDiSJqMFoTa2k_akMUPULHu753Kf6cIZdp67IG72WAOOeJsEGIQbCWV_T9M_Q2zinU31WK9XW3Ymwr9e6BmtUWzHSX3FamZfqzygqsdoBOMecE9hHp2uk-q-k-q-kxqyr0zwTtiiwuhpKk8__WxE775Tws_xkyrS_PTv-6vwG3q6lt
CitedBy_id crossref_primary_10_1002_ange_202319919
crossref_primary_10_1002_ange_202313712
crossref_primary_10_1016_j_cbpa_2024_102544
crossref_primary_10_1021_acs_jpcb_3c07417
crossref_primary_10_1016_j_cej_2024_151006
crossref_primary_10_1016_j_fmre_2024_06_012
crossref_primary_10_1021_acs_nanolett_4c01884
crossref_primary_10_1021_jacs_4c03203
crossref_primary_10_1039_D4RA05676K
crossref_primary_10_1002_adma_202312352
crossref_primary_10_1002_chem_202403943
crossref_primary_10_1039_D4TB01508H
crossref_primary_10_1039_D3CC04488B
crossref_primary_10_1039_D4SC06893A
crossref_primary_10_1002_anie_202403667
crossref_primary_10_1021_jacs_3c14736
crossref_primary_10_1002_adfm_202400432
crossref_primary_10_1002_anie_202414354
crossref_primary_10_3390_membranes13040434
crossref_primary_10_1002_anie_202313712
crossref_primary_10_1002_anie_202319919
crossref_primary_10_1021_jacs_4c00603
crossref_primary_10_1002_adma_202313273
crossref_primary_10_1002_wcms_1679
crossref_primary_10_1002_ange_202403667
crossref_primary_10_1002_ange_202414354
Cites_doi 10.1021/ar400014r
10.1021/ar400007w
10.1002/ange.201311249
10.1002/ange.200400662
10.1002/cjoc.201800451
10.1021/ja003141
10.1002/ange.202102838
10.1021/jacs.0c00601
10.1002/ange.201906341
10.1021/jacs.0c02134
10.1007/s00018-015-1948-5
10.1021/ar400129t
10.1246/cl.1995.435
10.1002/ange.200502570
10.1038/s41565-020-00796-x
10.1002/anie.201506430
10.1021/ja205884y
10.1021/ar400030e
10.1021/jacs.8b09580
10.1002/(SICI)1097-0320(19991101)37:3<197::AID-CYTO6>3.0.CO;2-L
10.1021/ar4000295
10.1039/D1SC03545B
10.1002/anie.201915287
10.1021/jacs.7b04335
10.1002/anie.201813797
10.1021/jacs.6b10379
10.1021/ar400026x
10.1021/jacs.0c07977
10.1007/BF01871143
10.1021/jacs.5b11743
10.1002/adma.200802982
10.1038/nchem.2021
10.1093/oso/9780199634750.001.0001
10.1021/ct100707s
10.1002/anie.201608428
10.1021/ja909876h
10.1021/ar400032c
10.1021/jacs.0c12128
10.1016/S0955-0674(00)00228-3
10.1021/jacs.6b12094
10.1016/j.jmb.2011.04.043
10.1016/j.femsre.2005.03.003
10.1126/science.280.5360.69
10.1002/ange.201802570
10.1021/ja010761h
10.1021/acs.accounts.5b00143
10.1007/BF01870364
10.1002/anie.202000961
10.1113/jphysiol.1992.sp018938
10.1002/ange.201506430
10.1038/nchem.2706
10.1039/c0cc00366b
10.1038/35102009
10.1038/nnano.2017.99
10.1002/anie.201802570
10.1021/ar8001393
10.1002/ange.19951070613
10.1021/ar400044k
10.1038/s41570-020-00233-6
10.1021/ar400025e
10.1021/acs.accounts.8b00302
10.1002/anie.202102838
10.1021/ja00121a002
10.1038/s41565-021-00915-2
10.1021/jacs.1c06000
10.1021/jacs.6b01723
10.1039/C1CS15099E
10.1021/ar400061d
10.1016/j.bbamcr.2013.06.001
10.1021/bi00138a014
10.1002/anie.200502570
10.1021/ar300337f
10.1002/ange.200501625
10.1002/(SICI)1521-3757(19990215)111:4<523::AID-ANGE523>3.0.CO;2-Q
10.1002/ange.201608428
10.1016/S0040-4039(00)85664-6
10.1021/ja308342g
10.1021/ar00028a009
10.1002/ange.19921041244
10.1080/01926230701320337
10.1038/307465a0
10.1021/ja044748j
10.1039/D0CC08073J
10.1021/jacs.0c02881
10.1002/ange.202000961
10.1002/anie.200501625
10.1002/anie.201311249
10.1016/S0301-0082(03)00090-X
10.1038/294371a0
10.1021/cr970022c
10.1002/anie.200400662
10.1021/ja056888e
10.1021/jo961267c
10.1002/anie.199506931
10.1002/ange.201915287
10.1021/ja503376s
10.1002/(SICI)1521-3773(19990215)38:4<540::AID-ANIE540>3.0.CO;2-N
10.1002/anie.201906341
10.1002/ange.201813797
10.1002/anie.199216371
10.1126/science.1279807
10.1021/acs.accounts.6b00051
10.1111/j.1749-6632.1999.tb11293.x
10.1021/ja972648q
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202217859
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36583482
10_1002_anie_202217859
ANIE202217859
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research Foundation of Henan Normal University
  funderid: 20200155
– fundername: National Natural Science Foundation of China
  funderid: U2004188; 22271079; U1804283; 82130103; 21977025
– fundername: Special Project for Fundamental Research in University of Henan Province
  funderid: 21ZX005
– fundername: Natural Science Foundation of Henan Province
  funderid: 212300410053
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3739-1e488e9ec7ed77db4a297bee6f3cb39681fcfed3ebd5d82b2b5dcc2ff346cd2b3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 18:12:38 EDT 2025
Sun Jul 13 05:15:56 EDT 2025
Wed Feb 19 02:24:51 EST 2025
Tue Jul 01 01:47:02 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Wed Jan 22 16:24:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Transmembrane Transport
Cyclodextrins
Ion Channels
Potassium
Supramolecular Chemistry
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-1e488e9ec7ed77db4a297bee6f3cb39681fcfed3ebd5d82b2b5dcc2ff346cd2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4947-7953
0000-0002-4632-4364
PMID 36583482
PQID 2774022960
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2759959708
proquest_journals_2774022960
pubmed_primary_36583482
crossref_primary_10_1002_anie_202217859
crossref_citationtrail_10_1002_anie_202217859
wiley_primary_10_1002_anie_202217859_ANIE202217859
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 13, 2023
PublicationDateYYYYMMDD 2023-02-13
PublicationDate_xml – month: 02
  year: 2023
  text: February 13, 2023
  day: 13
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1993; 26
2014 2014; 53 126
1998; 280
2004; 126
2015; 72
1999 1999; 38 111
1992; 445
2020 2020; 59 132
2005; 29
2014; 136
2017; 9
2007; 35
1982; 23
2015; 48
2012; 134
2001
2011; 409
2018 2018; 57 130
1995; 24
1996; 61
2015 2015; 54 127
2005 2005; 44 117
2016; 49
1998; 98
2001; 13
2006; 128
2014; 6
2001; 414
1998; 120
2013; 1833
2001; 123
2004 2004; 43 116
2021; 5
2018; 140
2009; 21
2013; 46
2020; 142
2019; 37
1995; 117
1983; 76
1984; 307
1995
1992
2021; 143
1992; 31
1992 1992; 31 104
2019 2019; 58 131
2011; 133
2011; 7
2017; 139
1999; 868
2006 2006; 45 118
2021; 57
2021; 16
1981; 294
2016 2016; 55 128
2021; 12
2003; 70
2010; 46
1995 1995; 34 107
1978; 40
1999; 37
1992; 258
2017; 12
2010; 132
2021 2021; 60 133
2018; 51
2016; 138
2008; 41
2012; 41
e_1_2_3_50_2
e_1_2_3_92_1
e_1_2_3_16_1
e_1_2_3_4_2
e_1_2_3_39_3
e_1_2_3_39_2
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_54_3
e_1_2_3_58_2
e_1_2_3_77_2
e_1_2_3_35_2
e_1_2_3_50_3
e_1_2_3_54_2
e_1_2_3_73_2
e_1_2_3_96_2
e_1_2_3_31_2
e_1_2_3_81_2
e_1_2_3_102_1
e_1_2_3_28_2
e_1_2_3_24_2
e_1_2_3_66_2
e_1_2_3_47_1
e_1_2_3_89_1
e_1_2_3_20_2
e_1_2_3_43_2
e_1_2_3_62_2
e_1_2_3_85_2
e_1_2_3_72_1
e_1_2_3_91_2
e_1_2_3_19_2
Ashley R. H. (e_1_2_3_86_1) 1995
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_11_2
e_1_2_3_34_1
e_1_2_3_7_1
e_1_2_3_57_2
e_1_2_3_99_1
e_1_2_3_30_2
e_1_2_3_76_2
e_1_2_3_53_2
e_1_2_3_95_2
e_1_2_3_61_2
e_1_2_3_80_2
e_1_2_3_103_1
e_1_2_3_27_2
e_1_2_3_23_2
e_1_2_3_69_2
e_1_2_3_46_3
e_1_2_3_65_3
e_1_2_3_46_2
e_1_2_3_88_1
e_1_2_3_65_2
e_1_2_3_42_2
e_1_2_3_84_2
e_1_2_3_71_2
e_1_2_3_71_3
e_1_2_3_94_1
e_1_2_3_90_2
Hille B. (e_1_2_3_6_1) 2001
e_1_2_3_14_3
e_1_2_3_37_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_56_2
e_1_2_3_79_2
e_1_2_3_33_2
e_1_2_3_79_3
e_1_2_3_14_2
e_1_2_3_56_3
e_1_2_3_52_2
e_1_2_3_98_1
e_1_2_3_10_1
e_1_2_3_75_1
e_1_2_3_83_1
e_1_2_3_60_1
e_1_2_3_104_1
e_1_2_3_26_2
e_1_2_3_49_2
e_1_2_3_49_3
e_1_2_3_100_1
e_1_2_3_22_2
e_1_2_3_45_2
e_1_2_3_68_2
e_1_2_3_41_2
e_1_2_3_64_2
e_1_2_3_87_1
e_1_2_3_41_3
e_1_2_3_93_1
e_1_2_3_70_2
e_1_2_3_1_1
e_1_2_3_5_2
e_1_2_3_17_2
e_1_2_3_59_2
e_1_2_3_9_2
e_1_2_3_78_3
e_1_2_3_55_2
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_78_2
e_1_2_3_51_3
e_1_2_3_74_3
e_1_2_3_51_2
e_1_2_3_97_2
e_1_2_3_32_2
e_1_2_3_74_2
e_1_2_3_82_1
Ribera A. B. (e_1_2_3_3_2) 1992
e_1_2_3_48_3
e_1_2_3_48_2
e_1_2_3_101_1
e_1_2_3_29_2
e_1_2_3_44_2
e_1_2_3_67_1
e_1_2_3_25_2
e_1_2_3_40_2
e_1_2_3_21_2
e_1_2_3_63_2
References_xml – volume: 41
  start-page: 1428
  year: 2008
  end-page: 1438
  publication-title: Acc. Chem. Res.
– volume: 46
  start-page: 2847
  year: 2013
  end-page: 2855
  publication-title: Acc. Chem. Res.
– volume: 126
  start-page: 15944
  year: 2004
  end-page: 15945
  publication-title: J. Am. Chem. Soc.
– volume: 294
  start-page: 371
  year: 1981
  end-page: 373
  publication-title: Nature
– volume: 133
  start-page: 14136
  year: 2011
  end-page: 14148
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 1440 1456
  year: 2020 2020
  end-page: 1444 1460
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 619
  year: 2017
  end-page: 630
  publication-title: Nat. Nanotechnol.
– volume: 142
  start-page: 13273
  year: 2020
  end-page: 13277
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 18859
  year: 2020
  end-page: 18865
  publication-title: J. Am. Chem. Soc.
– volume: 44 117
  start-page: 7584 7756
  year: 2005 2005
  end-page: 7587 7759
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2001
– volume: 7
  start-page: 1943
  year: 2011
  end-page: 1950
  publication-title: J. Chem. Theory Comput.
– volume: 128
  start-page: 38
  year: 2006
  end-page: 39
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 14836 14962
  year: 2021 2021
  end-page: 14840 14966
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 307
  start-page: 465
  year: 1984
  end-page: 468
  publication-title: Nature
– volume: 46
  start-page: 2878
  year: 2013
  end-page: 2887
  publication-title: Acc. Chem. Res.
– volume: 49
  start-page: 922
  year: 2016
  end-page: 930
  publication-title: Acc. Chem. Res.
– volume: 140
  start-page: 17992
  year: 2018
  end-page: 17998
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 46
  year: 2021
  end-page: 61
  publication-title: Nat. Chem. Rev.
– volume: 35
  start-page: 495
  year: 2007
  end-page: 516
  publication-title: Toxicol. Pathol.
– volume: 445
  start-page: 537
  year: 1992
  end-page: 548
  publication-title: J. Physiol.
– volume: 46
  start-page: 2856
  year: 2013
  end-page: 2866
  publication-title: Acc. Chem. Res.
– volume: 46
  start-page: 2814
  year: 2013
  end-page: 2823
  publication-title: Acc. Chem. Res.
– volume: 34 107
  start-page: 693 717
  year: 1995 1995
  end-page: 694 719
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 138
  start-page: 16443
  year: 2016
  end-page: 16451
  publication-title: J. Am. Chem. Soc.
– volume: 72
  start-page: 3677
  year: 2015
  end-page: 3693
  publication-title: Cell. Mol. Life Sci.
– volume: 414
  start-page: 43
  year: 2001
  end-page: 48
  publication-title: Nature
– volume: 120
  start-page: 2997
  year: 1998
  end-page: 3003
  publication-title: J. Am. Chem. Soc.
– volume: 31 104
  start-page: 1637 1695
  year: 1992 1992
  end-page: 1640 1697
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 123
  start-page: 12152
  year: 2001
  end-page: 12159
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 961
  year: 2005
  end-page: 985
  publication-title: FEMS Microbiol. Rev.
– volume: 24
  start-page: 435
  year: 1995
  end-page: 436
  publication-title: Chem. Lett.
– volume: 59 132
  start-page: 7944 8018
  year: 2020 2020
  end-page: 7952 8026
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 4054
  year: 2009
  end-page: 4057
  publication-title: Adv. Mater.
– volume: 139
  start-page: 3721
  year: 2017
  end-page: 3727
  publication-title: J. Am. Chem. Soc.
– volume: 409
  start-page: 867
  year: 2011
  end-page: 878
  publication-title: J. Mol. Biol.
– volume: 132
  start-page: 1766
  year: 2010
  end-page: 1767
  publication-title: J. Am. Chem. Soc.
– volume: 76
  start-page: 197
  year: 1983
  end-page: 225
  publication-title: J. Membr. Biol.
– volume: 46
  start-page: 2824
  year: 2013
  end-page: 2833
  publication-title: Acc. Chem. Res.
– volume: 16
  start-page: 911
  year: 2021
  end-page: 917
  publication-title: Nat. Nanotechnol.
– volume: 139
  start-page: 12338
  year: 2017
  end-page: 12341
  publication-title: J. Am. Chem. Soc.
– volume: 61
  start-page: 8866
  year: 1996
  end-page: 8874
  publication-title: J. Org. Chem.
– volume: 41
  start-page: 148
  year: 2012
  end-page: 175
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 2773
  year: 2013
  end-page: 2780
  publication-title: Acc. Chem. Res.
– volume: 51
  start-page: 2730
  year: 2018
  end-page: 2738
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 11252
  year: 2021
  end-page: 11274
  publication-title: Chem. Sci.
– volume: 6
  start-page: 885
  year: 2014
  end-page: 892
  publication-title: Nat. Chem.
– volume: 138
  start-page: 7558
  year: 2016
  end-page: 7567
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 19788
  year: 2012
  end-page: 19794
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 4578 4666
  year: 2014 2014
  end-page: 4581 4669
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 123
  start-page: 2517
  year: 2001
  end-page: 2524
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 1097
  year: 2021
  end-page: 1100
  publication-title: Chem. Commun.
– volume: 258
  start-page: 1152
  year: 1992
  end-page: 1155
  publication-title: Science
– volume: 143
  start-page: 11332
  year: 2021
  end-page: 11336
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 191
  year: 1993
  end-page: 197
  publication-title: Acc. Chem. Res.
– volume: 143
  start-page: 3284
  year: 2021
  end-page: 3288
  publication-title: J. Am. Chem. Soc.
– volume: 43 116
  start-page: 4265 4363
  year: 2004 2004
  end-page: 4277 4376
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 405
  year: 2001
  end-page: 411
  publication-title: Curr. Opin. Cell Biol.
– volume: 98
  start-page: 1743
  year: 1998
  end-page: 1754
  publication-title: Chem. Rev.
– volume: 1833
  start-page: 3448
  year: 2013
  end-page: 3459
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 46
  start-page: 2934
  year: 2013
  end-page: 2943
  publication-title: Acc. Chem. Res.
– volume: 142
  start-page: 10769
  year: 2020
  end-page: 10779
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 97
  year: 1978
  end-page: 116
  publication-title: J. Membr. Biol.
– volume: 136
  start-page: 13078
  year: 2014
  end-page: 13081
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 2779 2805
  year: 2019 2019
  end-page: 2784 2810
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 14473 14681
  year: 2015 2015
  end-page: 14477 14685
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 70
  start-page: 363
  year: 2003
  end-page: 386
  publication-title: Prog. Neurobiol.
– volume: 23
  start-page: 4601
  year: 1982
  end-page: 4604
  publication-title: Tetrahedron Lett.
– volume: 46
  start-page: 2998
  year: 2013
  end-page: 3008
  publication-title: Acc. Chem. Res.
– volume: 37
  start-page: 25
  year: 2019
  end-page: 29
  publication-title: Chin. J. Chem.
– volume: 48
  start-page: 1612
  year: 2015
  end-page: 1619
  publication-title: Acc. Chem. Res.
– volume: 46
  start-page: 2763
  year: 2013
  end-page: 2772
  publication-title: Acc. Chem. Res.
– volume: 868
  start-page: 233
  year: 1999
  end-page: 285
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 46
  start-page: 2955
  year: 2013
  end-page: 2965
  publication-title: Acc. Chem. Res.
– volume: 57 130
  start-page: 10520 10680
  year: 2018 2018
  end-page: 10524 10684
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 4169
  year: 2010
  end-page: 4171
  publication-title: Chem. Commun.
– volume: 46
  start-page: 2791
  year: 2013
  end-page: 2800
  publication-title: Acc. Chem. Res.
– volume: 117
  start-page: 4448
  year: 1995
  end-page: 4454
  publication-title: J. Am. Chem. Soc.
– start-page: 1
  year: 1992
  end-page: 38
– volume: 55 128
  start-page: 14678 14898
  year: 2016 2016
  end-page: 14682 14902
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 667
  year: 2017
  end-page: 675
  publication-title: Nat. Chem.
– volume: 31
  start-page: 5340
  year: 1992
  end-page: 5350
  publication-title: Biochemistry
– volume: 16
  start-page: 190
  year: 2021
  end-page: 196
  publication-title: Nat. Nanotechnol.
– volume: 280
  start-page: 69
  year: 1998
  end-page: 77
  publication-title: Science
– volume: 142
  start-page: 15638
  year: 2020
  end-page: 15643
  publication-title: J. Am. Chem. Soc.
– year: 1995
– volume: 45 118
  start-page: 501 515
  year: 2006 2006
  end-page: 504 518
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 566 574
  year: 2021 2021
  end-page: 597 606
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 37
  start-page: 197
  year: 1999
  end-page: 204
  publication-title: Cytometry
– volume: 38 111
  start-page: 540 523
  year: 1999 1999
  end-page: 543 526
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 426
  year: 2016
  end-page: 432
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_3_19_2
  doi: 10.1021/ar400014r
– ident: e_1_2_3_22_2
  doi: 10.1021/ar400007w
– ident: e_1_2_3_65_3
  doi: 10.1002/ange.201311249
– ident: e_1_2_3_14_3
  doi: 10.1002/ange.200400662
– ident: e_1_2_3_38_2
  doi: 10.1002/cjoc.201800451
– ident: e_1_2_3_60_1
– ident: e_1_2_3_64_2
  doi: 10.1021/ja003141
– ident: e_1_2_3_46_3
  doi: 10.1002/ange.202102838
– ident: e_1_2_3_42_2
  doi: 10.1021/jacs.0c00601
– ident: e_1_2_3_56_3
  doi: 10.1002/ange.201906341
– ident: e_1_2_3_104_1
  doi: 10.1021/jacs.0c02134
– ident: e_1_2_3_9_2
  doi: 10.1007/s00018-015-1948-5
– ident: e_1_2_3_23_2
  doi: 10.1021/ar400129t
– ident: e_1_2_3_61_2
  doi: 10.1246/cl.1995.435
– ident: e_1_2_3_50_3
  doi: 10.1002/ange.200502570
– ident: e_1_2_3_44_2
  doi: 10.1038/s41565-020-00796-x
– ident: e_1_2_3_75_1
– ident: e_1_2_3_72_1
– ident: e_1_2_3_89_1
– ident: e_1_2_3_10_1
– ident: e_1_2_3_51_2
  doi: 10.1002/anie.201506430
– ident: e_1_2_3_85_2
  doi: 10.1021/ja205884y
– ident: e_1_2_3_25_2
  doi: 10.1021/ar400030e
– ident: e_1_2_3_55_2
  doi: 10.1021/jacs.8b09580
– ident: e_1_2_3_101_1
  doi: 10.1002/(SICI)1097-0320(19991101)37:3<197::AID-CYTO6>3.0.CO;2-L
– ident: e_1_2_3_24_2
  doi: 10.1021/ar4000295
– ident: e_1_2_3_59_2
  doi: 10.1039/D1SC03545B
– ident: e_1_2_3_39_2
  doi: 10.1002/anie.201915287
– ident: e_1_2_3_53_2
  doi: 10.1021/jacs.7b04335
– ident: e_1_2_3_74_2
  doi: 10.1002/anie.201813797
– ident: e_1_2_3_99_1
  doi: 10.1021/jacs.6b10379
– ident: e_1_2_3_21_2
  doi: 10.1021/ar400026x
– ident: e_1_2_3_40_2
  doi: 10.1021/jacs.0c07977
– ident: e_1_2_3_91_2
  doi: 10.1007/BF01871143
– ident: e_1_2_3_73_2
  doi: 10.1021/jacs.5b11743
– ident: e_1_2_3_80_2
  doi: 10.1002/adma.200802982
– ident: e_1_2_3_95_2
  doi: 10.1038/nchem.2021
– volume-title: Ion Channels: A Practical Approach
  year: 1995
  ident: e_1_2_3_86_1
  doi: 10.1093/oso/9780199634750.001.0001
– ident: e_1_2_3_93_1
  doi: 10.1021/ct100707s
– ident: e_1_2_3_71_2
  doi: 10.1002/anie.201608428
– ident: e_1_2_3_70_2
  doi: 10.1021/ja909876h
– ident: e_1_2_3_26_2
  doi: 10.1021/ar400032c
– ident: e_1_2_3_57_2
  doi: 10.1021/jacs.0c12128
– ident: e_1_2_3_98_1
  doi: 10.1016/S0955-0674(00)00228-3
– ident: e_1_2_3_52_2
  doi: 10.1021/jacs.6b12094
– ident: e_1_2_3_92_1
  doi: 10.1016/j.jmb.2011.04.043
– ident: e_1_2_3_15_2
  doi: 10.1016/j.femsre.2005.03.003
– ident: e_1_2_3_12_2
  doi: 10.1126/science.280.5360.69
– ident: e_1_2_3_54_3
  doi: 10.1002/ange.201802570
– ident: e_1_2_3_69_2
  doi: 10.1021/ja010761h
– ident: e_1_2_3_30_2
  doi: 10.1021/acs.accounts.5b00143
– ident: e_1_2_3_90_2
  doi: 10.1007/BF01870364
– ident: e_1_2_3_41_2
  doi: 10.1002/anie.202000961
– ident: e_1_2_3_2_2
  doi: 10.1113/jphysiol.1992.sp018938
– ident: e_1_2_3_51_3
  doi: 10.1002/ange.201506430
– ident: e_1_2_3_96_2
  doi: 10.1038/nchem.2706
– ident: e_1_2_3_81_2
  doi: 10.1039/c0cc00366b
– ident: e_1_2_3_34_1
– ident: e_1_2_3_13_2
  doi: 10.1038/35102009
– ident: e_1_2_3_32_2
  doi: 10.1038/nnano.2017.99
– ident: e_1_2_3_54_2
  doi: 10.1002/anie.201802570
– ident: e_1_2_3_18_2
  doi: 10.1021/ar8001393
– ident: e_1_2_3_48_3
  doi: 10.1002/ange.19951070613
– ident: e_1_2_3_27_2
  doi: 10.1021/ar400044k
– ident: e_1_2_3_58_2
  doi: 10.1038/s41570-020-00233-6
– ident: e_1_2_3_67_1
– ident: e_1_2_3_20_2
  doi: 10.1021/ar400025e
– start-page: 1
  volume-title: Ion Channels, Vol. 3
  year: 1992
  ident: e_1_2_3_3_2
– ident: e_1_2_3_33_2
  doi: 10.1021/acs.accounts.8b00302
– ident: e_1_2_3_83_1
– ident: e_1_2_3_46_2
  doi: 10.1002/anie.202102838
– ident: e_1_2_3_62_2
  doi: 10.1021/ja00121a002
– ident: e_1_2_3_94_1
– ident: e_1_2_3_45_2
  doi: 10.1038/s41565-021-00915-2
– ident: e_1_2_3_66_2
  doi: 10.1021/jacs.1c06000
– ident: e_1_2_3_102_1
  doi: 10.1021/jacs.6b01723
– ident: e_1_2_3_87_1
  doi: 10.1039/C1CS15099E
– ident: e_1_2_3_28_2
  doi: 10.1021/ar400061d
– ident: e_1_2_3_100_1
  doi: 10.1016/j.bbamcr.2013.06.001
– volume-title: Ionic Channels of Excitable Membranes
  year: 2001
  ident: e_1_2_3_6_1
– ident: e_1_2_3_82_1
  doi: 10.1021/bi00138a014
– ident: e_1_2_3_16_1
– ident: e_1_2_3_50_2
  doi: 10.1002/anie.200502570
– ident: e_1_2_3_29_2
  doi: 10.1021/ar300337f
– ident: e_1_2_3_79_3
  doi: 10.1002/ange.200501625
– ident: e_1_2_3_49_3
  doi: 10.1002/(SICI)1521-3757(19990215)111:4<523::AID-ANGE523>3.0.CO;2-Q
– ident: e_1_2_3_71_3
  doi: 10.1002/ange.201608428
– ident: e_1_2_3_77_2
  doi: 10.1016/S0040-4039(00)85664-6
– ident: e_1_2_3_1_1
– ident: e_1_2_3_7_1
– ident: e_1_2_3_36_2
  doi: 10.1021/ja308342g
– ident: e_1_2_3_17_2
  doi: 10.1021/ar00028a009
– ident: e_1_2_3_78_3
  doi: 10.1002/ange.19921041244
– ident: e_1_2_3_103_1
  doi: 10.1080/01926230701320337
– ident: e_1_2_3_4_2
  doi: 10.1038/307465a0
– ident: e_1_2_3_84_2
  doi: 10.1021/ja044748j
– ident: e_1_2_3_97_2
  doi: 10.1039/D0CC08073J
– ident: e_1_2_3_43_2
  doi: 10.1021/jacs.0c02881
– ident: e_1_2_3_41_3
  doi: 10.1002/ange.202000961
– ident: e_1_2_3_79_2
  doi: 10.1002/anie.200501625
– ident: e_1_2_3_65_2
  doi: 10.1002/anie.201311249
– ident: e_1_2_3_5_2
  doi: 10.1016/S0301-0082(03)00090-X
– ident: e_1_2_3_68_2
  doi: 10.1038/294371a0
– ident: e_1_2_3_76_2
  doi: 10.1021/cr970022c
– ident: e_1_2_3_14_2
  doi: 10.1002/anie.200400662
– ident: e_1_2_3_35_2
  doi: 10.1021/ja056888e
– ident: e_1_2_3_88_1
  doi: 10.1021/jo961267c
– ident: e_1_2_3_48_2
  doi: 10.1002/anie.199506931
– ident: e_1_2_3_39_3
  doi: 10.1002/ange.201915287
– ident: e_1_2_3_37_2
  doi: 10.1021/ja503376s
– ident: e_1_2_3_49_2
  doi: 10.1002/(SICI)1521-3773(19990215)38:4<540::AID-ANIE540>3.0.CO;2-N
– ident: e_1_2_3_56_2
  doi: 10.1002/anie.201906341
– ident: e_1_2_3_74_3
  doi: 10.1002/ange.201813797
– ident: e_1_2_3_78_2
  doi: 10.1002/anie.199216371
– ident: e_1_2_3_11_2
  doi: 10.1126/science.1279807
– ident: e_1_2_3_31_2
  doi: 10.1021/acs.accounts.6b00051
– ident: e_1_2_3_47_1
– ident: e_1_2_3_8_2
  doi: 10.1111/j.1749-6632.1999.tb11293.x
– ident: e_1_2_3_63_2
  doi: 10.1021/ja972648q
SSID ssj0028806
Score 2.5173903
Snippet Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+...
Different types of natural K + channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K...
Different types of natural K channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202217859
SubjectTerms Apoptosis
Biological Transport
Cations
Cell membranes
Channels
Cyclodextrins
Homeostasis
Ion Channels
Modules
Permeability
Potassium
Potassium - metabolism
Rebuilding
Rubidium
Selectivity
Sodium
Supramolecular Chemistry
Transmembrane Transport
Transport processes
Title Synthetic K+ Channels Constructed by Rebuilding the Core Modules of Natural K+ Channels in an Artificial System
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202217859
https://www.ncbi.nlm.nih.gov/pubmed/36583482
https://www.proquest.com/docview/2774022960
https://www.proquest.com/docview/2759959708
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7iRS_uy7gRQfAgGW3SaaZHEQcXnIMLeCtZQRxacWYO46_3vaatjiKC3lry0qTJe8mX5X2PkAMfeR1Zr5iNFCxQlOywlHvDYFhQGiAC2BjuQ970k4uH-Oqx8_jJiz_wQzQbbmgZ5XiNBq708PiDNBQ9sGF9xznGl0cPPrywhajotuGP4qCcwb1ICIZR6GvWxhN-PJ19elb6BjWnkWs59fQWiaorHW6cPLfHI902b1_4HP_zV0tkocKl9DQo0jKZcfkKmTurw8GtkuJukgNYhGR6fUTRKQGKGlIM-FlS0DpL9YRCb1VxtikIQ-qrozeFHQ_ckBae9lVJ8zH1haecqrwsOJBZ0ECivkYeeuf3ZxesitbAjJAiZZGDscClzkhnpbQ6VjyV2rnEC6NFmnQjb7yzwmnbsV2uue5YY7j3Ik6M5Vqsk9m8yN0moYA5pJAmTZRJYsuVgmWZELGxyKuqTrotwureykxFZY4RNQZZIGHmGTZj1jRjixw28i-BxONHyZ2687PKmIcZB4gMArDWa5H9JhmaH89WVO6KMcqUzG0SK7cRlKYpCvSyixxCLcLLrv-lDtlp__K8edv6S6ZtMg_PeEDPIrFDZkEP3C6Ap5HeKw3kHRjZETE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoALfQBlW9q6UiUOyEDsbLw5IgRaCruHFiRukZ8SAiUVyx7g13fGTlJtK1SJHhOPY8f22N_Ynm8AvoYsmMwFzV2m0UDRashLESzHaUEbhAioY7QPOZkW48v829Wwu01IvjCJH6LfcCPNiPM1KThtSO__Zg0lF2w08ISgAPPlEryksN7RqvreM0gJHJ7JwUhKTnHoO97GA7G_mH9xXfoLbC5i17j4nLwC01U73Tm52Zvfmz37-Aej43_912tYa6EpO0xj6Q288PVbWDnqIsKtQ_PjoUa8iMnsbJeRXwKWNWMU8zOy0HrHzAPDDmtDbTMUxtQ7zyaNm9_6GWsCm-rI9LHwheua6ToWnPgsWOJR34DLk-OLozFvAzZwK5UseeZxOvClt8o7pZzJtSiV8b4I0hpZFqMs2OCd9MYN3UgYYYbOWhGCzAvrhJGbsFw3td8ChrBDSWXLQtsid0JrtMykzK0jalV9MBoA77qrsi2bOQXVuK0SD7OoqBmrvhkHsNPL_0w8Hk9Kbne9X7X6PKsEomQUQHNvAF_6ZGx-Ol7RtW_mJBPJ2xRV7l0aNX1REoEe0QgNQMS-_0cdqsPp6XH_9P45mT7Dyvhicl6dn07PPsAqvqfzep7JbVjGMeE_Ipa6N5-itvwCJsUVTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VkKCXQqGPbaF1pUockGFjZ-PNEQErKGWFeEjcIj-lqihBXfZAf31n4iSwRQipPSYex45nxvnGjr8B-BqSYBIXNHeJxgBFqwHPRbAcpwVtECKgj9E65Mk4O7xMv10Nrh6c4o_8EN2CG3lGPV-Tg9-4sHNPGkonsDG-E4Lyy-dzsJBm_SHZ9f5ZRyAl0Drj-SIpOaWhb2kb-2Jntv7sZ-kR1pyFrvW3Z7QMuu11_OXk5_b01mzb338ROv7Pa63AqwaYst1oSa_hhS9XYWmvzQe3BtX5XYloEYvZ8RajUwnY1IRRxs-ag9Y7Zu4YqqtJtM1QGEt_eXZSuem1n7AqsLGueT5mnvCjZLqsG45sFiyyqL-By9HBxd4hb9I1cCuVzHnicTLwubfKO6WcSbXIlfE-C9IamWfDJNjgnfTGDdxQGGEGzloRgkwz64SRb2G-rEr_HhiCDiWVzTNts9QJrTEukzK1johVdX_YA95qq7ANlzml1LguIguzKGgYi24Ye7DZyd9EFo8nJddb5ReNN08KgRgZBTDY68GXrhiHnzZXdOmrKcnU1G2KOvcuGk3XlESYRyRCPRC16p_pQ7E7Pjrorj78S6XPsHi6Pyq-H42PP8JLvE2b9TyR6zCPJuE3EEjdmk-1r_wB7MwUBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+K%2B+Channels+Constructed+by+Rebuilding+the+Core+Modules+of+Natural+K%2B+Channels+in+an+Artificial+System&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xin%2C+Pengyang&rft.au=Xu%2C+Linqi&rft.au=Dong%2C+Wenpei&rft.au=Mao%2C+Linlin&rft.date=2023-02-13&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=62&rft.issue=8&rft.spage=e202217859&rft_id=info:doi/10.1002%2Fanie.202217859&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon