Simultaneous Photoactivation of cGAS‐STING Pathway and Pyroptosis by Platinum(II) Triphenylamine Complexes for Cancer Immunotherapy
Activation of the cyclic GMP‐AMP synthase‐stimulator of the interferon gene (cGAS‐STING) pathway is a potent anticancer immunotherapeutic strategy, and the induction of pyroptosis is a feasible way to stimulate the anticancer immune responses. Herein, two PtII complexes (Pt1 and Pt2) were designed a...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 43; pp. e202210988 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
24.10.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Activation of the cyclic GMP‐AMP synthase‐stimulator of the interferon gene (cGAS‐STING) pathway is a potent anticancer immunotherapeutic strategy, and the induction of pyroptosis is a feasible way to stimulate the anticancer immune responses. Herein, two PtII complexes (Pt1 and Pt2) were designed as photoactivators of the cGAS‐STING pathway. In response to light irradiation, Pt1 and Pt2 could damage mitochondrial/nuclear DNA and the nuclear envelope to activate the cGAS‐STING pathway, and concurrently induce pyroptosis in cancer cells, which evoked an intense anticancer immune response in vitro and in vivo. Overall, we present the first photoactivator of the cGAS‐STING pathway, which may provide an innovative design strategy for anticancer immunotherapy.
The first small molecule that can activate cGAS‐STING in a photocontrollable way is reported. Upon irradiation, Pt1 and Pt2 can damage mitochondrial DNA, the nuclear envelope and nuclear DNA sequentially, which effectively releases DNA into cytoplasm to activate the cGAS‐STING pathway both in vitro and in vivo. |
---|---|
AbstractList | Activation of the cyclic GMP‐AMP synthase‐stimulator of the interferon gene (cGAS‐STING) pathway is a potent anticancer immunotherapeutic strategy, and the induction of pyroptosis is a feasible way to stimulate the anticancer immune responses. Herein, two PtII complexes (Pt1 and Pt2) were designed as photoactivators of the cGAS‐STING pathway. In response to light irradiation, Pt1 and Pt2 could damage mitochondrial/nuclear DNA and the nuclear envelope to activate the cGAS‐STING pathway, and concurrently induce pyroptosis in cancer cells, which evoked an intense anticancer immune response in vitro and in vivo. Overall, we present the first photoactivator of the cGAS‐STING pathway, which may provide an innovative design strategy for anticancer immunotherapy.
The first small molecule that can activate cGAS‐STING in a photocontrollable way is reported. Upon irradiation, Pt1 and Pt2 can damage mitochondrial DNA, the nuclear envelope and nuclear DNA sequentially, which effectively releases DNA into cytoplasm to activate the cGAS‐STING pathway both in vitro and in vivo. Activation of the cyclic GMP‐AMP synthase‐stimulator of the interferon gene (cGAS‐STING) pathway is a potent anticancer immunotherapeutic strategy, and the induction of pyroptosis is a feasible way to stimulate the anticancer immune responses. Herein, two Pt II complexes ( Pt1 and Pt2 ) were designed as photoactivators of the cGAS‐STING pathway. In response to light irradiation, Pt1 and Pt2 could damage mitochondrial/nuclear DNA and the nuclear envelope to activate the cGAS‐STING pathway, and concurrently induce pyroptosis in cancer cells, which evoked an intense anticancer immune response in vitro and in vivo. Overall, we present the first photoactivator of the cGAS‐STING pathway, which may provide an innovative design strategy for anticancer immunotherapy. Activation of the cyclic GMP‐AMP synthase‐stimulator of the interferon gene (cGAS‐STING) pathway is a potent anticancer immunotherapeutic strategy, and the induction of pyroptosis is a feasible way to stimulate the anticancer immune responses. Herein, two PtII complexes (Pt1 and Pt2) were designed as photoactivators of the cGAS‐STING pathway. In response to light irradiation, Pt1 and Pt2 could damage mitochondrial/nuclear DNA and the nuclear envelope to activate the cGAS‐STING pathway, and concurrently induce pyroptosis in cancer cells, which evoked an intense anticancer immune response in vitro and in vivo. Overall, we present the first photoactivator of the cGAS‐STING pathway, which may provide an innovative design strategy for anticancer immunotherapy. Activation of the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway is a potent anticancer immunotherapeutic strategy, and the induction of pyroptosis is a feasible way to stimulate the anticancer immune responses. Herein, two PtII complexes (Pt1 and Pt2) were designed as photoactivators of the cGAS-STING pathway. In response to light irradiation, Pt1 and Pt2 could damage mitochondrial/nuclear DNA and the nuclear envelope to activate the cGAS-STING pathway, and concurrently induce pyroptosis in cancer cells, which evoked an intense anticancer immune response in vitro and in vivo. Overall, we present the first photoactivator of the cGAS-STING pathway, which may provide an innovative design strategy for anticancer immunotherapy.Activation of the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway is a potent anticancer immunotherapeutic strategy, and the induction of pyroptosis is a feasible way to stimulate the anticancer immune responses. Herein, two PtII complexes (Pt1 and Pt2) were designed as photoactivators of the cGAS-STING pathway. In response to light irradiation, Pt1 and Pt2 could damage mitochondrial/nuclear DNA and the nuclear envelope to activate the cGAS-STING pathway, and concurrently induce pyroptosis in cancer cells, which evoked an intense anticancer immune response in vitro and in vivo. Overall, we present the first photoactivator of the cGAS-STING pathway, which may provide an innovative design strategy for anticancer immunotherapy. Activation of the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway is a potent anticancer immunotherapeutic strategy, and the induction of pyroptosis is a feasible way to stimulate the anticancer immune responses. Herein, two Pt complexes (Pt1 and Pt2) were designed as photoactivators of the cGAS-STING pathway. In response to light irradiation, Pt1 and Pt2 could damage mitochondrial/nuclear DNA and the nuclear envelope to activate the cGAS-STING pathway, and concurrently induce pyroptosis in cancer cells, which evoked an intense anticancer immune response in vitro and in vivo. Overall, we present the first photoactivator of the cGAS-STING pathway, which may provide an innovative design strategy for anticancer immunotherapy. |
Author | Mao, Zong‐Wan Wang, Wen‐Jin Tan, Cai‐Ping Xia, Xiao‐Yu Hao, Liang Zhang, Hang Ling, Yu‐Yi Liu, Wenting Li, Zhi‐Yuan Liu, Liu‐Yi |
Author_xml | – sequence: 1 givenname: Yu‐Yi surname: Ling fullname: Ling, Yu‐Yi organization: Sun Yat-Sen University – sequence: 2 givenname: Xiao‐Yu surname: Xia fullname: Xia, Xiao‐Yu organization: Sun Yat-Sen University – sequence: 3 givenname: Liang surname: Hao fullname: Hao, Liang organization: Sun Yat-Sen University – sequence: 4 givenname: Wen‐Jin surname: Wang fullname: Wang, Wen‐Jin organization: Sun Yat-Sen University – sequence: 5 givenname: Hang surname: Zhang fullname: Zhang, Hang organization: Sun Yat-Sen University – sequence: 6 givenname: Liu‐Yi surname: Liu fullname: Liu, Liu‐Yi organization: Sun Yat-Sen University – sequence: 7 givenname: Wenting surname: Liu fullname: Liu, Wenting organization: Sun Yat-Sen University – sequence: 8 givenname: Zhi‐Yuan surname: Li fullname: Li, Zhi‐Yuan organization: Sun Yat-Sen University – sequence: 9 givenname: Cai‐Ping surname: Tan fullname: Tan, Cai‐Ping email: tancaip@mail.sysu.edu.cn organization: Sun Yat-Sen University – sequence: 10 givenname: Zong‐Wan orcidid: 0000-0001-7131-1154 surname: Mao fullname: Mao, Zong‐Wan email: cesmzw@mail.sysu.edu.cn organization: Sun Yat-Sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35979672$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gyhFZ4lIOWfwRb5zjalWWSFVZaZdzNOvYWleJHWynJTcu3PmN_BKybAtSJcRp5vA8o5l5z9GJ804j9JqSGSWEvQdn9YwRxigppXyGzqhgNONFwU-mPuc8K6Sgp-g8xtuJl5LMX6BTLsqinBfsDH3f2G5oEzjth4jXe588qGTvIFnvsDdYrRabn99-bLbVzQqvIe3vYcTgGrweg--Tjzbi3YjX7WS4obusqnd4G2y_125sobNO46Xv-lZ_1REbH_ASnNIBV103OJ_2OkA_vkTPDbRRv3qoF-jzh6vt8mN2_WlVLRfXmeIFl5mhjaKGGiiIBl0KOTcSgOoyF1ztaK4aBiUwkDshd7lgTAJpSsMME2WTizm_QJfHuX3wXwYdU93ZqHTbHu-vWUF4KfOciQl9-wS99UNw03YTxURBcsIP1JsHath1uqn7YDsIY_344AnIj4AKPsagTa1s-v3cFMC2NSX1Icf6kGP9J8dJmz3RHif_UyiPwr1t9fgful7cVFd_3V_TfbJ4 |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215588 crossref_primary_10_1016_j_jorganchem_2025_123571 crossref_primary_10_1002_eji_202350386 crossref_primary_10_1039_D2CS00352J crossref_primary_10_1016_j_bmc_2024_117856 crossref_primary_10_1016_j_ccr_2024_216319 crossref_primary_10_1002_cmdc_202400120 crossref_primary_10_1002_smsc_202400220 crossref_primary_10_1002_anie_202410803 crossref_primary_10_1021_acsnano_4c08613 crossref_primary_10_1016_j_biomaterials_2024_122969 crossref_primary_10_1021_acs_jmedchem_3c01110 crossref_primary_10_1002_adma_202401145 crossref_primary_10_1002_advs_202410336 crossref_primary_10_1002_advs_202306580 crossref_primary_10_1002_ange_202216917 crossref_primary_10_1002_ange_202419376 crossref_primary_10_1016_j_jconrel_2024_05_042 crossref_primary_10_1021_acsami_5c01443 crossref_primary_10_1016_j_ejmech_2024_116954 crossref_primary_10_1002_adhm_202400623 crossref_primary_10_1002_anie_202303010 crossref_primary_10_1002_agt2_623 crossref_primary_10_1186_s13008_024_00127_9 crossref_primary_10_1002_agt2_503 crossref_primary_10_1002_jat_4594 crossref_primary_10_1016_j_drudis_2023_103694 crossref_primary_10_1016_j_mtbio_2024_101191 crossref_primary_10_1186_s12951_024_03013_2 crossref_primary_10_1002_adhm_202304067 crossref_primary_10_1021_acs_jmedchem_2c02000 crossref_primary_10_1007_s11033_024_09418_4 crossref_primary_10_1002_adhm_202300260 crossref_primary_10_1016_j_apsb_2023_11_032 crossref_primary_10_1016_j_ymthe_2023_03_026 crossref_primary_10_1039_D3QI00376K crossref_primary_10_1039_D3QI01562A crossref_primary_10_1002_asia_202301020 crossref_primary_10_1021_acs_jmedchem_4c02260 crossref_primary_10_4251_wjgo_v16_i8_3410 crossref_primary_10_1002_ange_202303010 crossref_primary_10_1021_acs_chemrev_3c00161 crossref_primary_10_1186_s12967_025_06247_2 crossref_primary_10_1021_jacs_3c01231 crossref_primary_10_3390_molecules29133121 crossref_primary_10_1016_j_biomaterials_2024_122472 crossref_primary_10_1002_ange_202406392 crossref_primary_10_1186_s12943_024_02183_9 crossref_primary_10_1016_j_cej_2024_150154 crossref_primary_10_1021_acs_inorgchem_4c00060 crossref_primary_10_1021_acs_jmedchem_4c01948 crossref_primary_10_1186_s12964_023_01466_w crossref_primary_10_1021_acsmaterialslett_4c00135 crossref_primary_10_1002_ange_202410803 crossref_primary_10_1021_jacs_3c04180 crossref_primary_10_1039_D4SC06493C crossref_primary_10_1093_nsr_nwae020 crossref_primary_10_1002_adma_202313029 crossref_primary_10_1021_acs_jmedchem_3c02227 crossref_primary_10_1002_ange_202305645 crossref_primary_10_1021_acs_jmedchem_4c01065 crossref_primary_10_1039_D4CC01594K crossref_primary_10_1016_j_ejmech_2024_116638 crossref_primary_10_1039_D4SC00643G crossref_primary_10_1002_anie_202406392 crossref_primary_10_1021_acsomega_4c10865 crossref_primary_10_1021_acs_analchem_4c01128 crossref_primary_10_1021_acs_jmedchem_4c01354 crossref_primary_10_1002_smtd_202201403 crossref_primary_10_1039_D2CS00757F crossref_primary_10_1021_acs_jmedchem_4c01671 crossref_primary_10_1360_SSC_2024_0102 crossref_primary_10_1002_anie_202216917 crossref_primary_10_1002_chem_202302948 crossref_primary_10_1002_anie_202305645 crossref_primary_10_1021_acs_jmedchem_3c00792 crossref_primary_10_1038_s41551_024_01221_7 crossref_primary_10_1002_anie_202419376 |
Cites_doi | 10.1038/s41422-020-00395-4 10.1186/s12943-020-01247-w 10.1038/s41577-021-00602-2 10.1002/ange.202007878 10.1021/acs.chemrev.8b00396 10.1002/anie.202203838 10.1021/acs.inorgchem.0c01880 10.1002/anie.201608936 10.1158/2159-8290.CD-19-0761 10.1002/anie.201706739 10.4161/auto.6.6.12577 10.1016/j.immuni.2019.12.011 10.1016/j.immuni.2020.05.013 10.1016/j.molcel.2018.07.034 10.1039/c0dt00292e 10.1016/j.ica.2019.118987 10.1021/ic501446b 10.1093/nar/gkn550 10.1038/sj.onc.1206933 10.1038/s41586-018-0705-y 10.1038/s41577-020-0306-5 10.1038/s41568-021-00386-6 10.1016/j.isci.2021.103055 10.1002/ange.202013987 10.1016/j.ctrv.2016.10.008 10.1002/anie.202115247 10.1158/0008-5472.CAN-12-2236 10.1016/j.celrep.2015.04.031 10.1006/abio.1997.2177 10.1002/ange.202002422 10.1002/anie.202008604 10.3390/cells11071159 10.1038/s41577-021-00537-8 10.1016/j.cell.2020.09.020 10.1186/s13045-020-00946-7 10.1002/anie.202013987 10.1172/JCI43656 10.1021/cr4004314 10.1016/j.devcel.2021.02.009 10.1002/advs.202004566 10.1038/s41568-020-00308-y 10.1039/C4CC05255B 10.1016/j.chempr.2019.08.021 10.1002/ange.202011273 10.1038/nrc2167 10.1039/C8SC04242J 10.4049/jimmunol.1303276 10.1038/s41580-020-0244-x 10.1126/sciimmunol.aat2738 10.1634/theoncologist.9-1-8 10.1002/ange.202114250 10.1016/j.bmcl.2012.04.124 10.1038/nature21349 10.1038/s41586-022-04559-7 10.1038/s41576-019-0151-1 10.1002/anie.201400533 10.1038/nrmicro2836 10.1002/anie.202011273 10.1016/j.tcb.2017.05.005 10.1021/acs.chemrev.1c00750 10.1016/j.ejphar.2014.07.025 10.1039/D0CC05196A 10.1016/bs.ai.2019.11.007 10.1016/j.tcb.2018.11.004 10.1002/anie.202007878 10.1002/ange.202115800 10.1039/C8DT00838H 10.3389/fimmu.2021.795401 10.1107/S2053230X17011384 10.1002/ange.201608936 10.1021/jacs.0c00221 10.1021/acs.chemrev.5b00597 10.1002/ange.202005362 10.1002/ange.202203838 10.1002/anie.202115800 10.1016/j.tcb.2021.06.002 10.1002/ange.202115247 10.1038/s41551-020-00675-9 10.1021/ja073231f 10.1360/SSC-2019-0040 10.1038/nchembio711 10.1002/ange.201400533 10.1002/anie.202005362 10.1021/ja0432618 10.1021/cr980421n 10.1002/anie.202114250 10.1038/s41586-019-1228-x 10.1038/s41467-018-05810-4 10.1039/D0SC00197J 10.1002/anie.202002422 10.1126/science.abb4255 10.1002/chem.201703598 10.1038/s41577-021-00524-z 10.1002/asia.202200270 10.1021/ja411811w 10.1038/nrc3239 10.1002/ange.202008604 10.1126/science.1203486 10.1038/s41392-021-00658-5 10.1126/science.aaa4967 10.1038/nrd1691 10.1038/s41565-018-0342-5 10.1002/ange.201706739 10.1021/ja803036e |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202210988 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 35979672 10_1002_anie_202210988 ANIE202210988 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22022707; 22177142; 21837006; 91953117 – fundername: Fundamental Research Funds for Central Universities of the Central South University |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3738-f1dc1f1fa70eae9586f8aa1e9453cb14cd2a9a2a8b58b45228a0d9f2f259d4563 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 02:16:34 EDT 2025 Sun Jul 13 05:24:48 EDT 2025 Thu Apr 03 07:00:30 EDT 2025 Tue Jul 01 01:18:27 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Wed Jan 22 16:22:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | Photoimmunotherapy Pyroptosis PtII Complexes cGAS-STING DNA Binding |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-f1dc1f1fa70eae9586f8aa1e9453cb14cd2a9a2a8b58b45228a0d9f2f259d4563 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7131-1154 |
PMID | 35979672 |
PQID | 2725704035 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2703984425 proquest_journals_2725704035 pubmed_primary_35979672 crossref_citationtrail_10_1002_anie_202210988 crossref_primary_10_1002_anie_202210988 wiley_primary_10_1002_anie_202210988_ANIE202210988 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 24, 2022 |
PublicationDateYYYYMMDD | 2022-10-24 |
PublicationDate_xml | – month: 10 year: 2022 text: October 24, 2022 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2021; 24 2021; 21 2020; 20 2019; 10 2018; 564 2019; 14 2004; 9 2020 2020; 59 132 2020; 369 2008; 36 2020; 59 2020; 13 2020; 56 2020; 11 2015; 348 2020; 10 2019; 569 2012; 12 2012; 10 2014; 136 2020; 19 2018; 47 2012; 72 2022; 122 2017; 73 2018; 9 2022 2022; 61 134 2018; 3 2021; 31 2020; 53 2019; 20 2020; 52 1999; 99 2007; 7 2019; 29 2018; 30 2019; 119 2016; 116 2018; 71 2022; 604 2014; 50 2012; 22 2010; 6 2011; 121 2014; 53 2021; 8 2021; 6 2021; 5 2007; 129 2019; 5 2020; 142 2010; 39 2017; 27 2015; 11 2020; 183 2017; 23 2009 2020; 145 2017 2017; 56 129 2014; 193 2014; 114 2011; 331 2017; 52 1997; 249 2016 2016; 55 128 2021; 56 2020; 30 2021 2005; 127 2022; 12 2019; 49 2021 2021; 60 133 2005; 4 2019; 498 2005; 1 2020; 21 2022; 11 2017; 541 2008; 130 2022; 17 2003; 22 2014; 740 e_1_2_7_108_1 e_1_2_7_3_2 e_1_2_7_104_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_100_1 e_1_2_7_83_2 e_1_2_7_15_1 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_90_1 e_1_2_7_71_2 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_75_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_37_1 e_1_2_7_79_1 Hao L. (e_1_2_7_98_2) 2021 e_1_2_7_4_2 e_1_2_7_109_1 e_1_2_7_8_2 e_1_2_7_105_1 e_1_2_7_82_2 e_1_2_7_16_3 e_1_2_7_101_1 e_1_2_7_16_2 (e_1_2_7_18_3) 2022; 134 e_1_2_7_40_1 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_86_3 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 Sun Y. W. (e_1_2_7_10_2) 2018; 30 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_113_1 e_1_2_7_70_3 e_1_2_7_51_1 e_1_2_7_93_1 e_1_2_7_70_2 e_1_2_7_74_3 e_1_2_7_24_2 e_1_2_7_97_2 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_55_2 e_1_2_7_20_1 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_59_2 e_1_2_7_5_2 e_1_2_7_106_1 e_1_2_7_9_1 (e_1_2_7_69_3) 2022; 134 e_1_2_7_102_1 e_1_2_7_17_3 e_1_2_7_81_3 e_1_2_7_17_2 e_1_2_7_81_2 e_1_2_7_1_1 e_1_2_7_62_2 e_1_2_7_13_1 e_1_2_7_85_1 e_1_2_7_43_2 e_1_2_7_66_2 e_1_2_7_89_1 e_1_2_7_47_2 e_1_2_7_28_1 Hashiguchi K. (e_1_2_7_111_1) 2009 (e_1_2_7_72_3) 2022; 134 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_110_1 e_1_2_7_25_2 e_1_2_7_31_1 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_73_3 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_39_2 e_1_2_7_2_2 e_1_2_7_107_1 e_1_2_7_103_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_80_3 e_1_2_7_14_1 e_1_2_7_88_1 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_46_1 e_1_2_7_65_3 e_1_2_7_69_2 e_1_2_7_27_1 e_1_2_7_95_1 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_99_1 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_53_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_2 (e_1_2_7_103_3) 2022; 134 |
References_xml | – volume: 71 start-page: 745 year: 2018 end-page: 760 publication-title: Mol. Cell – volume: 21 start-page: 37 year: 2021 end-page: 50 publication-title: Nat. Rev. Cancer – volume: 55 128 start-page: 15564 15793 year: 2016 2016 end-page: 15568 15797 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 1285 year: 2019 end-page: 1293 publication-title: Chem. Sci. – volume: 22 start-page: 3900 year: 2012 end-page: 3904 publication-title: Bioorg. Med. Chem. Lett. – volume: 11 start-page: 1159 year: 2022 publication-title: Cells – volume: 14 start-page: 269 year: 2019 end-page: 278 publication-title: Nat. Nanotechnol. – volume: 193 start-page: 6135 year: 2014 publication-title: J. Immunol. – volume: 541 start-page: 321 year: 2017 end-page: 330 publication-title: Nature – volume: 119 start-page: 1519 year: 2019 end-page: 1624 publication-title: Chem. Rev. – volume: 569 start-page: 718 year: 2019 end-page: 722 publication-title: Nature – volume: 73 start-page: 500 year: 2017 end-page: 504 publication-title: Acta Crystallogr. Sect. F – volume: 21 start-page: 701 year: 2021 end-page: 717 publication-title: Nat. Rev. Cancer – volume: 72 start-page: 5483 year: 2012 end-page: 5493 publication-title: Cancer Res. – volume: 114 start-page: 4470 year: 2014 end-page: 4495 publication-title: Chem. Rev. – volume: 3 year: 2018 publication-title: Sci. Immunol. – volume: 20 start-page: 651 year: 2020 end-page: 668 publication-title: Nat. Rev. Immunol. – volume: 122 start-page: 5977 year: 2022 end-page: 6039 publication-title: Chem. Rev. – volume: 59 132 start-page: 19070 19232 year: 2020 2020 end-page: 19078 19240 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 573 year: 2007 end-page: 584 publication-title: Nat. Rev. Cancer – volume: 22 start-page: 7265 year: 2003 end-page: 7279 publication-title: Oncogene – volume: 31 start-page: 843 year: 2021 end-page: 855 publication-title: Trends Cell Biol. – volume: 23 start-page: 16442 year: 2017 end-page: 16446 publication-title: Chem. Eur. J. – volume: 116 start-page: 3436 year: 2016 end-page: 3486 publication-title: Chem. Rev. – volume: 12 year: 2022 publication-title: Front. Immunol. – volume: 348 start-page: 62 year: 2015 end-page: 68 publication-title: Science – volume: 604 start-page: 557 year: 2022 end-page: 562 publication-title: Nature – volume: 24 year: 2021 publication-title: iScience – start-page: 383 year: 2009 end-page: 391 – volume: 56 129 start-page: 11539 11697 year: 2017 2017 end-page: 11544 11702 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 30 start-page: 966 year: 2020 end-page: 979 publication-title: Cell Res. – volume: 21 start-page: 548 year: 2021 end-page: 569 publication-title: Nat. Rev. Immunol. – volume: 56 start-page: 14373 year: 2020 end-page: 14376 publication-title: Chem. Commun. – volume: 331 start-page: 1565 year: 2011 end-page: 1570 publication-title: Science – volume: 145 start-page: 187 year: 2020 end-page: 241 publication-title: Adv. Immunol. – volume: 369 start-page: 993 year: 2020 end-page: 999 publication-title: Science – volume: 29 start-page: 227 year: 2019 end-page: 240 publication-title: Trends Cell Biol. – year: 2021 publication-title: Natl. Sci. Rev. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 year: 2022 publication-title: Chem. Asian J. – volume: 47 start-page: 6645 year: 2018 end-page: 6653 publication-title: Dalton Trans. – volume: 1 start-page: 112 year: 2005 end-page: 119 publication-title: Nat. Chem. Biol. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 21 start-page: 501 year: 2020 end-page: 521 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 19 start-page: 136 year: 2020 publication-title: Mol. Cancer – volume: 52 start-page: 48 year: 2017 end-page: 57 publication-title: Cancer Treat. Rev. – volume: 121 start-page: 3100 year: 2011 end-page: 3108 publication-title: J. Clin. Invest. – volume: 9 start-page: 8 year: 2004 end-page: 12 publication-title: Oncologist – volume: 136 start-page: 2546 year: 2014 end-page: 2554 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 23313 23513 year: 2020 2020 end-page: 23321 23521 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 263 year: 2021 publication-title: Signal Transduction Targeted Ther. – volume: 740 start-page: 364 year: 2014 end-page: 378 publication-title: Eur. J. Pharmacol. – volume: 13 start-page: 110 year: 2020 publication-title: J. Hematol. Oncol. – volume: 12 start-page: 252 year: 2012 end-page: 264 publication-title: Nat. Rev. Cancer – volume: 10 start-page: 26 year: 2020 end-page: 39 publication-title: Cancer Discovery – volume: 9 start-page: 3496 year: 2018 publication-title: Nat. Commun. – volume: 6 start-page: 805 year: 2010 end-page: 807 publication-title: Autophagy – volume: 56 start-page: 881 year: 2021 end-page: 905 publication-title: Dev. Cell – volume: 11 start-page: 3829 year: 2020 end-page: 3835 publication-title: Chem. Sci. – volume: 52 start-page: 17 year: 2020 end-page: 35 publication-title: Immunity – volume: 498 year: 2019 publication-title: Inorg. Chim. Acta – volume: 127 start-page: 1382 year: 2005 end-page: 1383 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 3151 year: 2019 end-page: 3165 publication-title: Chem – volume: 59 132 start-page: 19229 19391 year: 2020 2020 end-page: 19236 19398 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 249 start-page: 228 year: 1997 end-page: 238 publication-title: Anal. Biochem. – volume: 59 start-page: 11823 year: 2020 end-page: 11833 publication-title: Inorg. Chem. – volume: 36 start-page: 5678 year: 2008 end-page: 5694 publication-title: Nucleic Acids Res. – volume: 49 start-page: 1037 year: 2019 end-page: 1046 publication-title: Sci. Sin. Chim. – volume: 130 start-page: 11467 year: 2008 end-page: 11476 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 6938 7058 year: 2014 2014 end-page: 6941 7061 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 657 year: 2019 end-page: 674 publication-title: Nat. Rev. Genet. – volume: 129 start-page: 8438 year: 2007 end-page: 8439 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 9326 year: 2014 end-page: 9335 publication-title: Inorg. Chem. – volume: 27 start-page: 673 year: 2017 end-page: 684 publication-title: Trends Cell Biol. – volume: 59 132 start-page: 18556 18715 year: 2020 2020 end-page: 18562 18721 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 183 start-page: 636 year: 2020 end-page: 649 publication-title: Cell – volume: 53 start-page: 43 year: 2020 end-page: 53 publication-title: Immunity – volume: 142 start-page: 7803 year: 2020 end-page: 7812 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 620 year: 2021 end-page: 621 publication-title: Nat. Rev. Immunol. – volume: 564 start-page: 439 year: 2018 end-page: 443 publication-title: Nature – volume: 4 start-page: 307 year: 2005 end-page: 320 publication-title: Nat. Rev. Drug Discovery – volume: 50 start-page: 11465 year: 2014 end-page: 11468 publication-title: Chem. Commun. – volume: 59 132 start-page: 9719 9806 year: 2020 2020 end-page: 9726 9813 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 99 start-page: 2467 year: 1999 end-page: 2498 publication-title: Chem. Rev. – volume: 39 start-page: 8113 year: 2010 end-page: 8127 publication-title: Dalton Trans. – volume: 60 133 start-page: 4657 4707 year: 2021 2021 end-page: 4665 4715 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 1018 year: 2015 end-page: 1030 publication-title: Cell Rep. – volume: 5 start-page: 455 year: 2021 end-page: 466 publication-title: Nat. Biomed. Eng. – volume: 10 start-page: 525 year: 2012 end-page: 537 publication-title: Nat. Rev. Microbiol. – volume: 21 start-page: 718 year: 2021 end-page: 738 publication-title: Nat. Rev. Immunol. – volume: 30 start-page: 1573 year: 2018 end-page: 1583 publication-title: Prog. Chem. – ident: e_1_2_7_21_1 doi: 10.1038/s41422-020-00395-4 – ident: e_1_2_7_32_2 doi: 10.1186/s12943-020-01247-w – ident: e_1_2_7_104_2 doi: 10.1038/s41577-021-00602-2 – ident: e_1_2_7_81_3 doi: 10.1002/ange.202007878 – ident: e_1_2_7_90_1 – ident: e_1_2_7_12_2 doi: 10.1021/acs.chemrev.8b00396 – start-page: nwab194 year: 2021 ident: e_1_2_7_98_2 publication-title: Natl. Sci. Rev. – ident: e_1_2_7_69_2 doi: 10.1002/anie.202203838 – ident: e_1_2_7_78_2 doi: 10.1021/acs.inorgchem.0c01880 – ident: e_1_2_7_70_2 doi: 10.1002/anie.201608936 – ident: e_1_2_7_25_2 doi: 10.1158/2159-8290.CD-19-0761 – ident: e_1_2_7_60_1 – ident: e_1_2_7_73_2 doi: 10.1002/anie.201706739 – ident: e_1_2_7_106_1 doi: 10.4161/auto.6.6.12577 – ident: e_1_2_7_7_2 doi: 10.1016/j.immuni.2019.12.011 – ident: e_1_2_7_23_2 doi: 10.1016/j.immuni.2020.05.013 – ident: e_1_2_7_30_2 doi: 10.1016/j.molcel.2018.07.034 – ident: e_1_2_7_56_2 doi: 10.1039/c0dt00292e – ident: e_1_2_7_52_2 doi: 10.1016/j.ica.2019.118987 – ident: e_1_2_7_68_2 doi: 10.1021/ic501446b – ident: e_1_2_7_101_1 doi: 10.1093/nar/gkn550 – start-page: 383 volume-title: Methods in Molecular Biology, Vol. 554 year: 2009 ident: e_1_2_7_111_1 – ident: e_1_2_7_59_2 doi: 10.1038/sj.onc.1206933 – ident: e_1_2_7_41_2 doi: 10.1038/s41586-018-0705-y – ident: e_1_2_7_6_2 doi: 10.1038/s41577-020-0306-5 – ident: e_1_2_7_92_2 doi: 10.1038/s41568-021-00386-6 – ident: e_1_2_7_100_1 doi: 10.1016/j.isci.2021.103055 – ident: e_1_2_7_17_3 doi: 10.1002/ange.202013987 – ident: e_1_2_7_89_1 doi: 10.1016/j.ctrv.2016.10.008 – ident: e_1_2_7_57_1 – ident: e_1_2_7_18_2 doi: 10.1002/anie.202115247 – ident: e_1_2_7_14_1 doi: 10.1158/0008-5472.CAN-12-2236 – ident: e_1_2_7_35_2 doi: 10.1016/j.celrep.2015.04.031 – ident: e_1_2_7_93_1 doi: 10.1006/abio.1997.2177 – ident: e_1_2_7_102_1 – ident: e_1_2_7_80_3 doi: 10.1002/ange.202002422 – ident: e_1_2_7_16_2 doi: 10.1002/anie.202008604 – ident: e_1_2_7_38_2 doi: 10.3390/cells11071159 – ident: e_1_2_7_112_1 doi: 10.1038/s41577-021-00537-8 – ident: e_1_2_7_26_2 doi: 10.1016/j.cell.2020.09.020 – ident: e_1_2_7_91_2 doi: 10.1186/s13045-020-00946-7 – ident: e_1_2_7_17_2 doi: 10.1002/anie.202013987 – ident: e_1_2_7_13_1 doi: 10.1172/JCI43656 – ident: e_1_2_7_61_2 doi: 10.1021/cr4004314 – ident: e_1_2_7_95_1 doi: 10.1016/j.devcel.2021.02.009 – volume: 30 start-page: 1573 year: 2018 ident: e_1_2_7_10_2 publication-title: Prog. Chem. – ident: e_1_2_7_84_2 doi: 10.1002/advs.202004566 – ident: e_1_2_7_49_2 doi: 10.1038/s41568-020-00308-y – ident: e_1_2_7_67_2 doi: 10.1039/C4CC05255B – ident: e_1_2_7_77_2 doi: 10.1016/j.chempr.2019.08.021 – ident: e_1_2_7_65_3 doi: 10.1002/ange.202011273 – ident: e_1_2_7_48_2 doi: 10.1038/nrc2167 – ident: e_1_2_7_97_2 doi: 10.1039/C8SC04242J – ident: e_1_2_7_109_1 doi: 10.4049/jimmunol.1303276 – ident: e_1_2_7_24_2 doi: 10.1038/s41580-020-0244-x – ident: e_1_2_7_9_1 – ident: e_1_2_7_108_1 doi: 10.1126/sciimmunol.aat2738 – ident: e_1_2_7_34_1 – ident: e_1_2_7_53_2 doi: 10.1634/theoncologist.9-1-8 – ident: e_1_2_7_79_1 – volume: 134 start-page: e202114250 year: 2022 ident: e_1_2_7_72_3 publication-title: Angew. Chem. doi: 10.1002/ange.202114250 – ident: e_1_2_7_107_1 doi: 10.1016/j.bmcl.2012.04.124 – ident: e_1_2_7_4_2 doi: 10.1038/nature21349 – ident: e_1_2_7_44_2 doi: 10.1038/s41586-022-04559-7 – ident: e_1_2_7_51_1 – ident: e_1_2_7_96_1 – ident: e_1_2_7_33_2 doi: 10.1038/s41576-019-0151-1 – ident: e_1_2_7_86_2 doi: 10.1002/anie.201400533 – ident: e_1_2_7_20_1 doi: 10.1038/nrmicro2836 – ident: e_1_2_7_65_2 doi: 10.1002/anie.202011273 – ident: e_1_2_7_110_1 doi: 10.1016/j.tcb.2017.05.005 – ident: e_1_2_7_39_2 doi: 10.1021/acs.chemrev.1c00750 – ident: e_1_2_7_50_2 doi: 10.1016/j.ejphar.2014.07.025 – ident: e_1_2_7_87_2 doi: 10.1039/D0CC05196A – ident: e_1_2_7_8_2 doi: 10.1016/bs.ai.2019.11.007 – ident: e_1_2_7_94_1 doi: 10.1016/j.tcb.2018.11.004 – ident: e_1_2_7_81_2 doi: 10.1002/anie.202007878 – volume: 134 start-page: e202115800 year: 2022 ident: e_1_2_7_103_3 publication-title: Angew. Chem. doi: 10.1002/ange.202115800 – ident: e_1_2_7_58_2 doi: 10.1039/C8DT00838H – ident: e_1_2_7_36_2 doi: 10.3389/fimmu.2021.795401 – ident: e_1_2_7_88_1 doi: 10.1107/S2053230X17011384 – ident: e_1_2_7_46_1 – ident: e_1_2_7_70_3 doi: 10.1002/ange.201608936 – ident: e_1_2_7_76_2 doi: 10.1021/jacs.0c00221 – ident: e_1_2_7_55_2 doi: 10.1021/acs.chemrev.5b00597 – ident: e_1_2_7_74_3 doi: 10.1002/ange.202005362 – volume: 134 start-page: e202203838 year: 2022 ident: e_1_2_7_69_3 publication-title: Angew. Chem. doi: 10.1002/ange.202203838 – ident: e_1_2_7_37_1 – ident: e_1_2_7_103_2 doi: 10.1002/anie.202115800 – ident: e_1_2_7_99_1 doi: 10.1016/j.tcb.2021.06.002 – volume: 134 start-page: e202115247 year: 2022 ident: e_1_2_7_18_3 publication-title: Angew. Chem. doi: 10.1002/ange.202115247 – ident: e_1_2_7_45_2 doi: 10.1038/s41551-020-00675-9 – ident: e_1_2_7_62_2 doi: 10.1021/ja073231f – ident: e_1_2_7_11_2 doi: 10.1360/SSC-2019-0040 – ident: e_1_2_7_40_1 – ident: e_1_2_7_105_1 doi: 10.1038/nchembio711 – ident: e_1_2_7_86_3 doi: 10.1002/ange.201400533 – ident: e_1_2_7_74_2 doi: 10.1002/anie.202005362 – ident: e_1_2_7_85_1 – ident: e_1_2_7_22_1 – ident: e_1_2_7_28_1 – ident: e_1_2_7_71_2 doi: 10.1021/ja0432618 – ident: e_1_2_7_1_1 – ident: e_1_2_7_54_2 doi: 10.1021/cr980421n – ident: e_1_2_7_72_2 doi: 10.1002/anie.202114250 – ident: e_1_2_7_29_2 doi: 10.1038/s41586-019-1228-x – ident: e_1_2_7_82_2 doi: 10.1038/s41467-018-05810-4 – ident: e_1_2_7_66_2 doi: 10.1039/D0SC00197J – ident: e_1_2_7_80_2 doi: 10.1002/anie.202002422 – ident: e_1_2_7_43_2 doi: 10.1126/science.abb4255 – ident: e_1_2_7_83_2 doi: 10.1002/chem.201703598 – ident: e_1_2_7_27_1 doi: 10.1038/s41577-021-00524-z – ident: e_1_2_7_19_2 doi: 10.1002/asia.202200270 – ident: e_1_2_7_75_1 – ident: e_1_2_7_64_2 doi: 10.1021/ja411811w – ident: e_1_2_7_3_2 doi: 10.1038/nrc3239 – ident: e_1_2_7_16_3 doi: 10.1002/ange.202008604 – ident: e_1_2_7_2_2 doi: 10.1126/science.1203486 – ident: e_1_2_7_113_1 doi: 10.1038/s41392-021-00658-5 – ident: e_1_2_7_5_2 doi: 10.1126/science.aaa4967 – ident: e_1_2_7_47_2 doi: 10.1038/nrd1691 – ident: e_1_2_7_42_2 doi: 10.1038/s41565-018-0342-5 – ident: e_1_2_7_73_3 doi: 10.1002/ange.201706739 – ident: e_1_2_7_31_1 – ident: e_1_2_7_15_1 – ident: e_1_2_7_63_2 doi: 10.1021/ja803036e |
SSID | ssj0028806 |
Score | 2.6371388 |
Snippet | Activation of the cyclic GMP‐AMP synthase‐stimulator of the interferon gene (cGAS‐STING) pathway is a potent anticancer immunotherapeutic strategy, and the... Activation of the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway is a potent anticancer immunotherapeutic strategy, and the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202210988 |
SubjectTerms | Antiviral Agents - pharmacology Cancer immunotherapy cGAS-STING DNA - metabolism DNA Binding DNA damage Immune response Immune system Immunotherapy Interferon Interferons - pharmacology Irradiation Light effects Light irradiation Membrane Proteins - metabolism Mitochondrial DNA Neoplasms - therapy Nucleotidyltransferases - metabolism Photoactivation Photoimmunotherapy Platinum - pharmacology PtII Complexes Pyroptosis Radiation Radiation damage Signal Transduction Stimulators |
Title | Simultaneous Photoactivation of cGAS‐STING Pathway and Pyroptosis by Platinum(II) Triphenylamine Complexes for Cancer Immunotherapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202210988 https://www.ncbi.nlm.nih.gov/pubmed/35979672 https://www.proquest.com/docview/2725704035 https://www.proquest.com/docview/2703984425 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_QgUZCQk4JA2sZOsc1yt-ggSqxW7lXqLbMdWq5ak2mQF4cSFO7-RX8JMnAQWhJDgliiO4thj-xt7vm8IeYHJtrXkErlOBh2UxMfTKT8UBbMmVnbS0cXezpPjk-jNaXz6E4vf6UOMG244Mrr5Gge4VPX-D9FQZGCDf8fAZ0kFsn0xYAtR0btRP4qBcTp6Eec-ZqEfVBsDtr_9-vaq9BvU3Eau3dJzeIvIodIu4uRib9OoPf3pFz3H__mr2-Rmj0vp1BnSHXLNlHfJ9dmQDu4e-bI8x-BDWZpqU9PFWdVUyIlwO7q0slQfTZffPn9drrL5EV0AsPwgWyrLgi7adXXVVPV5TVVLFxh8V27ev8qy13QFU9aZKVswS6g5xcnp0nw0NQUoTWdokGuaIYOl54m198nJ4cFqduz3ORx8jZpJvg0LHdrQSjAFadJYJFZIGZo0irlWYaQLJlPJpFCxUKjuLmRQpJZZcMsKAHf8Adkpq9I8IhRTayUT1N8Br1QxI3hok1DIFFBjEejAI_7Qh7nuBc4xz8Zl7qSZWY6Nm4-N65GXY_krJ-3xx5K7g0nk_RCvczbBBIBRwGOPPB8fQ6fgiYvrDCgT8FREMC965KEzpfFTHFy5NJkwj7DOIP5Sh3w6zw7Gu8f_8tITcgOvceVl0S7ZadYb8xQgVaOedcPmO_a8GH0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb0qggJGQgEPaxHmsc1yt2m6gXa3YrcQtsh1brShJtckKwokLd34jvwRPnAQtCCHBMYmjOPbMeMae7xuA51hsW_KAI9ZJYYASu3g65fosp1pFQo9auNjJLJ6ehq_fRX02IWJhLD_EsOGGmtHaa1Rw3JDe_8kaihBsE-BRE7QkjF2Fa1jWu42q3g4MUtSIpwUYBYGLdeh73kaP7m--v7ku_eZsbvqu7eJzeBNE322bc_J-b12LPfn5F0bH__qvW3Cjc03J2MrSbbiiijuwPekrwt2Fr4tzzD_khSrXFZmflXWJsAi7qUtKTeTRePH9y7fFMp0dkbnxLT_yhvAiJ_NmVV7WZXVeEdGQOebfFesPL9P0FVkaq3WmisZIpuk6Qft0oT6pihhvmkxQJlckRRBLBxVr7sHp4cFyMnW7Mg6uRNokV_u59LWvuZEGrpKIxZpx7qskjAIp_FDmlCecciYiJpDgnXEvTzTVJjLLjX8X3IetoizUAyBYXSseIQWPCUwFVSzwdewznhjHMfek54DbT2ImO45zLLVxkVl2Zprh4GbD4DrwYmh_adk9_thyt5eJrNPyKqMjrAEYekHkwLPhsZkUPHSxk2HaeEHCQmMaHdixsjR8KjDRXBKPqAO0lYi_9CEbz9KD4erhv7z0FLany5Pj7DidvXkE1_E-LsQ03IWterVWj42HVYsnrQ79AHM4HJg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL70KggJGQgEPaxE6yznG17bbhsYrYrdRb5Di2WlGS1SYrCCcu3PmN_BI8ecGCEBIckziKY39jz9j-vgF4ism2pWACuU4KA5TAxt0p2-UZ1cpP9aihi72ZBUfH3ssT_-QnFn-rDzEsuKFlNOM1Gvgy03s_REORgW3iO2pilpDzi3DJCxyOuN5_OwhIUYPOll_EmI1p6HvZRofubb6_OS395mtuuq7N3DO9DqKvdXvk5N3uukp35adfBB3_57duwLXOMSXjFkk34YLKb8GVSZ8P7jZ8mZ_h6UORq2Jdkvi0qAokRbRLuqTQRB6O598-f50votkhiY1n-UHUROQZietVsayK8qwkaU1iPH2Xr98_j6IXZGHGrFOV1waXpuYER6dz9VGVxPjSZIKIXJEIKSwdUay-A8fTg8XkyO6SONgSRZNs7WbS1a4WBgtChT4PNBfCVaHnM5m6nsyoCAUVPPV5ivLuXDhZqKk2cVlmvDu2DVt5kat7QDC3VjBCAR4TlqZUcebqwOUiNG5j5kjHArvvw0R2CueYaOM8abWZaYKNmwyNa8Gzofyy1fb4Y8mdHhJJZ-NlQkeYAdBzmG_Bk-Gx6RTccmk7w5RxWMg9MzBacLeF0vApZmK5MBhRC2gDiL_UIRnPooPh6v6_vPQYLsf70-R1NHv1AK7ibZyFqbcDW9VqrR4a96pKHzUW9B0f6BtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Photoactivation+of+cGAS-STING+Pathway+and+Pyroptosis+by+Platinum%28II%29+Triphenylamine+Complexes+for+Cancer+Immunotherapy&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ling%2C+Yu-Yi&rft.au=Xia%2C+Xiao-Yu&rft.au=Hao%2C+Liang&rft.au=Wang%2C+Wen-Jin&rft.date=2022-10-24&rft.eissn=1521-3773&rft.volume=61&rft.issue=43&rft.spage=e202210988&rft_id=info:doi/10.1002%2Fanie.202210988&rft_id=info%3Apmid%2F35979672&rft.externalDocID=35979672 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |