New Hypothesis Insight of Structural Properties on Four Tau Peptide Fragments in Alzheimer's Disease: Origin from the Histidine Behaviors
During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N−H orientation on imidazole...
Saved in:
Published in | Chemistry : a European journal Vol. 29; no. 37; pp. e202300868 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
03.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N−H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β‐strand structures in parallel β‐sheet structures at I4‐K6 and I24‐H26, as well as antiparallel β‐sheet structure at G19‐L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H‐bonded interactions (possibility range of 31.3 %–44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding.
The structural properties and aggregation tendency of four Tau peptide fragments are subject to significant modulation by histidine behaviors, including its tautomeric and protonation states. Notably, the R1, R2, and R4 fragments exhibit a preference for unstable and flexible structural features, whereas only R3(ϵδ) displays a propensity for stable three β‐strand structures. |
---|---|
AbstractList | During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N−H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β‐strand structures in parallel β‐sheet structures at I4‐K6 and I24‐H26, as well as antiparallel β‐sheet structure at G19‐L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H‐bonded interactions (possibility range of 31.3 %–44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding. During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N−H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β‐strand structures in parallel β‐sheet structures at I4‐K6 and I24‐H26, as well as antiparallel β‐sheet structure at G19‐L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H‐bonded interactions (possibility range of 31.3 %–44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding. The structural properties and aggregation tendency of four Tau peptide fragments are subject to significant modulation by histidine behaviors, including its tautomeric and protonation states. Notably, the R1, R2, and R4 fragments exhibit a preference for unstable and flexible structural features, whereas only R3(ϵδ) displays a propensity for stable three β‐strand structures. During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N-H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β-strand structures in parallel β-sheet structures at I4-K6 and I24-H26, as well as antiparallel β-sheet structure at G19-L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H-bonded interactions (possibility range of 31.3 %-44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding. During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N-H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β-strand structures in parallel β-sheet structures at I4-K6 and I24-H26, as well as antiparallel β-sheet structure at G19-L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H-bonded interactions (possibility range of 31.3 %-44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding.During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N-H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β-strand structures in parallel β-sheet structures at I4-K6 and I24-H26, as well as antiparallel β-sheet structure at G19-L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H-bonded interactions (possibility range of 31.3 %-44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding. |
Author | Sun, Yue Li, Changgui Shi, Hu Wang, Jinping |
Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0002-6859-0575 surname: Sun fullname: Sun, Yue organization: Shanxi University – sequence: 2 givenname: Changgui orcidid: 0000-0002-4989-2332 surname: Li fullname: Li, Changgui organization: Shanxi University – sequence: 3 givenname: Jinping orcidid: 0000-0003-2642-2132 surname: Wang fullname: Wang, Jinping email: ila_wangjp@ujn.edu.cn organization: University of Jinan – sequence: 4 givenname: Hu orcidid: 0000-0002-5466-5783 surname: Shi fullname: Shi, Hu email: hshi@sxu.edu.cn organization: Shanxi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37096391$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPClSOyxAEuG_yR_TC3EhpSqdBKlPPKccaJq1178Xipwj_gX-MopUiVEBfbkp_HM37nhBz54IGQl5xNOWPindlCPxVMSMaaqnlCJrwUvJB1VR6RCVOzuqhKqY7JCeItY0xVUj4jx7LenxSfkF9f4I4ud0NIW0CH9MKj22wTDZZ-TXE0aYy6o9cxDBCTA6TB00UYI73RI72GIbk10EXUmx58Quo8Pet-bsH1EN8g_egQNMJ7ehXdJt_ZGHqaK9Glw2w6D_QDbPUPFyI-J0-t7hBe3O-n5Nvi_Ga-LC6vPl3Mzy4LI2vZFJZzY2zDmpJJmyNgkpVGlRWslV5ZrWagGy5n5YozULXV6xyCsPvVlGIlpDwlbw_vDjF8HwFT2zs00HXaQxixFQ2rWC0rLjL6-hF6m7_uc3eZkqISquZ1pl7dU-Oqh3U7RNfruGv_hJyB6QEwMSBGsA8IZ-1-iu1-iu3DFLMweyQYl3RywaeoXfdvTR20O9fB7j9F2vny_PNf9zdeVbGq |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_4c02419 crossref_primary_10_1021_acs_biochem_4c00633 crossref_primary_10_1021_acs_jpcb_4c02343 |
Cites_doi | 10.1021/acs.analchem.6b01825 10.1038/nature23002 10.3109/13506120009146831 10.1021/jp2076337 10.1021/bi0357006 10.1091/mbc.3.10.1141 10.1016/S0006-3495(94)80591-0 10.1126/science.1132814 10.1021/ct3010485 10.1074/jbc.M413490200 10.1016/j.bbagen.2019.02.007 10.1021/ja5032776 10.1038/s41586-018-0454-y 10.1529/biophysj.104.040980 10.3389/fnagi.2018.00118 10.1111/j.1471-4159.1990.tb04948.x 10.1186/s13041-017-0298-7 10.1073/pnas.90.22.10836 10.1126/science.1853202 10.1021/jp411901m 10.1021/acs.jpcb.6b08685 10.1021/ja011638t 10.1021/acschemneuro.5b00294 10.1021/ja027972m 10.1083/jcb.103.6.2739 10.1016/j.ijbiomac.2022.11.061 10.1152/physrev.2001.81.2.741 10.1016/0022-2836(77)90214-5 10.1016/S0140-6736(06)69113-7 10.1063/1.464397 10.1038/nrn1007 10.1038/nchem.2889 10.1021/acschemneuro.6b00375 10.1074/jbc.M007489200 10.1039/C7CP08010G 10.1021/acschemneuro.1c00093 10.1093/jb/mvi142 10.1073/pnas.1102373108 10.1021/ja990864o 10.1038/383710a0 10.1021/bi800900d 10.1021/acs.jcim.1c00217 10.1063/1.4817000 10.1021/acs.jctc.5b00255 10.1038/ncomms9861 10.1016/0263-7855(96)00018-5 10.1002/jcc.540130805 10.1038/nature02261 10.1073/pnas.72.5.1858 10.1021/acschemneuro.9b00094 10.1002/1873-3468.12616 10.1038/426883a 10.1073/pnas.73.11.4070 10.1021/acschemneuro.9b00467 10.1021/jp067280a 10.1111/j.1750-3639.1991.tb00671.x 10.1073/pnas.82.12.4245 10.1038/s41467-019-10355-1 10.1021/acs.biochem.0c00342 10.1073/pnas.0703832104 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202300868 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 37096391 10_1002_chem_202300868 CHEM202300868 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Science and Technology of Shanxi Province funderid: 20210302124490 – fundername: National Natural Science Foundation of China funderid: 22004048 – fundername: Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province funderid: 20220053 – fundername: Natural Science Foundation of Shandong Province funderid: ZR2020QB171 – fundername: Science and Technology of Shanxi Province grantid: 20210302124490 – fundername: Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province grantid: 20220053 – fundername: National Natural Science Foundation of China grantid: 22004048 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2020QB171 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3738-f11ccf808503f1000305c956ed9abfa94ea81345b10e97fad0942fd094c52b233 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 08:43:59 EDT 2025 Fri Jul 25 12:06:02 EDT 2025 Sat Aug 02 01:41:15 EDT 2025 Tue Jul 01 00:43:50 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Wed Jan 22 16:19:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | aggregation mechanism protein folding and misfolding AD pathogenesis histidine behaviors deprotonated and protonated states |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-f11ccf808503f1000305c956ed9abfa94ea81345b10e97fad0942fd094c52b233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2642-2132 0000-0002-5466-5783 0000-0002-4989-2332 0000-0002-6859-0575 |
PMID | 37096391 |
PQID | 2832629717 |
PQPubID | 986340 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2806073612 proquest_journals_2832629717 pubmed_primary_37096391 crossref_primary_10_1002_chem_202300868 crossref_citationtrail_10_1002_chem_202300868 wiley_primary_10_1002_chem_202300868_CHEM202300868 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 3, 2023 |
PublicationDateYYYYMMDD | 2023-07-03 |
PublicationDate_xml | – month: 07 year: 2023 text: July 3, 2023 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 104 2018; 561 2017; 8 1990; 55 2019; 10 2005; 138 2000; 7 1994; 67 1999; 121 2020; 59 2017; 591 1992; 13 1996; 383 2014; 136 2013; 9 1976; 73 1986; 103 2003; 4 2006; 368 1992; 3 2016; 88 2004; 43 2014; 118 2004; 87 1991; 253 1991; 1 2015; 6 2015; 11 1993; 90 2000; 275 1985; 82 2006; 314 1996; 14 1975; 72 2018; 20 2016; 120 2019; 1863 2001; 81 2005; 280 2016; 7 2003; 426 2011; 108 2021; 12 2002; 124 2017; 10 2007; 111 1993; 98 2013; 139 2008; 47 1977; 116 2021; 61 2018; 10 2012; 116 2022; 223 2017; 547 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_1 e_1_2_8_47_2 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_66_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_43_2 e_1_2_8_64_2 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_2 e_1_2_8_17_1 e_1_2_8_19_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_59_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_36_2 e_1_2_8_57_2 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_55_2 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_72_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_61_2 e_1_2_8_40_1 e_1_2_8_39_1 e_1_2_8_18_2 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_16_1 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_56_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_12_1 e_1_2_8_75_1 e_1_2_8_50_2 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_71_2 |
References_xml | – volume: 7 start-page: 166 year: 2000 end-page: 178 publication-title: Amyloid – volume: 368 start-page: 387 year: 2006 end-page: 403 publication-title: The Lancet – volume: 59 start-page: 2237 year: 2020 end-page: 2248 publication-title: Biochemistry – volume: 120 start-page: 11405 year: 2016 end-page: 11411 publication-title: J. Phys. Chem. B – volume: 253 start-page: 179 year: 1991 end-page: 182 publication-title: Science – volume: 116 start-page: 227 year: 1977 end-page: 247 publication-title: J. Mol. Biol. – volume: 111 start-page: 4340 year: 2007 end-page: 4352 publication-title: J. Phys. Chem. A – volume: 98 start-page: 10089 year: 1993 end-page: 10092 publication-title: J. Chem. Phys. – volume: 280 start-page: 13520 year: 2005 end-page: 13528 publication-title: J. Biol. Chem. – volume: 20 start-page: 7206 year: 2018 end-page: 7216 publication-title: Phys. Chem. Chem. Phys. – volume: 55 start-page: 1624 year: 1990 end-page: 1630 publication-title: J. Neurochem. – volume: 87 start-page: 2310 year: 2004 end-page: 2321 publication-title: Biophys. J. – volume: 8 start-page: 669 year: 2017 end-page: 675 publication-title: ACS Chem. Neurosci. – volume: 72 start-page: 1858 year: 1975 end-page: 1862 publication-title: Proc. Natl. Acad. Sci. USA – volume: 103 start-page: 2739 year: 1986 end-page: 2746 publication-title: J. Cell Biol. – volume: 43 start-page: 1694 year: 2004 end-page: 1703 publication-title: Biochemistry – volume: 9 start-page: 2020 year: 2013 end-page: 2034 publication-title: J. Chem. Theory Comput. – volume: 118 start-page: 7799 year: 2014 end-page: 7805 publication-title: J. Phys. Chem. B – volume: 6 start-page: 8861 year: 2015 publication-title: Nat. Commun. – volume: 121 start-page: 8698 year: 1999 end-page: 8706 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 18 year: 2017 end-page: 18 publication-title: Mol Brain – volume: 10 year: 2018 publication-title: Front. Aging Neurosci. – volume: 547 start-page: 185 year: 2017 end-page: 190 publication-title: Nature – volume: 10 start-page: 4612 year: 2019 end-page: 4618 publication-title: ACS Chem. Neurosci. – volume: 124 start-page: 13380 year: 2002 end-page: 13381 publication-title: J. Am. Chem. Soc. – volume: 426 start-page: 883 year: 2003 end-page: 883 publication-title: Nature – volume: 82 start-page: 4245 year: 1985 end-page: 4249 publication-title: Proc. Natl. Acad. Sci. USA – volume: 90 start-page: 10836 year: 1993 end-page: 10840 publication-title: Proc. Natl. Acad. Sci. USA – volume: 139 year: 2013 publication-title: J. Chem. Phys. – volume: 11 start-page: 3696 year: 2015 end-page: 3713 publication-title: J. Chem. Theory Comput. – volume: 13 start-page: 952 year: 1992 end-page: 962 publication-title: J. Comput. Chem. – volume: 591 start-page: 1167 year: 2017 end-page: 1175 publication-title: FEBS Lett. – volume: 12 start-page: 1983 year: 2021 end-page: 1988 publication-title: ACS Chem. Neurosci. – volume: 383 start-page: 710 year: 1996 end-page: 713 publication-title: Nature – volume: 1 start-page: 279 year: 1991 end-page: 286 publication-title: Brain Pathol. – volume: 138 start-page: 413 year: 2005 end-page: 423 publication-title: J. Biochem. – volume: 116 start-page: 3280 year: 2012 end-page: 3291 publication-title: J. Phys. Chem. B – volume: 10 start-page: 2493 year: 2019 publication-title: Nat. Commun. – volume: 88 start-page: 7793 year: 2016 end-page: 7799 publication-title: Anal. Chem. – volume: 561 start-page: 137 year: 2018 end-page: 140 publication-title: Nature – volume: 73 start-page: 4070 year: 1976 end-page: 4074 publication-title: Proc. Natl. Acad. Sci. USA – volume: 136 start-page: 13959 year: 2014 end-page: 13962 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 49 year: 2003 end-page: 60 publication-title: Nat. Rev. Neurosci. – volume: 47 start-page: 10345 year: 2008 end-page: 10353 publication-title: Biochemistry – volume: 10 start-page: 2602 year: 2019 end-page: 2608 publication-title: ACS Chem. Neurosci. – volume: 104 start-page: 16880 year: 2007 end-page: 16885 publication-title: Proc. Natl. Acad. Sci. USA – volume: 426 start-page: 884 year: 2003 end-page: 890 publication-title: Nature – volume: 10 start-page: 170 year: 2018 end-page: 176 publication-title: Nat. Chem. – volume: 67 start-page: 1216 year: 1994 end-page: 1228 publication-title: Biophys. J. – volume: 61 start-page: 2916 year: 2021 end-page: 2925 publication-title: J. Chem. Inf. Model. – volume: 275 start-page: 38182 year: 2000 end-page: 38189 publication-title: J. Biol. Chem. – volume: 314 start-page: 777 year: 2006 end-page: 781 publication-title: Science – volume: 7 start-page: 565 year: 2016 end-page: 575 publication-title: ACS Chem. Neurosci. – volume: 81 start-page: 741 year: 2001 end-page: 766 publication-title: Physiol. Rev. – volume: 223 start-page: 1556 year: 2022 end-page: 1561 publication-title: Int. J. Biol. Macromol. – volume: 108 start-page: 5602 year: 2011 end-page: 5607 publication-title: Proc. Natl. Acad. Sci. USA – volume: 1863 start-page: 795 year: 2019 end-page: 801 publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 14 start-page: 33 year: 1996 end-page: 38 publication-title: J. Mol. Graphics – volume: 3 start-page: 1141 year: 1992 end-page: 1154 publication-title: Mol. Biol. Cell – volume: 124 start-page: 2025 year: 2002 end-page: 2034 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_70_1 – ident: e_1_2_8_23_2 doi: 10.1021/acs.analchem.6b01825 – ident: e_1_2_8_33_2 doi: 10.1038/nature23002 – ident: e_1_2_8_51_1 doi: 10.3109/13506120009146831 – ident: e_1_2_8_44_2 doi: 10.1021/jp2076337 – ident: e_1_2_8_36_2 doi: 10.1021/bi0357006 – ident: e_1_2_8_62_1 – ident: e_1_2_8_20_2 doi: 10.1091/mbc.3.10.1141 – ident: e_1_2_8_60_2 doi: 10.1016/S0006-3495(94)80591-0 – ident: e_1_2_8_6_1 doi: 10.1126/science.1132814 – ident: e_1_2_8_67_1 – ident: e_1_2_8_22_1 – ident: e_1_2_8_72_2 doi: 10.1021/ct3010485 – ident: e_1_2_8_30_2 doi: 10.1074/jbc.M413490200 – ident: e_1_2_8_64_2 doi: 10.1016/j.bbagen.2019.02.007 – ident: e_1_2_8_32_1 – ident: e_1_2_8_71_2 doi: 10.1021/ja5032776 – ident: e_1_2_8_34_2 doi: 10.1038/s41586-018-0454-y – ident: e_1_2_8_45_2 doi: 10.1529/biophysj.104.040980 – ident: e_1_2_8_10_2 doi: 10.3389/fnagi.2018.00118 – ident: e_1_2_8_57_2 doi: 10.1111/j.1471-4159.1990.tb04948.x – ident: e_1_2_8_26_1 doi: 10.1186/s13041-017-0298-7 – ident: e_1_2_8_66_1 – ident: e_1_2_8_9_2 doi: 10.1073/pnas.90.22.10836 – ident: e_1_2_8_59_2 doi: 10.1126/science.1853202 – ident: e_1_2_8_42_2 doi: 10.1021/jp411901m – ident: e_1_2_8_48_2 doi: 10.1021/acs.jpcb.6b08685 – ident: e_1_2_8_53_2 doi: 10.1021/ja011638t – ident: e_1_2_8_31_2 doi: 10.1021/acschemneuro.5b00294 – ident: e_1_2_8_54_2 doi: 10.1021/ja027972m – ident: e_1_2_8_21_2 doi: 10.1083/jcb.103.6.2739 – ident: e_1_2_8_50_2 doi: 10.1016/j.ijbiomac.2022.11.061 – ident: e_1_2_8_14_2 doi: 10.1152/physrev.2001.81.2.741 – ident: e_1_2_8_19_2 doi: 10.1016/0022-2836(77)90214-5 – ident: e_1_2_8_13_2 doi: 10.1016/S0140-6736(06)69113-7 – ident: e_1_2_8_12_1 – ident: e_1_2_8_74_1 doi: 10.1063/1.464397 – ident: e_1_2_8_4_2 doi: 10.1038/nrn1007 – ident: e_1_2_8_15_1 doi: 10.1038/nchem.2889 – ident: e_1_2_8_65_2 doi: 10.1021/acschemneuro.6b00375 – ident: e_1_2_8_29_2 doi: 10.1074/jbc.M007489200 – ident: e_1_2_8_68_2 doi: 10.1039/C7CP08010G – ident: e_1_2_8_40_1 doi: 10.1021/acschemneuro.1c00093 – ident: e_1_2_8_56_1 – ident: e_1_2_8_17_1 – ident: e_1_2_8_39_1 doi: 10.1093/jb/mvi142 – ident: e_1_2_8_58_2 doi: 10.1073/pnas.1102373108 – ident: e_1_2_8_43_2 doi: 10.1021/ja990864o – ident: e_1_2_8_11_2 doi: 10.1038/383710a0 – ident: e_1_2_8_37_2 doi: 10.1021/bi800900d – ident: e_1_2_8_38_1 doi: 10.1021/acs.jcim.1c00217 – ident: e_1_2_8_47_2 doi: 10.1063/1.4817000 – ident: e_1_2_8_69_2 doi: 10.1021/acs.jctc.5b00255 – ident: e_1_2_8_1_1 – ident: e_1_2_8_2_2 doi: 10.1038/ncomms9861 – ident: e_1_2_8_75_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_8_73_1 doi: 10.1002/jcc.540130805 – ident: e_1_2_8_3_2 doi: 10.1038/nature02261 – ident: e_1_2_8_7_1 – ident: e_1_2_8_16_1 doi: 10.1073/pnas.72.5.1858 – ident: e_1_2_8_27_1 – ident: e_1_2_8_63_2 doi: 10.1021/acschemneuro.9b00094 – ident: e_1_2_8_52_1 – ident: e_1_2_8_46_2 doi: 10.1002/1873-3468.12616 – ident: e_1_2_8_5_2 doi: 10.1038/426883a – ident: e_1_2_8_18_2 doi: 10.1073/pnas.73.11.4070 – ident: e_1_2_8_49_2 doi: 10.1021/acschemneuro.9b00467 – ident: e_1_2_8_35_1 – ident: e_1_2_8_41_1 – ident: e_1_2_8_55_2 doi: 10.1021/jp067280a – ident: e_1_2_8_25_2 doi: 10.1111/j.1750-3639.1991.tb00671.x – ident: e_1_2_8_8_2 doi: 10.1073/pnas.82.12.4245 – ident: e_1_2_8_24_2 doi: 10.1038/s41467-019-10355-1 – ident: e_1_2_8_28_2 doi: 10.1021/acs.biochem.0c00342 – ident: e_1_2_8_61_2 doi: 10.1073/pnas.0703832104 |
SSID | ssj0009633 |
Score | 2.438052 |
Snippet | During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300868 |
SubjectTerms | AD pathogenesis aggregation mechanism Alzheimer Disease Alzheimer's disease Amino acids Antifungal agents Bonding strength Chemistry deprotonated and protonated states Folding Fragments Histidine Histidine - chemistry histidine behaviors Humans Hypotheses Imidazole Models, Molecular Neurodegenerative diseases Peptide Fragments - chemistry Peptides Protein folding protein folding and misfolding Protein Structure, Tertiary Proteins Protonation Residues Tau protein tau Proteins - chemistry |
Title | New Hypothesis Insight of Structural Properties on Four Tau Peptide Fragments in Alzheimer's Disease: Origin from the Histidine Behaviors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202300868 https://www.ncbi.nlm.nih.gov/pubmed/37096391 https://www.proquest.com/docview/2832629717 https://www.proquest.com/docview/2806073612 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHqBe48H4EChokpJ7cJrGdB7eqsFqQgApaqbfIceyyomSrTfdAvwHfmhnnURaEkOASJYodJ_HY_jvx_AbgRZZZk-Y2Fom2WijfKGEKlwntXFFnunayYefkd--z-bF6e6JPfvLi7_kQ0wc3bhmhv-YGbupu7woaSs_EnuQkoUmVs7cvL9hiVfTxih9F1tXHkle5YAbrSG2M073N7Juj0m9Sc1O5hqFndgvMeNP9ipMvu-uLetde_sJz_J-nug03B12K-70h3YFrrr0L1w_GcHD34Dt1hzj_ds4eW92iwzdtx_N6XHr8FBi0zO_AQ_62v2JIKy5bnNFV8cis8ZDXzjQOSSafBp86XLS4f3b52S2-utVOh6_6_0Qv8UMI1IXs9YJUEjLGZEHjq8OB5Ljq7sPx7PXRwVwMcRyEZW6S8ElirS8Yjid9EmZh2tK8zDWlqb0plTNFIpWuk9iVuTcN1VfqeWt1WqdSPoCtdtm6R4BGN3mujS9ylSljKKOWsbdKqjz2JDYjEGM9VnaAnHOsjbOqxzOnFb_ganrBEexM6c97vMcfU26PZlENzbyrOM5TlpY0JY7g-XSaKob_upjWLdecJs6oHyUlGcHD3pymomTOJlomEaTBKP5yDxVjMqajx_-S6Qnc4P2w4FhuwxYZiHtKsuqifhaazg9KBRnP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9QwEIBHVTmUC-9HSoFBAvWUNnHiJIvEoeqy2qUPKthKvaWOY8OqJVttukLtP-Dn8Ff4RczkVS0IISH1wGWl3TjrxJ6xZ2zPNwAvo0grEWvP9aWWbmjz0FWJiVxpTJJFMjNBzsHJe_vR8DB8dySPluB7GwtT8yG6BTfWjGq8ZgXnBenNK2oovRSHkpMNTWZ50pyr3DEXX8lrK9-M-tTFr4QYvB1vD90msYCrGeTjWt_X2iZMawusX7kFUpOjYPKeyqzqhUYlfhDKzPdML7YqJx9IWP7UUmSC10Bp1L_BacQZ19__cEWsInmus9eHscvU15YT6YnNxeddnAd_M24XbeVqshvchh9tM9VnXE425ufZhr78hSD5X7XjHbjVmN64VevKXVgyxT1Y2W4z3t2HbzTi4_DijIPSykmJo6LkpQucWvxYYXYZUYIHvH0xYw4tTgsc0L_iWM3xgI8H5QbJE_hUhQ3ipMCt08vPZvLFzNZL7NdbYa_xfZWLDDmwB6kmZFLLhEwIgw2sclY-gMNraYmHsFxMC_MYUMk8jqWySRxGoVJ0oww8q8MgjD1L9rQDbis4qW447pxO5DStCdQi5Q5Nuw51YL0rf1YTTP5Ycq2Vw7QZycqUU1lFokdevwMvusvUMbyxpAoznXMZL6KpgoxlBx7V8ttVFcSsEz3fAVFJ4V-eIWUSSPdt9V9ueg4rw_Hebro72t95Ajf59-p8dbAGyyQs5ilZkefZs0pvEY6vW8B_AviTdkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtQwEB1VRQJeuF8WCgwSqE9pc7FzQeKh6rLapVBW0Ep9Sx3HpquW7GrTFWr_gL_hV_gjZnKrFoSQkPrAS6QkduzYM_YZ23MG4EUYauVH2nU8qaUjbC4cFZvQkcbEWSgzE-TsnPx-Nxzui7cH8mAFvre-MDU_RLfgxppRjdes4LPcbl6QhtI_sSc5QWhC5XFzrHLHnH0lo618PepTD7_0_cGbve2h08QVcDTz-DjW87S2MZO1BdarrAKpyU4weaIyqxJhVOwFQmaea5LIqpxMIN_yVUs_83kJlAb9KyJ0Ew4W0f94QVhF4lwHrxeRw6SvLU2k628u13d5GvwN2y5D5WquG9yEH20r1UdcjjcWp9mGPv-FQPJ_asZbcKMB3rhVa8ptWDHFHbi23ca7uwvfaLzH4dmMXdLKSYmjouSFC5xa_FSR7DJBCY5582LOLLQ4LXBAX8U9tcAxHw7KDZId8LlyGsRJgVsn50dm8sXM10vs1xthr_BDFYkM2a0HqSRknpYJAQiDDVXlvLwH-5fSEvdhtZgW5iGgknkUSWXjSIRCKcooA9dqEYjItYSme-C0cpPqhsWdg4mcpDX_tJ9yh6Zdh_ZgvUs_q_lL_phyrRXDtBnHypQDWYV-QjZ_D553r6ljeFtJFWa64DRuSBMFQeUePKjFtysqiFglEq8HfiWEf6lDyjwg3d2jf8n0DK6O-4P03Wh35zFc58fV4epgDVZJVswTgpCn2dNKaxEOL1u-fwL9v3T7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Hypothesis+Insight+of+Structural+Properties+on+Four+Tau+Peptide+Fragments+in+Alzheimer%27s+Disease%3A+Origin+from+the+Histidine+Behaviors&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Sun%2C+Yue&rft.au=Li%2C+Changgui&rft.au=Wang%2C+Jinping&rft.au=Hu%2C+Shi&rft.date=2023-07-03&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=29&rft.issue=37&rft_id=info:doi/10.1002%2Fchem.202300868&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |