New Hypothesis Insight of Structural Properties on Four Tau Peptide Fragments in Alzheimer's Disease: Origin from the Histidine Behaviors

During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N−H orientation on imidazole...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 29; no. 37; pp. e202300868 - n/a
Main Authors Sun, Yue, Li, Changgui, Wang, Jinping, Shi, Hu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 03.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N−H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β‐strand structures in parallel β‐sheet structures at I4‐K6 and I24‐H26, as well as antiparallel β‐sheet structure at G19‐L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H‐bonded interactions (possibility range of 31.3 %–44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding. The structural properties and aggregation tendency of four Tau peptide fragments are subject to significant modulation by histidine behaviors, including its tautomeric and protonation states. Notably, the R1, R2, and R4 fragments exhibit a preference for unstable and flexible structural features, whereas only R3(ϵδ) displays a propensity for stable three β‐strand structures.
AbstractList During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N−H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β‐strand structures in parallel β‐sheet structures at I4‐K6 and I24‐H26, as well as antiparallel β‐sheet structure at G19‐L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H‐bonded interactions (possibility range of 31.3 %–44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding.
During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N−H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β‐strand structures in parallel β‐sheet structures at I4‐K6 and I24‐H26, as well as antiparallel β‐sheet structure at G19‐L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H‐bonded interactions (possibility range of 31.3 %–44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding. The structural properties and aggregation tendency of four Tau peptide fragments are subject to significant modulation by histidine behaviors, including its tautomeric and protonation states. Notably, the R1, R2, and R4 fragments exhibit a preference for unstable and flexible structural features, whereas only R3(ϵδ) displays a propensity for stable three β‐strand structures.
During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N-H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β-strand structures in parallel β-sheet structures at I4-K6 and I24-H26, as well as antiparallel β-sheet structure at G19-L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H-bonded interactions (possibility range of 31.3 %-44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding.
During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N-H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β-strand structures in parallel β-sheet structures at I4-K6 and I24-H26, as well as antiparallel β-sheet structure at G19-L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H-bonded interactions (possibility range of 31.3 %-44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding.During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric behaviors and protonation behaviors). The original reasons were derived from the net charge changes and the various N/N-H orientation on imidazole rings. In the current study, total 18 independent REMD simulations were performed to investigate the histidine behaviors on four Tau peptide fragments (MBD, including R1, R2, R3, and R4 fragments). We found that, compared to R1, R2, R3 except (ϵδ), and R4 systems with flexible structural features, only R3(ϵδ) has dominating conformational structure (possibility of 81.3 %) with three β-strand structures in parallel β-sheet structures at I4-K6 and I24-H26, as well as antiparallel β-sheet structure at G19-L21. Importantly, the H25 and H26 residues (in R3(ϵδ) system) are directly involved in the sheet structure formations and strong H-bonded interactions (possibility range of 31.3 %-44.7 %). Furthermore, the donors and acceptors analysis confirmed that only R3(ϵδ) shows faraway amino acids interaction features in both H25 and H26 residues, and such cooperation effects of two histidine residues contribute to current structural features. The current study will be helpful to further enrichment of the histidine behavior hypothesis, it provides new insight for understanding protein folding and misfolding.
Author Sun, Yue
Li, Changgui
Shi, Hu
Wang, Jinping
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0002-6859-0575
  surname: Sun
  fullname: Sun, Yue
  organization: Shanxi University
– sequence: 2
  givenname: Changgui
  orcidid: 0000-0002-4989-2332
  surname: Li
  fullname: Li, Changgui
  organization: Shanxi University
– sequence: 3
  givenname: Jinping
  orcidid: 0000-0003-2642-2132
  surname: Wang
  fullname: Wang, Jinping
  email: ila_wangjp@ujn.edu.cn
  organization: University of Jinan
– sequence: 4
  givenname: Hu
  orcidid: 0000-0002-5466-5783
  surname: Shi
  fullname: Shi, Hu
  email: hshi@sxu.edu.cn
  organization: Shanxi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37096391$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPClSOyxAEuG_yR_TC3EhpSqdBKlPPKccaJq1178Xipwj_gX-MopUiVEBfbkp_HM37nhBz54IGQl5xNOWPindlCPxVMSMaaqnlCJrwUvJB1VR6RCVOzuqhKqY7JCeItY0xVUj4jx7LenxSfkF9f4I4ud0NIW0CH9MKj22wTDZZ-TXE0aYy6o9cxDBCTA6TB00UYI73RI72GIbk10EXUmx58Quo8Pet-bsH1EN8g_egQNMJ7ehXdJt_ZGHqaK9Glw2w6D_QDbPUPFyI-J0-t7hBe3O-n5Nvi_Ga-LC6vPl3Mzy4LI2vZFJZzY2zDmpJJmyNgkpVGlRWslV5ZrWagGy5n5YozULXV6xyCsPvVlGIlpDwlbw_vDjF8HwFT2zs00HXaQxixFQ2rWC0rLjL6-hF6m7_uc3eZkqISquZ1pl7dU-Oqh3U7RNfruGv_hJyB6QEwMSBGsA8IZ-1-iu1-iu3DFLMweyQYl3RywaeoXfdvTR20O9fB7j9F2vny_PNf9zdeVbGq
CitedBy_id crossref_primary_10_1021_acs_jpclett_4c02419
crossref_primary_10_1021_acs_biochem_4c00633
crossref_primary_10_1021_acs_jpcb_4c02343
Cites_doi 10.1021/acs.analchem.6b01825
10.1038/nature23002
10.3109/13506120009146831
10.1021/jp2076337
10.1021/bi0357006
10.1091/mbc.3.10.1141
10.1016/S0006-3495(94)80591-0
10.1126/science.1132814
10.1021/ct3010485
10.1074/jbc.M413490200
10.1016/j.bbagen.2019.02.007
10.1021/ja5032776
10.1038/s41586-018-0454-y
10.1529/biophysj.104.040980
10.3389/fnagi.2018.00118
10.1111/j.1471-4159.1990.tb04948.x
10.1186/s13041-017-0298-7
10.1073/pnas.90.22.10836
10.1126/science.1853202
10.1021/jp411901m
10.1021/acs.jpcb.6b08685
10.1021/ja011638t
10.1021/acschemneuro.5b00294
10.1021/ja027972m
10.1083/jcb.103.6.2739
10.1016/j.ijbiomac.2022.11.061
10.1152/physrev.2001.81.2.741
10.1016/0022-2836(77)90214-5
10.1016/S0140-6736(06)69113-7
10.1063/1.464397
10.1038/nrn1007
10.1038/nchem.2889
10.1021/acschemneuro.6b00375
10.1074/jbc.M007489200
10.1039/C7CP08010G
10.1021/acschemneuro.1c00093
10.1093/jb/mvi142
10.1073/pnas.1102373108
10.1021/ja990864o
10.1038/383710a0
10.1021/bi800900d
10.1021/acs.jcim.1c00217
10.1063/1.4817000
10.1021/acs.jctc.5b00255
10.1038/ncomms9861
10.1016/0263-7855(96)00018-5
10.1002/jcc.540130805
10.1038/nature02261
10.1073/pnas.72.5.1858
10.1021/acschemneuro.9b00094
10.1002/1873-3468.12616
10.1038/426883a
10.1073/pnas.73.11.4070
10.1021/acschemneuro.9b00467
10.1021/jp067280a
10.1111/j.1750-3639.1991.tb00671.x
10.1073/pnas.82.12.4245
10.1038/s41467-019-10355-1
10.1021/acs.biochem.0c00342
10.1073/pnas.0703832104
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202300868
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 37096391
10_1002_chem_202300868
CHEM202300868
Genre article
Journal Article
GrantInformation_xml – fundername: Science and Technology of Shanxi Province
  funderid: 20210302124490
– fundername: National Natural Science Foundation of China
  funderid: 22004048
– fundername: Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province
  funderid: 20220053
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2020QB171
– fundername: Science and Technology of Shanxi Province
  grantid: 20210302124490
– fundername: Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province
  grantid: 20220053
– fundername: National Natural Science Foundation of China
  grantid: 22004048
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2020QB171
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3738-f11ccf808503f1000305c956ed9abfa94ea81345b10e97fad0942fd094c52b233
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 08:43:59 EDT 2025
Fri Jul 25 12:06:02 EDT 2025
Sat Aug 02 01:41:15 EDT 2025
Tue Jul 01 00:43:50 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Wed Jan 22 16:19:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords aggregation mechanism
protein folding and misfolding
AD pathogenesis
histidine behaviors
deprotonated and protonated states
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-f11ccf808503f1000305c956ed9abfa94ea81345b10e97fad0942fd094c52b233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2642-2132
0000-0002-5466-5783
0000-0002-4989-2332
0000-0002-6859-0575
PMID 37096391
PQID 2832629717
PQPubID 986340
PageCount 7
ParticipantIDs proquest_miscellaneous_2806073612
proquest_journals_2832629717
pubmed_primary_37096391
crossref_primary_10_1002_chem_202300868
crossref_citationtrail_10_1002_chem_202300868
wiley_primary_10_1002_chem_202300868_CHEM202300868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 3, 2023
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: July 3, 2023
  day: 03
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 104
2018; 561
2017; 8
1990; 55
2019; 10
2005; 138
2000; 7
1994; 67
1999; 121
2020; 59
2017; 591
1992; 13
1996; 383
2014; 136
2013; 9
1976; 73
1986; 103
2003; 4
2006; 368
1992; 3
2016; 88
2004; 43
2014; 118
2004; 87
1991; 253
1991; 1
2015; 6
2015; 11
1993; 90
2000; 275
1985; 82
2006; 314
1996; 14
1975; 72
2018; 20
2016; 120
2019; 1863
2001; 81
2005; 280
2016; 7
2003; 426
2011; 108
2021; 12
2002; 124
2017; 10
2007; 111
1993; 98
2013; 139
2008; 47
1977; 116
2021; 61
2018; 10
2012; 116
2022; 223
2017; 547
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_1
e_1_2_8_47_2
e_1_2_8_68_2
e_1_2_8_9_2
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_66_1
e_1_2_8_20_2
e_1_2_8_22_1
e_1_2_8_43_2
e_1_2_8_64_2
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_2
e_1_2_8_17_1
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_59_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_36_2
e_1_2_8_57_2
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_55_2
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_72_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_61_2
e_1_2_8_40_1
e_1_2_8_39_1
e_1_2_8_18_2
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_16_1
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_12_1
e_1_2_8_75_1
e_1_2_8_50_2
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_71_2
References_xml – volume: 7
  start-page: 166
  year: 2000
  end-page: 178
  publication-title: Amyloid
– volume: 368
  start-page: 387
  year: 2006
  end-page: 403
  publication-title: The Lancet
– volume: 59
  start-page: 2237
  year: 2020
  end-page: 2248
  publication-title: Biochemistry
– volume: 120
  start-page: 11405
  year: 2016
  end-page: 11411
  publication-title: J. Phys. Chem. B
– volume: 253
  start-page: 179
  year: 1991
  end-page: 182
  publication-title: Science
– volume: 116
  start-page: 227
  year: 1977
  end-page: 247
  publication-title: J. Mol. Biol.
– volume: 111
  start-page: 4340
  year: 2007
  end-page: 4352
  publication-title: J. Phys. Chem. A
– volume: 98
  start-page: 10089
  year: 1993
  end-page: 10092
  publication-title: J. Chem. Phys.
– volume: 280
  start-page: 13520
  year: 2005
  end-page: 13528
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 7206
  year: 2018
  end-page: 7216
  publication-title: Phys. Chem. Chem. Phys.
– volume: 55
  start-page: 1624
  year: 1990
  end-page: 1630
  publication-title: J. Neurochem.
– volume: 87
  start-page: 2310
  year: 2004
  end-page: 2321
  publication-title: Biophys. J.
– volume: 8
  start-page: 669
  year: 2017
  end-page: 675
  publication-title: ACS Chem. Neurosci.
– volume: 72
  start-page: 1858
  year: 1975
  end-page: 1862
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 103
  start-page: 2739
  year: 1986
  end-page: 2746
  publication-title: J. Cell Biol.
– volume: 43
  start-page: 1694
  year: 2004
  end-page: 1703
  publication-title: Biochemistry
– volume: 9
  start-page: 2020
  year: 2013
  end-page: 2034
  publication-title: J. Chem. Theory Comput.
– volume: 118
  start-page: 7799
  year: 2014
  end-page: 7805
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 8861
  year: 2015
  publication-title: Nat. Commun.
– volume: 121
  start-page: 8698
  year: 1999
  end-page: 8706
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 18
  year: 2017
  end-page: 18
  publication-title: Mol Brain
– volume: 10
  year: 2018
  publication-title: Front. Aging Neurosci.
– volume: 547
  start-page: 185
  year: 2017
  end-page: 190
  publication-title: Nature
– volume: 10
  start-page: 4612
  year: 2019
  end-page: 4618
  publication-title: ACS Chem. Neurosci.
– volume: 124
  start-page: 13380
  year: 2002
  end-page: 13381
  publication-title: J. Am. Chem. Soc.
– volume: 426
  start-page: 883
  year: 2003
  end-page: 883
  publication-title: Nature
– volume: 82
  start-page: 4245
  year: 1985
  end-page: 4249
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 90
  start-page: 10836
  year: 1993
  end-page: 10840
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 139
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 3696
  year: 2015
  end-page: 3713
  publication-title: J. Chem. Theory Comput.
– volume: 13
  start-page: 952
  year: 1992
  end-page: 962
  publication-title: J. Comput. Chem.
– volume: 591
  start-page: 1167
  year: 2017
  end-page: 1175
  publication-title: FEBS Lett.
– volume: 12
  start-page: 1983
  year: 2021
  end-page: 1988
  publication-title: ACS Chem. Neurosci.
– volume: 383
  start-page: 710
  year: 1996
  end-page: 713
  publication-title: Nature
– volume: 1
  start-page: 279
  year: 1991
  end-page: 286
  publication-title: Brain Pathol.
– volume: 138
  start-page: 413
  year: 2005
  end-page: 423
  publication-title: J. Biochem.
– volume: 116
  start-page: 3280
  year: 2012
  end-page: 3291
  publication-title: J. Phys. Chem. B
– volume: 10
  start-page: 2493
  year: 2019
  publication-title: Nat. Commun.
– volume: 88
  start-page: 7793
  year: 2016
  end-page: 7799
  publication-title: Anal. Chem.
– volume: 561
  start-page: 137
  year: 2018
  end-page: 140
  publication-title: Nature
– volume: 73
  start-page: 4070
  year: 1976
  end-page: 4074
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 136
  start-page: 13959
  year: 2014
  end-page: 13962
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 49
  year: 2003
  end-page: 60
  publication-title: Nat. Rev. Neurosci.
– volume: 47
  start-page: 10345
  year: 2008
  end-page: 10353
  publication-title: Biochemistry
– volume: 10
  start-page: 2602
  year: 2019
  end-page: 2608
  publication-title: ACS Chem. Neurosci.
– volume: 104
  start-page: 16880
  year: 2007
  end-page: 16885
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 426
  start-page: 884
  year: 2003
  end-page: 890
  publication-title: Nature
– volume: 10
  start-page: 170
  year: 2018
  end-page: 176
  publication-title: Nat. Chem.
– volume: 67
  start-page: 1216
  year: 1994
  end-page: 1228
  publication-title: Biophys. J.
– volume: 61
  start-page: 2916
  year: 2021
  end-page: 2925
  publication-title: J. Chem. Inf. Model.
– volume: 275
  start-page: 38182
  year: 2000
  end-page: 38189
  publication-title: J. Biol. Chem.
– volume: 314
  start-page: 777
  year: 2006
  end-page: 781
  publication-title: Science
– volume: 7
  start-page: 565
  year: 2016
  end-page: 575
  publication-title: ACS Chem. Neurosci.
– volume: 81
  start-page: 741
  year: 2001
  end-page: 766
  publication-title: Physiol. Rev.
– volume: 223
  start-page: 1556
  year: 2022
  end-page: 1561
  publication-title: Int. J. Biol. Macromol.
– volume: 108
  start-page: 5602
  year: 2011
  end-page: 5607
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1863
  start-page: 795
  year: 2019
  end-page: 801
  publication-title: Biochim. Biophys. Acta Gen. Subj.
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  publication-title: J. Mol. Graphics
– volume: 3
  start-page: 1141
  year: 1992
  end-page: 1154
  publication-title: Mol. Biol. Cell
– volume: 124
  start-page: 2025
  year: 2002
  end-page: 2034
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_70_1
– ident: e_1_2_8_23_2
  doi: 10.1021/acs.analchem.6b01825
– ident: e_1_2_8_33_2
  doi: 10.1038/nature23002
– ident: e_1_2_8_51_1
  doi: 10.3109/13506120009146831
– ident: e_1_2_8_44_2
  doi: 10.1021/jp2076337
– ident: e_1_2_8_36_2
  doi: 10.1021/bi0357006
– ident: e_1_2_8_62_1
– ident: e_1_2_8_20_2
  doi: 10.1091/mbc.3.10.1141
– ident: e_1_2_8_60_2
  doi: 10.1016/S0006-3495(94)80591-0
– ident: e_1_2_8_6_1
  doi: 10.1126/science.1132814
– ident: e_1_2_8_67_1
– ident: e_1_2_8_22_1
– ident: e_1_2_8_72_2
  doi: 10.1021/ct3010485
– ident: e_1_2_8_30_2
  doi: 10.1074/jbc.M413490200
– ident: e_1_2_8_64_2
  doi: 10.1016/j.bbagen.2019.02.007
– ident: e_1_2_8_32_1
– ident: e_1_2_8_71_2
  doi: 10.1021/ja5032776
– ident: e_1_2_8_34_2
  doi: 10.1038/s41586-018-0454-y
– ident: e_1_2_8_45_2
  doi: 10.1529/biophysj.104.040980
– ident: e_1_2_8_10_2
  doi: 10.3389/fnagi.2018.00118
– ident: e_1_2_8_57_2
  doi: 10.1111/j.1471-4159.1990.tb04948.x
– ident: e_1_2_8_26_1
  doi: 10.1186/s13041-017-0298-7
– ident: e_1_2_8_66_1
– ident: e_1_2_8_9_2
  doi: 10.1073/pnas.90.22.10836
– ident: e_1_2_8_59_2
  doi: 10.1126/science.1853202
– ident: e_1_2_8_42_2
  doi: 10.1021/jp411901m
– ident: e_1_2_8_48_2
  doi: 10.1021/acs.jpcb.6b08685
– ident: e_1_2_8_53_2
  doi: 10.1021/ja011638t
– ident: e_1_2_8_31_2
  doi: 10.1021/acschemneuro.5b00294
– ident: e_1_2_8_54_2
  doi: 10.1021/ja027972m
– ident: e_1_2_8_21_2
  doi: 10.1083/jcb.103.6.2739
– ident: e_1_2_8_50_2
  doi: 10.1016/j.ijbiomac.2022.11.061
– ident: e_1_2_8_14_2
  doi: 10.1152/physrev.2001.81.2.741
– ident: e_1_2_8_19_2
  doi: 10.1016/0022-2836(77)90214-5
– ident: e_1_2_8_13_2
  doi: 10.1016/S0140-6736(06)69113-7
– ident: e_1_2_8_12_1
– ident: e_1_2_8_74_1
  doi: 10.1063/1.464397
– ident: e_1_2_8_4_2
  doi: 10.1038/nrn1007
– ident: e_1_2_8_15_1
  doi: 10.1038/nchem.2889
– ident: e_1_2_8_65_2
  doi: 10.1021/acschemneuro.6b00375
– ident: e_1_2_8_29_2
  doi: 10.1074/jbc.M007489200
– ident: e_1_2_8_68_2
  doi: 10.1039/C7CP08010G
– ident: e_1_2_8_40_1
  doi: 10.1021/acschemneuro.1c00093
– ident: e_1_2_8_56_1
– ident: e_1_2_8_17_1
– ident: e_1_2_8_39_1
  doi: 10.1093/jb/mvi142
– ident: e_1_2_8_58_2
  doi: 10.1073/pnas.1102373108
– ident: e_1_2_8_43_2
  doi: 10.1021/ja990864o
– ident: e_1_2_8_11_2
  doi: 10.1038/383710a0
– ident: e_1_2_8_37_2
  doi: 10.1021/bi800900d
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.jcim.1c00217
– ident: e_1_2_8_47_2
  doi: 10.1063/1.4817000
– ident: e_1_2_8_69_2
  doi: 10.1021/acs.jctc.5b00255
– ident: e_1_2_8_1_1
– ident: e_1_2_8_2_2
  doi: 10.1038/ncomms9861
– ident: e_1_2_8_75_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_8_73_1
  doi: 10.1002/jcc.540130805
– ident: e_1_2_8_3_2
  doi: 10.1038/nature02261
– ident: e_1_2_8_7_1
– ident: e_1_2_8_16_1
  doi: 10.1073/pnas.72.5.1858
– ident: e_1_2_8_27_1
– ident: e_1_2_8_63_2
  doi: 10.1021/acschemneuro.9b00094
– ident: e_1_2_8_52_1
– ident: e_1_2_8_46_2
  doi: 10.1002/1873-3468.12616
– ident: e_1_2_8_5_2
  doi: 10.1038/426883a
– ident: e_1_2_8_18_2
  doi: 10.1073/pnas.73.11.4070
– ident: e_1_2_8_49_2
  doi: 10.1021/acschemneuro.9b00467
– ident: e_1_2_8_35_1
– ident: e_1_2_8_41_1
– ident: e_1_2_8_55_2
  doi: 10.1021/jp067280a
– ident: e_1_2_8_25_2
  doi: 10.1111/j.1750-3639.1991.tb00671.x
– ident: e_1_2_8_8_2
  doi: 10.1073/pnas.82.12.4245
– ident: e_1_2_8_24_2
  doi: 10.1038/s41467-019-10355-1
– ident: e_1_2_8_28_2
  doi: 10.1021/acs.biochem.0c00342
– ident: e_1_2_8_61_2
  doi: 10.1073/pnas.0703832104
SSID ssj0009633
Score 2.438052
Snippet During protein folding and misfolding, structural properties and aggregation tendency can be significantly influenced by histidine behaviors (tautomeric...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300868
SubjectTerms AD pathogenesis
aggregation mechanism
Alzheimer Disease
Alzheimer's disease
Amino acids
Antifungal agents
Bonding strength
Chemistry
deprotonated and protonated states
Folding
Fragments
Histidine
Histidine - chemistry
histidine behaviors
Humans
Hypotheses
Imidazole
Models, Molecular
Neurodegenerative diseases
Peptide Fragments - chemistry
Peptides
Protein folding
protein folding and misfolding
Protein Structure, Tertiary
Proteins
Protonation
Residues
Tau protein
tau Proteins - chemistry
Title New Hypothesis Insight of Structural Properties on Four Tau Peptide Fragments in Alzheimer's Disease: Origin from the Histidine Behaviors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202300868
https://www.ncbi.nlm.nih.gov/pubmed/37096391
https://www.proquest.com/docview/2832629717
https://www.proquest.com/docview/2806073612
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHqBe48H4EChokpJ7cJrGdB7eqsFqQgApaqbfIceyyomSrTfdAvwHfmhnnURaEkOASJYodJ_HY_jvx_AbgRZZZk-Y2Fom2WijfKGEKlwntXFFnunayYefkd--z-bF6e6JPfvLi7_kQ0wc3bhmhv-YGbupu7woaSs_EnuQkoUmVs7cvL9hiVfTxih9F1tXHkle5YAbrSG2M073N7Juj0m9Sc1O5hqFndgvMeNP9ipMvu-uLetde_sJz_J-nug03B12K-70h3YFrrr0L1w_GcHD34Dt1hzj_ds4eW92iwzdtx_N6XHr8FBi0zO_AQ_62v2JIKy5bnNFV8cis8ZDXzjQOSSafBp86XLS4f3b52S2-utVOh6_6_0Qv8UMI1IXs9YJUEjLGZEHjq8OB5Ljq7sPx7PXRwVwMcRyEZW6S8ElirS8Yjid9EmZh2tK8zDWlqb0plTNFIpWuk9iVuTcN1VfqeWt1WqdSPoCtdtm6R4BGN3mujS9ylSljKKOWsbdKqjz2JDYjEGM9VnaAnHOsjbOqxzOnFb_ganrBEexM6c97vMcfU26PZlENzbyrOM5TlpY0JY7g-XSaKob_upjWLdecJs6oHyUlGcHD3pymomTOJlomEaTBKP5yDxVjMqajx_-S6Qnc4P2w4FhuwxYZiHtKsuqifhaazg9KBRnP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9QwEIBHVTmUC-9HSoFBAvWUNnHiJIvEoeqy2qUPKthKvaWOY8OqJVttukLtP-Dn8Ff4RczkVS0IISH1wGWl3TjrxJ6xZ2zPNwAvo0grEWvP9aWWbmjz0FWJiVxpTJJFMjNBzsHJe_vR8DB8dySPluB7GwtT8yG6BTfWjGq8ZgXnBenNK2oovRSHkpMNTWZ50pyr3DEXX8lrK9-M-tTFr4QYvB1vD90msYCrGeTjWt_X2iZMawusX7kFUpOjYPKeyqzqhUYlfhDKzPdML7YqJx9IWP7UUmSC10Bp1L_BacQZ19__cEWsInmus9eHscvU15YT6YnNxeddnAd_M24XbeVqshvchh9tM9VnXE425ufZhr78hSD5X7XjHbjVmN64VevKXVgyxT1Y2W4z3t2HbzTi4_DijIPSykmJo6LkpQucWvxYYXYZUYIHvH0xYw4tTgsc0L_iWM3xgI8H5QbJE_hUhQ3ipMCt08vPZvLFzNZL7NdbYa_xfZWLDDmwB6kmZFLLhEwIgw2sclY-gMNraYmHsFxMC_MYUMk8jqWySRxGoVJ0oww8q8MgjD1L9rQDbis4qW447pxO5DStCdQi5Q5Nuw51YL0rf1YTTP5Ycq2Vw7QZycqUU1lFokdevwMvusvUMbyxpAoznXMZL6KpgoxlBx7V8ttVFcSsEz3fAVFJ4V-eIWUSSPdt9V9ueg4rw_Hebro72t95Ajf59-p8dbAGyyQs5ilZkefZs0pvEY6vW8B_AviTdkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtQwEB1VRQJeuF8WCgwSqE9pc7FzQeKh6rLapVBW0Ep9Sx3HpquW7GrTFWr_gL_hV_gjZnKrFoSQkPrAS6QkduzYM_YZ23MG4EUYauVH2nU8qaUjbC4cFZvQkcbEWSgzE-TsnPx-Nxzui7cH8mAFvre-MDU_RLfgxppRjdes4LPcbl6QhtI_sSc5QWhC5XFzrHLHnH0lo618PepTD7_0_cGbve2h08QVcDTz-DjW87S2MZO1BdarrAKpyU4weaIyqxJhVOwFQmaea5LIqpxMIN_yVUs_83kJlAb9KyJ0Ew4W0f94QVhF4lwHrxeRw6SvLU2k628u13d5GvwN2y5D5WquG9yEH20r1UdcjjcWp9mGPv-FQPJ_asZbcKMB3rhVa8ptWDHFHbi23ca7uwvfaLzH4dmMXdLKSYmjouSFC5xa_FSR7DJBCY5582LOLLQ4LXBAX8U9tcAxHw7KDZId8LlyGsRJgVsn50dm8sXM10vs1xthr_BDFYkM2a0HqSRknpYJAQiDDVXlvLwH-5fSEvdhtZgW5iGgknkUSWXjSIRCKcooA9dqEYjItYSme-C0cpPqhsWdg4mcpDX_tJ9yh6Zdh_ZgvUs_q_lL_phyrRXDtBnHypQDWYV-QjZ_D553r6ljeFtJFWa64DRuSBMFQeUePKjFtysqiFglEq8HfiWEf6lDyjwg3d2jf8n0DK6O-4P03Wh35zFc58fV4epgDVZJVswTgpCn2dNKaxEOL1u-fwL9v3T7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Hypothesis+Insight+of+Structural+Properties+on+Four+Tau+Peptide+Fragments+in+Alzheimer%27s+Disease%3A+Origin+from+the+Histidine+Behaviors&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Sun%2C+Yue&rft.au=Li%2C+Changgui&rft.au=Wang%2C+Jinping&rft.au=Hu%2C+Shi&rft.date=2023-07-03&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=29&rft.issue=37&rft_id=info:doi/10.1002%2Fchem.202300868&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon