Hyperelastic Kevlar Nanofiber Aerogels as Robust Thermal Switches for Smart Thermal Management

Aerogels, the lightest artificial solid materials characterized by low density and thermal conductivity, high porosity, and large specific surface area, have attracted increasing interest. Aerogels exhibit single‐mode thermal insulation properties regardless of the surrounding temperature. In this s...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 3; pp. e2207638 - n/a
Main Authors Hu, Peiying, Wang, Jing, Zhang, Peigen, Wu, Fushuo, Cheng, Yingying, Wang, Jin, Sun, ZhengMing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aerogels, the lightest artificial solid materials characterized by low density and thermal conductivity, high porosity, and large specific surface area, have attracted increasing interest. Aerogels exhibit single‐mode thermal insulation properties regardless of the surrounding temperature. In this study, hyperelastic Kevlar nanofiber aerogels (HEKAs) are designed and fabricated by a slow‐proton‐release‐modulating gelation and thermoinduced crosslinking strategy. The method does not use crosslinking agents and endows the ultralow‐density (4.7 mg cm−3) HEKAs with low thermal conductivity (0.029 W m−1 K−1), high porosity (99.75%), high thermal stability (550 °C), and increased compression resilience (80%) and fatigue resistance. Proofs of the concept of the HEKAs acting as on–off thermal switches are demonstrated through experiments and simulations. The thermal switches exhibit a rapid thermal response speed of 0.73 °C s−1, high heat flux of 2044 J m−2 s−1, and switching ratio of 7.5. Heat dissipation can be reversibly switched on/off more than fifty times owing to the hyperelasticity and fatigue resistance of the HEKAs. This study suggests a route to fulfill the hyperelasticity of highly porous aerogels and to tailor heat flux on‐demand. Hyperelastic Kevlar nanofiber aerogels (HEKAs) are synthesized by a slow‐proton‐release‐modulating gelation and thermo‐induced crosslinking strategy. The HEKAs exhibit low thermal conductivity and ultralow density, high porosity, and compression resilience. The application of HEKAs as thermal switches is demonstrated, which exhibit high responsive speed and heat flux. The heat loss can be reversibly switched on/off over 50 times.
AbstractList Aerogels, the lightest artificial solid materials characterized by low density and thermal conductivity, high porosity, and large specific surface area, have attracted increasing interest. Aerogels exhibit single‐mode thermal insulation properties regardless of the surrounding temperature. In this study, hyperelastic Kevlar nanofiber aerogels (HEKAs) are designed and fabricated by a slow‐proton‐release‐modulating gelation and thermoinduced crosslinking strategy. The method does not use crosslinking agents and endows the ultralow‐density (4.7 mg cm−3) HEKAs with low thermal conductivity (0.029 W m−1 K−1), high porosity (99.75%), high thermal stability (550 °C), and increased compression resilience (80%) and fatigue resistance. Proofs of the concept of the HEKAs acting as on–off thermal switches are demonstrated through experiments and simulations. The thermal switches exhibit a rapid thermal response speed of 0.73 °C s−1, high heat flux of 2044 J m−2 s−1, and switching ratio of 7.5. Heat dissipation can be reversibly switched on/off more than fifty times owing to the hyperelasticity and fatigue resistance of the HEKAs. This study suggests a route to fulfill the hyperelasticity of highly porous aerogels and to tailor heat flux on‐demand.
Abstract Aerogels, the lightest artificial solid materials characterized by low density and thermal conductivity, high porosity, and large specific surface area, have attracted increasing interest. Aerogels exhibit single‐mode thermal insulation properties regardless of the surrounding temperature. In this study, hyperelastic Kevlar nanofiber aerogels (HEKAs) are designed and fabricated by a slow‐proton‐release‐modulating gelation and thermoinduced crosslinking strategy. The method does not use crosslinking agents and endows the ultralow‐density (4.7 mg cm −3 ) HEKAs with low thermal conductivity (0.029 W m −1 K −1 ), high porosity (99.75%), high thermal stability (550 °C), and increased compression resilience (80%) and fatigue resistance. Proofs of the concept of the HEKAs acting as on–off thermal switches are demonstrated through experiments and simulations. The thermal switches exhibit a rapid thermal response speed of 0.73 °C s −1 , high heat flux of 2044 J m −2 s −1 , and switching ratio of 7.5. Heat dissipation can be reversibly switched on/off more than fifty times owing to the hyperelasticity and fatigue resistance of the HEKAs. This study suggests a route to fulfill the hyperelasticity of highly porous aerogels and to tailor heat flux on‐demand.
Aerogels, the lightest artificial solid materials characterized by low density and thermal conductivity, high porosity, and large specific surface area, have attracted increasing interest. Aerogels exhibit single-mode thermal insulation properties regardless of the surrounding temperature. In this study, hyperelastic Kevlar nanofiber aerogels (HEKAs) are designed and fabricated by a slow-proton-release-modulating gelation and thermoinduced crosslinking strategy. The method does not use crosslinking agents and endows the ultralow-density (4.7 mg cm ) HEKAs with low thermal conductivity (0.029 W m K ), high porosity (99.75%), high thermal stability (550 °C), and increased compression resilience (80%) and fatigue resistance. Proofs of the concept of the HEKAs acting as on-off thermal switches are demonstrated through experiments and simulations. The thermal switches exhibit a rapid thermal response speed of 0.73 °C s , high heat flux of 2044 J m s , and switching ratio of 7.5. Heat dissipation can be reversibly switched on/off more than fifty times owing to the hyperelasticity and fatigue resistance of the HEKAs. This study suggests a route to fulfill the hyperelasticity of highly porous aerogels and to tailor heat flux on-demand.
Aerogels, the lightest artificial solid materials characterized by low density and thermal conductivity, high porosity, and large specific surface area, have attracted increasing interest. Aerogels exhibit single‐mode thermal insulation properties regardless of the surrounding temperature. In this study, hyperelastic Kevlar nanofiber aerogels (HEKAs) are designed and fabricated by a slow‐proton‐release‐modulating gelation and thermoinduced crosslinking strategy. The method does not use crosslinking agents and endows the ultralow‐density (4.7 mg cm−3) HEKAs with low thermal conductivity (0.029 W m−1 K−1), high porosity (99.75%), high thermal stability (550 °C), and increased compression resilience (80%) and fatigue resistance. Proofs of the concept of the HEKAs acting as on–off thermal switches are demonstrated through experiments and simulations. The thermal switches exhibit a rapid thermal response speed of 0.73 °C s−1, high heat flux of 2044 J m−2 s−1, and switching ratio of 7.5. Heat dissipation can be reversibly switched on/off more than fifty times owing to the hyperelasticity and fatigue resistance of the HEKAs. This study suggests a route to fulfill the hyperelasticity of highly porous aerogels and to tailor heat flux on‐demand. Hyperelastic Kevlar nanofiber aerogels (HEKAs) are synthesized by a slow‐proton‐release‐modulating gelation and thermo‐induced crosslinking strategy. The HEKAs exhibit low thermal conductivity and ultralow density, high porosity, and compression resilience. The application of HEKAs as thermal switches is demonstrated, which exhibit high responsive speed and heat flux. The heat loss can be reversibly switched on/off over 50 times.
Author Wu, Fushuo
Cheng, Yingying
Zhang, Peigen
Sun, ZhengMing
Wang, Jin
Hu, Peiying
Wang, Jing
Author_xml – sequence: 1
  givenname: Peiying
  surname: Hu
  fullname: Hu, Peiying
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Peigen
  surname: Zhang
  fullname: Zhang, Peigen
  email: zhpeigen@seu.edu.cn
  organization: Southeast University
– sequence: 4
  givenname: Fushuo
  surname: Wu
  fullname: Wu, Fushuo
  organization: Southeast University
– sequence: 5
  givenname: Yingying
  surname: Cheng
  fullname: Cheng, Yingying
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Jin
  orcidid: 0000-0003-1573-574X
  surname: Wang
  fullname: Wang, Jin
  email: jwang2014@sinano.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: ZhengMing
  surname: Sun
  fullname: Sun, ZhengMing
  email: zmsun@seu.edu.cn
  organization: Southeast University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36271721$$D View this record in MEDLINE/PubMed
BookMark eNqFkElP5DAQRi0EopvlynFkaS5c0niJ7eTYYpYesYw0wJWo4lSaoCRu7IRW__sxahaJC_KhDn71VN93QHZ71yMhJ5zNOGPiDKoOZoIJwYyW2Q6ZciV4krJc7ZIpy6VKcp1mE3IQwiNjLNdM75OJ1MJwI_iU3C82K_TYQhgaSy_wuQVPr6F3dVOip3P0boltoBDoP1eOYaC3D-g7aOnNuhnsAwZaO09vOvAfX1fQwxI77IcjsldDG_D4dR6Su18_b88XyeXf33_O55eJlUZmCaoMTZlaqFglRZ7WElNmLNMgtQHFRVZVKVgNvBQxWqlSlcVXVnVe2wozeUhOt96Vd08jhqHommCxbaFHN4ZCGGF0GiOLiH7_hD660ffxukhpnQupjIrUbEtZ70LwWBcr38SQm4Kz4qX54qX54r35uPDtVTuWHVbv-FvVEci3wLppcfOFrpj_uJp_yP8DSQ-ROQ
CitedBy_id crossref_primary_10_1002_adfm_202314021
crossref_primary_10_1016_j_carbpol_2023_121470
crossref_primary_10_1016_j_compscitech_2023_110277
crossref_primary_10_1002_adma_202406055
crossref_primary_10_1002_adfm_202307072
crossref_primary_10_1021_acsnano_4c00967
crossref_primary_10_1021_jacs_4c03862
crossref_primary_10_1002_smll_202305857
crossref_primary_10_1021_acsami_4c01173
crossref_primary_10_1016_j_jallcom_2023_171005
crossref_primary_10_1038_s41467_023_44156_4
crossref_primary_10_1002_adfm_202407763
crossref_primary_10_1016_j_cej_2024_153536
crossref_primary_10_3390_molecules29050938
crossref_primary_10_1016_j_matlet_2024_136185
crossref_primary_10_1002_adfm_202405625
crossref_primary_10_1021_acsaenm_4c00127
crossref_primary_10_1002_adfm_202316657
crossref_primary_10_1002_admt_202300548
crossref_primary_10_1016_j_cej_2024_150223
crossref_primary_10_1002_adfm_202400732
crossref_primary_10_1002_sus2_171
crossref_primary_10_1038_s41467_023_43663_8
crossref_primary_10_1016_j_mtnano_2024_100452
crossref_primary_10_1002_adfm_202303475
crossref_primary_10_1002_adma_202310023
crossref_primary_10_1002_adfm_202314947
crossref_primary_10_1002_adma_202400102
crossref_primary_10_1016_j_nanoen_2024_109717
crossref_primary_10_1016_j_seppur_2024_127146
crossref_primary_10_1039_D3TA02397D
crossref_primary_10_1088_1361_6463_ad17a3
crossref_primary_10_1002_smll_202301164
crossref_primary_10_1021_acs_nanolett_3c03851
crossref_primary_10_1007_s42765_024_00377_w
crossref_primary_10_1021_acsnano_3c07780
Cites_doi 10.1126/science.aav7304
10.1021/acsmacrolett.7b00938
10.1002/adma.201204576
10.1039/D1GC01805A
10.1039/D1TA11025J
10.1007/s42114-021-00234-z
10.1016/j.applthermaleng.2016.11.102
10.34133/2022/9780290
10.1021/acs.chemrev.8b00593
10.1021/acsami.8b20420
10.1002/pat.5278
10.1021/acsnano.9b04731
10.1038/127741a0
10.1002/adfm.202106269
10.1039/C6RA17078A
10.1021/acsami.0c14091
10.1021/acsnano.0c09391
10.1126/sciadv.abn3690
10.1021/acsnano.1c07184
10.1063/1.5001072
10.1021/acsami.7b07821
10.1002/adma.202101280
10.1109/JMEMS.2017.2676704
10.1021/acs.chemmater.9b04877
10.1039/D0SM01261K
10.1021/acsnano.9b01955
10.3390/ma6030941
10.1007/s40843-020-1518-4
10.1021/acsnano.9b01094
10.1016/j.rser.2019.109571
10.1007/s10853-019-03769-1
10.1021/acs.macromol.1c01555
10.1021/nn2014003
10.1016/j.sna.2006.03.033
10.1016/j.carbpol.2021.117837
10.1021/acsami.9b14265
10.3389/fmats.2021.659655
10.1002/anie.201916484
10.1002/adfm.202010944
10.1002/adfm.202008006
10.1002/adfm.201701061
10.1021/acsnano.1c01551
10.1002/adfm.201907486
10.1021/ed065p28
10.1038/ncomms7152
10.1021/acsnano.9b07459
10.1016/j.jhazmat.2017.12.045
10.1002/adfm.202100106
10.1021/acs.chemmater.6b04706
10.1002/adfm.201201055
10.1039/C9NR07331K
10.1021/acsnano.0c04888
10.1002/anie.201703766
10.1038/ncomms7141
10.1021/la401579z
10.1039/D0TA02590A
10.1002/adfm.201907359
10.1017/CBO9781139878326
10.1016/j.jpowsour.2021.230608
10.1038/ncomms2251
10.1021/acsapm.0c01309
10.1002/app.13021
10.1016/j.cryogenics.2004.03.014
10.1021/acsnano.1c00463
10.1126/science.1252291
10.1016/j.carbpol.2021.118414
10.1002/smm2.1019
10.1016/j.jpowsour.2021.230899
10.1021/acsnano.7b08577
10.1039/D1TA02801D
10.1080/02678292.2011.624367
10.1126/sciadv.aas8925
10.1002/adfm.201909383
10.1016/j.cej.2020.124310
10.1002/adfm.202000186
10.1016/S0022-3093(98)00747-9
10.1038/nmat1913
10.1088/0960-1317/18/10/105012
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202207638
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202207638
36271721
ADMA202207638
Genre article
Journal Article
GrantInformation_xml – fundername: Suzhou Municipal Science and Technology Bureau
  funderid: SJC2021008
– fundername: National Natural Science Foundation of China
  funderid: 91963124
– fundername: National Natural Science Foundation of China
  grantid: 91963124
– fundername: Suzhou Municipal Science and Technology Bureau
  grantid: SJC2021008
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3738-e58e7b4cad0d3294f3e407c06a367a5128dd4ac6a1b2095b5458585bdf9fcde83
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Aug 16 07:31:44 EDT 2024
Thu Oct 10 15:57:31 EDT 2024
Thu Sep 26 16:09:04 EDT 2024
Sat Sep 28 08:16:54 EDT 2024
Sat Aug 24 00:52:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords hyperelasticity
aerogels
Kevlar nanofibers
thermal management
thermal switches
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-e58e7b4cad0d3294f3e407c06a367a5128dd4ac6a1b2095b5458585bdf9fcde83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1573-574X
PMID 36271721
PQID 2766923575
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2727641722
proquest_journals_2766923575
crossref_primary_10_1002_adma_202207638
pubmed_primary_36271721
wiley_primary_10_1002_adma_202207638_ADMA202207638
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 29
2013; 25
2021; 23
2017; 4
2020; 64
2019; 11
2019; 54
2013; 23
2019; 13
1931; 127
2019; 14
2020; 16
2020; 59
2020; 14
2020; 12
2017; 113
2013; 6
2017; 9
2019; 363
2018; 7
2020; 8
2021; 32
2021; 31
2021; 33
2018; 4
2007; 133
2021; 515
2021; 270
2007; 6
2019; 119
2022; 520
1998; 241
2021; 9
2021; 8
2004; 44
2015; 6
2021; 4
2021; 3
2021; 2
2017; 26
2017; 27
2008; 18
2018; 346
1997
2021; 261
2017; 29
2020; 32
2020; 388
2011; 38
2004; 91
2011; 5
2016; 6
2021; 15
2021; 54
2012; 3
2022; 2022
2020; 30
2022; 8
2017; 56
1988; 65
2020; 118
2022; 10
2018; 12
2014; 344
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
Hu P. (e_1_2_8_25_1) 2021; 15
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 118
  year: 2020
  publication-title: Renewable Sustainable Energy Rev.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 7195
  year: 2021
  publication-title: ACS Nano
– volume: 13
  start-page: 7811
  year: 2019
  publication-title: ACS Nano
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 91
  start-page: 417
  year: 2004
  publication-title: J. Appl. Polym. Sci.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 8
  year: 2021
  publication-title: Front. Mater.
– volume: 3
  start-page: 1241
  year: 2012
  publication-title: Nat. Commun.
– volume: 15
  start-page: 14
  year: 2021
  publication-title: ES Mater. Manuf.
– volume: 59
  start-page: 8293
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  start-page: 1595
  year: 2020
  publication-title: Chem. Mater.
– volume: 119
  start-page: 5298
  year: 2019
  publication-title: Chem. Rev.
– volume: 2
  start-page: 76
  year: 2021
  publication-title: SmartMat
– volume: 26
  start-page: 580
  year: 2017
  publication-title: J. Microelectromech. Syst.
– volume: 15
  start-page: 4759
  year: 2021
  publication-title: ACS Nano
– volume: 113
  start-page: 1242
  year: 2017
  publication-title: Appl. Therm. Eng.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 127
  start-page: 741
  year: 1931
  publication-title: Nature
– volume: 23
  start-page: 377
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 388
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 18
  year: 2008
  publication-title: J. Micromech. Microeng.
– volume: 2022
  year: 2022
  publication-title: Research
– volume: 32
  start-page: 2476
  year: 2021
  publication-title: Polym. Adv. Technol.
– year: 1997
– volume: 12
  start-page: 3103
  year: 2018
  publication-title: ACS Nano
– volume: 241
  start-page: 45
  year: 1998
  publication-title: J. Non‐Cryst. Solids
– volume: 14
  start-page: 688
  year: 2019
  publication-title: ACS Nano
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 29
  year: 2013
  publication-title: Langmuir
– volume: 363
  start-page: 723
  year: 2019
  publication-title: Science
– volume: 10
  start-page: 6690
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 520
  year: 2022
  publication-title: J. Power Sources
– volume: 6
  start-page: 418
  year: 2007
  publication-title: Nat. Mater.
– volume: 29
  start-page: 2122
  year: 2017
  publication-title: Chem. Mater.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 16
  start-page: 9160
  year: 2020
  publication-title: Soft Matter
– volume: 64
  start-page: 1267
  year: 2020
  publication-title: Sci. China Mater.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 344
  start-page: 1373
  year: 2014
  publication-title: Science
– volume: 65
  start-page: 28
  year: 1988
  publication-title: J. Chem. Educ.
– volume: 6
  start-page: 6152
  year: 2015
  publication-title: Nat. Commun.
– volume: 13
  start-page: 5703
  year: 2019
  publication-title: ACS Nano
– volume: 346
  start-page: 199
  year: 2018
  publication-title: J. Hazard. Mater.
– volume: 4
  year: 2017
  publication-title: Appl. Phys. Rev.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 7
  start-page: 53
  year: 2018
  publication-title: ACS Macro Lett.
– volume: 54
  year: 2019
  publication-title: J. Mater. Sci.
– volume: 4
  start-page: 248
  year: 2021
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 5
  start-page: 6945
  year: 2011
  publication-title: ACS Nano
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 133
  start-page: 55
  year: 2007
  publication-title: Sens. Actuators, A
– volume: 6
  start-page: 6141
  year: 2015
  publication-title: Nat. Commun.
– volume: 270
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 515
  year: 2021
  publication-title: J. Power Sources
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 261
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 3
  start-page: 2352
  year: 2021
  publication-title: ACS Appl Polym Mater
– volume: 54
  year: 2021
  publication-title: Macromolecules
– volume: 11
  start-page: 9425
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 38
  start-page: 1591
  year: 2011
  publication-title: Liq. Cryst.
– volume: 25
  start-page: 2554
  year: 2013
  publication-title: Adv. Mater.
– volume: 44
  start-page: 413
  year: 2004
  publication-title: Cryogenics
– volume: 6
  start-page: 941
  year: 2013
  publication-title: Materials
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 7646
  year: 2021
  publication-title: Green Chem.
– ident: e_1_2_8_24_1
  doi: 10.1126/science.aav7304
– ident: e_1_2_8_41_1
  doi: 10.1021/acsmacrolett.7b00938
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201204576
– ident: e_1_2_8_35_1
  doi: 10.1039/D1GC01805A
– ident: e_1_2_8_69_1
  doi: 10.1039/D1TA11025J
– ident: e_1_2_8_75_1
  doi: 10.1007/s42114-021-00234-z
– ident: e_1_2_8_43_1
  doi: 10.1016/j.applthermaleng.2016.11.102
– ident: e_1_2_8_18_1
  doi: 10.34133/2022/9780290
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.chemrev.8b00593
– ident: e_1_2_8_56_1
  doi: 10.1021/acsami.8b20420
– ident: e_1_2_8_21_1
  doi: 10.1002/pat.5278
– ident: e_1_2_8_16_1
  doi: 10.1021/acsnano.9b04731
– ident: e_1_2_8_22_1
  doi: 10.1038/127741a0
– ident: e_1_2_8_68_1
  doi: 10.1002/adfm.202106269
– ident: e_1_2_8_42_1
  doi: 10.1039/C6RA17078A
– ident: e_1_2_8_66_1
  doi: 10.1021/acsami.0c14091
– ident: e_1_2_8_58_1
  doi: 10.1021/acsnano.0c09391
– ident: e_1_2_8_28_1
  doi: 10.1126/sciadv.abn3690
– ident: e_1_2_8_2_1
  doi: 10.1021/acsnano.1c07184
– ident: e_1_2_8_37_1
  doi: 10.1063/1.5001072
– ident: e_1_2_8_60_1
  doi: 10.1021/acsami.7b07821
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.202101280
– ident: e_1_2_8_39_1
  doi: 10.1109/JMEMS.2017.2676704
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.chemmater.9b04877
– ident: e_1_2_8_8_1
  doi: 10.1039/D0SM01261K
– ident: e_1_2_8_51_1
  doi: 10.1021/acsnano.9b01955
– ident: e_1_2_8_6_1
  doi: 10.3390/ma6030941
– ident: e_1_2_8_27_1
  doi: 10.1007/s40843-020-1518-4
– ident: e_1_2_8_48_1
  doi: 10.1021/acsnano.9b01094
– ident: e_1_2_8_44_1
  doi: 10.1016/j.rser.2019.109571
– volume: 15
  start-page: 14
  year: 2021
  ident: e_1_2_8_25_1
  publication-title: ES Mater. Manuf.
  contributor:
    fullname: Hu P.
– ident: e_1_2_8_63_1
  doi: 10.1007/s10853-019-03769-1
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.macromol.1c01555
– ident: e_1_2_8_9_1
  doi: 10.1021/nn2014003
– ident: e_1_2_8_40_1
  doi: 10.1016/j.sna.2006.03.033
– ident: e_1_2_8_53_1
  doi: 10.1016/j.carbpol.2021.117837
– ident: e_1_2_8_57_1
  doi: 10.1021/acsami.9b14265
– ident: e_1_2_8_61_1
  doi: 10.3389/fmats.2021.659655
– ident: e_1_2_8_3_1
  doi: 10.1002/anie.201916484
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202010944
– ident: e_1_2_8_59_1
  doi: 10.1002/adfm.202008006
– ident: e_1_2_8_50_1
  doi: 10.1002/adfm.201701061
– ident: e_1_2_8_54_1
  doi: 10.1021/acsnano.1c01551
– ident: e_1_2_8_26_1
  doi: 10.1002/adfm.201907486
– ident: e_1_2_8_46_1
  doi: 10.1021/ed065p28
– ident: e_1_2_8_11_1
  doi: 10.1038/ncomms7152
– ident: e_1_2_8_17_1
  doi: 10.1021/acsnano.9b07459
– ident: e_1_2_8_31_1
  doi: 10.1016/j.jhazmat.2017.12.045
– ident: e_1_2_8_5_1
  doi: 10.1002/adfm.202100106
– ident: e_1_2_8_73_1
  doi: 10.1021/acs.chemmater.6b04706
– ident: e_1_2_8_70_1
  doi: 10.1002/adfm.201201055
– ident: e_1_2_8_19_1
  doi: 10.1039/C9NR07331K
– ident: e_1_2_8_52_1
  doi: 10.1021/acsnano.0c04888
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.201703766
– ident: e_1_2_8_23_1
  doi: 10.1038/ncomms7141
– ident: e_1_2_8_47_1
  doi: 10.1021/la401579z
– ident: e_1_2_8_49_1
  doi: 10.1039/D0TA02590A
– ident: e_1_2_8_64_1
  doi: 10.1002/adfm.201907359
– ident: e_1_2_8_74_1
  doi: 10.1017/CBO9781139878326
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jpowsour.2021.230608
– ident: e_1_2_8_71_1
  doi: 10.1038/ncomms2251
– ident: e_1_2_8_62_1
  doi: 10.1021/acsapm.0c01309
– ident: e_1_2_8_67_1
  doi: 10.1002/app.13021
– ident: e_1_2_8_79_1
  doi: 10.1016/j.cryogenics.2004.03.014
– ident: e_1_2_8_32_1
  doi: 10.1021/acsnano.1c00463
– ident: e_1_2_8_78_1
  doi: 10.1126/science.1252291
– ident: e_1_2_8_55_1
  doi: 10.1016/j.carbpol.2021.118414
– ident: e_1_2_8_34_1
  doi: 10.1002/smm2.1019
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jpowsour.2021.230899
– ident: e_1_2_8_30_1
  doi: 10.1021/acsnano.7b08577
– ident: e_1_2_8_20_1
  doi: 10.1039/D1TA02801D
– ident: e_1_2_8_45_1
  doi: 10.1080/02678292.2011.624367
– ident: e_1_2_8_77_1
  doi: 10.1126/sciadv.aas8925
– ident: e_1_2_8_65_1
  doi: 10.1002/adfm.201909383
– ident: e_1_2_8_15_1
  doi: 10.1016/j.cej.2020.124310
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.202000186
– ident: e_1_2_8_72_1
  doi: 10.1016/S0022-3093(98)00747-9
– ident: e_1_2_8_76_1
  doi: 10.1038/nmat1913
– ident: e_1_2_8_38_1
  doi: 10.1088/0960-1317/18/10/105012
SSID ssj0009606
Score 2.6149123
Snippet Aerogels, the lightest artificial solid materials characterized by low density and thermal conductivity, high porosity, and large specific surface area, have...
Abstract Aerogels, the lightest artificial solid materials characterized by low density and thermal conductivity, high porosity, and large specific surface...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2207638
SubjectTerms Aerogels
Aramid fibers
Crosslinking
Density
Fatigue strength
Heat conductivity
Heat flux
Heat transfer
hyperelasticity
Kevlar (trademark)
Kevlar nanofibers
Materials science
Nanofibers
Porosity
Switches
Thermal conductivity
Thermal insulation
Thermal management
Thermal response
Thermal simulation
Thermal stability
thermal switches
Title Hyperelastic Kevlar Nanofiber Aerogels as Robust Thermal Switches for Smart Thermal Management
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202207638
https://www.ncbi.nlm.nih.gov/pubmed/36271721
https://www.proquest.com/docview/2766923575
https://search.proquest.com/docview/2727641722
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Ekx58P6JVVhA8RdvdPI9FLUWph2qhJ8O-IqKm0rQK_npnkja1ehCUnEJ2k83OzM43uzvfAhxr7msMu5QrYz90vTQyrrKSu_WUxwViFyHlO3dugnbPu-r7_S9Z_CU_RDXhRpZRjNdk4FLlZzPSUGkK3iDOMRIXlO1LbHqEiroz_iiC5wXZnvDdOPCiKWtjnZ_NV5_3Sj-g5jxyLVxPaxXktNHljpOn0_FIneqPb3yO__mrNViZ4FLWLBVpHRZstgHLX9gKN-G-jTEr5b4QtTO7tm8YFDMcnVE9lR2yph0OHtDTMpmz7kCN8xFDHcRx_5ndvj-ScuQMETK7fUFtrR7Ntt9sQa91eXfedifHM7ia6JBc60c2VJ6Wpm4ESjYVFqNDXQ-kCEKJQCIyxpM6kA3FEcgpWqLDS5k0TrWxkdiGxWyQ2V1gvvEasQyjRmjxHZJAkyjY5mKhtdGRAydT8SSvJQtHUvIt84R6LKl6zIHaVHrJxBrzhIdBEBOvj-_AUfUY7YgWR2RmB2Mqg6U8hHPcgZ1S6tWn0MmHFCo7wAvZ_dKGpHnRaVZ3e3-ptA9LdK59OddTg8XRcGwPEP2M1GGh4Z_oUfp-
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIAD-xJWIyFxCm3trMeKRWUpBxaJE5G3IAS0qAtIfD0zSZNSOCCBcopsJ7ZnxvPGyzPAnua-xrBLuTL2Q9dLI-MqK7lbTXmcIXYR0nnn5mXQuPXO7vxiNyGdhcn5IcoJN7KMbLwmA6cJ6cqQNVSajDiIcwzFRTQOk2jzPtnm0dWQQYoAeka3J3w3Dryo4G2s8spo-VG_9ANsjmLXzPmczIEqqp3vOXk66PfUgf74xuj4r3bNw-wAmrJ6rksLMGZbizDzhbBwCe4bGLbS8Rdid2bn9g3jYoYDNGqosh1Wt532AzpbJrvsqq363R5DNcSh_5ldvz-SfnQZgmR2_YIKWyYNd-Asw-3J8c1hwx3c0OBqYkRyrR_ZUHlamqoRKNxUWAwQdTWQIgglYonIGE_qQNYURyynaJUOH2XSONXGRmIFJlrtll0D5huvFsswqoUWvyEJN4mMcC4WWhsdObBfyCd5zYk4kpxymSfUY0nZYw5sFuJLBgbZTXgYBDFR-_gO7JbJaEq0PiJbtt2nPJjLQ0THHVjNxV7-Cv18SNGyAzwT3i91SOpHzXr5tv6XQjsw1bhpXiQXp5fnGzBN19znUz-bMNHr9O0WgqGe2s7U_ROoSv6e
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEB48QPTB-1jPCIJPa9tkz8diLfVEPMAnl1wrorbSQ8Ff78xuu7X6ICj7tCTZTTIzmW9yfAHY09zXGHYpV8Z-6HppZFxlJXfLKY8zxC5COu98fhE0br2TO__uyyn-nB-imHAjy8jGazLwV5OWhqSh0mS8QZxjJC6icZj0AsEp_KpdDQmkCJ9nbHvCd-PAiwa0jWVeGi0_6pZ-YM1R6Jr5nvocyEGt8y0nTwe9rjrQH98IHf_TrHmY7QNTVs01aQHGbHMRZr7QFS7BfQODVjr8QtzO7NS-YVTMcHhG_VS2zaq23XpAV8tkh121VK_TZaiEOPA_s-v3R9KODkOIzK5fUF2LpOH-m2W4rR_dHDbc_v0MriY-JNf6kQ2Vp6UpG4GiTYXF8FCXAymCUCKSiIzxpA5kRXFEcorW6PBRJo1TbWwkVmCi2WraNWC-8SqxDKNKaPEbklCTyOjmYqG10ZED-wPxJK85DUeSEy7zhHosKXrMgc2B9JK-OXYSHgZBTMQ-vgO7RTIaEq2OyKZt9SgP5vIQz3EHVnOpF79CLx9SrOwAz2T3Sx2Sau28Wryt_6XQDkxd1urJ2fHF6QZM0x33-bzPJkx02z27hUioq7YzZf8Epdz9TQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperelastic+Kevlar+Nanofiber+Aerogels+as+Robust+Thermal+Switches+for+Smart+Thermal+Management&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hu%2C+Peiying&rft.au=Wang%2C+Jing&rft.au=Zhang%2C+Peigen&rft.au=Wu%2C+Fushuo&rft.date=2023-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fadma.202207638&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon