Mucosa‐Like Conformal Hydrogel Coating for Aqueous Lubrication
Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa‐like confo...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 46; pp. e2108848 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
17.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa‐like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface‐initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa‐matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m–2), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa‐like conformal hydrogel coating on the endotracheal tube significantly reduce intubation‐related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts.
An ingenious yet feasible method of creating a mucosa‐like conformal hydrogel coating, which is soft, lubricative, hydrophilic, antifouling, biocompatible, and stable, is reported. This coating effectively reduces intubation‐related complications. This work represents a breakthrough to endow interventional medical devices with required surface properties, showing promising prospects for clinical translation. |
---|---|
AbstractList | Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa-like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface-initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa-matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m-2 ), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa-like conformal hydrogel coating on the endotracheal tube significantly reduce intubation-related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts.Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa-like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface-initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa-matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m-2 ), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa-like conformal hydrogel coating on the endotracheal tube significantly reduce intubation-related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts. Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa‐like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface‐initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa‐matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m –2 ), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa‐like conformal hydrogel coating on the endotracheal tube significantly reduce intubation‐related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts. Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa‐like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface‐initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa‐matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m–2), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa‐like conformal hydrogel coating on the endotracheal tube significantly reduce intubation‐related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts. An ingenious yet feasible method of creating a mucosa‐like conformal hydrogel coating, which is soft, lubricative, hydrophilic, antifouling, biocompatible, and stable, is reported. This coating effectively reduces intubation‐related complications. This work represents a breakthrough to endow interventional medical devices with required surface properties, showing promising prospects for clinical translation. Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa-like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface-initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa-matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m ), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa-like conformal hydrogel coating on the endotracheal tube significantly reduce intubation-related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts. Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa‐like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface‐initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa‐matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m–2), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa‐like conformal hydrogel coating on the endotracheal tube significantly reduce intubation‐related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts. |
Author | Liu, Zhou‐Yun‐Tong Li, Zhong‐Ming Li, Lingli Bai, Meng‐Han Song, Xingrong Zheng, Zi‐Li Wei, Xin Li, Ka Zhao, Baisong Xu, Jia‐Zhuang |
Author_xml | – sequence: 1 givenname: Meng‐Han surname: Bai fullname: Bai, Meng‐Han organization: Sichuan University – sequence: 2 givenname: Baisong surname: Zhao fullname: Zhao, Baisong organization: Guangzhou Medical University – sequence: 3 givenname: Zhou‐Yun‐Tong surname: Liu fullname: Liu, Zhou‐Yun‐Tong organization: Sichuan University – sequence: 4 givenname: Zi‐Li surname: Zheng fullname: Zheng, Zi‐Li organization: Sichuan University – sequence: 5 givenname: Xin surname: Wei fullname: Wei, Xin organization: Sichuan University – sequence: 6 givenname: Lingli surname: Li fullname: Li, Lingli organization: Sichuan University – sequence: 7 givenname: Ka surname: Li fullname: Li, Ka organization: Sichuan University – sequence: 8 givenname: Xingrong surname: Song fullname: Song, Xingrong organization: Guangzhou Medical University – sequence: 9 givenname: Jia‐Zhuang orcidid: 0000-0001-9888-7014 surname: Xu fullname: Xu, Jia‐Zhuang email: jzxu@scu.edu.cn organization: Sichuan University – sequence: 10 givenname: Zhong‐Ming orcidid: 0000-0001-7203-1453 surname: Li fullname: Li, Zhong‐Ming organization: Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35075678$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1OGzEUhS0EKuFny7IaqRs2E65_x941SqFUCmIDa8tje9DQmTG1M0LZ9RF4Rp4Ep0laCalidaWj71yde88R2h_C4BE6wzDFAOTCuN5MCRAMUjK5hyaYE1wyUHwfTUBRXirB5CE6SukRAJQA8QkdUg4VF5WcoK83ow3JvP5-WbQ_fTEPQxNib7rieuViePBdlsyyHR6KrBezX6MPYyoWYx1bm_UwnKCDxnTJn27nMbq_urybX5eL2-8_5rNFaWlFZempkcYxgp3jknNaE8bBUMyaygPj2NqGVth5Tx21NXEKGmFqJ5XnDZNO0mN0vtn7FENOkZa6b5P1XWeGdSRNBCGCC0VERr-8Qx_DGIecTpOKVsCE4jRTn7fUWPfe6afY9iau9O43GWAbwMaQUvSNtu3yz83LaNpOY9DrCvS6Av23gmybvrPtNv_XoDaG57bzqw9oPft2M_vnfQPzRZif |
CitedBy_id | crossref_primary_10_1021_acssensors_3c00542 crossref_primary_10_1021_acsami_4c16046 crossref_primary_10_1002_advs_202203587 crossref_primary_10_1002_ange_202209741 crossref_primary_10_1021_acsami_4c00370 crossref_primary_10_1016_j_cej_2024_152362 crossref_primary_10_1002_adma_202310216 crossref_primary_10_1002_adma_202420626 crossref_primary_10_1039_D3TB01817B crossref_primary_10_1039_D3TB02402D crossref_primary_10_1002_adfm_202413712 crossref_primary_10_1021_acsami_4c13051 crossref_primary_10_1016_j_biomaterials_2024_122802 crossref_primary_10_1002_advs_202401301 crossref_primary_10_1002_smll_202310572 crossref_primary_10_1016_j_cej_2024_150944 crossref_primary_10_1039_D4TB01171F crossref_primary_10_1002_adfm_202301117 crossref_primary_10_1002_adhm_202401750 crossref_primary_10_1002_smll_202403303 crossref_primary_10_1016_j_porgcoat_2024_108748 crossref_primary_10_1111_pan_14643 crossref_primary_10_1021_acsnano_2c12612 crossref_primary_10_1002_adfm_202413464 crossref_primary_10_1002_adma_202309141 crossref_primary_10_1016_j_bioactmat_2024_03_029 crossref_primary_10_1016_j_pmatsci_2024_101334 crossref_primary_10_1021_acs_langmuir_3c03686 crossref_primary_10_1039_D5RA00643K crossref_primary_10_1016_j_jcis_2023_09_193 crossref_primary_10_1002_adfm_202310260 crossref_primary_10_1021_acsami_3c10683 crossref_primary_10_1016_j_progpolymsci_2024_101888 crossref_primary_10_1002_admi_202201757 crossref_primary_10_1016_j_cej_2023_146653 crossref_primary_10_1002_adfm_202400581 crossref_primary_10_1002_smll_202206299 crossref_primary_10_1002_smll_202206819 crossref_primary_10_1016_j_partic_2023_06_002 crossref_primary_10_1016_j_polymer_2024_127230 crossref_primary_10_1002_anie_202209741 crossref_primary_10_1039_D4TA02586E crossref_primary_10_1039_D2TB01813F crossref_primary_10_1021_acs_langmuir_2c02250 crossref_primary_10_1016_j_foodhyd_2022_108167 crossref_primary_10_1016_j_cej_2024_148673 crossref_primary_10_1002_adma_202306882 crossref_primary_10_1016_j_ijbiomac_2025_141577 crossref_primary_10_1002_adma_202309952 crossref_primary_10_1071_CH23218 crossref_primary_10_1002_app_53701 crossref_primary_10_1039_D2SM01158A crossref_primary_10_1039_D3BM01985C crossref_primary_10_1360_SSC_2023_0016 crossref_primary_10_1016_j_cej_2023_146848 crossref_primary_10_1016_j_compositesb_2023_110996 crossref_primary_10_1002_adma_202313177 crossref_primary_10_1002_adfm_202307760 crossref_primary_10_1016_j_surfin_2025_105959 crossref_primary_10_3390_coatings14091229 crossref_primary_10_1021_acsapm_3c02785 crossref_primary_10_3389_fbioe_2022_1083579 crossref_primary_10_1038_s41467_024_55715_8 crossref_primary_10_1021_acs_langmuir_4c00539 crossref_primary_10_34133_bmef_0063 crossref_primary_10_1002_smll_202411253 |
Cites_doi | 10.1002/adma.201801884 10.1002/adfm.201907534 10.1002/adma.201807101 10.1038/s41427-019-0168-0 10.1002/adfm.201905493 10.1038/nmat4463 10.1002/adfm.202009334 10.1016/j.cej.2021.130911 10.1117/1.3322296 10.1002/smll.201804651 10.1002/adfm.201901721 10.1021/acsmacrolett.9b00325 10.1016/j.xcrp.2021.100463 10.1016/j.aninu.2018.06.006 10.3389/fimmu.2015.00111 10.1038/s41586-019-1710-5 10.1213/ANE.0000000000003842 10.1016/j.addr.2011.02.008 10.1016/j.jclinane.2006.05.018 10.1016/j.anl.2018.10.010 10.1021/acs.macromol.8b02410 10.1002/adfm.201800596 10.1126/sciadv.abf9117 10.1021/acs.biomac.1c00126 10.1038/s41467-021-21964-0 10.1002/admi.201801018 10.1002/adma.202102428 10.1073/pnas.1821420116 10.1016/j.jdsr.2017.11.004 10.1038/s41427-020-0206-y 10.1034/j.1600-065X.2000.917304.x 10.1126/scirobotics.aax7329 10.1002/adma.202006362 10.1016/j.neuron.2014.12.035 10.1038/s41570-021-00323-z 10.1021/acsami.7b13565 10.1016/j.bja.2020.04.008 10.1002/admi.202000850 10.1016/j.msec.2016.10.033 10.1002/adhm.202000831 10.1101/cshperspect.a009308 10.1002/adma.201800671 10.1016/j.progpolymsci.2021.101409 10.1002/adfm.201901693 10.1002/adfm.201802140 10.1039/C7CS00748E 10.1002/adhm.201700520 10.1002/adma.201904732 10.1038/s41467-019-13171-9 10.1002/adma.201802141 10.1093/brain/awv183 10.1021/acsnano.7b00809 10.1039/C8TB03301C 10.1038/natrevmats.2016.63 10.1016/j.bja.2017.10.021 10.1002/adma.202103826 10.1002/adma.201803371 10.1046/j.1365-2044.1999.00780.x 10.1046/j.1440-1843.2003.00493.x |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202108848 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35075678 10_1002_adma_202108848 ADMA202108848 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2018YFB0704200 – fundername: West China Nursing Discipline Development Special Fund Project, Sichuan University funderid: HXHL21007 – fundername: West China Hospital, Sichuan University funderid: ZYJC21057 – fundername: National Natural Science Foundation of China funderid: 52022061; 51803139; 52033005 – fundername: National Natural Science Foundation of China grantid: 51803139 – fundername: National Natural Science Foundation of China grantid: 52022061 – fundername: West China Nursing Discipline Development Special Fund Project, Sichuan University grantid: HXHL21007 – fundername: National Natural Science Foundation of China grantid: 52033005 – fundername: National Key R&D Program of China grantid: 2018YFB0704200 – fundername: West China Hospital, Sichuan University grantid: ZYJC21057 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3738-e3a8ad421dd58553b2450a314f7e0451ccf371dee3d3cb2d90f6abd89e5f48d83 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 00:27:30 EDT 2025 Mon Jul 14 07:34:26 EDT 2025 Thu Apr 03 06:56:46 EDT 2025 Tue Jul 01 02:33:13 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Wed Jan 22 16:22:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | aqueous lubrication conformal decoration mucosa mechanical match hydrogel coatings |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-e3a8ad421dd58553b2450a314f7e0451ccf371dee3d3cb2d90f6abd89e5f48d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7203-1453 0000-0001-9888-7014 |
PMID | 35075678 |
PQID | 2737046953 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2622656926 proquest_journals_2737046953 pubmed_primary_35075678 crossref_citationtrail_10_1002_adma_202108848 crossref_primary_10_1002_adma_202108848 wiley_primary_10_1002_adma_202108848_ADMA202108848 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 17, 2022 |
PublicationDateYYYYMMDD | 2022-11-17 |
PublicationDate_xml | – month: 11 year: 2022 text: November 17, 2022 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 120 2017; 6 2010; 15 2021; 22 2019; 52 2019; 11 2019; 10 2019; 15 2000; 173 2020; 12 2020; 125 2019; 129 2017; 9 2020; 7 2021; 31 2017; 71 2018; 5 2018; 4 2021; 33 2015; 138 2015; 86 2003; 8 2021; 118 2019; 116 2019; 29 1999; 54 2018; 30 2012; 64 2019; 8 2019; 7 2007; 19 2021; 7 2018; 28 2015; 6 2021; 5 2019; 4 2021; 2 2019; 31 2016; 15 2021; 10 2012; 2 2016; 1 2021; 12 2020; 30 2017; 11 2019; 46 2019; 48 2015; 2015 2019; 575 2022; 427 2018; 54 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 Li Y. (e_1_2_8_56_1) 2021; 12 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 Tanaka Y. (e_1_2_8_46_1) 2015; 2015 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 138 start-page: 2632 year: 2015 publication-title: Brain – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 6 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 11 start-page: 66 year: 2019 publication-title: NPG Asia Mater. – volume: 12 start-page: 1670 year: 2021 publication-title: Nat. Commun. – volume: 8 start-page: 754 year: 2019 publication-title: ACS Macro Lett. – volume: 15 start-page: 190 year: 2016 publication-title: Nat. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 3897 year: 2021 publication-title: Front. Immunol. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – volume: 4 year: 2019 publication-title: Sci. Rob. – volume: 86 start-page: 175 year: 2015 publication-title: Neuron – volume: 116 start-page: 5967 year: 2019 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 start-page: 25 year: 2020 publication-title: NPG Asia Mater. – volume: 7 year: 2020 publication-title: Adv. Mater. Interfaces – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 120 start-page: 323 year: 2018 publication-title: Br. J. Anaesth. – volume: 4 start-page: 378 year: 2018 publication-title: Anim. Nutr. – volume: 8 start-page: 432 year: 2003 publication-title: Respirology – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 2 year: 2012 publication-title: Cold Spring Harbor Perspect. Med. – volume: 54 start-page: 59 year: 2018 publication-title: Jpn. Dent. Sci. Rev. – volume: 71 start-page: 520 year: 2017 publication-title: Mater. Sci. Eng., C – volume: 118 year: 2021 publication-title: Prog. Polym. Sci. – volume: 19 start-page: 20 year: 2007 publication-title: J. Clin. Anesth. – volume: 46 start-page: 407 year: 2019 publication-title: Auris, Nasus, Larynx – volume: 427 year: 2022 publication-title: Chem. Eng. J. – volume: 125 year: 2020 publication-title: Br. J. Anaesth. – volume: 11 start-page: 5332 year: 2017 publication-title: ACS Nano – volume: 22 start-page: 2373 year: 2021 publication-title: Biomacromolecules – volume: 15 year: 2019 publication-title: Small – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 575 start-page: 169 year: 2019 publication-title: Nature – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 173 start-page: 27 year: 2000 publication-title: Immunol. Rev. – volume: 129 start-page: 220 year: 2019 publication-title: Anesth. Analg. – volume: 15 year: 2010 publication-title: J. Biomed. Opt. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 111 year: 2015 publication-title: Front. Immunol. – volume: 5 start-page: 773 year: 2021 publication-title: Nat. Rev. Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 1311 year: 2019 publication-title: J. Mater. Chem. B – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 2015 year: 2015 publication-title: Cochrane Database Syst. Rev. – volume: 52 start-page: 1249 year: 2019 publication-title: Macromolecules – volume: 54 start-page: 444 year: 1999 publication-title: Anaesthesia – volume: 64 start-page: 16 year: 2012 publication-title: Adv. Drug Delivery Rev. – volume: 48 start-page: 415 year: 2019 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 5127 year: 2019 publication-title: Nat. Commun. – ident: e_1_2_8_21_1 doi: 10.1002/adma.201801884 – ident: e_1_2_8_17_1 doi: 10.1002/adfm.201907534 – ident: e_1_2_8_38_1 doi: 10.1002/adma.201807101 – ident: e_1_2_8_14_1 doi: 10.1038/s41427-019-0168-0 – ident: e_1_2_8_48_1 doi: 10.1002/adfm.201905493 – ident: e_1_2_8_36_1 doi: 10.1038/nmat4463 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.202009334 – ident: e_1_2_8_57_1 doi: 10.1016/j.cej.2021.130911 – ident: e_1_2_8_9_1 doi: 10.1117/1.3322296 – ident: e_1_2_8_22_1 doi: 10.1002/smll.201804651 – ident: e_1_2_8_35_1 doi: 10.1002/adfm.201901721 – ident: e_1_2_8_23_1 doi: 10.1021/acsmacrolett.9b00325 – ident: e_1_2_8_33_1 doi: 10.1016/j.xcrp.2021.100463 – ident: e_1_2_8_2_1 doi: 10.1016/j.aninu.2018.06.006 – ident: e_1_2_8_4_1 doi: 10.3389/fimmu.2015.00111 – ident: e_1_2_8_15_1 doi: 10.1038/s41586-019-1710-5 – ident: e_1_2_8_47_1 doi: 10.1213/ANE.0000000000003842 – ident: e_1_2_8_3_1 doi: 10.1016/j.addr.2011.02.008 – ident: e_1_2_8_6_1 doi: 10.1016/j.jclinane.2006.05.018 – ident: e_1_2_8_61_1 doi: 10.1016/j.anl.2018.10.010 – ident: e_1_2_8_18_1 doi: 10.1021/acs.macromol.8b02410 – ident: e_1_2_8_49_1 doi: 10.1002/adfm.201800596 – ident: e_1_2_8_40_1 doi: 10.1126/sciadv.abf9117 – ident: e_1_2_8_53_1 doi: 10.1021/acs.biomac.1c00126 – ident: e_1_2_8_13_1 doi: 10.1038/s41467-021-21964-0 – ident: e_1_2_8_34_1 doi: 10.1002/admi.201801018 – ident: e_1_2_8_10_1 doi: 10.1002/adma.202102428 – ident: e_1_2_8_41_1 doi: 10.1073/pnas.1821420116 – ident: e_1_2_8_1_1 doi: 10.1016/j.jdsr.2017.11.004 – ident: e_1_2_8_11_1 doi: 10.1038/s41427-020-0206-y – ident: e_1_2_8_59_1 doi: 10.1034/j.1600-065X.2000.917304.x – ident: e_1_2_8_39_1 doi: 10.1126/scirobotics.aax7329 – ident: e_1_2_8_32_1 doi: 10.1002/adma.202006362 – ident: e_1_2_8_42_1 doi: 10.1016/j.neuron.2014.12.035 – ident: e_1_2_8_12_1 doi: 10.1038/s41570-021-00323-z – ident: e_1_2_8_52_1 doi: 10.1021/acsami.7b13565 – ident: e_1_2_8_5_1 doi: 10.1016/j.bja.2020.04.008 – ident: e_1_2_8_27_1 doi: 10.1002/admi.202000850 – ident: e_1_2_8_7_1 doi: 10.1016/j.msec.2016.10.033 – ident: e_1_2_8_44_1 doi: 10.1002/adhm.202000831 – ident: e_1_2_8_54_1 doi: 10.1101/cshperspect.a009308 – ident: e_1_2_8_26_1 doi: 10.1002/adma.201800671 – ident: e_1_2_8_31_1 doi: 10.1016/j.progpolymsci.2021.101409 – ident: e_1_2_8_37_1 doi: 10.1002/adfm.201901693 – ident: e_1_2_8_51_1 doi: 10.1002/adfm.201802140 – ident: e_1_2_8_50_1 doi: 10.1039/C7CS00748E – ident: e_1_2_8_29_1 doi: 10.1002/adhm.201700520 – ident: e_1_2_8_28_1 doi: 10.1002/adma.201904732 – volume: 12 start-page: 3897 year: 2021 ident: e_1_2_8_56_1 publication-title: Front. Immunol. – ident: e_1_2_8_25_1 doi: 10.1038/s41467-019-13171-9 – ident: e_1_2_8_43_1 doi: 10.1002/adma.201802141 – ident: e_1_2_8_55_1 doi: 10.1093/brain/awv183 – ident: e_1_2_8_16_1 doi: 10.1021/acsnano.7b00809 – ident: e_1_2_8_20_1 doi: 10.1039/C8TB03301C – ident: e_1_2_8_8_1 doi: 10.1038/natrevmats.2016.63 – ident: e_1_2_8_45_1 doi: 10.1016/j.bja.2017.10.021 – ident: e_1_2_8_19_1 doi: 10.1002/adma.202103826 – volume: 2015 start-page: CD004081 year: 2015 ident: e_1_2_8_46_1 publication-title: Cochrane Database Syst. Rev. – ident: e_1_2_8_30_1 doi: 10.1002/adma.201803371 – ident: e_1_2_8_60_1 doi: 10.1046/j.1365-2044.1999.00780.x – ident: e_1_2_8_58_1 doi: 10.1046/j.1440-1843.2003.00493.x |
SSID | ssj0009606 |
Score | 2.6333685 |
Snippet | Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2108848 |
SubjectTerms | aqueous lubrication Biocompatibility Biomedical materials Bonding strength Coating Coefficient of friction conformal decoration Edema hydrogel coatings Hydrogels Interfacial bonding Lubrication mechanical match Micelles Modulus of elasticity mucosa Peeling Substrates Tissues Water absorption |
Title | Mucosa‐Like Conformal Hydrogel Coating for Aqueous Lubrication |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202108848 https://www.ncbi.nlm.nih.gov/pubmed/35075678 https://www.proquest.com/docview/2737046953 https://www.proquest.com/docview/2622656926 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P6qrVBA8Vbt5tb1ZfLDIrgdR8FbSPERcdmUfBz35E_yN_hIzbbe6igh6bJrQJDPTfElmvgHYFyQShliJCU1UwAwlgQx5GEhFbMyMw9Ahxg53LkXrhl3c8ttPUfwlP0R94IaWUfyv0cBlPjz6IA2VuuANcluWOGYY7YsOW4iKrj74oxCeF2R7lAeJYPGEtTEkR9PNp1elb1BzGrkWS8_5IshJp0uPk4fD8Sg_VM9f-Bz_M6olWKhwqZ-WirQMM6a3AvOf2ApX4biD3u3y7eW1ff9gfIwVRMDb9VtPetC_M11XJNGL2nflfurG1h8P_fY4H1Tngmtwc352fdIKqgQMgULCo8BQGUvNSFNrt6vgNCeMh5I2mY0M8tIoZWnU1MZQTVVOdBJaIXMdJ4ZbFuuYrsNsr98zm-CHScSVTbQDpIoRK3IjwsQSYowTkmxaD4KJADJVsZNjkoxuVvIqkwxnJqtnxoODuv5jycvxY83GRJ5ZZZ_DzIG2CE8GOPVgr37tLAuvS2QP5ycjwkFTLhIiPNgo9aD-FHUwmrt13gNSSPOXPmTpaSetn7b-0mgb5ghGXqAHYtSA2dFgbHYcHhrlu4XOvwPlfgDP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOUAPLVAoSwssElJP22z8Wu-tUdsoQNIDaqTeLK8fFUqUoDQ5wKk_ob-xvwTPvkpAFRIc12trbY9n_Xk88w3AB0Ey4YjXmNDEJMxRkuiUp4k2xEvmAoZOMXZ4dCYGY_bpgjfehBgLU_FDtAY31Izyf40Kjgbpzh1rqLYlcVA4s0jJ5EN4hGm9y1PVlzsGKQToJd0e5UkumGx4G1PSWW-_vi_9ATbXsWu5-fS3oWi6XfmcTA5Xy-LQ_PiN0fG_xvUUtmpoGveqtfQMHrjZc9j8hbBwB45G6OCub69vhl8nLsZwQcS803jw3S7ml24aijQ6UsehPO6Fwc1XV_FwVSxq0-ALGPdPz48HSZ2DITHIeZQ4qqW2jHStDQcLTgvCeKppl_nMITWNMZ5mXesctdQUxOapF7qwMnfcM2klfQkbs_nMvYI4zTNufG4DJjWMeFE4keaeEOeClHTXR5A0ElCmJijHPBlTVVErE4Uzo9qZieCgrf-toua4t-Z-I1BVq-iVCrgtQ-MApxG8b18H5cIbEz3D-VFEBHTKRU5EBLvVQmg_RQOS5mGrj4CU4vxLH1TvZNRrn17_S6N38HhwPhqq4cezz3vwhGAgBjokZvuwsVys3JsAj5bF21IBfgL2uQTq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5BkRAcKAUKSwtdJCRO2zr-W--tESEKbVIhRKXeLK9_qqpRUqXJAU48As_Ik9Szu9k2oAqpHNdra23PzPrzeOYzwHtJc-lpMHihic24ZzQzRJDMWBoU9xFDE8wdHh3JwTE_OBEnN7L4a36I1uGGllH9r9HAL1zYuyYNNa7iDYpbFqW4ug8PuCQK9br39ZpACvF5xbbHRFZIrpa0jYTurbZfXZb-wpqr0LVae_rrYJa9rkNOzncX83LX_viD0PF_hvUUnjTANO3WmrQB9_zkGTy-QVf4HPZHGN5ufv_8NTw79ykmCyLiHaeD7242PfXjWGQwjDqN5Wk3jm26uEyHi3LWOAZfwHH_07ePg6y5gSGzyHiUeWaUcZx2nIvbCsFKygUxrMND7pGYxtrA8o7znjlmS-oKEqQpnSq8CFw5xTZhbTKd-FeQkiIXNhQuIlLLaZCll6QIlHofhWQ6IYFsKQBtG3pyvCVjrGtiZapxZnQ7Mwl8aOtf1MQct9bcXspTNwZ6qSNqy9E1IFgC79rX0bTwvMRMcH40lRGbCllQmcDLWg_aT7GIo0Vc6BOglTT_0Qfd7Y267dPruzTagYdfen09_Hx0uAWPKGZhYDRivg1r89nCv4nYaF6-rdT_CvgzA6I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mucosa%E2%80%90Like+Conformal+Hydrogel+Coating+for+Aqueous+Lubrication&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Bai%2C+Meng%E2%80%90Han&rft.au=Zhao%2C+Baisong&rft.au=Liu%2C+Zhou%E2%80%90Yun%E2%80%90Tong&rft.au=Zheng%2C+Zi%E2%80%90Li&rft.date=2022-11-17&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=46&rft_id=info:doi/10.1002%2Fadma.202108848&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202108848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |