Mucosa‐Like Conformal Hydrogel Coating for Aqueous Lubrication

Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa‐like confo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 46; pp. e2108848 - n/a
Main Authors Bai, Meng‐Han, Zhao, Baisong, Liu, Zhou‐Yun‐Tong, Zheng, Zi‐Li, Wei, Xin, Li, Lingli, Li, Ka, Song, Xingrong, Xu, Jia‐Zhuang, Li, Zhong‐Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 17.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa‐like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface‐initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa‐matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m–2), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa‐like conformal hydrogel coating on the endotracheal tube significantly reduce intubation‐related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts. An ingenious yet feasible method of creating a mucosa‐like conformal hydrogel coating, which is soft, lubricative, hydrophilic, antifouling, biocompatible, and stable, is reported. This coating effectively reduces intubation‐related complications. This work represents a breakthrough to endow interventional medical devices with required surface properties, showing promising prospects for clinical translation.
AbstractList Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa-like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface-initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa-matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m-2 ), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa-like conformal hydrogel coating on the endotracheal tube significantly reduce intubation-related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts.Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa-like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface-initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa-matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m-2 ), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa-like conformal hydrogel coating on the endotracheal tube significantly reduce intubation-related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts.
Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa‐like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface‐initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa‐matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m –2 ), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa‐like conformal hydrogel coating on the endotracheal tube significantly reduce intubation‐related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts.
Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa‐like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface‐initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa‐matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m–2), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa‐like conformal hydrogel coating on the endotracheal tube significantly reduce intubation‐related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts. An ingenious yet feasible method of creating a mucosa‐like conformal hydrogel coating, which is soft, lubricative, hydrophilic, antifouling, biocompatible, and stable, is reported. This coating effectively reduces intubation‐related complications. This work represents a breakthrough to endow interventional medical devices with required surface properties, showing promising prospects for clinical translation.
Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa-like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface-initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa-matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m ), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa-like conformal hydrogel coating on the endotracheal tube significantly reduce intubation-related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts.
Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa‐like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface‐initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa‐matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m–2), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa‐like conformal hydrogel coating on the endotracheal tube significantly reduce intubation‐related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts.
Author Liu, Zhou‐Yun‐Tong
Li, Zhong‐Ming
Li, Lingli
Bai, Meng‐Han
Song, Xingrong
Zheng, Zi‐Li
Wei, Xin
Li, Ka
Zhao, Baisong
Xu, Jia‐Zhuang
Author_xml – sequence: 1
  givenname: Meng‐Han
  surname: Bai
  fullname: Bai, Meng‐Han
  organization: Sichuan University
– sequence: 2
  givenname: Baisong
  surname: Zhao
  fullname: Zhao, Baisong
  organization: Guangzhou Medical University
– sequence: 3
  givenname: Zhou‐Yun‐Tong
  surname: Liu
  fullname: Liu, Zhou‐Yun‐Tong
  organization: Sichuan University
– sequence: 4
  givenname: Zi‐Li
  surname: Zheng
  fullname: Zheng, Zi‐Li
  organization: Sichuan University
– sequence: 5
  givenname: Xin
  surname: Wei
  fullname: Wei, Xin
  organization: Sichuan University
– sequence: 6
  givenname: Lingli
  surname: Li
  fullname: Li, Lingli
  organization: Sichuan University
– sequence: 7
  givenname: Ka
  surname: Li
  fullname: Li, Ka
  organization: Sichuan University
– sequence: 8
  givenname: Xingrong
  surname: Song
  fullname: Song, Xingrong
  organization: Guangzhou Medical University
– sequence: 9
  givenname: Jia‐Zhuang
  orcidid: 0000-0001-9888-7014
  surname: Xu
  fullname: Xu, Jia‐Zhuang
  email: jzxu@scu.edu.cn
  organization: Sichuan University
– sequence: 10
  givenname: Zhong‐Ming
  orcidid: 0000-0001-7203-1453
  surname: Li
  fullname: Li, Zhong‐Ming
  organization: Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35075678$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1OGzEUhS0EKuFny7IaqRs2E65_x941SqFUCmIDa8tje9DQmTG1M0LZ9RF4Rp4Ep0laCalidaWj71yde88R2h_C4BE6wzDFAOTCuN5MCRAMUjK5hyaYE1wyUHwfTUBRXirB5CE6SukRAJQA8QkdUg4VF5WcoK83ow3JvP5-WbQ_fTEPQxNib7rieuViePBdlsyyHR6KrBezX6MPYyoWYx1bm_UwnKCDxnTJn27nMbq_urybX5eL2-8_5rNFaWlFZempkcYxgp3jknNaE8bBUMyaygPj2NqGVth5Tx21NXEKGmFqJ5XnDZNO0mN0vtn7FENOkZa6b5P1XWeGdSRNBCGCC0VERr-8Qx_DGIecTpOKVsCE4jRTn7fUWPfe6afY9iau9O43GWAbwMaQUvSNtu3yz83LaNpOY9DrCvS6Av23gmybvrPtNv_XoDaG57bzqw9oPft2M_vnfQPzRZif
CitedBy_id crossref_primary_10_1021_acssensors_3c00542
crossref_primary_10_1021_acsami_4c16046
crossref_primary_10_1002_advs_202203587
crossref_primary_10_1002_ange_202209741
crossref_primary_10_1021_acsami_4c00370
crossref_primary_10_1016_j_cej_2024_152362
crossref_primary_10_1002_adma_202310216
crossref_primary_10_1002_adma_202420626
crossref_primary_10_1039_D3TB01817B
crossref_primary_10_1039_D3TB02402D
crossref_primary_10_1002_adfm_202413712
crossref_primary_10_1021_acsami_4c13051
crossref_primary_10_1016_j_biomaterials_2024_122802
crossref_primary_10_1002_advs_202401301
crossref_primary_10_1002_smll_202310572
crossref_primary_10_1016_j_cej_2024_150944
crossref_primary_10_1039_D4TB01171F
crossref_primary_10_1002_adfm_202301117
crossref_primary_10_1002_adhm_202401750
crossref_primary_10_1002_smll_202403303
crossref_primary_10_1016_j_porgcoat_2024_108748
crossref_primary_10_1111_pan_14643
crossref_primary_10_1021_acsnano_2c12612
crossref_primary_10_1002_adfm_202413464
crossref_primary_10_1002_adma_202309141
crossref_primary_10_1016_j_bioactmat_2024_03_029
crossref_primary_10_1016_j_pmatsci_2024_101334
crossref_primary_10_1021_acs_langmuir_3c03686
crossref_primary_10_1039_D5RA00643K
crossref_primary_10_1016_j_jcis_2023_09_193
crossref_primary_10_1002_adfm_202310260
crossref_primary_10_1021_acsami_3c10683
crossref_primary_10_1016_j_progpolymsci_2024_101888
crossref_primary_10_1002_admi_202201757
crossref_primary_10_1016_j_cej_2023_146653
crossref_primary_10_1002_adfm_202400581
crossref_primary_10_1002_smll_202206299
crossref_primary_10_1002_smll_202206819
crossref_primary_10_1016_j_partic_2023_06_002
crossref_primary_10_1016_j_polymer_2024_127230
crossref_primary_10_1002_anie_202209741
crossref_primary_10_1039_D4TA02586E
crossref_primary_10_1039_D2TB01813F
crossref_primary_10_1021_acs_langmuir_2c02250
crossref_primary_10_1016_j_foodhyd_2022_108167
crossref_primary_10_1016_j_cej_2024_148673
crossref_primary_10_1002_adma_202306882
crossref_primary_10_1016_j_ijbiomac_2025_141577
crossref_primary_10_1002_adma_202309952
crossref_primary_10_1071_CH23218
crossref_primary_10_1002_app_53701
crossref_primary_10_1039_D2SM01158A
crossref_primary_10_1039_D3BM01985C
crossref_primary_10_1360_SSC_2023_0016
crossref_primary_10_1016_j_cej_2023_146848
crossref_primary_10_1016_j_compositesb_2023_110996
crossref_primary_10_1002_adma_202313177
crossref_primary_10_1002_adfm_202307760
crossref_primary_10_1016_j_surfin_2025_105959
crossref_primary_10_3390_coatings14091229
crossref_primary_10_1021_acsapm_3c02785
crossref_primary_10_3389_fbioe_2022_1083579
crossref_primary_10_1038_s41467_024_55715_8
crossref_primary_10_1021_acs_langmuir_4c00539
crossref_primary_10_34133_bmef_0063
crossref_primary_10_1002_smll_202411253
Cites_doi 10.1002/adma.201801884
10.1002/adfm.201907534
10.1002/adma.201807101
10.1038/s41427-019-0168-0
10.1002/adfm.201905493
10.1038/nmat4463
10.1002/adfm.202009334
10.1016/j.cej.2021.130911
10.1117/1.3322296
10.1002/smll.201804651
10.1002/adfm.201901721
10.1021/acsmacrolett.9b00325
10.1016/j.xcrp.2021.100463
10.1016/j.aninu.2018.06.006
10.3389/fimmu.2015.00111
10.1038/s41586-019-1710-5
10.1213/ANE.0000000000003842
10.1016/j.addr.2011.02.008
10.1016/j.jclinane.2006.05.018
10.1016/j.anl.2018.10.010
10.1021/acs.macromol.8b02410
10.1002/adfm.201800596
10.1126/sciadv.abf9117
10.1021/acs.biomac.1c00126
10.1038/s41467-021-21964-0
10.1002/admi.201801018
10.1002/adma.202102428
10.1073/pnas.1821420116
10.1016/j.jdsr.2017.11.004
10.1038/s41427-020-0206-y
10.1034/j.1600-065X.2000.917304.x
10.1126/scirobotics.aax7329
10.1002/adma.202006362
10.1016/j.neuron.2014.12.035
10.1038/s41570-021-00323-z
10.1021/acsami.7b13565
10.1016/j.bja.2020.04.008
10.1002/admi.202000850
10.1016/j.msec.2016.10.033
10.1002/adhm.202000831
10.1101/cshperspect.a009308
10.1002/adma.201800671
10.1016/j.progpolymsci.2021.101409
10.1002/adfm.201901693
10.1002/adfm.201802140
10.1039/C7CS00748E
10.1002/adhm.201700520
10.1002/adma.201904732
10.1038/s41467-019-13171-9
10.1002/adma.201802141
10.1093/brain/awv183
10.1021/acsnano.7b00809
10.1039/C8TB03301C
10.1038/natrevmats.2016.63
10.1016/j.bja.2017.10.021
10.1002/adma.202103826
10.1002/adma.201803371
10.1046/j.1365-2044.1999.00780.x
10.1046/j.1440-1843.2003.00493.x
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202108848
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35075678
10_1002_adma_202108848
ADMA202108848
Genre article
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2018YFB0704200
– fundername: West China Nursing Discipline Development Special Fund Project, Sichuan University
  funderid: HXHL21007
– fundername: West China Hospital, Sichuan University
  funderid: ZYJC21057
– fundername: National Natural Science Foundation of China
  funderid: 52022061; 51803139; 52033005
– fundername: National Natural Science Foundation of China
  grantid: 51803139
– fundername: National Natural Science Foundation of China
  grantid: 52022061
– fundername: West China Nursing Discipline Development Special Fund Project, Sichuan University
  grantid: HXHL21007
– fundername: National Natural Science Foundation of China
  grantid: 52033005
– fundername: National Key R&D Program of China
  grantid: 2018YFB0704200
– fundername: West China Hospital, Sichuan University
  grantid: ZYJC21057
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3738-e3a8ad421dd58553b2450a314f7e0451ccf371dee3d3cb2d90f6abd89e5f48d83
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 00:27:30 EDT 2025
Mon Jul 14 07:34:26 EDT 2025
Thu Apr 03 06:56:46 EDT 2025
Tue Jul 01 02:33:13 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Wed Jan 22 16:22:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords aqueous lubrication
conformal decoration
mucosa
mechanical match
hydrogel coatings
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-e3a8ad421dd58553b2450a314f7e0451ccf371dee3d3cb2d90f6abd89e5f48d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7203-1453
0000-0001-9888-7014
PMID 35075678
PQID 2737046953
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2622656926
proquest_journals_2737046953
pubmed_primary_35075678
crossref_citationtrail_10_1002_adma_202108848
crossref_primary_10_1002_adma_202108848
wiley_primary_10_1002_adma_202108848_ADMA202108848
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 17, 2022
PublicationDateYYYYMMDD 2022-11-17
PublicationDate_xml – month: 11
  year: 2022
  text: November 17, 2022
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 120
2017; 6
2010; 15
2021; 22
2019; 52
2019; 11
2019; 10
2019; 15
2000; 173
2020; 12
2020; 125
2019; 129
2017; 9
2020; 7
2021; 31
2017; 71
2018; 5
2018; 4
2021; 33
2015; 138
2015; 86
2003; 8
2021; 118
2019; 116
2019; 29
1999; 54
2018; 30
2012; 64
2019; 8
2019; 7
2007; 19
2021; 7
2018; 28
2015; 6
2021; 5
2019; 4
2021; 2
2019; 31
2016; 15
2021; 10
2012; 2
2016; 1
2021; 12
2020; 30
2017; 11
2019; 46
2019; 48
2015; 2015
2019; 575
2022; 427
2018; 54
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
Li Y. (e_1_2_8_56_1) 2021; 12
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
Tanaka Y. (e_1_2_8_46_1) 2015; 2015
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 138
  start-page: 2632
  year: 2015
  publication-title: Brain
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 11
  start-page: 66
  year: 2019
  publication-title: NPG Asia Mater.
– volume: 12
  start-page: 1670
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  start-page: 754
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 15
  start-page: 190
  year: 2016
  publication-title: Nat. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 3897
  year: 2021
  publication-title: Front. Immunol.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– volume: 4
  year: 2019
  publication-title: Sci. Rob.
– volume: 86
  start-page: 175
  year: 2015
  publication-title: Neuron
– volume: 116
  start-page: 5967
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  start-page: 25
  year: 2020
  publication-title: NPG Asia Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 120
  start-page: 323
  year: 2018
  publication-title: Br. J. Anaesth.
– volume: 4
  start-page: 378
  year: 2018
  publication-title: Anim. Nutr.
– volume: 8
  start-page: 432
  year: 2003
  publication-title: Respirology
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 2
  year: 2012
  publication-title: Cold Spring Harbor Perspect. Med.
– volume: 54
  start-page: 59
  year: 2018
  publication-title: Jpn. Dent. Sci. Rev.
– volume: 71
  start-page: 520
  year: 2017
  publication-title: Mater. Sci. Eng., C
– volume: 118
  year: 2021
  publication-title: Prog. Polym. Sci.
– volume: 19
  start-page: 20
  year: 2007
  publication-title: J. Clin. Anesth.
– volume: 46
  start-page: 407
  year: 2019
  publication-title: Auris, Nasus, Larynx
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 125
  year: 2020
  publication-title: Br. J. Anaesth.
– volume: 11
  start-page: 5332
  year: 2017
  publication-title: ACS Nano
– volume: 22
  start-page: 2373
  year: 2021
  publication-title: Biomacromolecules
– volume: 15
  year: 2019
  publication-title: Small
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 575
  start-page: 169
  year: 2019
  publication-title: Nature
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 173
  start-page: 27
  year: 2000
  publication-title: Immunol. Rev.
– volume: 129
  start-page: 220
  year: 2019
  publication-title: Anesth. Analg.
– volume: 15
  year: 2010
  publication-title: J. Biomed. Opt.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 111
  year: 2015
  publication-title: Front. Immunol.
– volume: 5
  start-page: 773
  year: 2021
  publication-title: Nat. Rev. Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1311
  year: 2019
  publication-title: J. Mater. Chem. B
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 2015
  year: 2015
  publication-title: Cochrane Database Syst. Rev.
– volume: 52
  start-page: 1249
  year: 2019
  publication-title: Macromolecules
– volume: 54
  start-page: 444
  year: 1999
  publication-title: Anaesthesia
– volume: 64
  start-page: 16
  year: 2012
  publication-title: Adv. Drug Delivery Rev.
– volume: 48
  start-page: 415
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 5127
  year: 2019
  publication-title: Nat. Commun.
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.201801884
– ident: e_1_2_8_17_1
  doi: 10.1002/adfm.201907534
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.201807101
– ident: e_1_2_8_14_1
  doi: 10.1038/s41427-019-0168-0
– ident: e_1_2_8_48_1
  doi: 10.1002/adfm.201905493
– ident: e_1_2_8_36_1
  doi: 10.1038/nmat4463
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.202009334
– ident: e_1_2_8_57_1
  doi: 10.1016/j.cej.2021.130911
– ident: e_1_2_8_9_1
  doi: 10.1117/1.3322296
– ident: e_1_2_8_22_1
  doi: 10.1002/smll.201804651
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.201901721
– ident: e_1_2_8_23_1
  doi: 10.1021/acsmacrolett.9b00325
– ident: e_1_2_8_33_1
  doi: 10.1016/j.xcrp.2021.100463
– ident: e_1_2_8_2_1
  doi: 10.1016/j.aninu.2018.06.006
– ident: e_1_2_8_4_1
  doi: 10.3389/fimmu.2015.00111
– ident: e_1_2_8_15_1
  doi: 10.1038/s41586-019-1710-5
– ident: e_1_2_8_47_1
  doi: 10.1213/ANE.0000000000003842
– ident: e_1_2_8_3_1
  doi: 10.1016/j.addr.2011.02.008
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jclinane.2006.05.018
– ident: e_1_2_8_61_1
  doi: 10.1016/j.anl.2018.10.010
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.macromol.8b02410
– ident: e_1_2_8_49_1
  doi: 10.1002/adfm.201800596
– ident: e_1_2_8_40_1
  doi: 10.1126/sciadv.abf9117
– ident: e_1_2_8_53_1
  doi: 10.1021/acs.biomac.1c00126
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-021-21964-0
– ident: e_1_2_8_34_1
  doi: 10.1002/admi.201801018
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.202102428
– ident: e_1_2_8_41_1
  doi: 10.1073/pnas.1821420116
– ident: e_1_2_8_1_1
  doi: 10.1016/j.jdsr.2017.11.004
– ident: e_1_2_8_11_1
  doi: 10.1038/s41427-020-0206-y
– ident: e_1_2_8_59_1
  doi: 10.1034/j.1600-065X.2000.917304.x
– ident: e_1_2_8_39_1
  doi: 10.1126/scirobotics.aax7329
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.202006362
– ident: e_1_2_8_42_1
  doi: 10.1016/j.neuron.2014.12.035
– ident: e_1_2_8_12_1
  doi: 10.1038/s41570-021-00323-z
– ident: e_1_2_8_52_1
  doi: 10.1021/acsami.7b13565
– ident: e_1_2_8_5_1
  doi: 10.1016/j.bja.2020.04.008
– ident: e_1_2_8_27_1
  doi: 10.1002/admi.202000850
– ident: e_1_2_8_7_1
  doi: 10.1016/j.msec.2016.10.033
– ident: e_1_2_8_44_1
  doi: 10.1002/adhm.202000831
– ident: e_1_2_8_54_1
  doi: 10.1101/cshperspect.a009308
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.201800671
– ident: e_1_2_8_31_1
  doi: 10.1016/j.progpolymsci.2021.101409
– ident: e_1_2_8_37_1
  doi: 10.1002/adfm.201901693
– ident: e_1_2_8_51_1
  doi: 10.1002/adfm.201802140
– ident: e_1_2_8_50_1
  doi: 10.1039/C7CS00748E
– ident: e_1_2_8_29_1
  doi: 10.1002/adhm.201700520
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201904732
– volume: 12
  start-page: 3897
  year: 2021
  ident: e_1_2_8_56_1
  publication-title: Front. Immunol.
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-019-13171-9
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.201802141
– ident: e_1_2_8_55_1
  doi: 10.1093/brain/awv183
– ident: e_1_2_8_16_1
  doi: 10.1021/acsnano.7b00809
– ident: e_1_2_8_20_1
  doi: 10.1039/C8TB03301C
– ident: e_1_2_8_8_1
  doi: 10.1038/natrevmats.2016.63
– ident: e_1_2_8_45_1
  doi: 10.1016/j.bja.2017.10.021
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.202103826
– volume: 2015
  start-page: CD004081
  year: 2015
  ident: e_1_2_8_46_1
  publication-title: Cochrane Database Syst. Rev.
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201803371
– ident: e_1_2_8_60_1
  doi: 10.1046/j.1365-2044.1999.00780.x
– ident: e_1_2_8_58_1
  doi: 10.1046/j.1440-1843.2003.00493.x
SSID ssj0009606
Score 2.6333685
Snippet Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2108848
SubjectTerms aqueous lubrication
Biocompatibility
Biomedical materials
Bonding strength
Coating
Coefficient of friction
conformal decoration
Edema
hydrogel coatings
Hydrogels
Interfacial bonding
Lubrication
mechanical match
Micelles
Modulus of elasticity
mucosa
Peeling
Substrates
Tissues
Water absorption
Title Mucosa‐Like Conformal Hydrogel Coating for Aqueous Lubrication
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202108848
https://www.ncbi.nlm.nih.gov/pubmed/35075678
https://www.proquest.com/docview/2737046953
https://www.proquest.com/docview/2622656926
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P6qrVBA8Vbt5tb1ZfLDIrgdR8FbSPERcdmUfBz35E_yN_hIzbbe6igh6bJrQJDPTfElmvgHYFyQShliJCU1UwAwlgQx5GEhFbMyMw9Ahxg53LkXrhl3c8ttPUfwlP0R94IaWUfyv0cBlPjz6IA2VuuANcluWOGYY7YsOW4iKrj74oxCeF2R7lAeJYPGEtTEkR9PNp1elb1BzGrkWS8_5IshJp0uPk4fD8Sg_VM9f-Bz_M6olWKhwqZ-WirQMM6a3AvOf2ApX4biD3u3y7eW1ff9gfIwVRMDb9VtPetC_M11XJNGL2nflfurG1h8P_fY4H1Tngmtwc352fdIKqgQMgULCo8BQGUvNSFNrt6vgNCeMh5I2mY0M8tIoZWnU1MZQTVVOdBJaIXMdJ4ZbFuuYrsNsr98zm-CHScSVTbQDpIoRK3IjwsQSYowTkmxaD4KJADJVsZNjkoxuVvIqkwxnJqtnxoODuv5jycvxY83GRJ5ZZZ_DzIG2CE8GOPVgr37tLAuvS2QP5ycjwkFTLhIiPNgo9aD-FHUwmrt13gNSSPOXPmTpaSetn7b-0mgb5ghGXqAHYtSA2dFgbHYcHhrlu4XOvwPlfgDP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOUAPLVAoSwssElJP22z8Wu-tUdsoQNIDaqTeLK8fFUqUoDQ5wKk_ob-xvwTPvkpAFRIc12trbY9n_Xk88w3AB0Ey4YjXmNDEJMxRkuiUp4k2xEvmAoZOMXZ4dCYGY_bpgjfehBgLU_FDtAY31Izyf40Kjgbpzh1rqLYlcVA4s0jJ5EN4hGm9y1PVlzsGKQToJd0e5UkumGx4G1PSWW-_vi_9ATbXsWu5-fS3oWi6XfmcTA5Xy-LQ_PiN0fG_xvUUtmpoGveqtfQMHrjZc9j8hbBwB45G6OCub69vhl8nLsZwQcS803jw3S7ml24aijQ6UsehPO6Fwc1XV_FwVSxq0-ALGPdPz48HSZ2DITHIeZQ4qqW2jHStDQcLTgvCeKppl_nMITWNMZ5mXesctdQUxOapF7qwMnfcM2klfQkbs_nMvYI4zTNufG4DJjWMeFE4keaeEOeClHTXR5A0ElCmJijHPBlTVVErE4Uzo9qZieCgrf-toua4t-Z-I1BVq-iVCrgtQ-MApxG8b18H5cIbEz3D-VFEBHTKRU5EBLvVQmg_RQOS5mGrj4CU4vxLH1TvZNRrn17_S6N38HhwPhqq4cezz3vwhGAgBjokZvuwsVys3JsAj5bF21IBfgL2uQTq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5BkRAcKAUKSwtdJCRO2zr-W--tESEKbVIhRKXeLK9_qqpRUqXJAU48As_Ik9Szu9k2oAqpHNdra23PzPrzeOYzwHtJc-lpMHihic24ZzQzRJDMWBoU9xFDE8wdHh3JwTE_OBEnN7L4a36I1uGGllH9r9HAL1zYuyYNNa7iDYpbFqW4ug8PuCQK9br39ZpACvF5xbbHRFZIrpa0jYTurbZfXZb-wpqr0LVae_rrYJa9rkNOzncX83LX_viD0PF_hvUUnjTANO3WmrQB9_zkGTy-QVf4HPZHGN5ufv_8NTw79ykmCyLiHaeD7242PfXjWGQwjDqN5Wk3jm26uEyHi3LWOAZfwHH_07ePg6y5gSGzyHiUeWaUcZx2nIvbCsFKygUxrMND7pGYxtrA8o7znjlmS-oKEqQpnSq8CFw5xTZhbTKd-FeQkiIXNhQuIlLLaZCll6QIlHofhWQ6IYFsKQBtG3pyvCVjrGtiZapxZnQ7Mwl8aOtf1MQct9bcXspTNwZ6qSNqy9E1IFgC79rX0bTwvMRMcH40lRGbCllQmcDLWg_aT7GIo0Vc6BOglTT_0Qfd7Y267dPruzTagYdfen09_Hx0uAWPKGZhYDRivg1r89nCv4nYaF6-rdT_CvgzA6I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mucosa%E2%80%90Like+Conformal+Hydrogel+Coating+for+Aqueous+Lubrication&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Bai%2C+Meng%E2%80%90Han&rft.au=Zhao%2C+Baisong&rft.au=Liu%2C+Zhou%E2%80%90Yun%E2%80%90Tong&rft.au=Zheng%2C+Zi%E2%80%90Li&rft.date=2022-11-17&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=46&rft_id=info:doi/10.1002%2Fadma.202108848&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202108848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon