On the Mechanisms of Hypohalous Acid Formation and Electrophilic Halogenation by Non‐Native Halogenases
Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism‐guided strategy to discover the electrophilic halogenation activity catalyzed...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 24; pp. e202403858 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.06.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202403858 |
Cover
Loading…
Abstract | Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism‐guided strategy to discover the electrophilic halogenation activity catalyzed by non‐native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin‐dependent monooxygenases/oxidases capable of forming C4a‐hydroperoxyflavin (FlC4a‐OOH), such as dehalogenase, hydroxylases, luciferase and pyranose‐2‐oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped‐flow spectrophotometry/fluorometry and product analysis indicate that FlC4a‐OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a‐OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a‐OOH can react with halides to form HOX, QM/MM calculations, site‐directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation.
Electrophilic halogenases in nature are typically not efficient. Guided by flavin‐dependent halogenase mechanisms and taking advantage of the versatile reactivity of a flavin hydroperoxide adduct and in situ generation of H2O2 by flavin‐dependent enzymes, it was possible to promote the formation of a hypohalous acid—which is key for electrophilic halogenation—in various non‐native halogenases by rerouting the flavin‐generated peroxide. |
---|---|
AbstractList | Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism‐guided strategy to discover the electrophilic halogenation activity catalyzed by non‐native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin‐dependent monooxygenases/oxidases capable of forming C4a‐hydroperoxyflavin (Fl
C4a‐OOH
), such as dehalogenase, hydroxylases, luciferase and pyranose‐2‐oxidase (P2O), and flavin reductase capable of forming H
2
O
2
were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped‐flow spectrophotometry/fluorometry and product analysis indicate that Fl
C4a‐OOH
in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from Fl
C4a‐OOH
cannot halogenate their substrates. Remarkably, in situ H
2
O
2
generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming Fl
C4a‐OOH
can react with halides to form HOX, QM/MM calculations, site‐directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation. Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism-guided strategy to discover the electrophilic halogenation activity catalyzed by non-native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin-dependent monooxygenases/oxidases capable of forming C4a-hydroperoxyflavin (Fl ), such as dehalogenase, hydroxylases, luciferase and pyranose-2-oxidase (P2O), and flavin reductase capable of forming H O were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped-flow spectrophotometry/fluorometry and product analysis indicate that Fl in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from Fl cannot halogenate their substrates. Remarkably, in situ H O generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming Fl can react with halides to form HOX, QM/MM calculations, site-directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation. Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism‐guided strategy to discover the electrophilic halogenation activity catalyzed by non‐native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin‐dependent monooxygenases/oxidases capable of forming C4a‐hydroperoxyflavin (FlC4a‐OOH), such as dehalogenase, hydroxylases, luciferase and pyranose‐2‐oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped‐flow spectrophotometry/fluorometry and product analysis indicate that FlC4a‐OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a‐OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a‐OOH can react with halides to form HOX, QM/MM calculations, site‐directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation. Electrophilic halogenases in nature are typically not efficient. Guided by flavin‐dependent halogenase mechanisms and taking advantage of the versatile reactivity of a flavin hydroperoxide adduct and in situ generation of H2O2 by flavin‐dependent enzymes, it was possible to promote the formation of a hypohalous acid—which is key for electrophilic halogenation—in various non‐native halogenases by rerouting the flavin‐generated peroxide. Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism-guided strategy to discover the electrophilic halogenation activity catalyzed by non-native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin-dependent monooxygenases/oxidases capable of forming C4a-hydroperoxyflavin (FlC4a-OOH), such as dehalogenase, hydroxylases, luciferase and pyranose-2-oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped-flow spectrophotometry/fluorometry and product analysis indicate that FlC4a-OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a-OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a-OOH can react with halides to form HOX, QM/MM calculations, site-directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation.Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism-guided strategy to discover the electrophilic halogenation activity catalyzed by non-native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin-dependent monooxygenases/oxidases capable of forming C4a-hydroperoxyflavin (FlC4a-OOH), such as dehalogenase, hydroxylases, luciferase and pyranose-2-oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped-flow spectrophotometry/fluorometry and product analysis indicate that FlC4a-OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a-OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a-OOH can react with halides to form HOX, QM/MM calculations, site-directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation. Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism‐guided strategy to discover the electrophilic halogenation activity catalyzed by non‐native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin‐dependent monooxygenases/oxidases capable of forming C4a‐hydroperoxyflavin (FlC4a‐OOH), such as dehalogenase, hydroxylases, luciferase and pyranose‐2‐oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped‐flow spectrophotometry/fluorometry and product analysis indicate that FlC4a‐OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a‐OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a‐OOH can react with halides to form HOX, QM/MM calculations, site‐directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation.Dedicated to Prof. Karl-Heinz van Pée |
Author | Visitsatthawong, Surawit Prakinee, Kridsadakorn Phintha, Aisaraphon Jitkaroon, Watcharapa Chaiyen, Pimchai Chitnumsub, Penchit Lawan, Narin |
Author_xml | – sequence: 1 givenname: Kridsadakorn orcidid: 0000-0003-2421-1518 surname: Prakinee fullname: Prakinee, Kridsadakorn organization: Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley – sequence: 2 givenname: Narin orcidid: 0000-0003-0940-9278 surname: Lawan fullname: Lawan, Narin organization: Chiang Mai University – sequence: 3 givenname: Aisaraphon orcidid: 0000-0001-6565-998X surname: Phintha fullname: Phintha, Aisaraphon organization: Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley – sequence: 4 givenname: Surawit surname: Visitsatthawong fullname: Visitsatthawong, Surawit organization: Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley – sequence: 5 givenname: Penchit surname: Chitnumsub fullname: Chitnumsub, Penchit organization: National Science and Technology Development Agency (NSTDA) Thailand Science Park – sequence: 6 givenname: Watcharapa surname: Jitkaroon fullname: Jitkaroon, Watcharapa organization: Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley – sequence: 7 givenname: Pimchai orcidid: 0000-0002-8533-1604 surname: Chaiyen fullname: Chaiyen, Pimchai email: pimchai.chaiyen@vistec.ac.th organization: Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38606607$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9uEzEQxi3Uiv6BK0dkiQuXTe2MYzvHqEqbSiW9lPPKa88SV7t2sDdFufEIPGOfBIeUIFVCPY1H8_tmxvOdkaMQAxLygbMRZ2x8YYLH0ZiNBQM90W_IKZ-MeQVKwVF5C4BK6Qk_IWc5PxReaybfkhPQkknJ1Cnxd4EOK6Rf0K5Kr9xnGlu62K7jynRxk-nMekevYurN4GOgJjg679AOKa5XvvOWLgr3DcO-3GzpMoann7-WJX_EQzFjfkeOW9NlfP8cz8nXq_n95aK6vbu-uZzdVhYU6Mq1SrRiCgJdI62yyIy20LjGca4MGKa55Vo6NhEOrW6E4cq1xrasAW6BwTn5vO-7TvH7BvNQ9z5b7DoTsHyoLogWu1GyoJ9eoA9xk0LZrlASQE71FAr18ZnaND26ep18b9K2_nvEAoz2gE0x54TtAeGs3rlU71yqDy4VgXghsH74c8AhGd_9Xzbdy374DrevDKlny5v5P-1vbd2oZw |
CitedBy_id | crossref_primary_10_1021_acscatal_4c07143 crossref_primary_10_1016_j_tchem_2024_100112 crossref_primary_10_1002_cbic_202400750 crossref_primary_10_1073_pnas_2409479122 |
Cites_doi | 10.1021/bi00172a035 10.1074/jbc.M116.774448 10.1016/j.bbaexp.2004.08.003 10.1021/jacs.1c12778 10.1007/s11426-021-1018-0 10.1021/bi060607d 10.1002/anie.202214610 10.1038/s41467-021-23503-3 10.1016/j.biotechadv.2021.107712 10.1126/science.adf2465 10.1021/ar800088r 10.1074/jbc.M512385200 10.1021/acscatal.6b02707 10.1021/jacs.5b04328 10.1039/C8SC01482E 10.1016/bs.enz.2020.05.008 10.1146/annurev-biochem-062917-012042 10.1002/anie.202116908 10.1016/j.jmgm.2018.12.011 10.1002/wcms.82 10.1021/acscatal.0c01958 10.1021/bi801039d 10.1002/pro.3280 10.1039/b314768a 10.1021/jp104069t 10.1016/j.jbc.2023.105413 10.1021/acs.chemrev.7b00650 10.1039/C9GC00633H 10.1002/anie.201509573 10.1016/j.jmb.2016.07.003 10.1126/science.1116510 10.1093/jb/mvm155 10.1021/acs.jpcb.7b06892 10.1016/j.jbc.2021.100952 10.1126/science.7939628 10.1016/j.cplett.2014.06.010 10.1128/AEM.67.8.3636-3644.2001 10.1111/febs.15653 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D 10.1016/j.cej.2017.10.077 10.1016/j.molcata.2013.01.023 10.1016/S0043-1354(01)00301-3 10.1093/nar/gkh381 10.1021/bi7006614 10.1074/jbc.RA120.016004 10.1038/s41557-019-0349-z 10.1002/jcc.21334 10.1038/s41929-022-00800-8 10.1021/bi00172a036 10.1002/chem.201903756 10.1046/j.1432-1033.2001.02490.x 10.1021/acs.jcim.1c01187 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202403858 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 38606607 10_1002_anie_202403858 ANIE202403858 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Program Management Unit for Human Resources & Institutional Development (PMU-B) funderid: B05F640089 – fundername: KasikornBank Public Company Limited – fundername: Vidyasirimedhi Institute of Science and Technology – fundername: Program Management Unit for Human Resources & Institutional Development (PMU-B) grantid: B05F640089 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3738-df74f4934edb6c7ce0a8c3bdbd117a3a081c186d054dec8b4a17dfacf0b31c303 |
IEDL.DBID | 24P |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:41:36 EDT 2025 Fri Jul 25 10:43:48 EDT 2025 Mon Jul 21 05:29:51 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Tue Jul 01 01:47:35 EDT 2025 Wed Jan 22 17:20:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Flavin-dependent enzymes De novo function Enzyme catalysis Reaction mechanisms Electrophilic halogenation |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-df74f4934edb6c7ce0a8c3bdbd117a3a081c186d054dec8b4a17dfacf0b31c303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8533-1604 0000-0003-0940-9278 0000-0003-2421-1518 0000-0001-6565-998X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403858 |
PMID | 38606607 |
PQID | 3063369893 |
PQPubID | 946352 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3038437386 proquest_journals_3063369893 pubmed_primary_38606607 crossref_primary_10_1002_anie_202403858 crossref_citationtrail_10_1002_anie_202403858 wiley_primary_10_1002_anie_202403858_ANIE202403858 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 10, 2024 |
PublicationDateYYYYMMDD | 2024-06-10 |
PublicationDate_xml | – month: 06 year: 2024 text: June 10, 2024 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2004; 127 2021; 64 2009; 42 2016; 428 2021; 288 2019; 11 2007; 142 2020; 10 2018; 87 2001; 268 1994; 266 2004; 32 2018; 9 2015; 137 2014; 608 2019; 21 2010; 114 2023; 299 2018; 335 1994; 33 2023; 379 2020; 47 2005; 309 2006; 281 2017; 121 1996; 26 2002; 36 2010; 31 2017; 292 2004 2004; 1680 2001; 67 2021; 51 2018; 27 2016; 55 2022; 144 2012; 2 2021; 12 2006; 45 2021 2022; 61 2022; 5 2020 2018; 118 2019; 87 2022; 62 2008; 47 2019 2020; 26 2021; 296 2016 2013; 371 2021; 297 2007; 46 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Northrup J. D. (e_1_2_9_3_1) 2019 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Phintha A. (e_1_2_9_2_1) 2020 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Crowe C. (e_1_2_9_9_1) 2021 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_25_1 Ponder J. W. (e_1_2_9_47_1) 2004 Frisch M. J. (e_1_2_9_52_1) 2016 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 26 start-page: 5328 year: 2020 end-page: 5340 publication-title: Chem. Eur. J. – volume: 5 start-page: 534 year: 2022 end-page: 544 publication-title: Nat. Catal. – volume: 42 start-page: 147 year: 2009 end-page: 155 publication-title: Acc. Chem. Res. – volume: 288 start-page: 3246 year: 2021 end-page: 3260 publication-title: FEBS J. – volume: 47 start-page: 283 year: 2020 end-page: 326 publication-title: Enzymes – volume: 51 year: 2021 publication-title: Biotechnol. Adv. – year: 2021 publication-title: Chem. Soc. Rev. – volume: 144 start-page: 2861 year: 2022 end-page: 2866 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 363 year: 1996 end-page: 376 publication-title: Proteins Struct. Funct. Bioinf. – volume: 297 year: 2021 publication-title: J. Biol. Chem. – volume: 1680 start-page: 60 year: 2004 end-page: 66 publication-title: Biochim. Biophys. Acta – volume: 36 start-page: 1034 year: 2002 end-page: 1042 publication-title: Water Res. – volume: 292 start-page: 4818 year: 2017 end-page: 4832 publication-title: J. Biol. Chem. – volume: 121 start-page: 9785 year: 2017 end-page: 9798 publication-title: J. Phys. Chem. B – year: 2004 – volume: 142 start-page: 539 year: 2007 end-page: 552 publication-title: J. Biochem. – volume: 47 start-page: 8485 year: 2008 end-page: 8490 publication-title: Biochemistry – volume: 7 start-page: 1897 year: 2017 end-page: 1904 publication-title: ACS Catal. – volume: 118 start-page: 1742 year: 2018 end-page: 1769 publication-title: Chem. Rev. – volume: 268 start-page: 5550 year: 2001 end-page: 5561 publication-title: Eur. J. Biochem. – volume: 62 start-page: 399 year: 2022 end-page: 411 publication-title: J. Chem. Inf. Model. – volume: 335 start-page: 855 year: 2018 end-page: 864 publication-title: Chem. Eng. J. – year: 2019 – volume: 32 start-page: W665 year: 2004 end-page: W667 publication-title: Nucleic Acids Res. – volume: 309 start-page: 2216 year: 2005 end-page: 2219 publication-title: Science – volume: 55 start-page: 6374 year: 2016 end-page: 6389 publication-title: Angew. Chem. Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 371 start-page: 56 year: 2013 end-page: 62 publication-title: J. Mol. Catal. A – volume: 87 start-page: 159 year: 2018 end-page: 185 publication-title: Annu. Rev. Biochem. – volume: 428 start-page: 3131 year: 2016 end-page: 3146 publication-title: J. Mol. Biol. – volume: 127 start-page: 165 year: 2004 end-page: 177 publication-title: Faraday Discuss. – volume: 299 year: 2023 publication-title: J. Biol. Chem. – volume: 87 start-page: 250 year: 2019 end-page: 256 publication-title: J. Mol. Graphics Modell. – volume: 33 start-page: 1555 year: 1994 end-page: 1564 publication-title: Biochemistry – year: 2016 – volume: 45 start-page: 7904 year: 2006 end-page: 7912 publication-title: Biochemistry – volume: 266 start-page: 110 year: 1994 end-page: 114 publication-title: Science – volume: 137 start-page: 9363 year: 2015 end-page: 9374 publication-title: J. Am. Chem. Soc. – volume: 608 start-page: 380 year: 2014 end-page: 385 publication-title: Chem. Phys. Lett. – volume: 379 start-page: 1358 year: 2023 end-page: 1363 publication-title: Science – volume: 31 start-page: 455 year: 2010 end-page: 461 publication-title: J. Comput. Chem. – volume: 296 year: 2021 publication-title: J. Biol. Chem. – start-page: 327 year: 2020 end-page: 364 – volume: 33 start-page: 1545 year: 1994 end-page: 1554 publication-title: Biochemistry – volume: 67 start-page: 3636 year: 2001 end-page: 3644 publication-title: Appl. Environ. Microbiol. – volume: 11 start-page: 1091 year: 2019 end-page: 1097 publication-title: Nat. Chem. – volume: 10 start-page: 8277 year: 2020 end-page: 8284 publication-title: ACS Catal. – volume: 27 start-page: 112 year: 2018 end-page: 128 publication-title: Protein Sci. – volume: 9 start-page: 7468 year: 2018 end-page: 7482 publication-title: Chem. Sci. – volume: 21 start-page: 3232 year: 2019 end-page: 3249 publication-title: Green Chem. – volume: 114 start-page: 11303 year: 2010 end-page: 11314 publication-title: J. Phys. Chem. B – volume: 46 start-page: 8611 year: 2007 end-page: 8623 publication-title: Biochemistry – volume: 12 start-page: 3268 year: 2021 publication-title: Nat. Commun. – volume: 281 start-page: 17044 year: 2006 end-page: 17053 publication-title: J. Biol. Chem. – volume: 2 start-page: 242 year: 2012 end-page: 253 publication-title: WIREs Comput. Mol. Sci. – volume: 64 start-page: 1730 year: 2021 end-page: 1735 publication-title: Sci. China Chem. – ident: e_1_2_9_48_1 – ident: e_1_2_9_56_1 doi: 10.1021/bi00172a035 – ident: e_1_2_9_23_1 doi: 10.1074/jbc.M116.774448 – ident: e_1_2_9_57_1 doi: 10.1016/j.bbaexp.2004.08.003 – ident: e_1_2_9_12_1 doi: 10.1021/jacs.1c12778 – ident: e_1_2_9_29_1 doi: 10.1007/s11426-021-1018-0 – ident: e_1_2_9_16_1 doi: 10.1021/bi060607d – ident: e_1_2_9_13_1 doi: 10.1002/anie.202214610 – ident: e_1_2_9_18_1 doi: 10.1038/s41467-021-23503-3 – ident: e_1_2_9_22_1 doi: 10.1016/j.biotechadv.2021.107712 – ident: e_1_2_9_14_1 doi: 10.1126/science.adf2465 – ident: e_1_2_9_41_1 doi: 10.1021/ar800088r – ident: e_1_2_9_24_1 doi: 10.1074/jbc.M512385200 – ident: e_1_2_9_10_1 doi: 10.1021/acscatal.6b02707 – ident: e_1_2_9_43_1 doi: 10.1021/jacs.5b04328 – ident: e_1_2_9_30_1 doi: 10.1039/C8SC01482E – ident: e_1_2_9_37_1 doi: 10.1016/bs.enz.2020.05.008 – ident: e_1_2_9_15_1 doi: 10.1146/annurev-biochem-062917-012042 – start-page: 327 volume-title: The Enzymes, Vol. 47 year: 2020 ident: e_1_2_9_2_1 – ident: e_1_2_9_39_1 doi: 10.1002/anie.202116908 – ident: e_1_2_9_31_1 doi: 10.1016/j.jmgm.2018.12.011 – ident: e_1_2_9_51_1 doi: 10.1002/wcms.82 – ident: e_1_2_9_5_1 doi: 10.1021/acscatal.0c01958 – ident: e_1_2_9_26_1 doi: 10.1021/bi801039d – ident: e_1_2_9_54_1 doi: 10.1002/pro.3280 – ident: e_1_2_9_55_1 doi: 10.1039/b314768a – ident: e_1_2_9_50_1 doi: 10.1021/jp104069t – ident: e_1_2_9_44_1 doi: 10.1016/j.jbc.2023.105413 – ident: e_1_2_9_21_1 doi: 10.1021/acs.chemrev.7b00650 – ident: e_1_2_9_8_1 doi: 10.1039/C9GC00633H – ident: e_1_2_9_1_1 doi: 10.1002/anie.201509573 – ident: e_1_2_9_20_1 doi: 10.1016/j.jmb.2016.07.003 – volume-title: Int. J. Mol. Sci., Vol. 20 year: 2019 ident: e_1_2_9_3_1 – ident: e_1_2_9_34_1 doi: 10.1126/science.1116510 – ident: e_1_2_9_25_1 doi: 10.1093/jb/mvm155 – ident: e_1_2_9_33_1 doi: 10.1021/acs.jpcb.7b06892 – ident: e_1_2_9_35_1 doi: 10.1016/j.jbc.2021.100952 – ident: e_1_2_9_36_1 doi: 10.1126/science.7939628 – ident: e_1_2_9_32_1 doi: 10.1016/j.cplett.2014.06.010 – ident: e_1_2_9_58_1 doi: 10.1128/AEM.67.8.3636-3644.2001 – ident: e_1_2_9_42_1 doi: 10.1111/febs.15653 – ident: e_1_2_9_45_1 doi: 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D – ident: e_1_2_9_6_1 doi: 10.1016/j.cej.2017.10.077 – ident: e_1_2_9_7_1 doi: 10.1016/j.molcata.2013.01.023 – ident: e_1_2_9_40_1 doi: 10.1016/S0043-1354(01)00301-3 – ident: e_1_2_9_46_1 doi: 10.1093/nar/gkh381 – ident: e_1_2_9_28_1 doi: 10.1021/bi7006614 – ident: e_1_2_9_17_1 doi: 10.1074/jbc.RA120.016004 – volume-title: Gaussian, Inc. year: 2016 ident: e_1_2_9_52_1 – ident: e_1_2_9_11_1 doi: 10.1038/s41557-019-0349-z – volume-title: Vol. 3 year: 2004 ident: e_1_2_9_47_1 – ident: e_1_2_9_49_1 doi: 10.1002/jcc.21334 – ident: e_1_2_9_19_1 doi: 10.1038/s41929-022-00800-8 – ident: e_1_2_9_38_1 doi: 10.1021/bi00172a036 – ident: e_1_2_9_4_1 doi: 10.1002/chem.201903756 – ident: e_1_2_9_27_1 doi: 10.1046/j.1432-1033.2001.02490.x – ident: e_1_2_9_53_1 doi: 10.1021/acs.jcim.1c01187 – year: 2021 ident: e_1_2_9_9_1 publication-title: Chem. Soc. Rev. |
SSID | ssj0028806 |
Score | 2.48876 |
Snippet | Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202403858 |
SubjectTerms | De novo function Electrophilic halogenation Enzyme catalysis Enzymes Flavin Flavin reductase Flavin-dependent enzymes Flavins - chemistry Flavins - metabolism Fluorimetry Fluorometry Halides Halogenation Hydrogen peroxide Hydrogen Peroxide - chemistry Hydrogen Peroxide - metabolism Hydrolases - chemistry Hydrolases - metabolism Kinetics Mixed Function Oxygenases - chemistry Mixed Function Oxygenases - metabolism Mutagenesis Organic compounds Oxidoreductases - chemistry Oxidoreductases - metabolism Reaction mechanisms Reductases Spectrophotometry Structural analysis Substrates |
Title | On the Mechanisms of Hypohalous Acid Formation and Electrophilic Halogenation by Non‐Native Halogenases |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403858 https://www.ncbi.nlm.nih.gov/pubmed/38606607 https://www.proquest.com/docview/3063369893 https://www.proquest.com/docview/3038437386 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5W96AXcdXdjY-lBcFTY5LuvI6DO8Os4LgsCt5CP9kBNzMYPXjzJ_gb_SVWJZOsw7IIXkKSrqZDVXf6q0rqK4CjQqc2yrzmaPCYS58UvPBC89in3iqtfaIoOfl8ko6v5Nl1cv0qi7_lh-gDbrQymvc1LXCl65O_pKGUgY3-HfHJ5Um-Ah8pv5Zmeix_9i4Xzs42v0gITmXoO9rGMD5Z7r-8Lf2DNZeha7P3jDZhYwEa2aC18if44KotWDvtarVtw_SiYojk2LmjRN5p_admM8_GD_PZb3WDvj0bmKlloy5RkanKsmFbAGdOERXDxhTEcW1okOkHNplVz49Pk4YWvG-sXb0DV6Ph5emYL4oocEOkRdz6THpZCOmsTk1mXKhyI7TVNooyJRRCAhPlqUXoZp3JtVRRZr0yPtQiMrjBfYbVala5r8AQPBh0YlOvIy3zwiiUcE4ao5PEKREGwDsdlmbBME6FLm7Klhs5LknnZa_zAI57-XnLrfFfyf3OJOVijdUlOjtCUP1LEcBh34yKp08eqnKoXZQReUPelAbwpTVlPxTeRLwVZgHEjW3feIZyMPkx7K9239NpD9bpnP40i8J9WL27vXcHiGnu9Ldm2uLx-6_4BaMm8PE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONBLRemDtLS4UqWeLJLYeR1XaFehsKEHkHqL_FRXguyK0AO3_gR-I7-kM8kmaFVVlXqMPVaiGTv-Zuz5BuBzoVMbZV5zNHjMpU8KXniheexTb5XWPlGUnDyv0vJKfv2eDLcJKRem54cYA260Mrr_NS1wCkgfP7GGUgo2OnhEKJcn-TPYkWmcUfWGWH4bfS6cnn2CkRCc6tAPvI1hfLw5fnNf-gNsbmLXbvOZ7cGLNWpkk97ML2HLNfuwezIUa3sFi4uGIZRjc0eZvIv2pmVLz8r71fKHukbnnk3MwrLZkKnIVGPZtK-As6KQimElRXFcHxtk-p5Vy-bx10PV8YKPna1rX8PVbHp5UvJ1FQVuiLWIW59JLwshndWpyYwLVW6EttpGUaaEQkxgojy1iN2sM7mWKsqsV8aHWkQGd7g3sN0sG3cADNGDQS829TrSMi-MQgnnpDE6SZwSYQB80GFt1hTjVOniuu7JkeOadF6POg_gyyi_6sk1_ip5OJikXi-ytkZvRwgqgCkC-DR2o-LpzEM1DrWLMiLv2JvSAN72phxfhY0IuMIsgLiz7T--oZ5Up9Px6d3_DDqC3fJyfl6fn1Zn7-E5tdO1syg8hO2725_uAwKcO_2xm8K_AfuZ83Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB7BIpVeENCWBgo1ElJPVpPY-Tuull1toQ09UKm3yL_qSiW7atpDbzwCz8iTMJNsAitUIXGMPVaiGTv-Zuz5BuBDoVMbZV5zNHjMpU8KXniheexTb5XWPlGUnHxWpvML-ekyufwji7_jhxgCbrQy2v81LfCV9ce_SUMpAxv9O-KTy5P8MTyhEz-a47E8H1wunJ1dfpEQnMrQ97SNYXy8OX5zW_oLa25C13bvmT2HZ2vQyMadlV_AI1e_hKeTvlbbDiy-1AyRHDtzlMi7aL41bOnZ_H61vFLX6NuzsVlYNusTFZmqLZt2BXBWFFExbE5BHNeFBpm-Z-Wy_vn9R9nSgg-djWt24WI2_TqZ83URBW6ItIhbn0kvCyGd1anJjAtVboS22kZRpoRCSGCiPLUI3awzuZYqyqxXxodaRAY3uD0Y1cva7QND8GDQiU29jrTMC6NQwjlpjE4Sp0QYAO91WJk1wzgVuriuOm7kuCKdV4POAzga5Fcdt8aDkge9Sar1GmsqdHaEoPqXIoD3Qzcqno48VO1Quygj8pa8KQ3gVWfK4VXYiHgrzAKIW9v-4xuqcXkyHZ5e_8-gQ9g6_zirTk_Kz29gm5rp0lkUHsDo9ubOvUV4c6vftTP4F5ij8qY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Mechanisms+of+Hypohalous+Acid+Formation+and+Electrophilic+Halogenation+by+Non-Native+Halogenases&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Prakinee%2C+Kridsadakorn&rft.au=Lawan%2C+Narin&rft.au=Phintha%2C+Aisaraphon&rft.au=Visitsatthawong%2C+Surawit&rft.date=2024-06-10&rft.eissn=1521-3773&rft.volume=63&rft.issue=24&rft.spage=e202403858&rft_id=info:doi/10.1002%2Fanie.202403858&rft_id=info%3Apmid%2F38606607&rft.externalDocID=38606607 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |