On the Mechanisms of Hypohalous Acid Formation and Electrophilic Halogenation by Non‐Native Halogenases

Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism‐guided strategy to discover the electrophilic halogenation activity catalyzed...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 24; pp. e202403858 - n/a
Main Authors Prakinee, Kridsadakorn, Lawan, Narin, Phintha, Aisaraphon, Visitsatthawong, Surawit, Chitnumsub, Penchit, Jitkaroon, Watcharapa, Chaiyen, Pimchai
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.06.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202403858

Cover

Loading…
Abstract Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism‐guided strategy to discover the electrophilic halogenation activity catalyzed by non‐native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin‐dependent monooxygenases/oxidases capable of forming C4a‐hydroperoxyflavin (FlC4a‐OOH), such as dehalogenase, hydroxylases, luciferase and pyranose‐2‐oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped‐flow spectrophotometry/fluorometry and product analysis indicate that FlC4a‐OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a‐OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a‐OOH can react with halides to form HOX, QM/MM calculations, site‐directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation. Electrophilic halogenases in nature are typically not efficient. Guided by flavin‐dependent halogenase mechanisms and taking advantage of the versatile reactivity of a flavin hydroperoxide adduct and in situ generation of H2O2 by flavin‐dependent enzymes, it was possible to promote the formation of a hypohalous acid—which is key for electrophilic halogenation—in various non‐native halogenases by rerouting the flavin‐generated peroxide.
AbstractList Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism‐guided strategy to discover the electrophilic halogenation activity catalyzed by non‐native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin‐dependent monooxygenases/oxidases capable of forming C4a‐hydroperoxyflavin (Fl C4a‐OOH ), such as dehalogenase, hydroxylases, luciferase and pyranose‐2‐oxidase (P2O), and flavin reductase capable of forming H 2 O 2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped‐flow spectrophotometry/fluorometry and product analysis indicate that Fl C4a‐OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from Fl C4a‐OOH cannot halogenate their substrates. Remarkably, in situ H 2 O 2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming Fl C4a‐OOH can react with halides to form HOX, QM/MM calculations, site‐directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation.
Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism-guided strategy to discover the electrophilic halogenation activity catalyzed by non-native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin-dependent monooxygenases/oxidases capable of forming C4a-hydroperoxyflavin (Fl ), such as dehalogenase, hydroxylases, luciferase and pyranose-2-oxidase (P2O), and flavin reductase capable of forming H O were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped-flow spectrophotometry/fluorometry and product analysis indicate that Fl in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from Fl cannot halogenate their substrates. Remarkably, in situ H O generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming Fl can react with halides to form HOX, QM/MM calculations, site-directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation.
Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism‐guided strategy to discover the electrophilic halogenation activity catalyzed by non‐native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin‐dependent monooxygenases/oxidases capable of forming C4a‐hydroperoxyflavin (FlC4a‐OOH), such as dehalogenase, hydroxylases, luciferase and pyranose‐2‐oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped‐flow spectrophotometry/fluorometry and product analysis indicate that FlC4a‐OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a‐OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a‐OOH can react with halides to form HOX, QM/MM calculations, site‐directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation. Electrophilic halogenases in nature are typically not efficient. Guided by flavin‐dependent halogenase mechanisms and taking advantage of the versatile reactivity of a flavin hydroperoxide adduct and in situ generation of H2O2 by flavin‐dependent enzymes, it was possible to promote the formation of a hypohalous acid—which is key for electrophilic halogenation—in various non‐native halogenases by rerouting the flavin‐generated peroxide.
Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism-guided strategy to discover the electrophilic halogenation activity catalyzed by non-native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin-dependent monooxygenases/oxidases capable of forming C4a-hydroperoxyflavin (FlC4a-OOH), such as dehalogenase, hydroxylases, luciferase and pyranose-2-oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped-flow spectrophotometry/fluorometry and product analysis indicate that FlC4a-OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a-OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a-OOH can react with halides to form HOX, QM/MM calculations, site-directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation.Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism-guided strategy to discover the electrophilic halogenation activity catalyzed by non-native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin-dependent monooxygenases/oxidases capable of forming C4a-hydroperoxyflavin (FlC4a-OOH), such as dehalogenase, hydroxylases, luciferase and pyranose-2-oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped-flow spectrophotometry/fluorometry and product analysis indicate that FlC4a-OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a-OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a-OOH can react with halides to form HOX, QM/MM calculations, site-directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation.
Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism‐guided strategy to discover the electrophilic halogenation activity catalyzed by non‐native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin‐dependent monooxygenases/oxidases capable of forming C4a‐hydroperoxyflavin (FlC4a‐OOH), such as dehalogenase, hydroxylases, luciferase and pyranose‐2‐oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped‐flow spectrophotometry/fluorometry and product analysis indicate that FlC4a‐OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a‐OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a‐OOH can react with halides to form HOX, QM/MM calculations, site‐directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation.Dedicated to Prof. Karl-Heinz van Pée
Author Visitsatthawong, Surawit
Prakinee, Kridsadakorn
Phintha, Aisaraphon
Jitkaroon, Watcharapa
Chaiyen, Pimchai
Chitnumsub, Penchit
Lawan, Narin
Author_xml – sequence: 1
  givenname: Kridsadakorn
  orcidid: 0000-0003-2421-1518
  surname: Prakinee
  fullname: Prakinee, Kridsadakorn
  organization: Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley
– sequence: 2
  givenname: Narin
  orcidid: 0000-0003-0940-9278
  surname: Lawan
  fullname: Lawan, Narin
  organization: Chiang Mai University
– sequence: 3
  givenname: Aisaraphon
  orcidid: 0000-0001-6565-998X
  surname: Phintha
  fullname: Phintha, Aisaraphon
  organization: Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley
– sequence: 4
  givenname: Surawit
  surname: Visitsatthawong
  fullname: Visitsatthawong, Surawit
  organization: Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley
– sequence: 5
  givenname: Penchit
  surname: Chitnumsub
  fullname: Chitnumsub, Penchit
  organization: National Science and Technology Development Agency (NSTDA) Thailand Science Park
– sequence: 6
  givenname: Watcharapa
  surname: Jitkaroon
  fullname: Jitkaroon, Watcharapa
  organization: Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley
– sequence: 7
  givenname: Pimchai
  orcidid: 0000-0002-8533-1604
  surname: Chaiyen
  fullname: Chaiyen, Pimchai
  email: pimchai.chaiyen@vistec.ac.th
  organization: Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38606607$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9uEzEQxi3Uiv6BK0dkiQuXTe2MYzvHqEqbSiW9lPPKa88SV7t2sDdFufEIPGOfBIeUIFVCPY1H8_tmxvOdkaMQAxLygbMRZ2x8YYLH0ZiNBQM90W_IKZ-MeQVKwVF5C4BK6Qk_IWc5PxReaybfkhPQkknJ1Cnxd4EOK6Rf0K5Kr9xnGlu62K7jynRxk-nMekevYurN4GOgJjg679AOKa5XvvOWLgr3DcO-3GzpMoann7-WJX_EQzFjfkeOW9NlfP8cz8nXq_n95aK6vbu-uZzdVhYU6Mq1SrRiCgJdI62yyIy20LjGca4MGKa55Vo6NhEOrW6E4cq1xrasAW6BwTn5vO-7TvH7BvNQ9z5b7DoTsHyoLogWu1GyoJ9eoA9xk0LZrlASQE71FAr18ZnaND26ep18b9K2_nvEAoz2gE0x54TtAeGs3rlU71yqDy4VgXghsH74c8AhGd_9Xzbdy374DrevDKlny5v5P-1vbd2oZw
CitedBy_id crossref_primary_10_1021_acscatal_4c07143
crossref_primary_10_1016_j_tchem_2024_100112
crossref_primary_10_1002_cbic_202400750
crossref_primary_10_1073_pnas_2409479122
Cites_doi 10.1021/bi00172a035
10.1074/jbc.M116.774448
10.1016/j.bbaexp.2004.08.003
10.1021/jacs.1c12778
10.1007/s11426-021-1018-0
10.1021/bi060607d
10.1002/anie.202214610
10.1038/s41467-021-23503-3
10.1016/j.biotechadv.2021.107712
10.1126/science.adf2465
10.1021/ar800088r
10.1074/jbc.M512385200
10.1021/acscatal.6b02707
10.1021/jacs.5b04328
10.1039/C8SC01482E
10.1016/bs.enz.2020.05.008
10.1146/annurev-biochem-062917-012042
10.1002/anie.202116908
10.1016/j.jmgm.2018.12.011
10.1002/wcms.82
10.1021/acscatal.0c01958
10.1021/bi801039d
10.1002/pro.3280
10.1039/b314768a
10.1021/jp104069t
10.1016/j.jbc.2023.105413
10.1021/acs.chemrev.7b00650
10.1039/C9GC00633H
10.1002/anie.201509573
10.1016/j.jmb.2016.07.003
10.1126/science.1116510
10.1093/jb/mvm155
10.1021/acs.jpcb.7b06892
10.1016/j.jbc.2021.100952
10.1126/science.7939628
10.1016/j.cplett.2014.06.010
10.1128/AEM.67.8.3636-3644.2001
10.1111/febs.15653
10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D
10.1016/j.cej.2017.10.077
10.1016/j.molcata.2013.01.023
10.1016/S0043-1354(01)00301-3
10.1093/nar/gkh381
10.1021/bi7006614
10.1074/jbc.RA120.016004
10.1038/s41557-019-0349-z
10.1002/jcc.21334
10.1038/s41929-022-00800-8
10.1021/bi00172a036
10.1002/chem.201903756
10.1046/j.1432-1033.2001.02490.x
10.1021/acs.jcim.1c01187
ContentType Journal Article
Copyright 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202403858
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38606607
10_1002_anie_202403858
ANIE202403858
Genre article
Journal Article
GrantInformation_xml – fundername: Program Management Unit for Human Resources & Institutional Development (PMU-B)
  funderid: B05F640089
– fundername: KasikornBank Public Company Limited
– fundername: Vidyasirimedhi Institute of Science and Technology
– fundername: Program Management Unit for Human Resources & Institutional Development (PMU-B)
  grantid: B05F640089
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3738-df74f4934edb6c7ce0a8c3bdbd117a3a081c186d054dec8b4a17dfacf0b31c303
IEDL.DBID 24P
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:41:36 EDT 2025
Fri Jul 25 10:43:48 EDT 2025
Mon Jul 21 05:29:51 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Tue Jul 01 01:47:35 EDT 2025
Wed Jan 22 17:20:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Flavin-dependent enzymes
De novo function
Enzyme catalysis
Reaction mechanisms
Electrophilic halogenation
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-df74f4934edb6c7ce0a8c3bdbd117a3a081c186d054dec8b4a17dfacf0b31c303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8533-1604
0000-0003-0940-9278
0000-0003-2421-1518
0000-0001-6565-998X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403858
PMID 38606607
PQID 3063369893
PQPubID 946352
PageCount 12
ParticipantIDs proquest_miscellaneous_3038437386
proquest_journals_3063369893
pubmed_primary_38606607
crossref_primary_10_1002_anie_202403858
crossref_citationtrail_10_1002_anie_202403858
wiley_primary_10_1002_anie_202403858_ANIE202403858
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 10, 2024
PublicationDateYYYYMMDD 2024-06-10
PublicationDate_xml – month: 06
  year: 2024
  text: June 10, 2024
  day: 10
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2004; 127
2021; 64
2009; 42
2016; 428
2021; 288
2019; 11
2007; 142
2020; 10
2018; 87
2001; 268
1994; 266
2004; 32
2018; 9
2015; 137
2014; 608
2019; 21
2010; 114
2023; 299
2018; 335
1994; 33
2023; 379
2020; 47
2005; 309
2006; 281
2017; 121
1996; 26
2002; 36
2010; 31
2017; 292
2004
2004; 1680
2001; 67
2021; 51
2018; 27
2016; 55
2022; 144
2012; 2
2021; 12
2006; 45
2021
2022; 61
2022; 5
2020
2018; 118
2019; 87
2022; 62
2008; 47
2019
2020; 26
2021; 296
2016
2013; 371
2021; 297
2007; 46
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Northrup J. D. (e_1_2_9_3_1) 2019
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Phintha A. (e_1_2_9_2_1) 2020
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Crowe C. (e_1_2_9_9_1) 2021
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_25_1
Ponder J. W. (e_1_2_9_47_1) 2004
Frisch M. J. (e_1_2_9_52_1) 2016
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 26
  start-page: 5328
  year: 2020
  end-page: 5340
  publication-title: Chem. Eur. J.
– volume: 5
  start-page: 534
  year: 2022
  end-page: 544
  publication-title: Nat. Catal.
– volume: 42
  start-page: 147
  year: 2009
  end-page: 155
  publication-title: Acc. Chem. Res.
– volume: 288
  start-page: 3246
  year: 2021
  end-page: 3260
  publication-title: FEBS J.
– volume: 47
  start-page: 283
  year: 2020
  end-page: 326
  publication-title: Enzymes
– volume: 51
  year: 2021
  publication-title: Biotechnol. Adv.
– year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 144
  start-page: 2861
  year: 2022
  end-page: 2866
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 363
  year: 1996
  end-page: 376
  publication-title: Proteins Struct. Funct. Bioinf.
– volume: 297
  year: 2021
  publication-title: J. Biol. Chem.
– volume: 1680
  start-page: 60
  year: 2004
  end-page: 66
  publication-title: Biochim. Biophys. Acta
– volume: 36
  start-page: 1034
  year: 2002
  end-page: 1042
  publication-title: Water Res.
– volume: 292
  start-page: 4818
  year: 2017
  end-page: 4832
  publication-title: J. Biol. Chem.
– volume: 121
  start-page: 9785
  year: 2017
  end-page: 9798
  publication-title: J. Phys. Chem. B
– year: 2004
– volume: 142
  start-page: 539
  year: 2007
  end-page: 552
  publication-title: J. Biochem.
– volume: 47
  start-page: 8485
  year: 2008
  end-page: 8490
  publication-title: Biochemistry
– volume: 7
  start-page: 1897
  year: 2017
  end-page: 1904
  publication-title: ACS Catal.
– volume: 118
  start-page: 1742
  year: 2018
  end-page: 1769
  publication-title: Chem. Rev.
– volume: 268
  start-page: 5550
  year: 2001
  end-page: 5561
  publication-title: Eur. J. Biochem.
– volume: 62
  start-page: 399
  year: 2022
  end-page: 411
  publication-title: J. Chem. Inf. Model.
– volume: 335
  start-page: 855
  year: 2018
  end-page: 864
  publication-title: Chem. Eng. J.
– year: 2019
– volume: 32
  start-page: W665
  year: 2004
  end-page: W667
  publication-title: Nucleic Acids Res.
– volume: 309
  start-page: 2216
  year: 2005
  end-page: 2219
  publication-title: Science
– volume: 55
  start-page: 6374
  year: 2016
  end-page: 6389
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 371
  start-page: 56
  year: 2013
  end-page: 62
  publication-title: J. Mol. Catal. A
– volume: 87
  start-page: 159
  year: 2018
  end-page: 185
  publication-title: Annu. Rev. Biochem.
– volume: 428
  start-page: 3131
  year: 2016
  end-page: 3146
  publication-title: J. Mol. Biol.
– volume: 127
  start-page: 165
  year: 2004
  end-page: 177
  publication-title: Faraday Discuss.
– volume: 299
  year: 2023
  publication-title: J. Biol. Chem.
– volume: 87
  start-page: 250
  year: 2019
  end-page: 256
  publication-title: J. Mol. Graphics Modell.
– volume: 33
  start-page: 1555
  year: 1994
  end-page: 1564
  publication-title: Biochemistry
– year: 2016
– volume: 45
  start-page: 7904
  year: 2006
  end-page: 7912
  publication-title: Biochemistry
– volume: 266
  start-page: 110
  year: 1994
  end-page: 114
  publication-title: Science
– volume: 137
  start-page: 9363
  year: 2015
  end-page: 9374
  publication-title: J. Am. Chem. Soc.
– volume: 608
  start-page: 380
  year: 2014
  end-page: 385
  publication-title: Chem. Phys. Lett.
– volume: 379
  start-page: 1358
  year: 2023
  end-page: 1363
  publication-title: Science
– volume: 31
  start-page: 455
  year: 2010
  end-page: 461
  publication-title: J. Comput. Chem.
– volume: 296
  year: 2021
  publication-title: J. Biol. Chem.
– start-page: 327
  year: 2020
  end-page: 364
– volume: 33
  start-page: 1545
  year: 1994
  end-page: 1554
  publication-title: Biochemistry
– volume: 67
  start-page: 3636
  year: 2001
  end-page: 3644
  publication-title: Appl. Environ. Microbiol.
– volume: 11
  start-page: 1091
  year: 2019
  end-page: 1097
  publication-title: Nat. Chem.
– volume: 10
  start-page: 8277
  year: 2020
  end-page: 8284
  publication-title: ACS Catal.
– volume: 27
  start-page: 112
  year: 2018
  end-page: 128
  publication-title: Protein Sci.
– volume: 9
  start-page: 7468
  year: 2018
  end-page: 7482
  publication-title: Chem. Sci.
– volume: 21
  start-page: 3232
  year: 2019
  end-page: 3249
  publication-title: Green Chem.
– volume: 114
  start-page: 11303
  year: 2010
  end-page: 11314
  publication-title: J. Phys. Chem. B
– volume: 46
  start-page: 8611
  year: 2007
  end-page: 8623
  publication-title: Biochemistry
– volume: 12
  start-page: 3268
  year: 2021
  publication-title: Nat. Commun.
– volume: 281
  start-page: 17044
  year: 2006
  end-page: 17053
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 242
  year: 2012
  end-page: 253
  publication-title: WIREs Comput. Mol. Sci.
– volume: 64
  start-page: 1730
  year: 2021
  end-page: 1735
  publication-title: Sci. China Chem.
– ident: e_1_2_9_48_1
– ident: e_1_2_9_56_1
  doi: 10.1021/bi00172a035
– ident: e_1_2_9_23_1
  doi: 10.1074/jbc.M116.774448
– ident: e_1_2_9_57_1
  doi: 10.1016/j.bbaexp.2004.08.003
– ident: e_1_2_9_12_1
  doi: 10.1021/jacs.1c12778
– ident: e_1_2_9_29_1
  doi: 10.1007/s11426-021-1018-0
– ident: e_1_2_9_16_1
  doi: 10.1021/bi060607d
– ident: e_1_2_9_13_1
  doi: 10.1002/anie.202214610
– ident: e_1_2_9_18_1
  doi: 10.1038/s41467-021-23503-3
– ident: e_1_2_9_22_1
  doi: 10.1016/j.biotechadv.2021.107712
– ident: e_1_2_9_14_1
  doi: 10.1126/science.adf2465
– ident: e_1_2_9_41_1
  doi: 10.1021/ar800088r
– ident: e_1_2_9_24_1
  doi: 10.1074/jbc.M512385200
– ident: e_1_2_9_10_1
  doi: 10.1021/acscatal.6b02707
– ident: e_1_2_9_43_1
  doi: 10.1021/jacs.5b04328
– ident: e_1_2_9_30_1
  doi: 10.1039/C8SC01482E
– ident: e_1_2_9_37_1
  doi: 10.1016/bs.enz.2020.05.008
– ident: e_1_2_9_15_1
  doi: 10.1146/annurev-biochem-062917-012042
– start-page: 327
  volume-title: The Enzymes, Vol. 47
  year: 2020
  ident: e_1_2_9_2_1
– ident: e_1_2_9_39_1
  doi: 10.1002/anie.202116908
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jmgm.2018.12.011
– ident: e_1_2_9_51_1
  doi: 10.1002/wcms.82
– ident: e_1_2_9_5_1
  doi: 10.1021/acscatal.0c01958
– ident: e_1_2_9_26_1
  doi: 10.1021/bi801039d
– ident: e_1_2_9_54_1
  doi: 10.1002/pro.3280
– ident: e_1_2_9_55_1
  doi: 10.1039/b314768a
– ident: e_1_2_9_50_1
  doi: 10.1021/jp104069t
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jbc.2023.105413
– ident: e_1_2_9_21_1
  doi: 10.1021/acs.chemrev.7b00650
– ident: e_1_2_9_8_1
  doi: 10.1039/C9GC00633H
– ident: e_1_2_9_1_1
  doi: 10.1002/anie.201509573
– ident: e_1_2_9_20_1
  doi: 10.1016/j.jmb.2016.07.003
– volume-title: Int. J. Mol. Sci., Vol. 20
  year: 2019
  ident: e_1_2_9_3_1
– ident: e_1_2_9_34_1
  doi: 10.1126/science.1116510
– ident: e_1_2_9_25_1
  doi: 10.1093/jb/mvm155
– ident: e_1_2_9_33_1
  doi: 10.1021/acs.jpcb.7b06892
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jbc.2021.100952
– ident: e_1_2_9_36_1
  doi: 10.1126/science.7939628
– ident: e_1_2_9_32_1
  doi: 10.1016/j.cplett.2014.06.010
– ident: e_1_2_9_58_1
  doi: 10.1128/AEM.67.8.3636-3644.2001
– ident: e_1_2_9_42_1
  doi: 10.1111/febs.15653
– ident: e_1_2_9_45_1
  doi: 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D
– ident: e_1_2_9_6_1
  doi: 10.1016/j.cej.2017.10.077
– ident: e_1_2_9_7_1
  doi: 10.1016/j.molcata.2013.01.023
– ident: e_1_2_9_40_1
  doi: 10.1016/S0043-1354(01)00301-3
– ident: e_1_2_9_46_1
  doi: 10.1093/nar/gkh381
– ident: e_1_2_9_28_1
  doi: 10.1021/bi7006614
– ident: e_1_2_9_17_1
  doi: 10.1074/jbc.RA120.016004
– volume-title: Gaussian, Inc.
  year: 2016
  ident: e_1_2_9_52_1
– ident: e_1_2_9_11_1
  doi: 10.1038/s41557-019-0349-z
– volume-title: Vol. 3
  year: 2004
  ident: e_1_2_9_47_1
– ident: e_1_2_9_49_1
  doi: 10.1002/jcc.21334
– ident: e_1_2_9_19_1
  doi: 10.1038/s41929-022-00800-8
– ident: e_1_2_9_38_1
  doi: 10.1021/bi00172a036
– ident: e_1_2_9_4_1
  doi: 10.1002/chem.201903756
– ident: e_1_2_9_27_1
  doi: 10.1046/j.1432-1033.2001.02490.x
– ident: e_1_2_9_53_1
  doi: 10.1021/acs.jcim.1c01187
– year: 2021
  ident: e_1_2_9_9_1
  publication-title: Chem. Soc. Rev.
SSID ssj0028806
Score 2.48876
Snippet Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202403858
SubjectTerms De novo function
Electrophilic halogenation
Enzyme catalysis
Enzymes
Flavin
Flavin reductase
Flavin-dependent enzymes
Flavins - chemistry
Flavins - metabolism
Fluorimetry
Fluorometry
Halides
Halogenation
Hydrogen peroxide
Hydrogen Peroxide - chemistry
Hydrogen Peroxide - metabolism
Hydrolases - chemistry
Hydrolases - metabolism
Kinetics
Mixed Function Oxygenases - chemistry
Mixed Function Oxygenases - metabolism
Mutagenesis
Organic compounds
Oxidoreductases - chemistry
Oxidoreductases - metabolism
Reaction mechanisms
Reductases
Spectrophotometry
Structural analysis
Substrates
Title On the Mechanisms of Hypohalous Acid Formation and Electrophilic Halogenation by Non‐Native Halogenases
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403858
https://www.ncbi.nlm.nih.gov/pubmed/38606607
https://www.proquest.com/docview/3063369893
https://www.proquest.com/docview/3038437386
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5W96AXcdXdjY-lBcFTY5LuvI6DO8Os4LgsCt5CP9kBNzMYPXjzJ_gb_SVWJZOsw7IIXkKSrqZDVXf6q0rqK4CjQqc2yrzmaPCYS58UvPBC89in3iqtfaIoOfl8ko6v5Nl1cv0qi7_lh-gDbrQymvc1LXCl65O_pKGUgY3-HfHJ5Um-Ah8pv5Zmeix_9i4Xzs42v0gITmXoO9rGMD5Z7r-8Lf2DNZeha7P3jDZhYwEa2aC18if44KotWDvtarVtw_SiYojk2LmjRN5p_admM8_GD_PZb3WDvj0bmKlloy5RkanKsmFbAGdOERXDxhTEcW1okOkHNplVz49Pk4YWvG-sXb0DV6Ph5emYL4oocEOkRdz6THpZCOmsTk1mXKhyI7TVNooyJRRCAhPlqUXoZp3JtVRRZr0yPtQiMrjBfYbVala5r8AQPBh0YlOvIy3zwiiUcE4ao5PEKREGwDsdlmbBME6FLm7Klhs5LknnZa_zAI57-XnLrfFfyf3OJOVijdUlOjtCUP1LEcBh34yKp08eqnKoXZQReUPelAbwpTVlPxTeRLwVZgHEjW3feIZyMPkx7K9239NpD9bpnP40i8J9WL27vXcHiGnu9Ldm2uLx-6_4BaMm8PE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONBLRemDtLS4UqWeLJLYeR1XaFehsKEHkHqL_FRXguyK0AO3_gR-I7-kM8kmaFVVlXqMPVaiGTv-Zuz5BuBzoVMbZV5zNHjMpU8KXniheexTb5XWPlGUnDyv0vJKfv2eDLcJKRem54cYA260Mrr_NS1wCkgfP7GGUgo2OnhEKJcn-TPYkWmcUfWGWH4bfS6cnn2CkRCc6tAPvI1hfLw5fnNf-gNsbmLXbvOZ7cGLNWpkk97ML2HLNfuwezIUa3sFi4uGIZRjc0eZvIv2pmVLz8r71fKHukbnnk3MwrLZkKnIVGPZtK-As6KQimElRXFcHxtk-p5Vy-bx10PV8YKPna1rX8PVbHp5UvJ1FQVuiLWIW59JLwshndWpyYwLVW6EttpGUaaEQkxgojy1iN2sM7mWKsqsV8aHWkQGd7g3sN0sG3cADNGDQS829TrSMi-MQgnnpDE6SZwSYQB80GFt1hTjVOniuu7JkeOadF6POg_gyyi_6sk1_ip5OJikXi-ytkZvRwgqgCkC-DR2o-LpzEM1DrWLMiLv2JvSAN72phxfhY0IuMIsgLiz7T--oZ5Up9Px6d3_DDqC3fJyfl6fn1Zn7-E5tdO1syg8hO2725_uAwKcO_2xm8K_AfuZ83Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB7BIpVeENCWBgo1ElJPVpPY-Tuull1toQ09UKm3yL_qSiW7atpDbzwCz8iTMJNsAitUIXGMPVaiGTv-Zuz5BuBDoVMbZV5zNHjMpU8KXniheexTb5XWPlGUnHxWpvML-ekyufwji7_jhxgCbrQy2v81LfCV9ce_SUMpAxv9O-KTy5P8MTyhEz-a47E8H1wunJ1dfpEQnMrQ97SNYXy8OX5zW_oLa25C13bvmT2HZ2vQyMadlV_AI1e_hKeTvlbbDiy-1AyRHDtzlMi7aL41bOnZ_H61vFLX6NuzsVlYNusTFZmqLZt2BXBWFFExbE5BHNeFBpm-Z-Wy_vn9R9nSgg-djWt24WI2_TqZ83URBW6ItIhbn0kvCyGd1anJjAtVboS22kZRpoRCSGCiPLUI3awzuZYqyqxXxodaRAY3uD0Y1cva7QND8GDQiU29jrTMC6NQwjlpjE4Sp0QYAO91WJk1wzgVuriuOm7kuCKdV4POAzga5Fcdt8aDkge9Sar1GmsqdHaEoPqXIoD3Qzcqno48VO1Quygj8pa8KQ3gVWfK4VXYiHgrzAKIW9v-4xuqcXkyHZ5e_8-gQ9g6_zirTk_Kz29gm5rp0lkUHsDo9ubOvUV4c6vftTP4F5ij8qY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Mechanisms+of+Hypohalous+Acid+Formation+and+Electrophilic+Halogenation+by+Non-Native+Halogenases&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Prakinee%2C+Kridsadakorn&rft.au=Lawan%2C+Narin&rft.au=Phintha%2C+Aisaraphon&rft.au=Visitsatthawong%2C+Surawit&rft.date=2024-06-10&rft.eissn=1521-3773&rft.volume=63&rft.issue=24&rft.spage=e202403858&rft_id=info:doi/10.1002%2Fanie.202403858&rft_id=info%3Apmid%2F38606607&rft.externalDocID=38606607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon