One‐Dimensional Covalent Organic Framework as High‐Performance Cathode Materials for Lithium‐Ion Batteries
Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two‐dimensional (2D) or three‐dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox‐active one‐dimensional (1D...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 24; pp. e2300518 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two‐dimensional (2D) or three‐dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox‐active one‐dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li‐ion batteries, the 1D COF@CNT composites with unique dendritic core–shell structure can provide abundant and easily accessible redox‐active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox‐active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies.
One‐dimensional (1D) covalent organic framework (COF) has been explored as electrode materials for Li‐ion batteries. The cathodes exhibit excellent electrochemical performance, ultrahigh utilization of redox‐active sites, long cycling stability, and high rate capability. This work discloses the great application potential of 1D COF in high‐performance batteries. |
---|---|
AbstractList | Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two-dimensional (2D) or three-dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox-active one-dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li-ion batteries, the 1D COF@CNT composites with unique dendritic core-shell structure can provide abundant and easily accessible redox-active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox-active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies. Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two‐dimensional (2D) or three‐dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox‐active one‐dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li‐ion batteries, the 1D COF@CNT composites with unique dendritic core–shell structure can provide abundant and easily accessible redox‐active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox‐active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies. One‐dimensional (1D) covalent organic framework (COF) has been explored as electrode materials for Li‐ion batteries. The cathodes exhibit excellent electrochemical performance, ultrahigh utilization of redox‐active sites, long cycling stability, and high rate capability. This work discloses the great application potential of 1D COF in high‐performance batteries. Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two-dimensional (2D) or three-dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox-active one-dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li-ion batteries, the 1D COF@CNT composites with unique dendritic core-shell structure can provide abundant and easily accessible redox-active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox-active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies.Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two-dimensional (2D) or three-dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox-active one-dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li-ion batteries, the 1D COF@CNT composites with unique dendritic core-shell structure can provide abundant and easily accessible redox-active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox-active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies. |
Author | Jia, Chao Liu, Chao Li, Yongjun Wang, Wen‐Zhuang Zhao, Xin Gan, Shi‐Xian Huang, Xiaoyu Qi, Qiao‐Yan Duan, An |
Author_xml | – sequence: 1 givenname: Chao surname: Jia fullname: Jia, Chao organization: Chinese Academy of Sciences – sequence: 2 givenname: An surname: Duan fullname: Duan, An organization: Chinese Academy of Sciences – sequence: 3 givenname: Chao surname: Liu fullname: Liu, Chao organization: Chinese Academy of Sciences – sequence: 4 givenname: Wen‐Zhuang surname: Wang fullname: Wang, Wen‐Zhuang organization: Chinese Academy of Sciences – sequence: 5 givenname: Shi‐Xian surname: Gan fullname: Gan, Shi‐Xian organization: Chinese Academy of Sciences – sequence: 6 givenname: Qiao‐Yan surname: Qi fullname: Qi, Qiao‐Yan organization: Chinese Academy of Sciences – sequence: 7 givenname: Yongjun surname: Li fullname: Li, Yongjun organization: Chinese Academy of Sciences – sequence: 8 givenname: Xiaoyu surname: Huang fullname: Huang, Xiaoyu email: xyhuang@sioc.ac.cn organization: Chinese Academy of Sciences – sequence: 9 givenname: Xin orcidid: 0000-0002-1317-7257 surname: Zhao fullname: Zhao, Xin email: xzhao@mail.sioc.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36918750$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEURi1URNvAliWyxIZNgn8yM54lpJRWmipIwNry2HcaF48dbA9VdzxCn7FPgqO0RaqEWN0r3XPu4vuO0YEPHhB6TcmCEsLep9G5BSOME1JR8Qwd0ZryeS1Ye_C4U3KIjlO6IoRTtmxeoENet1Q0FTlC27WHu9-3J3YEn2zwyuFV-KUc-IzX8VJ5q_FpVCNch_gDq4TP7OWmCF8gDiGOymvAK5U3wQC-UBmiVS7hcsKdzRs7jYU9Dx5_VHl3hPQSPR8KAq_u5wx9P_30bXU279afz1cfurnmDRdzA2ogVCyNIbqvaF8PFdS16EnFGtCNMNooSik3PWFM9aw1g2KmaikQVpOq5zP0bv93G8PPCVKWo00anFMewpQka0TDKG1KdDP09gl6FaZYoiiUYBUXy7YRhXpzT039CEZuox1VvJEPWRZguQd0DClFGKS2WeUSao7KOkmJ3FUmd5XJx8qKtniiPXz-p9DuhWvr4OY_tPx60XV_3T9EfqzI |
CitedBy_id | crossref_primary_10_1002_ange_202414075 crossref_primary_10_1002_anie_202414566 crossref_primary_10_1002_smll_202304182 crossref_primary_10_1002_smll_202400688 crossref_primary_10_3390_polym16050687 crossref_primary_10_1039_D4TA03516J crossref_primary_10_1016_j_ensm_2024_103337 crossref_primary_10_1021_acssuschemeng_4c00536 crossref_primary_10_1016_j_nxmate_2024_100323 crossref_primary_10_1002_anie_202403473 crossref_primary_10_1002_cssc_202301118 crossref_primary_10_1088_1361_6528_ad4b21 crossref_primary_10_1002_ange_202403473 crossref_primary_10_1016_j_est_2024_113124 crossref_primary_10_1016_j_est_2024_115026 crossref_primary_10_1021_jacs_4c09680 crossref_primary_10_1039_D4EE00520A crossref_primary_10_1039_D4TA02453B crossref_primary_10_1016_j_jallcom_2025_178735 crossref_primary_10_1002_advs_202308087 crossref_primary_10_1002_anie_202402911 crossref_primary_10_1002_ange_202414566 crossref_primary_10_1002_anie_202414075 crossref_primary_10_1039_D4SC01780C crossref_primary_10_1002_smll_202307635 crossref_primary_10_1016_j_cej_2023_147682 crossref_primary_10_1039_D4CC04688A crossref_primary_10_1021_acsami_4c20891 crossref_primary_10_1002_smll_202310174 crossref_primary_10_1002_ange_202402911 crossref_primary_10_1002_bkcs_12823 crossref_primary_10_1021_acsami_4c09181 crossref_primary_10_1039_D4NR01092B crossref_primary_10_1016_j_est_2024_115139 crossref_primary_10_1016_j_est_2025_115746 crossref_primary_10_1002_adfm_202310668 crossref_primary_10_1002_smll_202307827 crossref_primary_10_1002_adma_202416661 crossref_primary_10_1039_D3TA05152H crossref_primary_10_1002_smtd_202301335 crossref_primary_10_1002_advs_202400626 crossref_primary_10_1039_D3CC02652C crossref_primary_10_1007_s10800_023_01964_2 crossref_primary_10_1021_jacs_3c09001 crossref_primary_10_1039_D4TA04330H |
Cites_doi | 10.1016/j.cej.2022.139082 10.1002/anie.202117661 10.1002/anie.202016746 10.1002/adma.201703373 10.1002/adma.201800561 10.1021/acsami.9b05956 10.1002/anie.201507735 10.1002/anie.202117511 10.1039/D2SC02503E 10.31635/ccschem.022.202202351 10.1002/adfm.202100505 10.1039/D0TA03321A 10.1021/jacs.2c02666 10.1021/jacs.2c08273 10.1002/smtd.201900338 10.1002/anie.202008619 10.1002/anie.201708746 10.1002/anie.202213268 10.1039/c3sc22093a 10.1002/aenm.201904199 10.1021/jacs.9b13971 10.1002/adma.201703868 10.1002/adma.201901478 10.1002/aenm.202101880 10.1002/aenm.201702254 10.1021/acsami.0c16116 10.1021/acsami.0c08984 10.1039/C8SC04518F 10.1002/tcr.202000074 10.1002/adfm.202105027 10.1039/D1TA09433E 10.1002/aenm.202102917 10.1038/nmat3142 10.1016/j.cclet.2021.10.060 10.1002/adma.201405416 10.1002/adfm.201907006 10.1002/anie.202107444 10.1016/j.mattod.2014.10.040 10.1016/j.chempr.2018.08.014 10.1038/srep08225 10.1002/adma.201905879 10.1038/nmat3601 10.1002/anie.201710517 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202300518 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36918750 10_1002_smll_202300518 SMLL202300518 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21725404 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 20JC1415400 – fundername: National Natural Science Foundation of China grantid: 21725404 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 20JC1415400 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3738-deaf0184dd0cb51b6f5e668b0527ec78dcda1113db022ab29dfa2d591e02605b3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 07:42:22 EDT 2025 Fri Jul 25 10:45:27 EDT 2025 Mon Jul 21 05:50:10 EDT 2025 Tue Jul 01 02:54:27 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Wed Jan 22 16:20:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | covalent organic frameworks one-dimensional cathodes Li-ion batteries |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-deaf0184dd0cb51b6f5e668b0527ec78dcda1113db022ab29dfa2d591e02605b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1317-7257 |
PMID | 36918750 |
PQID | 2825384978 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2787211702 proquest_journals_2825384978 pubmed_primary_36918750 crossref_citationtrail_10_1002_smll_202300518 crossref_primary_10_1002_smll_202300518 wiley_primary_10_1002_smll_202300518_SMLL202300518 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2015; 5 2019; 3 2015; 18 2020; 20 2019; 31 2019; 11 2020; 142 2019; 10 2023; 145 2015; 54 2020; 59 2011; 10 2017; 29 2020; 12 2020; 10 2022; 144 2020; 8 2021; 13 2023; 62 2018; 8 2015; 27 2021; 31 2018; 4 2021; 11 2020; 30 2022; 5 2022; 61 2013; 12 2017; 56 2023; 451 2022; 12 2022; 13 2018; 30 2022; 10 2022; 33 2021; 60 2018; 57 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 142 start-page: 2771 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 1145 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 1330 year: 2013 publication-title: Chem. Sci. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 6001 year: 2019 publication-title: Chem. Sci. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 10 start-page: 947 year: 2011 publication-title: Nat. Mater. – volume: 5 start-page: 607 year: 2022 publication-title: CCS Chem. – volume: 451 year: 2023 publication-title: Chem. Eng. J. – volume: 27 start-page: 2907 year: 2015 publication-title: Adv. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 2600 year: 2018 publication-title: Chem – volume: 3 year: 2019 publication-title: Small Methods – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 3989 year: 2022 publication-title: J. Mater. Chem. A – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 13 start-page: 8679 year: 2022 publication-title: Chem. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 18 start-page: 252 year: 2015 publication-title: Mater. Today – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 33 start-page: 2867 year: 2022 publication-title: Chin. Chem. Lett. – volume: 144 start-page: 9902 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 145 start-page: 1564 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 231 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 20 start-page: 1198 year: 2020 publication-title: Chem. Rec. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 12 start-page: 518 year: 2013 publication-title: Nat. Mater. – volume: 5 start-page: 8225 year: 2015 publication-title: Sci. Rep. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_7_32_1 doi: 10.1016/j.cej.2022.139082 – ident: e_1_2_7_39_1 doi: 10.1002/anie.202117661 – ident: e_1_2_7_14_1 doi: 10.1002/anie.202016746 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201703373 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201800561 – ident: e_1_2_7_13_1 doi: 10.1021/acsami.9b05956 – ident: e_1_2_7_33_1 doi: 10.1002/anie.201507735 – ident: e_1_2_7_26_1 doi: 10.1002/anie.202117511 – ident: e_1_2_7_30_1 doi: 10.1039/D2SC02503E – ident: e_1_2_7_17_1 doi: 10.31635/ccschem.022.202202351 – ident: e_1_2_7_20_1 doi: 10.1002/adfm.202100505 – ident: e_1_2_7_40_1 doi: 10.1039/D0TA03321A – ident: e_1_2_7_31_1 doi: 10.1021/jacs.2c02666 – ident: e_1_2_7_43_1 doi: 10.1021/jacs.2c08273 – ident: e_1_2_7_36_1 doi: 10.1002/smtd.201900338 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202008619 – ident: e_1_2_7_7_1 doi: 10.1002/anie.201708746 – ident: e_1_2_7_29_1 doi: 10.1002/anie.202213268 – ident: e_1_2_7_5_1 doi: 10.1039/c3sc22093a – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201904199 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.9b13971 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201703868 – ident: e_1_2_7_37_1 doi: 10.1002/adma.201901478 – ident: e_1_2_7_38_1 doi: 10.1002/aenm.202101880 – ident: e_1_2_7_34_1 doi: 10.1002/aenm.201702254 – ident: e_1_2_7_28_1 doi: 10.1021/acsami.0c16116 – ident: e_1_2_7_22_1 doi: 10.1021/acsami.0c08984 – ident: e_1_2_7_24_1 doi: 10.1039/C8SC04518F – ident: e_1_2_7_19_1 doi: 10.1002/tcr.202000074 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.202105027 – ident: e_1_2_7_25_1 doi: 10.1039/D1TA09433E – ident: e_1_2_7_3_1 doi: 10.1002/aenm.202102917 – ident: e_1_2_7_4_1 doi: 10.1038/nmat3142 – ident: e_1_2_7_16_1 doi: 10.1016/j.cclet.2021.10.060 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201405416 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.201907006 – ident: e_1_2_7_42_1 doi: 10.1002/anie.202107444 – ident: e_1_2_7_1_1 doi: 10.1016/j.mattod.2014.10.040 – ident: e_1_2_7_11_1 doi: 10.1016/j.chempr.2018.08.014 – ident: e_1_2_7_35_1 doi: 10.1038/srep08225 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201905879 – ident: e_1_2_7_41_1 doi: 10.1038/nmat3601 – ident: e_1_2_7_9_1 doi: 10.1002/anie.201710517 |
SSID | ssj0031247 |
Score | 2.5906315 |
Snippet | Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2300518 |
SubjectTerms | Carbon nanotubes Cathodes Composite materials Core-shell structure covalent organic frameworks Diffusion rate Electrochemical analysis Electrode materials Energy storage Lithium-ion batteries Li‐ion batteries Nanotechnology one‐dimensional Structural design |
Title | One‐Dimensional Covalent Organic Framework as High‐Performance Cathode Materials for Lithium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300518 https://www.ncbi.nlm.nih.gov/pubmed/36918750 https://www.proquest.com/docview/2825384978 https://www.proquest.com/docview/2787211702 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hTuVQaIESfiojVeIUSJw4mz2iLasF7VIEReIW-S8CAQlisxdOfYQ-I0_SmXgTWFCFBLdEHiuJ7fHMxPN9A_DD6DwIcpX6MoojP07jro9Gj44QOUbNpoO6Tmjk0XEyOI-PLsTFMxS_44dof7iRZtT7NSm4VOO9J9LQ8e0NHR1w4lsPCe1LCVvkFZ22_FERGq-6ugraLJ-ItxrWxoDvzXaftUqvXM1Zz7U2Pf1FkM1Lu4yT691JpXb1wws-x4981RJ8nvqlbN8tpC8wZ4uvsPCMrXAZ7n4V9vHP359UD8BxebBeiQsVzRZzkE7N-k2uF5NjRjkk2OHkCZvACHBYGstGsnJLn2ETG15Vl1eTW5Q9LAvmKD8xgl-B8_7B797AnxZs8DURJPnGyjzAkNGYQCsRqiQXNklSFQjesbqTGm0klbY3Cj0HqXjX5JIb0Q0tMZsJFa3CfFEWdg1Yksg41ULkBGAxuE_kEh21Dlcp11qE1gO_mbBMT9nMqajGTeZ4mHlGI5m1I-nBTit_53g8_iu52cx_NtXncUYI3yilanwebLfNqIl0vCILW05QBvc-ToV8uAff3LppHxUl3RAjw8ADXs_-G--QnY2Gw_Zu_T2dNuATXbustk2Yr-4ndgv9p0p9r3XkHzKCFPg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROLQ98CjQhkdxpUo9BRInzmaPFbBa2iytWpC4RX5FICBB3eyFU39CfyO_pDPxJrBFqFJ7TDxWHHvGM2PPfAPw3ugiCAqV-jKKIz9O476PSo-uEDl6zaaHsk7ZyKPjZHgafzoTbTQh5cI4fIjuwI0ko9mvScDpQHrvHjV0fH1FdwecANfD9BksUFnvxqv61iFIRai-mvoqqLV8gt5qcRsDvjfbf1YvPTI2Z23XRvkMlkC1w3YxJ5e7k1rt6ts_EB3_67-WYXFqmrKPjpdWYM6Wr-DlA8DCVbj5Utq7n78OqCSAg_Ng-xXyKmou5rI6NRu04V5MjhmFkWCHr_fpCYxyDitj2UjWjvsZNrHsoj6_mFwj7VFVMof6iU78GpwODk_2h_60ZoOvCSPJN1YWAXqNxgRaiVAlhbBJkqpA8J7VvdRoI6m6vVFoPEjF-6aQ3Ih-aAncTKhoHebLqrRvgCWJjFMtREE5LAa3ikKirdbjKuVai9B64LcrluspoDnV1bjKHRQzz2km824mPfjQ0d84KI8nKbdaBsinIj3OKck3SqkgnwfvumYURrphkaWtJkiD2x-nWj7cg9eOcbpPRUk_ROcw8IA3y_-XMeTfR1nWPW38S6cdeD48GWV5dnT8eRNe0HsX5LYF8_WPid1Gc6pWbxuB-Q1vYhkT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61VKrKAfoLAdq6UqWeAokTZ71HxLKCdpeitkjcIv9FRUCyYrMXTjwCz9gn6Uy8CWyrqlJ7TDxWHHvGM2PPfAPw3poiigotQ5WkSZjKtB-i0qMrRI5es-2hrFM28vgoOzhJP56K03tZ_B4fojtwI8lo9msS8Iktdu5AQ6eXF3R1wAlvPZYP4VGaRZL4evClA5BKUHs15VVQaYWEvNXCNkZ8Z7H_olr6zdZcNF0b3TNcBdWO2oecnG_Par1trn8BdPyf33oKK3PDlO16TnoGD1z5HJbvwRW-gMnn0v24uR1QQQAP5sH2KuRU1FvM53QaNmyDvZiaMgoiwQ7Hd8kJjDIOK-vYWNWe9xk2sdFZ_f1sdom0h1XJPOYnuvAv4WS4_23vIJxXbAgNISSF1qkiQp_R2shoEeusEC7LpI4E7znTk9ZYRbXtrUbTQWnet4XiVvRjR9BmQievYKmsSrcOLMtUKo0QBWWwWNwoCoWWWo9ryY0RsQsgbBcsN3M4c6qqcZF7IGae00zm3UwG8KGjn3ggjz9SbrXrn88FeppTim8iqRxfAO-6ZhRFul9RpatmSIObH6dKPjyANc833aeSrB-jaxgFwJvV_8sY8q_j0ah72viXTm_h8fFgmI8Ojz5twhN67SPctmCpvpq512hL1fpNIy4_ATA3F8s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90Dimensional+Covalent+Organic+Framework+as+High%E2%80%90Performance+Cathode+Materials+for+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Jia%2C+Chao&rft.au=Duan%2C+An&rft.au=Liu%2C+Chao&rft.au=Wang%2C+Wen%E2%80%90Zhuang&rft.date=2023-06-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202300518&rft.externalDBID=10.1002%252Fsmll.202300518&rft.externalDocID=SMLL202300518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |