One‐Dimensional Covalent Organic Framework as High‐Performance Cathode Materials for Lithium‐Ion Batteries

Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two‐dimensional (2D) or three‐dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox‐active one‐dimensional (1D...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 24; pp. e2300518 - n/a
Main Authors Jia, Chao, Duan, An, Liu, Chao, Wang, Wen‐Zhuang, Gan, Shi‐Xian, Qi, Qiao‐Yan, Li, Yongjun, Huang, Xiaoyu, Zhao, Xin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two‐dimensional (2D) or three‐dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox‐active one‐dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li‐ion batteries, the 1D COF@CNT composites with unique dendritic core–shell structure can provide abundant and easily accessible redox‐active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox‐active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies. One‐dimensional (1D) covalent organic framework (COF) has been explored as electrode materials for Li‐ion batteries. The cathodes exhibit excellent electrochemical performance, ultrahigh utilization of redox‐active sites, long cycling stability, and high rate capability. This work discloses the great application potential of 1D COF in high‐performance batteries.
AbstractList Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two-dimensional (2D) or three-dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox-active one-dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li-ion batteries, the 1D COF@CNT composites with unique dendritic core-shell structure can provide abundant and easily accessible redox-active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox-active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies.
Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two‐dimensional (2D) or three‐dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox‐active one‐dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li‐ion batteries, the 1D COF@CNT composites with unique dendritic core–shell structure can provide abundant and easily accessible redox‐active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox‐active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies. One‐dimensional (1D) covalent organic framework (COF) has been explored as electrode materials for Li‐ion batteries. The cathodes exhibit excellent electrochemical performance, ultrahigh utilization of redox‐active sites, long cycling stability, and high rate capability. This work discloses the great application potential of 1D COF in high‐performance batteries.
Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two-dimensional (2D) or three-dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox-active one-dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li-ion batteries, the 1D COF@CNT composites with unique dendritic core-shell structure can provide abundant and easily accessible redox-active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox-active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies.Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two-dimensional (2D) or three-dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox-active one-dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li-ion batteries, the 1D COF@CNT composites with unique dendritic core-shell structure can provide abundant and easily accessible redox-active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox-active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies.
Author Jia, Chao
Liu, Chao
Li, Yongjun
Wang, Wen‐Zhuang
Zhao, Xin
Gan, Shi‐Xian
Huang, Xiaoyu
Qi, Qiao‐Yan
Duan, An
Author_xml – sequence: 1
  givenname: Chao
  surname: Jia
  fullname: Jia, Chao
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: An
  surname: Duan
  fullname: Duan, An
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Wen‐Zhuang
  surname: Wang
  fullname: Wang, Wen‐Zhuang
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Shi‐Xian
  surname: Gan
  fullname: Gan, Shi‐Xian
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Qiao‐Yan
  surname: Qi
  fullname: Qi, Qiao‐Yan
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Yongjun
  surname: Li
  fullname: Li, Yongjun
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Xiaoyu
  surname: Huang
  fullname: Huang, Xiaoyu
  email: xyhuang@sioc.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Xin
  orcidid: 0000-0002-1317-7257
  surname: Zhao
  fullname: Zhao, Xin
  email: xzhao@mail.sioc.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36918750$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEURi1URNvAliWyxIZNgn8yM54lpJRWmipIwNry2HcaF48dbA9VdzxCn7FPgqO0RaqEWN0r3XPu4vuO0YEPHhB6TcmCEsLep9G5BSOME1JR8Qwd0ZryeS1Ye_C4U3KIjlO6IoRTtmxeoENet1Q0FTlC27WHu9-3J3YEn2zwyuFV-KUc-IzX8VJ5q_FpVCNch_gDq4TP7OWmCF8gDiGOymvAK5U3wQC-UBmiVS7hcsKdzRs7jYU9Dx5_VHl3hPQSPR8KAq_u5wx9P_30bXU279afz1cfurnmDRdzA2ogVCyNIbqvaF8PFdS16EnFGtCNMNooSik3PWFM9aw1g2KmaikQVpOq5zP0bv93G8PPCVKWo00anFMewpQka0TDKG1KdDP09gl6FaZYoiiUYBUXy7YRhXpzT039CEZuox1VvJEPWRZguQd0DClFGKS2WeUSao7KOkmJ3FUmd5XJx8qKtniiPXz-p9DuhWvr4OY_tPx60XV_3T9EfqzI
CitedBy_id crossref_primary_10_1002_ange_202414075
crossref_primary_10_1002_anie_202414566
crossref_primary_10_1002_smll_202304182
crossref_primary_10_1002_smll_202400688
crossref_primary_10_3390_polym16050687
crossref_primary_10_1039_D4TA03516J
crossref_primary_10_1016_j_ensm_2024_103337
crossref_primary_10_1021_acssuschemeng_4c00536
crossref_primary_10_1016_j_nxmate_2024_100323
crossref_primary_10_1002_anie_202403473
crossref_primary_10_1002_cssc_202301118
crossref_primary_10_1088_1361_6528_ad4b21
crossref_primary_10_1002_ange_202403473
crossref_primary_10_1016_j_est_2024_113124
crossref_primary_10_1016_j_est_2024_115026
crossref_primary_10_1021_jacs_4c09680
crossref_primary_10_1039_D4EE00520A
crossref_primary_10_1039_D4TA02453B
crossref_primary_10_1016_j_jallcom_2025_178735
crossref_primary_10_1002_advs_202308087
crossref_primary_10_1002_anie_202402911
crossref_primary_10_1002_ange_202414566
crossref_primary_10_1002_anie_202414075
crossref_primary_10_1039_D4SC01780C
crossref_primary_10_1002_smll_202307635
crossref_primary_10_1016_j_cej_2023_147682
crossref_primary_10_1039_D4CC04688A
crossref_primary_10_1021_acsami_4c20891
crossref_primary_10_1002_smll_202310174
crossref_primary_10_1002_ange_202402911
crossref_primary_10_1002_bkcs_12823
crossref_primary_10_1021_acsami_4c09181
crossref_primary_10_1039_D4NR01092B
crossref_primary_10_1016_j_est_2024_115139
crossref_primary_10_1016_j_est_2025_115746
crossref_primary_10_1002_adfm_202310668
crossref_primary_10_1002_smll_202307827
crossref_primary_10_1002_adma_202416661
crossref_primary_10_1039_D3TA05152H
crossref_primary_10_1002_smtd_202301335
crossref_primary_10_1002_advs_202400626
crossref_primary_10_1039_D3CC02652C
crossref_primary_10_1007_s10800_023_01964_2
crossref_primary_10_1021_jacs_3c09001
crossref_primary_10_1039_D4TA04330H
Cites_doi 10.1016/j.cej.2022.139082
10.1002/anie.202117661
10.1002/anie.202016746
10.1002/adma.201703373
10.1002/adma.201800561
10.1021/acsami.9b05956
10.1002/anie.201507735
10.1002/anie.202117511
10.1039/D2SC02503E
10.31635/ccschem.022.202202351
10.1002/adfm.202100505
10.1039/D0TA03321A
10.1021/jacs.2c02666
10.1021/jacs.2c08273
10.1002/smtd.201900338
10.1002/anie.202008619
10.1002/anie.201708746
10.1002/anie.202213268
10.1039/c3sc22093a
10.1002/aenm.201904199
10.1021/jacs.9b13971
10.1002/adma.201703868
10.1002/adma.201901478
10.1002/aenm.202101880
10.1002/aenm.201702254
10.1021/acsami.0c16116
10.1021/acsami.0c08984
10.1039/C8SC04518F
10.1002/tcr.202000074
10.1002/adfm.202105027
10.1039/D1TA09433E
10.1002/aenm.202102917
10.1038/nmat3142
10.1016/j.cclet.2021.10.060
10.1002/adma.201405416
10.1002/adfm.201907006
10.1002/anie.202107444
10.1016/j.mattod.2014.10.040
10.1016/j.chempr.2018.08.014
10.1038/srep08225
10.1002/adma.201905879
10.1038/nmat3601
10.1002/anie.201710517
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202300518
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36918750
10_1002_smll_202300518
SMLL202300518
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21725404
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 20JC1415400
– fundername: National Natural Science Foundation of China
  grantid: 21725404
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 20JC1415400
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3738-deaf0184dd0cb51b6f5e668b0527ec78dcda1113db022ab29dfa2d591e02605b3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 07:42:22 EDT 2025
Fri Jul 25 10:45:27 EDT 2025
Mon Jul 21 05:50:10 EDT 2025
Tue Jul 01 02:54:27 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Wed Jan 22 16:20:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords covalent organic frameworks
one-dimensional
cathodes
Li-ion batteries
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-deaf0184dd0cb51b6f5e668b0527ec78dcda1113db022ab29dfa2d591e02605b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1317-7257
PMID 36918750
PQID 2825384978
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2787211702
proquest_journals_2825384978
pubmed_primary_36918750
crossref_citationtrail_10_1002_smll_202300518
crossref_primary_10_1002_smll_202300518
wiley_primary_10_1002_smll_202300518_SMLL202300518
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2015; 5
2019; 3
2015; 18
2020; 20
2019; 31
2019; 11
2020; 142
2019; 10
2023; 145
2015; 54
2020; 59
2011; 10
2017; 29
2020; 12
2020; 10
2022; 144
2020; 8
2021; 13
2023; 62
2018; 8
2015; 27
2021; 31
2018; 4
2021; 11
2020; 30
2022; 5
2022; 61
2013; 12
2017; 56
2023; 451
2022; 12
2022; 13
2018; 30
2022; 10
2022; 33
2021; 60
2018; 57
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 142
  start-page: 2771
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 1145
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 1330
  year: 2013
  publication-title: Chem. Sci.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 6001
  year: 2019
  publication-title: Chem. Sci.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 10
  start-page: 947
  year: 2011
  publication-title: Nat. Mater.
– volume: 5
  start-page: 607
  year: 2022
  publication-title: CCS Chem.
– volume: 451
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 2907
  year: 2015
  publication-title: Adv. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 2600
  year: 2018
  publication-title: Chem
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 3989
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 8679
  year: 2022
  publication-title: Chem. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 18
  start-page: 252
  year: 2015
  publication-title: Mater. Today
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 33
  start-page: 2867
  year: 2022
  publication-title: Chin. Chem. Lett.
– volume: 144
  start-page: 9902
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 145
  start-page: 1564
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 231
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 20
  start-page: 1198
  year: 2020
  publication-title: Chem. Rec.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 518
  year: 2013
  publication-title: Nat. Mater.
– volume: 5
  start-page: 8225
  year: 2015
  publication-title: Sci. Rep.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_32_1
  doi: 10.1016/j.cej.2022.139082
– ident: e_1_2_7_39_1
  doi: 10.1002/anie.202117661
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.202016746
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201703373
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201800561
– ident: e_1_2_7_13_1
  doi: 10.1021/acsami.9b05956
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.201507735
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202117511
– ident: e_1_2_7_30_1
  doi: 10.1039/D2SC02503E
– ident: e_1_2_7_17_1
  doi: 10.31635/ccschem.022.202202351
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.202100505
– ident: e_1_2_7_40_1
  doi: 10.1039/D0TA03321A
– ident: e_1_2_7_31_1
  doi: 10.1021/jacs.2c02666
– ident: e_1_2_7_43_1
  doi: 10.1021/jacs.2c08273
– ident: e_1_2_7_36_1
  doi: 10.1002/smtd.201900338
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.202008619
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201708746
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.202213268
– ident: e_1_2_7_5_1
  doi: 10.1039/c3sc22093a
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201904199
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.9b13971
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201703868
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201901478
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.202101880
– ident: e_1_2_7_34_1
  doi: 10.1002/aenm.201702254
– ident: e_1_2_7_28_1
  doi: 10.1021/acsami.0c16116
– ident: e_1_2_7_22_1
  doi: 10.1021/acsami.0c08984
– ident: e_1_2_7_24_1
  doi: 10.1039/C8SC04518F
– ident: e_1_2_7_19_1
  doi: 10.1002/tcr.202000074
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.202105027
– ident: e_1_2_7_25_1
  doi: 10.1039/D1TA09433E
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.202102917
– ident: e_1_2_7_4_1
  doi: 10.1038/nmat3142
– ident: e_1_2_7_16_1
  doi: 10.1016/j.cclet.2021.10.060
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201405416
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.201907006
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.202107444
– ident: e_1_2_7_1_1
  doi: 10.1016/j.mattod.2014.10.040
– ident: e_1_2_7_11_1
  doi: 10.1016/j.chempr.2018.08.014
– ident: e_1_2_7_35_1
  doi: 10.1038/srep08225
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201905879
– ident: e_1_2_7_41_1
  doi: 10.1038/nmat3601
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.201710517
SSID ssj0031247
Score 2.5906315
Snippet Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2300518
SubjectTerms Carbon nanotubes
Cathodes
Composite materials
Core-shell structure
covalent organic frameworks
Diffusion rate
Electrochemical analysis
Electrode materials
Energy storage
Lithium-ion batteries
Li‐ion batteries
Nanotechnology
one‐dimensional
Structural design
Title One‐Dimensional Covalent Organic Framework as High‐Performance Cathode Materials for Lithium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300518
https://www.ncbi.nlm.nih.gov/pubmed/36918750
https://www.proquest.com/docview/2825384978
https://www.proquest.com/docview/2787211702
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hTuVQaIESfiojVeIUSJw4mz2iLasF7VIEReIW-S8CAQlisxdOfYQ-I0_SmXgTWFCFBLdEHiuJ7fHMxPN9A_DD6DwIcpX6MoojP07jro9Gj44QOUbNpoO6Tmjk0XEyOI-PLsTFMxS_44dof7iRZtT7NSm4VOO9J9LQ8e0NHR1w4lsPCe1LCVvkFZ22_FERGq-6ugraLJ-ItxrWxoDvzXaftUqvXM1Zz7U2Pf1FkM1Lu4yT691JpXb1wws-x4981RJ8nvqlbN8tpC8wZ4uvsPCMrXAZ7n4V9vHP359UD8BxebBeiQsVzRZzkE7N-k2uF5NjRjkk2OHkCZvACHBYGstGsnJLn2ETG15Vl1eTW5Q9LAvmKD8xgl-B8_7B797AnxZs8DURJPnGyjzAkNGYQCsRqiQXNklSFQjesbqTGm0klbY3Cj0HqXjX5JIb0Q0tMZsJFa3CfFEWdg1Yksg41ULkBGAxuE_kEh21Dlcp11qE1gO_mbBMT9nMqajGTeZ4mHlGI5m1I-nBTit_53g8_iu52cx_NtXncUYI3yilanwebLfNqIl0vCILW05QBvc-ToV8uAff3LppHxUl3RAjw8ADXs_-G--QnY2Gw_Zu_T2dNuATXbustk2Yr-4ndgv9p0p9r3XkHzKCFPg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROLQ98CjQhkdxpUo9BRInzmaPFbBa2iytWpC4RX5FICBB3eyFU39CfyO_pDPxJrBFqFJ7TDxWHHvGM2PPfAPw3ugiCAqV-jKKIz9O476PSo-uEDl6zaaHsk7ZyKPjZHgafzoTbTQh5cI4fIjuwI0ko9mvScDpQHrvHjV0fH1FdwecANfD9BksUFnvxqv61iFIRai-mvoqqLV8gt5qcRsDvjfbf1YvPTI2Z23XRvkMlkC1w3YxJ5e7k1rt6ts_EB3_67-WYXFqmrKPjpdWYM6Wr-DlA8DCVbj5Utq7n78OqCSAg_Ng-xXyKmou5rI6NRu04V5MjhmFkWCHr_fpCYxyDitj2UjWjvsZNrHsoj6_mFwj7VFVMof6iU78GpwODk_2h_60ZoOvCSPJN1YWAXqNxgRaiVAlhbBJkqpA8J7VvdRoI6m6vVFoPEjF-6aQ3Ih-aAncTKhoHebLqrRvgCWJjFMtREE5LAa3ikKirdbjKuVai9B64LcrluspoDnV1bjKHRQzz2km824mPfjQ0d84KI8nKbdaBsinIj3OKck3SqkgnwfvumYURrphkaWtJkiD2x-nWj7cg9eOcbpPRUk_ROcw8IA3y_-XMeTfR1nWPW38S6cdeD48GWV5dnT8eRNe0HsX5LYF8_WPid1Gc6pWbxuB-Q1vYhkT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61VKrKAfoLAdq6UqWeAokTZ71HxLKCdpeitkjcIv9FRUCyYrMXTjwCz9gn6Uy8CWyrqlJ7TDxWHHvGM2PPfAPw3poiigotQ5WkSZjKtB-i0qMrRI5es-2hrFM28vgoOzhJP56K03tZ_B4fojtwI8lo9msS8Iktdu5AQ6eXF3R1wAlvPZYP4VGaRZL4evClA5BKUHs15VVQaYWEvNXCNkZ8Z7H_olr6zdZcNF0b3TNcBdWO2oecnG_Par1trn8BdPyf33oKK3PDlO16TnoGD1z5HJbvwRW-gMnn0v24uR1QQQAP5sH2KuRU1FvM53QaNmyDvZiaMgoiwQ7Hd8kJjDIOK-vYWNWe9xk2sdFZ_f1sdom0h1XJPOYnuvAv4WS4_23vIJxXbAgNISSF1qkiQp_R2shoEeusEC7LpI4E7znTk9ZYRbXtrUbTQWnet4XiVvRjR9BmQievYKmsSrcOLMtUKo0QBWWwWNwoCoWWWo9ryY0RsQsgbBcsN3M4c6qqcZF7IGae00zm3UwG8KGjn3ggjz9SbrXrn88FeppTim8iqRxfAO-6ZhRFul9RpatmSIObH6dKPjyANc833aeSrB-jaxgFwJvV_8sY8q_j0ah72viXTm_h8fFgmI8Ojz5twhN67SPctmCpvpq512hL1fpNIy4_ATA3F8s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90Dimensional+Covalent+Organic+Framework+as+High%E2%80%90Performance+Cathode+Materials+for+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Jia%2C+Chao&rft.au=Duan%2C+An&rft.au=Liu%2C+Chao&rft.au=Wang%2C+Wen%E2%80%90Zhuang&rft.date=2023-06-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202300518&rft.externalDBID=10.1002%252Fsmll.202300518&rft.externalDocID=SMLL202300518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon