Spatially Confined Engineering Toward Deep Eutectic Electrolyte in Metal‐Organic Framework Enabling Solid‐State Zinc‐Ion Batteries

Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc‐ion batteries (ZIBs). Solid‐state ZIBs are considered to be an efficient strategy by ad...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 40; pp. e202410208 - n/a
Main Authors Miao, Cheng‐Lin, Wang, Xiao‐Xue, Guan, De‐Hui, Li, Jia‐Xin, Li, Jian‐You, Xu, Ji‐Jing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc‐ion batteries (ZIBs). Solid‐state ZIBs are considered to be an efficient strategy by adopting high‐quality solid‐state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal‐organic framework (MOF)‐PCN‐222, a stable DEE@PCN‐222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion‐transport network composed of DEE and PCN‐222 in the interior of DEE@PCN‐222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10−4 S cm−1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN‐222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid‐state ZIBs show a specific capacity of 306 mAh g−1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high‐safety and high‐performance ZIBs. A strategy to prepare a novel solid‐state Zn2+ conductor by confining deep eutectic electrolytes into the nanochannels of metal‐organic frameworks is proposed. The obtained DEE@PCN‐222 solid state electrolyte exhibits appreciable Zn2+ conductivity and highly reversible Zn plating/stripping ability with long‐term stability. DEE@PCN‐222‐based solid‐state ZIBs achieved favorable reversibility and effective protection of electrodes.
AbstractList Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc‐ion batteries (ZIBs). Solid‐state ZIBs are considered to be an efficient strategy by adopting high‐quality solid‐state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal‐organic framework (MOF)‐PCN‐222, a stable DEE@PCN‐222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion‐transport network composed of DEE and PCN‐222 in the interior of DEE@PCN‐222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10−4 S cm−1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN‐222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid‐state ZIBs show a specific capacity of 306 mAh g−1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high‐safety and high‐performance ZIBs.
Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc-ion batteries (ZIBs). Solid-state ZIBs are considered to be an efficient strategy by adopting high-quality solid-state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal-organic framework (MOF)-PCN-222, a stable DEE@PCN-222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion-transport network composed of DEE and PCN-222 in the interior of DEE@PCN-222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10-4 S cm-1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN-222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid-state ZIBs show a specific capacity of 306 mAh g-1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high-safety and high-performance ZIBs.Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc-ion batteries (ZIBs). Solid-state ZIBs are considered to be an efficient strategy by adopting high-quality solid-state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal-organic framework (MOF)-PCN-222, a stable DEE@PCN-222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion-transport network composed of DEE and PCN-222 in the interior of DEE@PCN-222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10-4 S cm-1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN-222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid-state ZIBs show a specific capacity of 306 mAh g-1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high-safety and high-performance ZIBs.
Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc‐ion batteries (ZIBs). Solid‐state ZIBs are considered to be an efficient strategy by adopting high‐quality solid‐state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal‐organic framework (MOF)‐PCN‐222, a stable DEE@PCN‐222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion‐transport network composed of DEE and PCN‐222 in the interior of DEE@PCN‐222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10−4 S cm−1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN‐222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid‐state ZIBs show a specific capacity of 306 mAh g−1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high‐safety and high‐performance ZIBs. A strategy to prepare a novel solid‐state Zn2+ conductor by confining deep eutectic electrolytes into the nanochannels of metal‐organic frameworks is proposed. The obtained DEE@PCN‐222 solid state electrolyte exhibits appreciable Zn2+ conductivity and highly reversible Zn plating/stripping ability with long‐term stability. DEE@PCN‐222‐based solid‐state ZIBs achieved favorable reversibility and effective protection of electrodes.
Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc-ion batteries (ZIBs). Solid-state ZIBs are considered to be an efficient strategy by adopting high-quality solid-state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal-organic framework (MOF)-PCN-222, a stable DEE@PCN-222 SSE with internal Zn transport channels was obtained. A distinctive ion-transport network composed of DEE and PCN-222 in the interior of DEE@PCN-222 realizes the efficient Zn conduction, contributing to high ionic conductivity of 3.13×10  S cm at room temperature, low activation energy of 0.12 eV, and a high Zn transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN-222 with its unique channel structure could homogeneously regulate the Zn distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid-state ZIBs show a specific capacity of 306 mAh g and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high-safety and high-performance ZIBs.
Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc‐ion batteries (ZIBs). Solid‐state ZIBs are considered to be an efficient strategy by adopting high‐quality solid‐state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal‐organic framework (MOF)‐PCN‐222, a stable DEE@PCN‐222 SSE with internal Zn 2+ transport channels was obtained. A distinctive ion‐transport network composed of DEE and PCN‐222 in the interior of DEE@PCN‐222 realizes the efficient Zn 2+ conduction, contributing to high ionic conductivity of 3.13×10 −4  S cm −1 at room temperature, low activation energy of 0.12 eV, and a high Zn 2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN‐222 with its unique channel structure could homogeneously regulate the Zn 2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid‐state ZIBs show a specific capacity of 306 mAh g −1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high‐safety and high‐performance ZIBs.
Author Miao, Cheng‐Lin
Wang, Xiao‐Xue
Li, Jian‐You
Guan, De‐Hui
Li, Jia‐Xin
Xu, Ji‐Jing
Author_xml – sequence: 1
  givenname: Cheng‐Lin
  surname: Miao
  fullname: Miao, Cheng‐Lin
  organization: Jilin University
– sequence: 2
  givenname: Xiao‐Xue
  surname: Wang
  fullname: Wang, Xiao‐Xue
  organization: Jilin University
– sequence: 3
  givenname: De‐Hui
  surname: Guan
  fullname: Guan, De‐Hui
  organization: Jilin University
– sequence: 4
  givenname: Jia‐Xin
  surname: Li
  fullname: Li, Jia‐Xin
  organization: Jilin University
– sequence: 5
  givenname: Jian‐You
  surname: Li
  fullname: Li, Jian‐You
  organization: Jilin University
– sequence: 6
  givenname: Ji‐Jing
  orcidid: 0000-0002-6212-8224
  surname: Xu
  fullname: Xu, Ji‐Jing
  email: jijingxu@jlu.edu.cn
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38988225$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1vFDEQhi0URD6gpUSWaGj28Md-eMtw2YSTAikuNDQrrz17cvDZh-3V6TpKSn5jfgk-XQhSJEQ1M9LzvjN65xQdOe8AodeUzCgh7L10BmaMsJISRsQzdEIrRgveNPwo9yXnRSMqeoxOY7zLvBCkfoGOuWiFYKw6QT-XG5mMtHaH596NxoHGnVvlCsG4Fb71Wxk0vgDY4G5KoJJRuLO5Bm93CbBx-BMkae9__LoJq3yOwpdBrmHrw7fsJAe7t1l6a3RGlklmzVfjVB4W3uEPMqW8CeJL9HyUNsKrh3qGvlx2t_OPxfXN1WJ-fl0o3nBR6BpIOwysaQilNZMjYVLmoazauhy4HqXQA9VkVMNApVAVK4G1Y90yVepWE36G3h18N8F_nyCmfm2iAmulAz_FnpNGNLSmgmX07RP0zk_B5et6TkmOtRQVz9SbB2oa1qD7TTBrGXb9n4wzMDsAKvgYA4yPCCX9_on9_on94xOzoHwiUCbnZrxLQRr7b1l7kG2Nhd1_lvTnnxfdX-1vIYm0wQ
CitedBy_id crossref_primary_10_1039_D4EE05298F
crossref_primary_10_1002_adfm_202503493
crossref_primary_10_1021_acsnano_4c18422
crossref_primary_10_1002_aenm_202406139
crossref_primary_10_1021_acsnano_4c17836
Cites_doi 10.1002/anie.202011788
10.1021/acs.chemmater.9b05003
10.1038/s41565-021-00908-1
10.1038/s41467-023-38492-8
10.1002/adma.202007416
10.1038/s41467-022-34584-z
10.1002/adma.202207908
10.1002/aenm.202003065
10.1021/acsenergylett.3c01079
10.1016/j.nanoen.2018.11.038
10.1002/adma.202207115
10.1038/s41467-023-39634-8
10.1126/sciadv.ade2217
10.1002/adma.202207682
10.1002/anie.202206717
10.1021/acsenergylett.1c02088
10.1016/j.joule.2020.05.018
10.1039/D1EE00409C
10.1002/anie.202304947
10.1002/anie.202317457
10.1002/adfm.202213211
10.1002/aenm.202300063
10.1038/s41563-023-01508-1
10.1002/anie.202312020
10.1039/D1TA09499H
10.1002/anie.201204475
10.1002/anie.202113086
10.1002/adma.202106511
10.1016/j.jpowsour.2022.232349
10.1002/adma.201905771
10.1039/D0EE02620D
10.1002/anie.202310006
10.1021/jacs.3c09114
10.1016/j.matchemphys.2015.07.026
10.1038/s41893-021-00800-9
10.1002/smll.202200550
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202410208
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38988225
10_1002_anie_202410208
ANIE202410208
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51972141, 21835002, 21621001
– fundername: National Natural Science Foundation of China
  grantid: 51972141, 21835002, 21621001
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
M53
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3738-d6e09bb27701162af02aa77045964b3dfa8db1d0fcbb1a8c524e29f692c4d9d03
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:25:41 EDT 2025
Fri Jul 25 11:55:18 EDT 2025
Mon Jul 21 06:04:41 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Tue Jul 01 01:47:44 EDT 2025
Wed Jan 22 17:16:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords zinc-ion batteries
solid-state batteries
solid-state electrolytes
secondary batteries
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-d6e09bb27701162af02aa77045964b3dfa8db1d0fcbb1a8c524e29f692c4d9d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6212-8224
PMID 38988225
PQID 3108514853
PQPubID 946352
PageCount 10
ParticipantIDs proquest_miscellaneous_3078716182
proquest_journals_3108514853
pubmed_primary_38988225
crossref_primary_10_1002_anie_202410208
crossref_citationtrail_10_1002_anie_202410208
wiley_primary_10_1002_anie_202410208_ANIE202410208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 1, 2024
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 163
2023; 35
2023; 13
2023; 14
2023; 33
2023; 8
2023; 9
2019; 56
2023; 145
2020; 59
2020; 13
2020; 32
2012; 51
2021; 14
2021; 16
2023; 62
2020; 4
2023; 22
2021; 33
2021; 11
2022
2022; 5
2022; 61
2022; 7
2022; 34
2022; 13
2024; 63
2023; 554
2022; 10
2022; 18
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
Zhou Y. (e_1_2_7_5_1) 2022
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Zhang J. (e_1_2_7_32_1) 2023; 62
Tian C. (e_1_2_7_11_1) 2023; 62
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 32
  start-page: 3405
  year: 2020
  end-page: 3413
  publication-title: Chem. Mater.
– volume: 22
  start-page: 627
  year: 2023
  end-page: 635
  publication-title: Nat. Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 247
  year: 2022
  end-page: 260
  publication-title: ACS Energy Lett.
– volume: 163
  start-page: 161
  year: 2015
  end-page: 171
  publication-title: Mater. Chem. Phys.
– volume: 13
  start-page: 4625
  year: 2020
  end-page: 4665
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 6788
  year: 2022
  publication-title: Nat. Commun.
– volume: 56
  start-page: 92
  year: 2019
  end-page: 99
  publication-title: Nano Energy.
– volume: 14
  start-page: 3890
  year: 2023
  publication-title: Nat. Commun.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 16
  start-page: 854
  year: 2021
  end-page: 855
  publication-title: Nat. Nanotechnol.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 59
  start-page: 23836
  year: 2020
  end-page: 23844
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1557
  year: 2020
  end-page: 1574
  publication-title: Joule.
– year: 2022
  publication-title: Adv. Mater.
– volume: 145
  start-page: 25341
  year: 2023
  end-page: 25351
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 14
  start-page: 3492
  year: 2021
  end-page: 3501
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 10307
  year: 2012
  end-page: 10310
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 10
  start-page: 651
  year: 2022
  end-page: 663
  publication-title: J. Mater. Chem. A.
– volume: 18
  year: 2022
  publication-title: Small.
– volume: 554
  year: 2023
  publication-title: J. Power Sources
– volume: 8
  start-page: 3649
  year: 2023
  end-page: 3657
  publication-title: ACS Energy Lett.
– year: 2022
  publication-title: Adv. Sci.
– volume: 5
  start-page: 205
  year: 2022
  end-page: 213
  publication-title: Nature Sustainability.
– volume: 14
  start-page: 2925
  year: 2023
  publication-title: Nat. Commun.
– volume: 63
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.202011788
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.chemmater.9b05003
– ident: e_1_2_7_6_1
  doi: 10.1038/s41565-021-00908-1
– ident: e_1_2_7_35_1
  doi: 10.1038/s41467-023-38492-8
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.202007416
– ident: e_1_2_7_28_1
  doi: 10.1038/s41467-022-34584-z
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.202207908
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.202003065
– ident: e_1_2_7_20_1
  doi: 10.1021/acsenergylett.3c01079
– ident: e_1_2_7_33_1
  doi: 10.1016/j.nanoen.2018.11.038
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.202207115
– ident: e_1_2_7_36_1
  doi: 10.1038/s41467-023-39634-8
– ident: e_1_2_7_9_1
  doi: 10.1126/sciadv.ade2217
– volume: 62
  year: 2023
  ident: e_1_2_7_11_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.202207682
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.202206717
– ident: e_1_2_7_17_1
  doi: 10.1021/acsenergylett.1c02088
– ident: e_1_2_7_15_1
  doi: 10.1016/j.joule.2020.05.018
– ident: e_1_2_7_13_1
  doi: 10.1039/D1EE00409C
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.202304947
– year: 2022
  ident: e_1_2_7_5_1
  publication-title: Adv. Sci.
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.202317457
– ident: e_1_2_7_24_1
  doi: 10.1002/adfm.202213211
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.202300063
– ident: e_1_2_7_21_1
  doi: 10.1038/s41563-023-01508-1
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.202312020
– ident: e_1_2_7_26_1
  doi: 10.1039/D1TA09499H
– volume: 62
  year: 2023
  ident: e_1_2_7_32_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.201204475
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202113086
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.202106511
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jpowsour.2022.232349
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201905771
– ident: e_1_2_7_8_1
  doi: 10.1039/D0EE02620D
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.202310006
– ident: e_1_2_7_34_1
  doi: 10.1021/jacs.3c09114
– ident: e_1_2_7_30_1
  doi: 10.1016/j.matchemphys.2015.07.026
– ident: e_1_2_7_3_1
  doi: 10.1038/s41893-021-00800-9
– ident: e_1_2_7_19_1
  doi: 10.1002/smll.202200550
SSID ssj0028806
Score 2.5433044
Snippet Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202410208
SubjectTerms Aqueous electrolytes
Conduction heating
Displays
Electrolytes
Eutectic reactions
Hydrogen evolution reactions
Ion currents
Molten salt electrolytes
Nanochannels
Room temperature
secondary batteries
Side reactions
Solid electrolytes
solid-state batteries
solid-state electrolytes
Specific capacity
Zinc
zinc-ion batteries
Title Spatially Confined Engineering Toward Deep Eutectic Electrolyte in Metal‐Organic Framework Enabling Solid‐State Zinc‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202410208
https://www.ncbi.nlm.nih.gov/pubmed/38988225
https://www.proquest.com/docview/3108514853
https://www.proquest.com/docview/3078716182
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734ftQXKwieoskmaZOjaEsrtAetIF7CPiFY0mLbQz159Ohv9Jc4k22iVUTQW5ZMspvNbOab7Mw3hBx7nHkK7IAD5sY4QSRcJ8JE4JyrPNLgFQnc0e10a63b4OouvPuUxW_5Icofbrgy8u81LnAuRmcfpKGYgQ3-HVggrDMJH2EM2EJUdF3yRzFQTpte5PsOVqEvWBtddjZ_-bxV-gY155FrbnqaK4QXg7YRJw-nk7E4lU9f-Bz_81SrZHmGS-m5VaQ1sqCzdbJ4UZSD2yAvWLwYlLU_pZglCB0p-onMkPby-Ft6qfWQNia4NZFK2rBFdvrTsaZpRjsaoP7b86tNAJW0WUSGwZ24wMR4ejPopwpEchBM79NMQqM9yKglAgW_fpPcNhu9i5YzK-PgSKRNclRNu7EQrF7HTR_Gjcs4h0YQxrVA-MrwSAlPuUYK4fFIhizQLDa1mMlAxcr1t0glG2R6h1CMWjdBaIIIhIwwnPtMu5JFgkUwgX6VOMVrTOSM4xxLbfQTy87MEpzfpJzfKjkp5YeW3eNHyf1CK5LZKh8lPqZugD8ZQsdH5Wl4L7jpwjM9mIAMYLA6ViVgVbJttansCsAiODgsrBKW68QvY0jOu-1G2dr9y0V7ZAmPbTTiPqmMHyf6AFDVWBzmK-cdsqoavQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VeoALbXmmpWWRkDgZnLWd2McoJEqA5ABBQlysfUoRkRNBcoATxx77G_tLOuONTUOFKsFx7bF3vZ71zHhnvg_goCp4VaMd8NDcWC-Mpe_FVAicY5XHBqMiSTu6vX6tcxWeXkdFNiHVwjh8iPKHG62M_HtNC5x-SB8_o4ZSCTYGeGiCiGhyCT4SrXceVV2UCFIc1dMVGAWBRzz0BW6jz48Xr1-0S_84m4u-a2582p9AFsN2OSe3R7OpPFKPLxAd3_Vcn2Ft7pqyhtOlL_DBZOuw0iwY4TbgJ_EXo76OHhgVCmJPmv2FZ8gGeQouOzFmwloz2p0YKtZyPDujh6lhw4z1DHr7v59-uRpQxdpFchjeSUiqjWeX49FQo0juB7ObYaaw0R1nzGGBYmi_CVft1qDZ8eZMDp4i5CRP14yfSMnrddr34cL6XAhshFFSC2WgrYi1rGrfKimrIlYRDw1PbC3hKtSJ9oMtWM7GmdkBRonrNoxsGKOQlVaIgBtf8VjyGCcwqIBXvMdUzWHOiW1jlDqAZp7S_Kbl_FbgsJSfOICPVyV3C7VI5wv9Pg2oegNDygg73i9P43uhfReRmfEMZdANqxMxAa_AtlOnsiv0FzHG4VEFeK4U_xlD2uh3W2Xr61su2oOVzqB3np53-2ffYJWOu-TEXVie3s3Md3SypvJHvoz-AEwnHtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BkaCXQguFlJZuJSRObp312lkfqyZRAzRC0EoVF2t_pYjIiUpyaE8cOfYZ-ySd8cZuA0JIcFx71rvenfXMeGa-AXjbVrxtUQ5EKG58JKSOI0mJwBVWuXRoFWny6J4Ms-Mz8f48Pb-XxR_wIZofbnQyqu81HfCp9Qd3oKGUgY32HUogqjP5EB6JLJbE193PDYAUR-4M-UVJElEZ-hq2MeYHy_2XxdJvuuay6lrJnv5TUPWsQ8jJt_35TO-bq18AHf_ntZ7B2kIxZYeBk9bhgSs34MlRXQ_uOfyk6sXIreNLRmmCOJBl99AM2WkVgMu6zk1Zb06-iZFhvVBlZ3w5c2xUshOHuv7Nj-uQAWpYvw4NwycpTZnx7MtkPLJIUmnB7OuoNNgYTEoWkEDRsH8BZ_3e6dFxtKjjEBnCTYps5uJca97pkNeHKx9zpbAh0jwTOrFeSavbNvZG67aSJuXC8dxnOTfC5jZONmGlnJTuFTAKW_ci9UIikddeqYS72HCpucQFTFoQ1dtYmAXIOdXaGBcBnpkXtL5Fs74teNfQTwO8xx8pt2uuKBbH_HuRUO4GGpQpDrzX3MZ9Ia-LKt1kjjSohHWoLAFvwcvATc1QqC2ihcPTFvCKJ_4yh-JwOOg1ra1_6bQLjz91-8XHwfDDa1ilyyEycRtWZhdzt4Ma1ky_qQ7RLfTlHZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+Confined+Engineering+Toward+Deep+Eutectic+Electrolyte+in+Metal-Organic+Framework+Enabling+Solid-State+Zinc-Ion+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Miao%2C+Cheng-Lin&rft.au=Wang%2C+Xiao-Xue&rft.au=Guan%2C+De-Hui&rft.au=Li%2C+Jia-Xin&rft.date=2024-10-01&rft.eissn=1521-3773&rft.spage=e202410208&rft_id=info:doi/10.1002%2Fanie.202410208&rft_id=info%3Apmid%2F38988225&rft.externalDocID=38988225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon