Spatially Confined Engineering Toward Deep Eutectic Electrolyte in Metal‐Organic Framework Enabling Solid‐State Zinc‐Ion Batteries
Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc‐ion batteries (ZIBs). Solid‐state ZIBs are considered to be an efficient strategy by ad...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 40; pp. e202410208 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc‐ion batteries (ZIBs). Solid‐state ZIBs are considered to be an efficient strategy by adopting high‐quality solid‐state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal‐organic framework (MOF)‐PCN‐222, a stable DEE@PCN‐222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion‐transport network composed of DEE and PCN‐222 in the interior of DEE@PCN‐222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10−4 S cm−1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN‐222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid‐state ZIBs show a specific capacity of 306 mAh g−1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high‐safety and high‐performance ZIBs.
A strategy to prepare a novel solid‐state Zn2+ conductor by confining deep eutectic electrolytes into the nanochannels of metal‐organic frameworks is proposed. The obtained DEE@PCN‐222 solid state electrolyte exhibits appreciable Zn2+ conductivity and highly reversible Zn plating/stripping ability with long‐term stability. DEE@PCN‐222‐based solid‐state ZIBs achieved favorable reversibility and effective protection of electrodes. |
---|---|
AbstractList | Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc‐ion batteries (ZIBs). Solid‐state ZIBs are considered to be an efficient strategy by adopting high‐quality solid‐state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal‐organic framework (MOF)‐PCN‐222, a stable DEE@PCN‐222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion‐transport network composed of DEE and PCN‐222 in the interior of DEE@PCN‐222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10−4 S cm−1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN‐222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid‐state ZIBs show a specific capacity of 306 mAh g−1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high‐safety and high‐performance ZIBs. Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc-ion batteries (ZIBs). Solid-state ZIBs are considered to be an efficient strategy by adopting high-quality solid-state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal-organic framework (MOF)-PCN-222, a stable DEE@PCN-222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion-transport network composed of DEE and PCN-222 in the interior of DEE@PCN-222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10-4 S cm-1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN-222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid-state ZIBs show a specific capacity of 306 mAh g-1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high-safety and high-performance ZIBs.Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc-ion batteries (ZIBs). Solid-state ZIBs are considered to be an efficient strategy by adopting high-quality solid-state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal-organic framework (MOF)-PCN-222, a stable DEE@PCN-222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion-transport network composed of DEE and PCN-222 in the interior of DEE@PCN-222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10-4 S cm-1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN-222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid-state ZIBs show a specific capacity of 306 mAh g-1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high-safety and high-performance ZIBs. Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc‐ion batteries (ZIBs). Solid‐state ZIBs are considered to be an efficient strategy by adopting high‐quality solid‐state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal‐organic framework (MOF)‐PCN‐222, a stable DEE@PCN‐222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion‐transport network composed of DEE and PCN‐222 in the interior of DEE@PCN‐222 realizes the efficient Zn2+ conduction, contributing to high ionic conductivity of 3.13×10−4 S cm−1 at room temperature, low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN‐222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid‐state ZIBs show a specific capacity of 306 mAh g−1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high‐safety and high‐performance ZIBs. A strategy to prepare a novel solid‐state Zn2+ conductor by confining deep eutectic electrolytes into the nanochannels of metal‐organic frameworks is proposed. The obtained DEE@PCN‐222 solid state electrolyte exhibits appreciable Zn2+ conductivity and highly reversible Zn plating/stripping ability with long‐term stability. DEE@PCN‐222‐based solid‐state ZIBs achieved favorable reversibility and effective protection of electrodes. Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc-ion batteries (ZIBs). Solid-state ZIBs are considered to be an efficient strategy by adopting high-quality solid-state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal-organic framework (MOF)-PCN-222, a stable DEE@PCN-222 SSE with internal Zn transport channels was obtained. A distinctive ion-transport network composed of DEE and PCN-222 in the interior of DEE@PCN-222 realizes the efficient Zn conduction, contributing to high ionic conductivity of 3.13×10 S cm at room temperature, low activation energy of 0.12 eV, and a high Zn transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN-222 with its unique channel structure could homogeneously regulate the Zn distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid-state ZIBs show a specific capacity of 306 mAh g and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high-safety and high-performance ZIBs. Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc‐ion batteries (ZIBs). Solid‐state ZIBs are considered to be an efficient strategy by adopting high‐quality solid‐state electrolytes (SSEs). Here, by confining deep eutectic electrolyte (DEE) into the nanochannels of metal‐organic framework (MOF)‐PCN‐222, a stable DEE@PCN‐222 SSE with internal Zn 2+ transport channels was obtained. A distinctive ion‐transport network composed of DEE and PCN‐222 in the interior of DEE@PCN‐222 realizes the efficient Zn 2+ conduction, contributing to high ionic conductivity of 3.13×10 −4 S cm −1 at room temperature, low activation energy of 0.12 eV, and a high Zn 2+ transference number of 0.74. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN‐222 with its unique channel structure could homogeneously regulate the Zn 2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid‐state ZIBs show a specific capacity of 306 mAh g −1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high‐safety and high‐performance ZIBs. |
Author | Miao, Cheng‐Lin Wang, Xiao‐Xue Li, Jian‐You Guan, De‐Hui Li, Jia‐Xin Xu, Ji‐Jing |
Author_xml | – sequence: 1 givenname: Cheng‐Lin surname: Miao fullname: Miao, Cheng‐Lin organization: Jilin University – sequence: 2 givenname: Xiao‐Xue surname: Wang fullname: Wang, Xiao‐Xue organization: Jilin University – sequence: 3 givenname: De‐Hui surname: Guan fullname: Guan, De‐Hui organization: Jilin University – sequence: 4 givenname: Jia‐Xin surname: Li fullname: Li, Jia‐Xin organization: Jilin University – sequence: 5 givenname: Jian‐You surname: Li fullname: Li, Jian‐You organization: Jilin University – sequence: 6 givenname: Ji‐Jing orcidid: 0000-0002-6212-8224 surname: Xu fullname: Xu, Ji‐Jing email: jijingxu@jlu.edu.cn organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38988225$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1vFDEQhi0URD6gpUSWaGj28Md-eMtw2YSTAikuNDQrrz17cvDZh-3V6TpKSn5jfgk-XQhSJEQ1M9LzvjN65xQdOe8AodeUzCgh7L10BmaMsJISRsQzdEIrRgveNPwo9yXnRSMqeoxOY7zLvBCkfoGOuWiFYKw6QT-XG5mMtHaH596NxoHGnVvlCsG4Fb71Wxk0vgDY4G5KoJJRuLO5Bm93CbBx-BMkae9__LoJq3yOwpdBrmHrw7fsJAe7t1l6a3RGlklmzVfjVB4W3uEPMqW8CeJL9HyUNsKrh3qGvlx2t_OPxfXN1WJ-fl0o3nBR6BpIOwysaQilNZMjYVLmoazauhy4HqXQA9VkVMNApVAVK4G1Y90yVepWE36G3h18N8F_nyCmfm2iAmulAz_FnpNGNLSmgmX07RP0zk_B5et6TkmOtRQVz9SbB2oa1qD7TTBrGXb9n4wzMDsAKvgYA4yPCCX9_on9_on94xOzoHwiUCbnZrxLQRr7b1l7kG2Nhd1_lvTnnxfdX-1vIYm0wQ |
CitedBy_id | crossref_primary_10_1039_D4EE05298F crossref_primary_10_1002_adfm_202503493 crossref_primary_10_1021_acsnano_4c18422 crossref_primary_10_1002_aenm_202406139 crossref_primary_10_1021_acsnano_4c17836 |
Cites_doi | 10.1002/anie.202011788 10.1021/acs.chemmater.9b05003 10.1038/s41565-021-00908-1 10.1038/s41467-023-38492-8 10.1002/adma.202007416 10.1038/s41467-022-34584-z 10.1002/adma.202207908 10.1002/aenm.202003065 10.1021/acsenergylett.3c01079 10.1016/j.nanoen.2018.11.038 10.1002/adma.202207115 10.1038/s41467-023-39634-8 10.1126/sciadv.ade2217 10.1002/adma.202207682 10.1002/anie.202206717 10.1021/acsenergylett.1c02088 10.1016/j.joule.2020.05.018 10.1039/D1EE00409C 10.1002/anie.202304947 10.1002/anie.202317457 10.1002/adfm.202213211 10.1002/aenm.202300063 10.1038/s41563-023-01508-1 10.1002/anie.202312020 10.1039/D1TA09499H 10.1002/anie.201204475 10.1002/anie.202113086 10.1002/adma.202106511 10.1016/j.jpowsour.2022.232349 10.1002/adma.201905771 10.1039/D0EE02620D 10.1002/anie.202310006 10.1021/jacs.3c09114 10.1016/j.matchemphys.2015.07.026 10.1038/s41893-021-00800-9 10.1002/smll.202200550 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202410208 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 38988225 10_1002_anie_202410208 ANIE202410208 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51972141, 21835002, 21621001 – fundername: National Natural Science Foundation of China grantid: 51972141, 21835002, 21621001 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AASGY AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 M53 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3738-d6e09bb27701162af02aa77045964b3dfa8db1d0fcbb1a8c524e29f692c4d9d03 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:25:41 EDT 2025 Fri Jul 25 11:55:18 EDT 2025 Mon Jul 21 06:04:41 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Tue Jul 01 01:47:44 EDT 2025 Wed Jan 22 17:16:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | zinc-ion batteries solid-state batteries solid-state electrolytes secondary batteries |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-d6e09bb27701162af02aa77045964b3dfa8db1d0fcbb1a8c524e29f692c4d9d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6212-8224 |
PMID | 38988225 |
PQID | 3108514853 |
PQPubID | 946352 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3078716182 proquest_journals_3108514853 pubmed_primary_38988225 crossref_primary_10_1002_anie_202410208 crossref_citationtrail_10_1002_anie_202410208 wiley_primary_10_1002_anie_202410208_ANIE202410208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 1, 2024 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 1, 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 163 2023; 35 2023; 13 2023; 14 2023; 33 2023; 8 2023; 9 2019; 56 2023; 145 2020; 59 2020; 13 2020; 32 2012; 51 2021; 14 2021; 16 2023; 62 2020; 4 2023; 22 2021; 33 2021; 11 2022 2022; 5 2022; 61 2022; 7 2022; 34 2022; 13 2024; 63 2023; 554 2022; 10 2022; 18 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 Zhou Y. (e_1_2_7_5_1) 2022 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Zhang J. (e_1_2_7_32_1) 2023; 62 Tian C. (e_1_2_7_11_1) 2023; 62 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 32 start-page: 3405 year: 2020 end-page: 3413 publication-title: Chem. Mater. – volume: 22 start-page: 627 year: 2023 end-page: 635 publication-title: Nat. Mater. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 247 year: 2022 end-page: 260 publication-title: ACS Energy Lett. – volume: 163 start-page: 161 year: 2015 end-page: 171 publication-title: Mater. Chem. Phys. – volume: 13 start-page: 4625 year: 2020 end-page: 4665 publication-title: Energy Environ. Sci. – volume: 13 start-page: 6788 year: 2022 publication-title: Nat. Commun. – volume: 56 start-page: 92 year: 2019 end-page: 99 publication-title: Nano Energy. – volume: 14 start-page: 3890 year: 2023 publication-title: Nat. Commun. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 16 start-page: 854 year: 2021 end-page: 855 publication-title: Nat. Nanotechnol. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 59 start-page: 23836 year: 2020 end-page: 23844 publication-title: Angew. Chem. Int. Ed. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1557 year: 2020 end-page: 1574 publication-title: Joule. – year: 2022 publication-title: Adv. Mater. – volume: 145 start-page: 25341 year: 2023 end-page: 25351 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 14 start-page: 3492 year: 2021 end-page: 3501 publication-title: Energy Environ. Sci. – volume: 51 start-page: 10307 year: 2012 end-page: 10310 publication-title: Angew. Chem. Int. Ed. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 10 start-page: 651 year: 2022 end-page: 663 publication-title: J. Mater. Chem. A. – volume: 18 year: 2022 publication-title: Small. – volume: 554 year: 2023 publication-title: J. Power Sources – volume: 8 start-page: 3649 year: 2023 end-page: 3657 publication-title: ACS Energy Lett. – year: 2022 publication-title: Adv. Sci. – volume: 5 start-page: 205 year: 2022 end-page: 213 publication-title: Nature Sustainability. – volume: 14 start-page: 2925 year: 2023 publication-title: Nat. Commun. – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_14_1 doi: 10.1002/anie.202011788 – ident: e_1_2_7_23_1 doi: 10.1021/acs.chemmater.9b05003 – ident: e_1_2_7_6_1 doi: 10.1038/s41565-021-00908-1 – ident: e_1_2_7_35_1 doi: 10.1038/s41467-023-38492-8 – ident: e_1_2_7_1_1 doi: 10.1002/adma.202007416 – ident: e_1_2_7_28_1 doi: 10.1038/s41467-022-34584-z – ident: e_1_2_7_4_1 doi: 10.1002/adma.202207908 – ident: e_1_2_7_7_1 doi: 10.1002/aenm.202003065 – ident: e_1_2_7_20_1 doi: 10.1021/acsenergylett.3c01079 – ident: e_1_2_7_33_1 doi: 10.1016/j.nanoen.2018.11.038 – ident: e_1_2_7_2_1 doi: 10.1002/adma.202207115 – ident: e_1_2_7_36_1 doi: 10.1038/s41467-023-39634-8 – ident: e_1_2_7_9_1 doi: 10.1126/sciadv.ade2217 – volume: 62 year: 2023 ident: e_1_2_7_11_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_39_1 doi: 10.1002/adma.202207682 – ident: e_1_2_7_16_1 doi: 10.1002/anie.202206717 – ident: e_1_2_7_17_1 doi: 10.1021/acsenergylett.1c02088 – ident: e_1_2_7_15_1 doi: 10.1016/j.joule.2020.05.018 – ident: e_1_2_7_13_1 doi: 10.1039/D1EE00409C – ident: e_1_2_7_29_1 doi: 10.1002/anie.202304947 – year: 2022 ident: e_1_2_7_5_1 publication-title: Adv. Sci. – ident: e_1_2_7_37_1 doi: 10.1002/anie.202317457 – ident: e_1_2_7_24_1 doi: 10.1002/adfm.202213211 – ident: e_1_2_7_10_1 doi: 10.1002/aenm.202300063 – ident: e_1_2_7_21_1 doi: 10.1038/s41563-023-01508-1 – ident: e_1_2_7_38_1 doi: 10.1002/anie.202312020 – ident: e_1_2_7_26_1 doi: 10.1039/D1TA09499H – volume: 62 year: 2023 ident: e_1_2_7_32_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_31_1 doi: 10.1002/anie.201204475 – ident: e_1_2_7_18_1 doi: 10.1002/anie.202113086 – ident: e_1_2_7_22_1 doi: 10.1002/adma.202106511 – ident: e_1_2_7_27_1 doi: 10.1016/j.jpowsour.2022.232349 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201905771 – ident: e_1_2_7_8_1 doi: 10.1039/D0EE02620D – ident: e_1_2_7_25_1 doi: 10.1002/anie.202310006 – ident: e_1_2_7_34_1 doi: 10.1021/jacs.3c09114 – ident: e_1_2_7_30_1 doi: 10.1016/j.matchemphys.2015.07.026 – ident: e_1_2_7_3_1 doi: 10.1038/s41893-021-00800-9 – ident: e_1_2_7_19_1 doi: 10.1002/smll.202200550 |
SSID | ssj0028806 |
Score | 2.5433044 |
Snippet | Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202410208 |
SubjectTerms | Aqueous electrolytes Conduction heating Displays Electrolytes Eutectic reactions Hydrogen evolution reactions Ion currents Molten salt electrolytes Nanochannels Room temperature secondary batteries Side reactions Solid electrolytes solid-state batteries solid-state electrolytes Specific capacity Zinc zinc-ion batteries |
Title | Spatially Confined Engineering Toward Deep Eutectic Electrolyte in Metal‐Organic Framework Enabling Solid‐State Zinc‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202410208 https://www.ncbi.nlm.nih.gov/pubmed/38988225 https://www.proquest.com/docview/3108514853 https://www.proquest.com/docview/3078716182 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734ftQXKwieoskmaZOjaEsrtAetIF7CPiFY0mLbQz159Ohv9Jc4k22iVUTQW5ZMspvNbOab7Mw3hBx7nHkK7IAD5sY4QSRcJ8JE4JyrPNLgFQnc0e10a63b4OouvPuUxW_5Icofbrgy8u81LnAuRmcfpKGYgQ3-HVggrDMJH2EM2EJUdF3yRzFQTpte5PsOVqEvWBtddjZ_-bxV-gY155FrbnqaK4QXg7YRJw-nk7E4lU9f-Bz_81SrZHmGS-m5VaQ1sqCzdbJ4UZSD2yAvWLwYlLU_pZglCB0p-onMkPby-Ft6qfWQNia4NZFK2rBFdvrTsaZpRjsaoP7b86tNAJW0WUSGwZ24wMR4ejPopwpEchBM79NMQqM9yKglAgW_fpPcNhu9i5YzK-PgSKRNclRNu7EQrF7HTR_Gjcs4h0YQxrVA-MrwSAlPuUYK4fFIhizQLDa1mMlAxcr1t0glG2R6h1CMWjdBaIIIhIwwnPtMu5JFgkUwgX6VOMVrTOSM4xxLbfQTy87MEpzfpJzfKjkp5YeW3eNHyf1CK5LZKh8lPqZugD8ZQsdH5Wl4L7jpwjM9mIAMYLA6ViVgVbJttansCsAiODgsrBKW68QvY0jOu-1G2dr9y0V7ZAmPbTTiPqmMHyf6AFDVWBzmK-cdsqoavQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VeoALbXmmpWWRkDgZnLWd2McoJEqA5ABBQlysfUoRkRNBcoATxx77G_tLOuONTUOFKsFx7bF3vZ71zHhnvg_goCp4VaMd8NDcWC-Mpe_FVAicY5XHBqMiSTu6vX6tcxWeXkdFNiHVwjh8iPKHG62M_HtNC5x-SB8_o4ZSCTYGeGiCiGhyCT4SrXceVV2UCFIc1dMVGAWBRzz0BW6jz48Xr1-0S_84m4u-a2582p9AFsN2OSe3R7OpPFKPLxAd3_Vcn2Ft7pqyhtOlL_DBZOuw0iwY4TbgJ_EXo76OHhgVCmJPmv2FZ8gGeQouOzFmwloz2p0YKtZyPDujh6lhw4z1DHr7v59-uRpQxdpFchjeSUiqjWeX49FQo0juB7ObYaaw0R1nzGGBYmi_CVft1qDZ8eZMDp4i5CRP14yfSMnrddr34cL6XAhshFFSC2WgrYi1rGrfKimrIlYRDw1PbC3hKtSJ9oMtWM7GmdkBRonrNoxsGKOQlVaIgBtf8VjyGCcwqIBXvMdUzWHOiW1jlDqAZp7S_Kbl_FbgsJSfOICPVyV3C7VI5wv9Pg2oegNDygg73i9P43uhfReRmfEMZdANqxMxAa_AtlOnsiv0FzHG4VEFeK4U_xlD2uh3W2Xr61su2oOVzqB3np53-2ffYJWOu-TEXVie3s3Md3SypvJHvoz-AEwnHtg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BkaCXQguFlJZuJSRObp312lkfqyZRAzRC0EoVF2t_pYjIiUpyaE8cOfYZ-ySd8cZuA0JIcFx71rvenfXMeGa-AXjbVrxtUQ5EKG58JKSOI0mJwBVWuXRoFWny6J4Ms-Mz8f48Pb-XxR_wIZofbnQyqu81HfCp9Qd3oKGUgY32HUogqjP5EB6JLJbE193PDYAUR-4M-UVJElEZ-hq2MeYHy_2XxdJvuuay6lrJnv5TUPWsQ8jJt_35TO-bq18AHf_ntZ7B2kIxZYeBk9bhgSs34MlRXQ_uOfyk6sXIreNLRmmCOJBl99AM2WkVgMu6zk1Zb06-iZFhvVBlZ3w5c2xUshOHuv7Nj-uQAWpYvw4NwycpTZnx7MtkPLJIUmnB7OuoNNgYTEoWkEDRsH8BZ_3e6dFxtKjjEBnCTYps5uJca97pkNeHKx9zpbAh0jwTOrFeSavbNvZG67aSJuXC8dxnOTfC5jZONmGlnJTuFTAKW_ci9UIikddeqYS72HCpucQFTFoQ1dtYmAXIOdXaGBcBnpkXtL5Fs74teNfQTwO8xx8pt2uuKBbH_HuRUO4GGpQpDrzX3MZ9Ia-LKt1kjjSohHWoLAFvwcvATc1QqC2ihcPTFvCKJ_4yh-JwOOg1ra1_6bQLjz91-8XHwfDDa1ilyyEycRtWZhdzt4Ma1ky_qQ7RLfTlHZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+Confined+Engineering+Toward+Deep+Eutectic+Electrolyte+in+Metal-Organic+Framework+Enabling+Solid-State+Zinc-Ion+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Miao%2C+Cheng-Lin&rft.au=Wang%2C+Xiao-Xue&rft.au=Guan%2C+De-Hui&rft.au=Li%2C+Jia-Xin&rft.date=2024-10-01&rft.eissn=1521-3773&rft.spage=e202410208&rft_id=info:doi/10.1002%2Fanie.202410208&rft_id=info%3Apmid%2F38988225&rft.externalDocID=38988225 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |