Naphthalene diimide–Annulated Heterocyclic Acenes: Synthesis, Electrochemical and Semiconductor Properties and their Multifaceted Applications
Acenes and Naphthalene Diimides (NDIs) stand as distinguished classes of organic compounds, each possessing unique and intriguing properties that have garnered significant attention across various scientific disciplines. Acenes, characterized by linearly fused aromatic rings, have captivated researc...
Saved in:
Published in | Chemistry : a European journal Vol. 30; no. 27; pp. e202400208 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
14.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0947-6539 1521-3765 1521-3765 |
DOI | 10.1002/chem.202400208 |
Cover
Loading…
Abstract | Acenes and Naphthalene Diimides (NDIs) stand as distinguished classes of organic compounds, each possessing unique and intriguing properties that have garnered significant attention across various scientific disciplines. Acenes, characterized by linearly fused aromatic rings, have captivated researchers due to their diverse electronic structures and promising applications in materials science. On the other hand, NDIs, known for their distinctive electron–accepting properties, exhibit remarkable versatility in fields ranging from organic electronics, supramolecular to spin chemistry. In this review, we navigate through the fascinating realms of both acenes and NDIs before converging our focus on the highly diverse and distinctive subgroup of NDI–annulated heterocyclic acenes. This potentially important subgroup, has emerged as a subject of intense investigation, encapsulating their fascinating synthesis, optical and electrochemical characteristics, and multifaceted applications that span the realms of chemistry, physics, and biology. Through the exploration of their synthetic strategies, unique properties, and diverse applications, this review aims to offer a comprehensive understanding of the pivotal role played by NDI‐based heterocyclic acenes in contemporary multidisciplinary research and technological innovation.
Heterocyclic naphthalene diimide (NDI) acenes and NDI hydroazaacenes possess unique and intriguing properties. This review explores the diverse range of synthetic routes as well as their versatile applications in areas such as sensors, semiconductors, optical and redox–switchable materials as well as in biology. |
---|---|
AbstractList | Acenes and Naphthalene Diimides (NDIs) stand as distinguished classes of organic compounds, each possessing unique and intriguing properties that have garnered significant attention across various scientific disciplines. Acenes, characterized by linearly fused aromatic rings, have captivated researchers due to their diverse electronic structures and promising applications in materials science. On the other hand, NDIs, known for their distinctive electron–accepting properties, exhibit remarkable versatility in fields ranging from organic electronics, supramolecular to spin chemistry. In this review, we navigate through the fascinating realms of both acenes and NDIs before converging our focus on the highly diverse and distinctive subgroup of NDI–annulated heterocyclic acenes. This potentially important subgroup, has emerged as a subject of intense investigation, encapsulating their fascinating synthesis, optical and electrochemical characteristics, and multifaceted applications that span the realms of chemistry, physics, and biology. Through the exploration of their synthetic strategies, unique properties, and diverse applications, this review aims to offer a comprehensive understanding of the pivotal role played by NDI‐based heterocyclic acenes in contemporary multidisciplinary research and technological innovation. Acenes and Naphthalene Diimides (NDIs) stand as distinguished classes of organic compounds, each possessing unique and intriguing properties that have garnered significant attention across various scientific disciplines. Acenes, characterized by linearly fused aromatic rings, have captivated researchers due to their diverse electronic structures and promising applications in materials science. On the other hand, NDIs, known for their distinctive electron-accepting properties, exhibit remarkable versatility in fields ranging from organic electronics, supramolecular to spin chemistry. In this review, we navigate through the fascinating realms of both acenes and NDIs before converging our focus on the highly diverse and distinctive subgroup of NDI-annulated heterocyclic acenes. This potentially important subgroup, has emerged as a subject of intense investigation, encapsulating their fascinating synthesis, optical and electrochemical characteristics, and multifaceted applications that span the realms of chemistry, physics, and biology. Through the exploration of their synthetic strategies, unique properties, and diverse applications, this review aims to offer a comprehensive understanding of the pivotal role played by NDI-based heterocyclic acenes in contemporary multidisciplinary research and technological innovation.Acenes and Naphthalene Diimides (NDIs) stand as distinguished classes of organic compounds, each possessing unique and intriguing properties that have garnered significant attention across various scientific disciplines. Acenes, characterized by linearly fused aromatic rings, have captivated researchers due to their diverse electronic structures and promising applications in materials science. On the other hand, NDIs, known for their distinctive electron-accepting properties, exhibit remarkable versatility in fields ranging from organic electronics, supramolecular to spin chemistry. In this review, we navigate through the fascinating realms of both acenes and NDIs before converging our focus on the highly diverse and distinctive subgroup of NDI-annulated heterocyclic acenes. This potentially important subgroup, has emerged as a subject of intense investigation, encapsulating their fascinating synthesis, optical and electrochemical characteristics, and multifaceted applications that span the realms of chemistry, physics, and biology. Through the exploration of their synthetic strategies, unique properties, and diverse applications, this review aims to offer a comprehensive understanding of the pivotal role played by NDI-based heterocyclic acenes in contemporary multidisciplinary research and technological innovation. Acenes and Naphthalene Diimides (NDIs) stand as distinguished classes of organic compounds, each possessing unique and intriguing properties that have garnered significant attention across various scientific disciplines. Acenes, characterized by linearly fused aromatic rings, have captivated researchers due to their diverse electronic structures and promising applications in materials science. On the other hand, NDIs, known for their distinctive electron–accepting properties, exhibit remarkable versatility in fields ranging from organic electronics, supramolecular to spin chemistry. In this review, we navigate through the fascinating realms of both acenes and NDIs before converging our focus on the highly diverse and distinctive subgroup of NDI–annulated heterocyclic acenes. This potentially important subgroup, has emerged as a subject of intense investigation, encapsulating their fascinating synthesis, optical and electrochemical characteristics, and multifaceted applications that span the realms of chemistry, physics, and biology. Through the exploration of their synthetic strategies, unique properties, and diverse applications, this review aims to offer a comprehensive understanding of the pivotal role played by NDI‐based heterocyclic acenes in contemporary multidisciplinary research and technological innovation. Heterocyclic naphthalene diimide (NDI) acenes and NDI hydroazaacenes possess unique and intriguing properties. This review explores the diverse range of synthetic routes as well as their versatile applications in areas such as sensors, semiconductors, optical and redox–switchable materials as well as in biology. |
Author | Dewangan, Pratik Bhardwaj, Abhishek Mukhopadhyay, Pritam Mudasar Hussain, Ch |
Author_xml | – sequence: 1 givenname: Abhishek surname: Bhardwaj fullname: Bhardwaj, Abhishek organization: Jawaharlal Nehru University – sequence: 2 givenname: Ch surname: Mudasar Hussain fullname: Mudasar Hussain, Ch organization: Jawaharlal Nehru University – sequence: 3 givenname: Pratik surname: Dewangan fullname: Dewangan, Pratik organization: Jawaharlal Nehru University – sequence: 4 givenname: Pritam orcidid: 0000-0002-3073-6719 surname: Mukhopadhyay fullname: Mukhopadhyay, Pritam email: m_pritam@mail.jnu.ac.in organization: Jawaharlal Nehru University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38454793$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFrFDEUx4NU7LZ69SgDXjw4a2aSSSbelmV1hVaF6jlkkjdsSiYzJhnK3vwIgt_QT2K22yoUxFMS8vu9vPzfGTrxoweEnld4WWFcv9E7GJY1rmk-4PYRWlRNXZWEs-YELbCgvGQNEafoLMZrjLFghDxBp6SlDeWCLNCPj2rapZ1y4KEw1g7WwK_vP1fez04lMMUWEoRR77WzuljpjMW3xdXepx1EG18XGwc6ZSD3YbVyhfKmuDrsR29mncZQfA7jBCFZiLeXWbShuJxdsr3ScHhjNU25ukp29PEpetwrF-HZ3XqOvr7bfFlvy4tP7z-sVxelJpy0pSFEMApE9F3PGKiW91gLRXqmmG4N453oaty3nPCOgNANw5S0pqsAK82FIefo1bHuFMZvM8QkBxs1OKc8jHOUtcgJcdzSKqMvH6DX4xx87k4S3FBaNw1tMvXijpq7AYycgh1U2Mv7rDNAj4AOY4wBeqltuv10Cso6WWF5GKk8RCn_jDRrywfafeV_CuIo3FgH-__Qcr3dXP51fwOcYbda |
CitedBy_id | crossref_primary_10_1002_ange_202417362 crossref_primary_10_1002_anie_202417362 crossref_primary_10_1002_macp_202400405 crossref_primary_10_1007_s00044_024_03329_6 crossref_primary_10_1039_D4MA01042F |
Cites_doi | 10.1002/jlac.19013190302 10.1021/cr500225d 10.1039/C7NJ04503D 10.1021/jacs.8b07305 10.1016/j.tet.2011.07.069 10.1021/acsami.5b00113 10.1021/ja106594v 10.1021/acs.jmedchem.8b00502 10.1002/cphc.201200064 10.1021/jo4006415 10.1039/B920015K 10.1103/PhysRevB.71.081202 10.1039/c2sc20303k 10.1088/1367-2630/11/12/125010 10.1039/C8GC01614C 10.1063/1.2967182 10.1021/acs.joc.2c02279 10.1351/PAC-CON-09-09-17 10.1055/s-0031-1290323 10.1039/C8QO00256H 10.1021/acs.orglett.5b03489 10.1002/chem.202003112 10.1021/acs.chemmater.5b02601 10.1021/ja404753r 10.1002/chem.201805978 10.1103/PhysRevB.93.115206 10.1021/acs.accounts.1c00381 10.31635/ccschem.022.202202013 10.1038/ncomms6954 10.1016/j.chemphys.2007.07.046 10.1002/anie.202001842 10.1021/acs.orglett.9b03891 10.1039/c0cc00078g 10.1063/1.1539090 10.1002/cber.18890220180 10.1021/acs.orglett.5b03513 10.1021/jacs.3c13629 10.3390/nano12152564 10.1016/j.mattod.2018.02.003 10.1002/cplu.201402307 10.1039/c3tc00799e 10.1103/PhysRevB.67.115212 10.1039/c2jm33039c 10.1002/VIW.20200115 10.1002/chem.202003550 10.1039/C8MH01130C 10.1016/j.snb.2021.130972 10.1016/j.dyepig.2024.111955 10.1021/ja306056x 10.1039/D1NA00149C 10.1021/ol500116z 10.1021/cr050140x 10.1002/anie.201309746 10.1021/ja910667y 10.1021/jo01349a058 10.1016/j.dyepig.2014.07.008 10.1039/c1cc11318f 10.1246/bcsj.20170298 10.1103/PhysRevB.72.205205 10.1021/jacs.5b02290 10.1039/c0nr90029j 10.1002/adma.200903628 10.1039/c3cc43280g 10.1039/c3nj00050h 10.1039/C6CC01983H 10.1021/jo900684c 10.1103/PhysRevB.85.125307 10.1039/C8TC01956H 10.1002/chem.201402398 10.1093/nar/gky607 10.1021/acsomega.7b01813 10.1021/ol9022722 10.1021/ol400082c 10.1021/jo401347z 10.1021/ja036466 10.1002/ajoc.201300088 10.1039/C2CS35223K 10.1039/C7TC01680H 10.1126/sciadv.aaz0632 10.1002/ejoc.201600005 10.1021/cm2034273 10.1002/ajoc.201300195 10.1039/C9QM00656G 10.1016/j.tetlet.2015.06.050 10.1021/acs.jmedchem.5b01283 10.1039/C5EE00599J 10.1039/C9SC00962K 10.1073/pnas.092143399 10.1039/c1jm13637b 10.1021/cm049060k 10.1109/55.556089 10.1039/D0CS00239A 10.1021/cm102850j 10.1021/ol701539z 10.1021/jacs.8b01463 10.1088/0953-8984/20/18/184011 10.1002/ejoc.201901390 10.1021/cr050966z 10.1002/open.201900339 10.1002/chem.201303277 10.1002/chem.201806009 10.1021/acs.accounts.8b00223 10.1021/jp503114b 10.3998/ark.5550190.0003.616 10.1021/acs.orglett.7b03041 10.1071/CH11169 10.1021/acs.jpclett.2c01679 10.1021/ol0709376 10.1021/ja067087u 10.1103/PhysRevB.72.035130 10.1002/adma.201001402 10.1103/PhysRevB.76.235322 10.1002/chem.201300120 10.1039/D0SC03744C 10.1002/bbpc.19670710922 10.1039/c2sc21142d 10.1021/jz501102r 10.1021/ol303551p 10.1002/ajoc.201402015 10.1038/nature05533 10.1039/C0CP01544J 10.1021/ja0162459 10.1039/C8TC00146D 10.1039/a803718c 10.1002/adma.200600929 10.1021/acsami.7b16004 10.1002/cber.189002302123 10.1021/acs.accounts.5b00118 10.1016/j.chempr.2019.08.019 10.1039/c3ra41679h 10.1021/ja207630a 10.1021/ja410265n 10.1021/ol2030839 10.1002/adma.201303392 10.1016/j.cplett.2011.11.028 10.1002/cjoc.202200700 10.1016/j.bbagen.2016.11.034 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202400208 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 38454793 10_1002_chem_202400208 CHEM202400208 |
Genre | reviewArticle Journal Article |
GrantInformation_xml | – fundername: Science and Engineering Research Board funderid: CRG/2021/008494 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3738-d33964e39fbf66ea87f0c9a3f6a6c8d67b9b20f8737b3e9c560438db1e0ac79d3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 04:15:46 EDT 2025 Fri Jul 25 11:42:48 EDT 2025 Mon Jul 21 06:05:25 EDT 2025 Tue Jul 01 00:44:00 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Sun Jul 06 04:45:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | Naphthalenediimide Acenes Hydroazaacenes Opto-electronics Applications |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-d33964e39fbf66ea87f0c9a3f6a6c8d67b9b20f8737b3e9c560438db1e0ac79d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3073-6719 |
PMID | 38454793 |
PQID | 3054425545 |
PQPubID | 986340 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_2954770841 proquest_journals_3054425545 pubmed_primary_38454793 crossref_citationtrail_10_1002_chem_202400208 crossref_primary_10_1002_chem_202400208 wiley_primary_10_1002_chem_202400208_CHEM202400208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 14, 2024 |
PublicationDateYYYYMMDD | 2024-05-14 |
PublicationDate_xml | – month: 05 year: 2024 text: May 14, 2024 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 3 2007; 107 2013; 1 2013; 2 2019; 10 2002; 99 2007; 340 2020; 11 2024 2012; 14 2012; 521 2007; 76 2012; 13 2018; 42 2014; 20 2018; 46 2010; 23 2009; 11 2018; 6 2010; 22 2018; 3 2012; 134 2018; 5 2015; 137 2019; 21 2019; 25 2011; 64 2014; 16 2007; 9 2011; 67 2005; 71 2008; 20 2005; 72 2012; 24 2010; 2 2012; 23 2012; 22 2019; 7 2007; 445 2015; 56 2022; 351 2007; 19 2015; 58 2019; 6 2019; 5 2008; 129 2016; 93 2021; 50 2016; 18 2018; 21 2018; 20 2011; 133 2016; 7 2023; 41 2009; 74 2021; 54 2010; 46 2022; 3 2022; 4 2013; 78 2015; 112 2019; 48 2022; 12 2020; 27 2018; 91 2022; 13 2020; 26 2006; 106 1998; 8 2017; 5 2003; 118 2013; 25 2017; 1861 2002; vi 2020; 59 2011; 13 2024; 146 2017; 9 2013; 19 2015; 48 2020; 6 2020; 4 2014; 5 2013; 15 2014 2013; 3 15 2020; 9 1997; 18 2011; 21 2011; 23 2014; 9 2003; 125 1890; 23 2014; 53 2014; 118 2001; 123 2007; 129 2015; 6 2018; 140 2021; 3 2013; 49 2013; 42 2009 2016; 52 2018; 61 2015; 8 2015; 7 2014; 114 1966; 31 2010; 82 2013; 37 2012; 3 2014; 80 2015; 27 2023; 88 2023 1889; 22 2004; 16 2022; 61 1967; 71 2010; 132 2013; 136 2013; 135 2017; 19 2018; 51 2011; 47 2012; 85 1901; 319 2003; 67 e_1_2_13_120_1 e_1_2_13_143_1 e_1_2_13_24_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_101_1 e_1_2_13_43_1 e_1_2_13_124_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_62_1 e_1_2_13_81_1 e_1_2_13_92_1 e_1_2_13_96_1 e_1_2_13_117_1 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_78_2 e_1_2_13_131_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_112_1 e_1_2_13_135_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_70_1 e_1_2_13_4_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_128_1 e_1_2_13_29_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_142_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_86_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_82_1 Müller M. (e_1_2_13_2_1) 2019; 7 e_1_2_13_91_1 e_1_2_13_95_1 e_1_2_13_116_1 e_1_2_13_99_1 e_1_2_13_139_1 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_111_1 e_1_2_13_130_1 e_1_2_13_37_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_75_2 e_1_2_13_115_1 e_1_2_13_134_1 e_1_2_13_33_1 e_1_2_13_52_1 e_1_2_13_71_1 e_1_2_13_1_1 e_1_2_13_5_1 e_1_2_13_108_1 e_1_2_13_127_1 Akinlosotu O. M. A. (e_1_2_13_54_1) 2023 e_1_2_13_49_1 e_1_2_13_122_1 e_1_2_13_141_1 e_1_2_13_26_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_126_1 e_1_2_13_87_1 e_1_2_13_145_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_103_1 Shi W. (e_1_2_13_123_1) 2022; 61 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_6_1 e_1_2_13_90_1 e_1_2_13_90_2 e_1_2_13_94_1 e_1_2_13_98_1 e_1_2_13_119_1 e_1_2_13_138_1 e_1_2_13_19_1 e_1_2_13_133_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_76_2 e_1_2_13_137_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 Ajayakumar M. R. (e_1_2_13_65_1) 2009 e_1_2_13_114_1 e_1_2_13_30_1 e_1_2_13_72_1 e_1_2_13_107_1 e_1_2_13_121_1 e_1_2_13_144_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_102_1 e_1_2_13_125_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_84_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_80_1 e_1_2_13_140_1 e_1_2_13_93_1 e_1_2_13_97_1 e_1_2_13_118_1 e_1_2_13_39_1 e_1_2_13_132_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_58_1 e_1_2_13_77_2 e_1_2_13_113_1 e_1_2_13_136_1 e_1_2_13_31_1 e_1_2_13_12_1 e_1_2_13_50_1 e_1_2_13_3_1 e_1_2_13_106_1 e_1_2_13_129_1 e_1_2_13_89_1 e_1_2_13_28_1 Shi P. (e_1_2_13_73_1) 2014; 9 |
References_xml | – volume: 340 start-page: 43 year: 2007 end-page: 58 publication-title: Chem. Phys. – volume: 7 start-page: 28049 year: 2015 end-page: 28062 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 14011 year: 2019 end-page: 14034 publication-title: Chem. C. – volume: 4 start-page: 3491 year: 2022 end-page: 3496 publication-title: CCS Chem. – volume: 47 start-page: 8226 year: 2011 publication-title: Chem.Comm. – volume: 129 start-page: 1805 year: 2007 end-page: 1815 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1019 year: 2011 end-page: 1029 publication-title: Phys. Chem. Chem. Phys. – volume: 64 start-page: 919 year: 2011 publication-title: Aust. J. Chem. – volume: 19 start-page: 15089 year: 2013 publication-title: Chem. Eur. J. – volume: 9 start-page: 304 year: 2020 end-page: 324 publication-title: ChemistryOpen. – volume: 136 start-page: 28 year: 2013 end-page: 31 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 0632 year: 2020 publication-title: Sci. Advanc – volume: 3 year: 2022 publication-title: View – volume: 146 start-page: 5793 year: 2024 end-page: 5798 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2530 year: 2012 publication-title: Chem. Sci. – volume: 6 start-page: 5954 year: 2015 publication-title: Nat. Commun. – volume: 3 15 start-page: 619 1194 year: 2014 2013 end-page: 623 1197 publication-title: Asian J. Org. Chem. Org. Lett. – volume: 15 start-page: 1194 year: 2013 end-page: 1197 publication-title: Org. Lett. – volume: 72 year: 2005 publication-title: Phys. Rev. B. – volume: 74 start-page: 4343 year: 2009 end-page: 4349 publication-title: J. Org. Chem. – volume: 25 start-page: 6951 year: 2013 end-page: 6955 publication-title: Adv. Mater. – volume: 31 start-page: 3734 year: 1966 end-page: 3739 publication-title: J. Org. Chem. – volume: 27 start-page: 6418 year: 2015 end-page: 6425 publication-title: Chem. Mater. – volume: 48 start-page: 1676 year: 2015 end-page: 1686 publication-title: Acc. Chem. Res. – volume: 18 start-page: 87 year: 1997 end-page: 89 publication-title: IEEE Electron Device Lett. – volume: 85 year: 2012 publication-title: Phys. Rev. B. – volume: 3 start-page: 19840 year: 2013 publication-title: RSC Adv. – volume: 23 start-page: 268 year: 2010 end-page: 284 publication-title: Adv. Mater. – volume: 21 start-page: 377 year: 2018 end-page: 390 publication-title: Mater. Today – year: 2024 publication-title: Dyes and Pigments – start-page: 72 year: 2023 end-page: 80 – volume: 6 start-page: 9017 year: 2018 end-page: 9029 publication-title: J. Mater. Chem. C. – volume: 22 start-page: 18181 year: 2012 publication-title: J. Mater. Chem. – volume: 134 start-page: 1507 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 6785 year: 2018 end-page: 6793 publication-title: New J. Chem. – volume: 3 start-page: 3175 year: 2012 publication-title: Chem. Sci. – volume: 46 start-page: 4225 year: 2010 end-page: 4237 publication-title: Chem. Commun. – volume: 22 start-page: 3876 year: 2010 end-page: 3892 publication-title: Adv. Mater. – volume: 3 start-page: 114 year: 2013 end-page: 117 publication-title: Asian J. Org. Chem. – volume: 16 start-page: 1852 year: 2014 end-page: 1855 publication-title: Org. Lett. – volume: vi start-page: 175 year: 2002 end-page: 191 publication-title: Arkivoc. – volume: 112 start-page: 220 year: 2015 end-page: 226 publication-title: Dyes Pigm. – volume: 51 start-page: 2255 year: 2018 end-page: 2263 publication-title: Acc. Chem. Res. – volume: 27 start-page: 3193 year: 2020 end-page: 3212 publication-title: Chem. Eur. J. – volume: 125 start-page: 10284 year: 2003 end-page: 10287 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 682 year: 2013 end-page: 685 publication-title: Org. Lett. – volume: 37 start-page: 1720 year: 2013 publication-title: New J. Chem. – volume: 118 start-page: 3764 year: 2003 end-page: 3774 publication-title: J. Chem. Phys. – volume: 6 start-page: 3551 year: 2018 end-page: 3563 publication-title: J. Mater. Chem. C. – volume: 5 start-page: 2814 year: 2019 end-page: 2853 publication-title: Chem. – volume: 41 start-page: 1355 year: 2023 end-page: 1373 publication-title: Chin. J. Chem. – volume: 1 start-page: 2688 year: 2013 publication-title: J. Mater. Chem. C. – volume: 133 start-page: 10803 year: 2011 end-page: 10816 publication-title: J. Am. Chem. Soc. – volume: 99 start-page: 5804 year: 2002 end-page: 5809 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 3917 year: 2007 end-page: 3920 publication-title: Org. Lett. – volume: 19 start-page: 688 year: 2007 end-page: 692 publication-title: Adv. Mater. – volume: 13 start-page: 7972 year: 2022 end-page: 7979 publication-title: J. Phys. Chem. Lett. – volume: 23 start-page: 2446 year: 1890 end-page: 2454 publication-title: Chem. Ber. – volume: 11 start-page: 11235 year: 2020 end-page: 11243 publication-title: Chem. Sci. – volume: 118 start-page: 5700 year: 2014 end-page: 5708 publication-title: J. Phys. Chem. A. – volume: 53 start-page: 7428 year: 2014 end-page: 7448 publication-title: Angew. Chem. Int. Ed. – volume: 61 start-page: 8625 year: 2018 end-page: 8638 publication-title: J. Med. Chem. – volume: 445 start-page: 745 year: 2007 end-page: 748 publication-title: Nature. – volume: 319 start-page: 257 year: 1901 end-page: 286 publication-title: Liebigs Ann. – volume: 76 year: 2007 publication-title: Phys. Rev. B. – volume: 56 start-page: 4762 year: 2015 end-page: 4766 publication-title: Tet. Lett. – volume: 59 start-page: 11794 year: 2020 end-page: 11799 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 7770 year: 2019 end-page: 7786 publication-title: Eur. J. Org. Chem. – volume: 88 start-page: 2742 year: 2023 end-page: 2749 publication-title: J. Org. Chem. – start-page: 253702 year: 2009 end-page: 3704 publication-title: Chem. Commun. – volume: 3 start-page: 3593 year: 2021 end-page: 3604 publication-title: Nanoscale Adv. – volume: 20 start-page: 4620 year: 2018 end-page: 4628 publication-title: Green Chem. – volume: 67 start-page: 7231 year: 2011 end-page: 7235 publication-title: Tetrahedron – volume: 19 start-page: 6300 year: 2017 end-page: 6303 publication-title: Org. Lett. – volume: 5 start-page: 8654 year: 2017 end-page: 8681 publication-title: J. Mater. Chem. C. – volume: 23 start-page: 1204 year: 2011 end-page: 1215 publication-title: Chem. Materials – volume: 80 start-page: 485 year: 2014 end-page: 489 publication-title: ChemPlusChem. – volume: 49 start-page: 7684 year: 2013 publication-title: Chem. Commun. – volume: 71 start-page: 1119 year: 1967 end-page: 1126 publication-title: Bunsenges. Phys. Chem. – volume: 2 start-page: 779 year: 2013 end-page: 785 publication-title: sian J. Org. Che. – volume: 42 start-page: 1847 year: 2013 end-page: 1870 publication-title: Chem. Soc. Rev. – volume: 54 start-page: 3804 year: 2021 end-page: 3817 publication-title: Acc. Chem. Res. – volume: 135 start-page: 11445 year: 2013 end-page: 11448 publication-title: J. Am. Chem. Soc. – volume: 106 start-page: 5028 year: 2006 end-page: 5048 publication-title: Chem. Rev. – volume: 4 start-page: 3419 year: 2020 end-page: 3432 publication-title: Mater. Chem. Front. – volume: 20 year: 2008 publication-title: J. Phys. Condens. Matter – volume: 24 start-page: 1434 year: 2012 end-page: 1442 publication-title: Chem. Mater. – volume: 46 year: 2018 publication-title: Nucleic Acids Res. – volume: 50 start-page: 9845 year: 2021 end-page: 9998 publication-title: Chem. Soc. Rev. – volume: 22 start-page: 355 year: 1889 end-page: 359 publication-title: Chem. Ber. – volume: 7 start-page: 1283 year: 2016 publication-title: Eur. J. Org. Chem. – volume: 129 year: 2008 publication-title: J. Chem. Phys. – volume: 8 start-page: 2195 year: 1998 end-page: 2198 publication-title: J. Mater. Chem. – volume: 20 start-page: 10285 year: 2014 end-page: 10291 publication-title: Chem. Eur. J. – volume: 93 year: 2016 publication-title: Phys. Rev. B. – volume: 13 start-page: 2051 year: 2012 end-page: 2060 publication-title: ChemPhysChem – volume: 1861 start-page: 1303 year: 2017 end-page: 1311 publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 12 start-page: 2564 year: 2022 publication-title: Nanomaterials – volume: 132 start-page: 3697 year: 2010 end-page: 3699 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2505 year: 2007 end-page: 2508 publication-title: Org. Lett. – volume: 71 year: 2005 publication-title: Phys. Rev. B. – volume: 78 start-page: 8065 year: 2013 end-page: 8073 publication-title: J. Org. Chem. – volume: 5 start-page: 2254 year: 2018 end-page: 2276 publication-title: Org. Chem. Front. – volume: 521 start-page: 59 year: 2012 end-page: 63 publication-title: Chem. Phys. Lett. – volume: 3 start-page: 2174 year: 2018 end-page: 2182 publication-title: ACS Omega. – volume: 137 start-page: 4956 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 107 start-page: 926 year: 2007 end-page: 952 publication-title: Chem. Rev. – volume: 5 start-page: 2425 year: 2014 end-page: 2430 publication-title: J. Phys. Chem. Lett. – volume: 21 start-page: 18042 year: 2011 publication-title: J. Mater. Chem. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 140 start-page: 12175 year: 2018 end-page: 12180 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 5764 year: 2018 end-page: 5773 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 973 year: 2010 end-page: 975 publication-title: Chem. Commun. – volume: 8 start-page: 1816 year: 2015 end-page: 1823 publication-title: Energy Environ. Sci. – volume: 67 year: 2003 publication-title: Phys. Rev. B. – volume: 2 start-page: 2326 year: 2010 end-page: 2327 publication-title: Nanoscale – volume: 123 start-page: 9482 year: 2001 end-page: 9483 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 5418 year: 2009 end-page: 5421 publication-title: Org. Lett. – volume: 114 start-page: 8943 year: 2014 end-page: 9021 publication-title: Chem. Rev. – volume: 133 start-page: 18054 year: 2011 end-page: 18057 publication-title: J. Am. Chem. Soc. – volume: 82 start-page: 953 year: 2010 end-page: 968 publication-title: Pure Appl. Chem. – volume: 10 start-page: 6482 year: 2019 end-page: 6493 publication-title: Chem. Sci. – volume: 9 start-page: 1617 year: 2014 end-page: 1626 publication-title: Int. J. Nanomed. – volume: 91 start-page: 121 year: 2018 end-page: 140 publication-title: Bull. Chem. Soc. Jpn. – volume: 18 start-page: 456 year: 2016 end-page: 459 publication-title: Org. Lett. – volume: 9 start-page: 44667 year: 2017 end-page: 44677 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 7310 year: 2013 end-page: 7313 publication-title: Chem. Eur. J. – volume: 25 start-page: 7058 year: 2019 end-page: 7073 publication-title: Chem. Eur. J. – volume: 26 start-page: 14059 year: 2020 end-page: 14063 publication-title: Chem. Eur. J. – volume: 52 start-page: 6860 year: 2016 end-page: 6872 publication-title: Chem. Commun. – volume: 11 year: 2009 publication-title: New J. Phys. – volume: 58 start-page: 9639 year: 2015 end-page: 9652 publication-title: J. Med. Chem. – volume: 23 start-page: 326 year: 2012 end-page: 336 publication-title: Synlett. – volume: 25 start-page: 4740 year: 2019 end-page: 4750 publication-title: Chem. Eur. J. – volume: 6 start-page: 14 year: 2019 end-page: 44 publication-title: Mater. Horiz. – volume: 14 start-page: 494 year: 2012 end-page: 497 publication-title: Org. Lett. – volume: 21 start-page: 9734 year: 2019 end-page: 9737 publication-title: Org. Lett. – volume: 16 start-page: 4980 year: 2004 end-page: 4986 publication-title: Chem. Mater. – volume: 78 start-page: 10058 year: 2013 end-page: 10068 publication-title: J. Org. Chem. – volume: 351 year: 2022 publication-title: Sens. Actuators B – volume: 18 start-page: 472 year: 2016 end-page: 475 publication-title: Org. Lett. – ident: e_1_2_13_46_1 doi: 10.1002/jlac.19013190302 – ident: e_1_2_13_136_1 doi: 10.1021/cr500225d – ident: e_1_2_13_126_1 doi: 10.1039/C7NJ04503D – ident: e_1_2_13_83_1 doi: 10.1021/jacs.8b07305 – ident: e_1_2_13_99_1 doi: 10.1016/j.tet.2011.07.069 – ident: e_1_2_13_3_1 doi: 10.1021/acsami.5b00113 – ident: e_1_2_13_30_1 doi: 10.1021/ja106594v – ident: e_1_2_13_143_1 doi: 10.1021/acs.jmedchem.8b00502 – ident: e_1_2_13_19_1 doi: 10.1002/cphc.201200064 – ident: e_1_2_13_31_1 doi: 10.1021/jo4006415 – ident: e_1_2_13_89_1 doi: 10.1039/B920015K – ident: e_1_2_13_15_1 doi: 10.1103/PhysRevB.71.081202 – ident: e_1_2_13_109_1 doi: 10.1039/c2sc20303k – ident: e_1_2_13_16_1 doi: 10.1088/1367-2630/11/12/125010 – ident: e_1_2_13_67_1 doi: 10.1039/C8GC01614C – ident: e_1_2_13_36_1 doi: 10.1063/1.2967182 – ident: e_1_2_13_55_1 doi: 10.1021/acs.joc.2c02279 – ident: e_1_2_13_41_1 doi: 10.1351/PAC-CON-09-09-17 – ident: e_1_2_13_5_1 doi: 10.1055/s-0031-1290323 – ident: e_1_2_13_81_1 doi: 10.1039/C8QO00256H – ident: e_1_2_13_141_1 doi: 10.1021/acs.orglett.5b03489 – ident: e_1_2_13_34_1 doi: 10.1002/chem.202003112 – ident: e_1_2_13_117_1 doi: 10.1021/acs.chemmater.5b02601 – ident: e_1_2_13_119_1 doi: 10.1021/ja404753r – ident: e_1_2_13_68_1 doi: 10.1002/chem.201805978 – ident: e_1_2_13_17_1 doi: 10.1103/PhysRevB.93.115206 – ident: e_1_2_13_134_1 doi: 10.1021/acs.accounts.1c00381 – ident: e_1_2_13_53_1 doi: 10.31635/ccschem.022.202202013 – ident: e_1_2_13_63_1 doi: 10.1038/ncomms6954 – ident: e_1_2_13_35_1 doi: 10.1016/j.chemphys.2007.07.046 – ident: e_1_2_13_52_1 doi: 10.1002/anie.202001842 – ident: e_1_2_13_116_1 doi: 10.1021/acs.orglett.9b03891 – ident: e_1_2_13_75_2 doi: 10.1039/c0cc00078g – ident: e_1_2_13_10_1 doi: 10.1063/1.1539090 – ident: e_1_2_13_88_1 doi: 10.1002/cber.18890220180 – ident: e_1_2_13_87_1 doi: 10.1021/acs.orglett.5b03513 – ident: e_1_2_13_43_1 doi: 10.1021/jacs.3c13629 – ident: e_1_2_13_25_1 doi: 10.3390/nano12152564 – ident: e_1_2_13_61_1 doi: 10.1016/j.mattod.2018.02.003 – ident: e_1_2_13_96_1 doi: 10.1002/cplu.201402307 – ident: e_1_2_13_113_1 doi: 10.1039/c3tc00799e – ident: e_1_2_13_14_1 doi: 10.1103/PhysRevB.67.115212 – ident: e_1_2_13_42_1 doi: 10.1039/c2jm33039c – volume: 9 start-page: 1617 year: 2014 ident: e_1_2_13_73_1 publication-title: Int. J. Nanomed. – ident: e_1_2_13_71_1 doi: 10.1002/VIW.20200115 – ident: e_1_2_13_111_1 doi: 10.1002/chem.202003550 – ident: e_1_2_13_70_1 doi: 10.1039/C8MH01130C – ident: e_1_2_13_97_1 doi: 10.1016/j.snb.2021.130972 – ident: e_1_2_13_93_1 doi: 10.1016/j.dyepig.2024.111955 – ident: e_1_2_13_32_1 doi: 10.1021/ja306056x – ident: e_1_2_13_125_1 doi: 10.1039/D1NA00149C – ident: e_1_2_13_108_1 doi: 10.1021/ol500116z – ident: e_1_2_13_132_1 doi: 10.1021/cr050140x – ident: e_1_2_13_76_2 doi: 10.1002/anie.201309746 – ident: e_1_2_13_120_1 doi: 10.1021/ja910667y – ident: e_1_2_13_106_1 doi: 10.1021/jo01349a058 – ident: e_1_2_13_22_1 doi: 10.1016/j.dyepig.2014.07.008 – ident: e_1_2_13_98_1 doi: 10.1039/c1cc11318f – ident: e_1_2_13_118_1 doi: 10.1246/bcsj.20170298 – ident: e_1_2_13_11_1 doi: 10.1103/PhysRevB.72.205205 – ident: e_1_2_13_60_1 doi: 10.1021/jacs.5b02290 – ident: e_1_2_13_124_1 doi: 10.1039/c0nr90029j – ident: e_1_2_13_23_1 doi: 10.1002/adma.200903628 – ident: e_1_2_13_66_1 doi: 10.1039/c3cc43280g – ident: e_1_2_13_110_1 doi: 10.1039/c3nj00050h – ident: e_1_2_13_82_1 doi: 10.1039/C6CC01983H – ident: e_1_2_13_107_1 doi: 10.1021/jo900684c – ident: e_1_2_13_13_1 doi: 10.1103/PhysRevB.85.125307 – ident: e_1_2_13_20_1 doi: 10.1039/C8TC01956H – ident: e_1_2_13_128_1 doi: 10.1002/chem.201402398 – ident: e_1_2_13_145_1 doi: 10.1093/nar/gky607 – ident: e_1_2_13_72_1 doi: 10.1021/acsomega.7b01813 – ident: e_1_2_13_95_1 doi: 10.1021/ol9022722 – ident: e_1_2_13_90_2 doi: 10.1021/ol400082c – ident: e_1_2_13_57_1 doi: 10.1021/jo401347z – ident: e_1_2_13_39_1 doi: 10.1021/ja036466 – ident: e_1_2_13_86_1 doi: 10.1002/ajoc.201300088 – ident: e_1_2_13_127_1 doi: 10.1039/C2CS35223K – ident: e_1_2_13_135_1 doi: 10.1039/C7TC01680H – ident: e_1_2_13_44_1 doi: 10.1021/ja036466 – ident: e_1_2_13_137_1 doi: 10.1126/sciadv.aaz0632 – ident: e_1_2_13_51_1 doi: 10.1002/ejoc.201600005 – ident: e_1_2_13_59_1 doi: 10.1021/cm2034273 – ident: e_1_2_13_104_1 doi: 10.1002/ajoc.201300195 – volume: 7 start-page: 14011 year: 2019 ident: e_1_2_13_2_1 publication-title: Chem. C. – ident: e_1_2_13_4_1 doi: 10.1039/C9QM00656G – ident: e_1_2_13_142_1 doi: 10.1016/j.tetlet.2015.06.050 – ident: e_1_2_13_101_1 doi: 10.1021/acs.jmedchem.5b01283 – ident: e_1_2_13_140_1 doi: 10.1021/ja910667y – ident: e_1_2_13_18_1 doi: 10.1039/C5EE00599J – ident: e_1_2_13_69_1 doi: 10.1039/C9SC00962K – ident: e_1_2_13_9_1 doi: 10.1073/pnas.092143399 – ident: e_1_2_13_115_1 doi: 10.1039/c1jm13637b – ident: e_1_2_13_28_1 doi: 10.1021/cm049060k – ident: e_1_2_13_29_1 doi: 10.1109/55.556089 – ident: e_1_2_13_78_2 doi: 10.1039/D0CS00239A – ident: e_1_2_13_114_1 doi: 10.1021/cm102850j – ident: e_1_2_13_85_1 doi: 10.1021/ol701539z – ident: e_1_2_13_122_1 doi: 10.1021/jacs.8b01463 – ident: e_1_2_13_8_1 doi: 10.1088/0953-8984/20/18/184011 – ident: e_1_2_13_79_1 doi: 10.1002/ejoc.201901390 – ident: e_1_2_13_1_1 doi: 10.1021/cr050966z – ident: e_1_2_13_102_1 doi: 10.1002/open.201900339 – ident: e_1_2_13_49_1 doi: 10.1002/chem.201303277 – ident: e_1_2_13_77_2 doi: 10.1002/chem.201806009 – ident: e_1_2_13_80_1 doi: 10.1021/acs.accounts.8b00223 – ident: e_1_2_13_27_1 doi: 10.1021/jp503114b – ident: e_1_2_13_38_1 doi: 10.3998/ark.5550190.0003.616 – start-page: 253702 year: 2009 ident: e_1_2_13_65_1 publication-title: Chem. Commun. – ident: e_1_2_13_133_1 doi: 10.1021/acs.orglett.7b03041 – ident: e_1_2_13_26_1 doi: 10.1071/CH11169 – ident: e_1_2_13_74_1 – ident: e_1_2_13_131_1 doi: 10.1021/acs.jpclett.2c01679 – ident: e_1_2_13_33_1 doi: 10.1021/ol0709376 – ident: e_1_2_13_40_1 doi: 10.1021/ja067087u – ident: e_1_2_13_130_1 doi: 10.1103/PhysRevB.72.035130 – ident: e_1_2_13_138_1 doi: 10.1002/adma.201001402 – ident: e_1_2_13_12_1 doi: 10.1103/PhysRevB.76.235322 – ident: e_1_2_13_94_1 doi: 10.1002/chem.201300120 – ident: e_1_2_13_100_1 doi: 10.1039/D0SC03744C – ident: e_1_2_13_47_1 doi: 10.1002/bbpc.19670710922 – ident: e_1_2_13_84_1 doi: 10.1039/c2sc21142d – start-page: 72 volume-title: Am. J. Agricultural Science, Engineering, and Technology year: 2023 ident: e_1_2_13_54_1 – ident: e_1_2_13_48_1 doi: 10.1021/jz501102r – ident: e_1_2_13_103_1 doi: 10.1021/ol303551p – ident: e_1_2_13_90_1 doi: 10.1002/ajoc.201402015 – ident: e_1_2_13_7_1 doi: 10.1038/nature05533 – ident: e_1_2_13_129_1 doi: 10.1039/C0CP01544J – ident: e_1_2_13_92_1 doi: 10.1021/ol400082c – ident: e_1_2_13_37_1 doi: 10.1021/ja0162459 – ident: e_1_2_13_21_1 doi: 10.1039/C8TC00146D – ident: e_1_2_13_112_1 doi: 10.1039/a803718c – ident: e_1_2_13_139_1 doi: 10.1002/adma.200600929 – ident: e_1_2_13_62_1 doi: 10.1021/acsami.7b16004 – volume: 61 year: 2022 ident: e_1_2_13_123_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_13_45_1 doi: 10.1002/cber.189002302123 – ident: e_1_2_13_6_1 doi: 10.1021/acs.accounts.5b00118 – ident: e_1_2_13_24_1 doi: 10.1016/j.chempr.2019.08.019 – ident: e_1_2_13_91_1 doi: 10.1039/c3ra41679h – ident: e_1_2_13_105_1 doi: 10.1021/ja207630a – ident: e_1_2_13_121_1 doi: 10.1021/ja410265n – ident: e_1_2_13_50_1 doi: 10.1021/ol2030839 – ident: e_1_2_13_64_1 doi: 10.1002/adma.201303392 – ident: e_1_2_13_58_1 doi: 10.1016/j.cplett.2011.11.028 – ident: e_1_2_13_56_1 doi: 10.1002/cjoc.202200700 – ident: e_1_2_13_144_1 doi: 10.1016/j.bbagen.2016.11.034 |
SSID | ssj0009633 |
Score | 2.4920027 |
SecondaryResourceType | review_article |
Snippet | Acenes and Naphthalene Diimides (NDIs) stand as distinguished classes of organic compounds, each possessing unique and intriguing properties that have garnered... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202400208 |
SubjectTerms | Acenes Applications Aromatic compounds Diimide Electrochemistry Electron spin Hydroazaacenes Multidisciplinary research Naphthalene Naphthalenediimide Opto–electronics Organic compounds Subgroups Synthesis Technological change |
Title | Naphthalene diimide–Annulated Heterocyclic Acenes: Synthesis, Electrochemical and Semiconductor Properties and their Multifaceted Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400208 https://www.ncbi.nlm.nih.gov/pubmed/38454793 https://www.proquest.com/docview/3054425545 https://www.proquest.com/docview/2954770841 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctVA5w4f0IlMpISFxI6429tsNt-1itkKgQpVJvkZ9q1CWpNruH9tSPgMQ35JPgcR7tghAS3BIlVuJ4PP4rM_4NQm888954SKtQ-ThlzPBUaefToO6DRyZM8Ah7_njIZ8fsw8n45MYu_pYPMfxwg5kR_TVMcKWbnWtoaOgT7CSHHMgs7vYdUQ7w_P3P1_yoYF1tLXkmUmCw9tRGku2sN19flX6TmuvKNS490_tI9S_dZpycba-Wettc_sJz_J9ePUD3Ol2KJ60hPUS3XPUI3dnry8E9Rt8O1fnp8jSsJ5XDtiy_ltb9uPoOfP550KsWzyCxpjYXZl4aPDHgQ9_jo4sqKMymbN7hg7bgjukIBVhVFh_BcV0Bc7Ze4E8QGFgA4TVejDEMHHcIe2UcPGNyI9z-BB1PD77szdKunENqAJ-UWkpzzhzNvfacOyWFJyZX1HPFjbRc6FxnxEtBhaYuN0GLMSqtHjmijMgtfYo2qrpyzxGWlmnCtSEWCrsLopRUlijGM2uzsRQJSvvhLEzHOoeSG_OipTRnBXS2GL5zgt4O95-3lI8_3rnZW0fRzfamCD6TBd8XxGiCXg-Xw_hA8EVVrl41BcRThSCSjRL0rLWq4VFUAlYtpwnKom385R0KoGUMZy_-pdFLdBeOIQ1ixDbRxnKxcq-CulrqLXR7sru_O92KM-kntZQgvg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctVA7lwhsaKMVISFxI6429tsNt1YcWaFeIthI3y081YkmqfRzKiY-A1G_YT4Inr7IghAS3PJU4GY__yYx_g9DLwEKwAdIqdD5MGbM81caHNKr76JEJE7yGPR9N-PiUvfs07LIJYS5Mw4fof7hBz6j9NXRw-CG9c00NjY2CqeSQBJnBdN-bLKoN-P7a-3hNkIr21VSTZyIFCmvHbSTZzur5q-PSb2JzVbvWg8_BHWS6225yTj5vLxdm2379hej4X-26i2630hSPGlu6h2748j5a3-0qwj1A3yf6_GxxFoeU0mNXFF8K56--XQKifxolq8NjyK2p7IWdFhaPLLjRN_j4oowic17MX-P9puaObSEFWJcOH8NyVQJ2tprhDxAbmAHktd5ZhzFwPUk4aOvhGqOfIu4P0enB_snuOG0rOqQWCEqpozTnzNM8mMC511IEYnNNA9fcSseFyU1GghRUGOpzG-UYo9KZgSfaitzRR2itrEq_gbB0zBBuLHFQ210QraV2RDOeOZcNpUhQ2r1PZVvcOVTdmKoG1JwpaKzqn3OCXvXHnzegjz8eudmZh2o7_FxFt8mi-4t6NEEv-t3x_UD8RZe-Ws4VhFSFIJINEvS4Mav-UlQCWS2nCcpq4_jLPSgAZvRrT_7lpOdofXxydKgO307eP0W3YDtkRQzYJlpbzJb-WRRbC7NVd6cfoDEjaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctVCTgQnmWlAJGQuJCWjf22gm3Velqea0qSqXeLD_ViCVZ7eNQTnwEJL4hnwRPnKRdEEKCW56KnYzHf2XGv0HomWfeGw9pFaoYpIwZnirtfBrUffDIhAnewJ7fT_j4hL05HZxeWsUf-RD9DzcYGY2_hgE-s37vAhoa-gQrySEHMoPVvlcZD3ICZNGHC4BUMK9YTJ6JFCCsHbaRZHvr969PS79pzXXp2sw9o02kulbHlJNPu6ul3jVffgE6_k-3bqGbrTDFw2hJt9EVV91B1w-6enB30beJmp0tz8KEUjlsy_Jzad2Pr98B0D8NgtXiMWTW1ObcTEuDhwac6Et8fF4FibkoFy_wYay4Y1pEAVaVxcewXVcAna3n-AgiA3NAvDYnmyAGbpYIe2UcPGN4Kd5-D52MDj8ejNO2nkNqgJ-UWkoLzhwtvPacO5ULT0yhqOeKm9xyoQudEZ8LKjR1hQlijNHc6n1HlBGFpffRRlVX7gHCuWWacG2IhcrugiiVK0sU45m12SAXCUq7zylNCzuHmhtTGTHNmYTOyv49J-h5f_0sYj7-eOVOZx2yHe4LGZwmC84vqNEEPe1Ph-8D0RdVuXq1kBBQFYLkbD9BW9Gq-kfRHLhqBU1Q1tjGX9ogAZfR723_y01P0LWjVyP57vXk7UN0Aw7HLM4dtLGcr9yjoLSW-nEzmH4CG6giFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Naphthalene+diimide%E2%80%93Annulated+Heterocyclic+Acenes%3A+Synthesis%2C+Electrochemical+and+Semiconductor+Properties+and+their+Multifaceted+Applications&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Bhardwaj%2C+Abhishek&rft.au=Hussain%2C+Ch+Mudasar&rft.au=Dewangan%2C+Pratik&rft.au=Mukhopadhyay%2C+Pritam&rft.date=2024-05-14&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=27&rft_id=info:doi/10.1002%2Fchem.202400208&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |