A Sulfur Heterocyclic Quinone Cathode Towards High‐Rate and Long‐Cycle Aqueous Zn‐Organic Batteries

Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability,...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 22; pp. e2301088 - n/a
Main Authors Sun, Qi‐Qi, Sun, Tao, Du, Jia‐Yi, Li, Kai, Xie, Hai‐Ming, Huang, Gang, Zhang, Xin‐Bo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2’,3’:5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone (BNDTH), with abundant electroactive groups and stable extended π‐conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well‐designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g−1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g−1, and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g−1. Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs. A fully composited benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone/reduced graphene oxide (BNDTH/RGO) is designed to simultaneously conquer the low utilization of active sites, intrinsic poor conductivity, and strong solubility of organic electrode materials, realizing the construction of Zn‐organic batteries with record‐high cycling stability. This work brings new opportunities for the exploration of ultra‐stable organic cathode materials for Zn‐ion batteries.
AbstractList Organic materials have attracted much attention in aqueous zinc-ion batteries (AZIBs) due to their sustainability and structure-designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexone (BNDTH), with abundant electroactive groups and stable extended π-conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well-designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g (nearly a full utilization of the active groups), superior rate capability of 120 mAh g , and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g . Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs.
Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2’,3’:5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone (BNDTH), with abundant electroactive groups and stable extended π ‐conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well‐designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g −1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g −1 , and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g −1 . Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs.
Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2’,3’:5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone (BNDTH), with abundant electroactive groups and stable extended π‐conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well‐designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g−1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g−1, and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g−1. Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs.
Organic materials have attracted much attention in aqueous zinc-ion batteries (AZIBs) due to their sustainability and structure-designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexone (BNDTH), with abundant electroactive groups and stable extended π-conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well-designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g-1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g-1 , and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g-1 . Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs.Organic materials have attracted much attention in aqueous zinc-ion batteries (AZIBs) due to their sustainability and structure-designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexone (BNDTH), with abundant electroactive groups and stable extended π-conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well-designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g-1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g-1 , and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g-1 . Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs.
Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2’,3’:5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone (BNDTH), with abundant electroactive groups and stable extended π‐conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well‐designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g−1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g−1, and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g−1. Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs. A fully composited benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone/reduced graphene oxide (BNDTH/RGO) is designed to simultaneously conquer the low utilization of active sites, intrinsic poor conductivity, and strong solubility of organic electrode materials, realizing the construction of Zn‐organic batteries with record‐high cycling stability. This work brings new opportunities for the exploration of ultra‐stable organic cathode materials for Zn‐ion batteries.
Author Li, Kai
Sun, Qi‐Qi
Zhang, Xin‐Bo
Du, Jia‐Yi
Sun, Tao
Huang, Gang
Xie, Hai‐Ming
Author_xml – sequence: 1
  givenname: Qi‐Qi
  surname: Sun
  fullname: Sun, Qi‐Qi
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Tao
  surname: Sun
  fullname: Sun, Tao
  organization: Jiangsu University
– sequence: 3
  givenname: Jia‐Yi
  surname: Du
  fullname: Du, Jia‐Yi
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Kai
  surname: Li
  fullname: Li, Kai
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Hai‐Ming
  surname: Xie
  fullname: Xie, Hai‐Ming
  email: xiehm136@nenu.edu.cn
  organization: Northeast Normal University
– sequence: 6
  givenname: Gang
  surname: Huang
  fullname: Huang, Gang
  email: ghuang@ciac.ac.cn
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Xin‐Bo
  orcidid: 0000-0002-5806-159X
  surname: Zhang
  fullname: Zhang, Xin‐Bo
  email: xbzhang@ciac.ac.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37036047$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFLUsUiQ2bDNd2_JNlGCiDNKgCyoZN5NjO1KOM3dqJqtnxCH0EnoVH4UnwaEqRKiFWlq1z7v3k7wQd-eAtQs8xzDEAea3MVs0JEAoYpHyEZpgRXFZQsyM0g5qysuaVPEYnKW0AoObAn6BjKoByqMQMbZriyzT0UyyWdrQx6J0enC4-TW6_qFio8TIYW1yEGxVN-vlj6daXv77fflajLZQ3xSr4db4vsmaL5nqyYUrFN5-fzuNa-TzqjRrzYGfTU_S4V0Oyz-7OU_T17N3FYlmuzt9_WDSrUlNBZdlZ6CqmpMG8E1CRXgltjaGG1p3UxFa44szw3nDoO1IJxWQnDZVCCEqAanqKXh3mXsWQA6Wx3bqk7TAov0_XElHXWDAGNKMvH6CbMEWf07VEEkw4JQxn6sUdNXVba9qr6LYq7to_v5iB-QHQMaQUbX-PYGj3NbX7mtr7mrJQPRC0G9Xogh-jcsO_tfqg3bjB7v6zpG3efmz-ur8Boj2pmA
CitedBy_id crossref_primary_10_1002_ange_202418237
crossref_primary_10_1016_j_apsusc_2023_158374
crossref_primary_10_1002_smll_202406962
crossref_primary_10_1007_s12209_023_00373_y
crossref_primary_10_1002_advs_202310319
crossref_primary_10_1039_D4TA09268F
crossref_primary_10_1002_smtd_202301301
crossref_primary_10_1016_j_memsci_2023_122130
crossref_primary_10_1002_anie_202401049
crossref_primary_10_1016_j_nanoen_2024_109524
crossref_primary_10_1016_j_est_2025_116173
crossref_primary_10_1002_adfm_202405401
crossref_primary_10_1002_anie_202412830
crossref_primary_10_1007_s40820_024_01404_6
crossref_primary_10_1002_adfm_202408875
crossref_primary_10_1002_ange_202401049
crossref_primary_10_1002_adma_202407570
crossref_primary_10_1039_D4MH01809E
crossref_primary_10_1016_j_est_2023_110326
crossref_primary_10_1021_acsaem_4c01379
crossref_primary_10_1002_smll_202401481
crossref_primary_10_1002_bte2_20230020
crossref_primary_10_1007_s12274_023_6401_8
crossref_primary_10_1007_s11426_024_2163_1
crossref_primary_10_1002_smll_202311012
crossref_primary_10_1002_adfm_202405710
crossref_primary_10_26599_NRE_2024_9120124
crossref_primary_10_1002_cssc_202401429
crossref_primary_10_1039_D3CC05493D
crossref_primary_10_1007_s11426_023_1738_3
crossref_primary_10_1002_aenm_202404037
crossref_primary_10_1002_ange_202401253
crossref_primary_10_1021_acsenergylett_4c01692
crossref_primary_10_1039_D4TA04054F
crossref_primary_10_1039_D3TA05892A
crossref_primary_10_1002_ange_202309446
crossref_primary_10_1002_adfm_202313241
crossref_primary_10_1002_advs_202304146
crossref_primary_10_1021_acssuschemeng_4c06991
crossref_primary_10_1002_anie_202418237
crossref_primary_10_1002_ange_202502088
crossref_primary_10_26599_EMD_2023_9370007
crossref_primary_10_1039_D4SC05710D
crossref_primary_10_1021_acs_langmuir_4c03536
crossref_primary_10_1039_D4TA02525C
crossref_primary_10_1016_j_jallcom_2023_172419
crossref_primary_10_1021_acssuschemeng_4c02541
crossref_primary_10_1002_adfm_202306424
crossref_primary_10_1002_anie_202401253
crossref_primary_10_1039_D3TA04414A
crossref_primary_10_1016_j_cej_2024_157627
crossref_primary_10_1016_j_jelechem_2024_118098
crossref_primary_10_1002_eem2_12785
crossref_primary_10_1002_adfm_202316182
crossref_primary_10_1002_anie_202502088
crossref_primary_10_1002_ange_202412830
crossref_primary_10_1021_acsami_3c11270
crossref_primary_10_1002_anie_202309446
Cites_doi 10.1021/jacs.0c05130
10.1021/jacs.7b00159
10.1038/nchem.2085
10.1039/C8EE00378E
10.1002/anie.201703772
10.1002/aenm.201200947
10.1021/acs.chemrev.9b00628
10.1038/s41467-017-00467-x
10.1038/nmat4919
10.1016/j.ensm.2020.03.001
10.1002/advs.201500018
10.1038/s41467-019-12857-4
10.31635/ccschem.019.20190003
10.1016/j.ensm.2021.01.006
10.1002/anie.202002132
10.1039/D0EE02111C
10.1021/acs.chemmater.8b01317
10.1021/nl2039666
10.1039/C6TA07747A
10.1002/adfm.201804975
10.1002/anie.201805540
10.1149/2.0031514jes
10.1002/anie.201503072
10.1149/1945-7111/ab847a
10.1002/anie.201807121
10.1016/j.ensm.2022.08.005
10.1016/j.ensm.2021.02.022
10.1021/acs.jpclett.8b01123
10.1039/C7EE03232C
10.1021/acs.chemrev.7b00115
10.1039/C9EE02526J
10.1039/C8EE02892C
10.1126/sciadv.1500330
10.1002/aenm.201601792
10.1002/anie.201700148
10.1007/s40820-022-01009-x
10.1016/j.ensm.2020.08.027
10.1002/advs.202000146
10.1002/aenm.201703509
10.1002/adma.202000338
10.1038/nature11475
10.1038/s41560-018-0291-0
10.1021/cr100290v
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202301088
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37036047
10_1002_adma_202301088
ADMA202301088
Genre article
Journal Article
GrantInformation_xml – fundername: Changchun Science and Technology Development Plan Funding Project
  funderid: 21ZY06
– fundername: National Key R&D Program of China
  funderid: 2022YFB2402200
– fundername: National Natural Science Foundation of China
  funderid: 52271140; 52171194
– fundername: Youth Innovation Promotion Association CAS
  funderid: 2021223
– fundername: National Natural Science Foundation of China
  grantid: 52271140
– fundername: National Natural Science Foundation of China
  grantid: 52171194
– fundername: National Key R&D Program of China
  grantid: 2022YFB2402200
– fundername: Changchun Science and Technology Development Plan Funding Project
  grantid: 21ZY06
– fundername: Youth Innovation Promotion Association CAS
  grantid: 2021223
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3738-be0b45a8d16b7042fa7cedd3d39b8c2e41465d6fd60fb247a58b8d387773203c3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 17:13:44 EDT 2025
Sun Jul 13 04:19:31 EDT 2025
Thu Apr 03 07:01:22 EDT 2025
Tue Jul 01 02:33:33 EDT 2025
Thu Apr 24 23:06:34 EDT 2025
Wed Jan 22 16:22:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Zn-organic batteries
carbonyl compound materials
organic electrodes
Zn-ion batteries
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-be0b45a8d16b7042fa7cedd3d39b8c2e41465d6fd60fb247a58b8d387773203c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5806-159X
PMID 37036047
PQID 2821263251
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2799175503
proquest_journals_2821263251
pubmed_primary_37036047
crossref_primary_10_1002_adma_202301088
crossref_citationtrail_10_1002_adma_202301088
wiley_primary_10_1002_adma_202301088_ADMA202301088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2023
2023-06-00
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2015; 2
2015; 1
2017; 7
2017; 8
2018; 28
2019; 4
2013; 3
2020; 120
2023; 15
2020; 142
2019; 10
2019; 1
2019; 12
2015; 54
2020; 59
2020; 13
2020; 167
2020; 33
2020; 32
2012; 488
2012; 12
2015; 7
2011; 111
2017; 117
2017; 139
2007; 15
2021; 36
2016; 4
2020; 7
2018; 9
2018; 8
2021; 37
2017; 16
2017; 56
2020; 28
2018; 30
2022; 52
2018; 11
2018; 57
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Cai Z. (e_1_2_7_29_1) 2007; 15
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 15
  start-page: 36
  year: 2023
  publication-title: Nano‐Micro Lett.
– volume: 12
  start-page: 3288
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 488
  start-page: 294
  year: 2012
  publication-title: Nature
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 941
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 51
  year: 2019
  publication-title: Nat. Energy
– volume: 33
  start-page: 283
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 12
  start-page: 706
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 386
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 139
  start-page: 4828
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 7354
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 120
  start-page: 7795
  year: 2020
  publication-title: Chem. Rev.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 3573
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 57
  start-page: 102
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 405
  year: 2017
  publication-title: Nat. Commun.
– volume: 37
  start-page: 378
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 3
  start-page: 600
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 2205
  year: 2012
  publication-title: Nano Lett.
– volume: 28
  start-page: 64
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 10
  start-page: 4948
  year: 2019
  publication-title: Nat. Commun.
– volume: 15
  start-page: 16
  year: 2007
  publication-title: Chin. J. Synth. Chem.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 3950
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 881
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 1
  start-page: 365
  year: 2019
  publication-title: CCS Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 7
  start-page: 19
  year: 2015
  publication-title: Nat. Chem.
– volume: 36
  start-page: 387
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 16
  start-page: 841
  year: 2017
  publication-title: Nat. Mater.
– volume: 56
  start-page: 2909
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  start-page: 3874
  year: 2018
  publication-title: Chem. Mater.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 3577
  year: 2011
  publication-title: Chem. Rev.
– volume: 57
  start-page: 9443
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_25_1
  doi: 10.1021/jacs.0c05130
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.7b00159
– ident: e_1_2_7_2_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_7_41_1
  doi: 10.1039/C8EE00378E
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.201703772
– ident: e_1_2_7_37_1
  doi: 10.1002/aenm.201200947
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.chemrev.9b00628
– ident: e_1_2_7_11_1
  doi: 10.1038/s41467-017-00467-x
– ident: e_1_2_7_19_1
  doi: 10.1038/nmat4919
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ensm.2020.03.001
– ident: e_1_2_7_38_1
  doi: 10.1002/advs.201500018
– ident: e_1_2_7_8_1
  doi: 10.1038/s41467-019-12857-4
– ident: e_1_2_7_36_1
  doi: 10.31635/ccschem.019.20190003
– ident: e_1_2_7_10_1
  doi: 10.1016/j.ensm.2021.01.006
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.202002132
– ident: e_1_2_7_14_1
  doi: 10.1039/D0EE02111C
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.chemmater.8b01317
– ident: e_1_2_7_33_1
  doi: 10.1021/nl2039666
– ident: e_1_2_7_40_1
  doi: 10.1039/C6TA07747A
– volume: 15
  start-page: 16
  year: 2007
  ident: e_1_2_7_29_1
  publication-title: Chin. J. Synth. Chem.
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.201804975
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.201805540
– ident: e_1_2_7_32_1
  doi: 10.1149/2.0031514jes
– ident: e_1_2_7_35_1
  doi: 10.1002/anie.201503072
– ident: e_1_2_7_42_1
  doi: 10.1149/1945-7111/ab847a
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.201807121
– ident: e_1_2_7_21_1
  doi: 10.1016/j.ensm.2022.08.005
– ident: e_1_2_7_39_1
  doi: 10.1016/j.ensm.2021.02.022
– ident: e_1_2_7_43_1
  doi: 10.1021/acs.jpclett.8b01123
– ident: e_1_2_7_44_1
  doi: 10.1039/C7EE03232C
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_6_1
  doi: 10.1039/C9EE02526J
– ident: e_1_2_7_9_1
  doi: 10.1039/C8EE02892C
– ident: e_1_2_7_28_1
  doi: 10.1126/sciadv.1500330
– ident: e_1_2_7_31_1
  doi: 10.1002/aenm.201601792
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.201700148
– ident: e_1_2_7_20_1
  doi: 10.1007/s40820-022-01009-x
– ident: e_1_2_7_22_1
  doi: 10.1016/j.ensm.2020.08.027
– ident: e_1_2_7_27_1
  doi: 10.1002/advs.202000146
– ident: e_1_2_7_30_1
  doi: 10.1002/aenm.201703509
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.202000338
– ident: e_1_2_7_1_1
  doi: 10.1038/nature11475
– ident: e_1_2_7_24_1
  doi: 10.1038/s41560-018-0291-0
– ident: e_1_2_7_3_1
  doi: 10.1021/cr100290v
SSID ssj0009606
Score 2.644855
Snippet Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further...
Organic materials have attracted much attention in aqueous zinc-ion batteries (AZIBs) due to their sustainability and structure-designable, but their further...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2301088
SubjectTerms carbonyl compound materials
Cathodes
Composition
Electrode materials
Graphene
Materials science
organic electrodes
Organic materials
Quinones
Solvents
Structural design
Zn‐ion batteries
Zn‐organic batteries
Title A Sulfur Heterocyclic Quinone Cathode Towards High‐Rate and Long‐Cycle Aqueous Zn‐Organic Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202301088
https://www.ncbi.nlm.nih.gov/pubmed/37036047
https://www.proquest.com/docview/2821263251
https://www.proquest.com/docview/2799175503
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIaPUFew4H4JFGQkJFZuE9uJM8uoUI0QRaK0UsUm8i2oMEpQZ7KAVR-hj8Cz8Ch9kp4Tz6QdEEKCXZzYim_H_p0cfwZ4UaIMKFTWcCNyz5ULBbfCTbjD2cuq1Kvc0N7hvXfF9FC9OcqPruzij3yI8YMbWcYwXpOBGzvfvoSGGj9wg1BCZ2gpOAiTwxapov1LfhTJ8wG2J3M-KVS5ojamYns9-fqs9JvUXFeuw9SzewvMKtPR4-TLVr-wW-77LzzH_ynVbbi51KWsih3pDlwL7V24cYVWeA8-V-xDP2v6EzYlH5rOfXOzY8fe98dt1wZGewk7H9jB4Ig7__mDXEjOT8_2Uc0y03r2tms_YXgHkwVWYdG7fs4-tngrbgh1LMI-ce1-Hw53Xx_sTPnyqAbuCI3EbUgtNmvps8JqHAcao13wXno5saUTQeGAnPui8UXaWKG0yUtbekkwQilS6eQD2KC8PgImtG-Mo_P1_EQZr0uTukYXCoVXkzlhE-CrpqrdkmNOx2nM6khgFjXVYT3WYQIvx_hfI8HjjzE3Vy1fLy15XuOSNCOmfZ4l8Hx8jDZIP1ZMS1VVC40qW-NaTybwMPaY8VWSCGep0gmIod3_koe6erVXjaHH_5LoCVyn6-jPtgkbi5M-PEXltLDPBuu4ABv3EfQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHpRyAA_8_gQJGAnFKmzjOzx44RF2qLd2tRNlKFZcQ_6TaskpQsxEqJx6BR-AVeAUegUfgSZjJX1kQQkLqgWMcO3HsGXvGGX8GeByhGRAIN7NT7mtbKBPYkquBrXD2ksLRwk9p7_BkNxjtixcH_sEKfOn2wjR8iH7BjTSjHq9JwWlBeuOUGprqGhyENrSLqtLGVe6Yk_fotZXPtofYxU8433o-3RzZ7cECtiKQjy2NI7ESkXYDGaLUZmmojNae9gYyUtwIHD58HWQ6cDLJRZj6kYy0R-g8jzue8vC55-A8HSNOuP7h3imxihyCGu_n-fYgEFHHiXT4xnJ9l-fB34zbZVu5nuy2rsC3rpmaGJe369VCrqsPvxAk_6t2vAqXW9ObxY2uXIMVk1-HSz8BGW_AUcxeVfOsOmYjChMq1ImazxR7Wc3yIjeMtksW2rBpHWtcfv1MUTLfP37aQ4Odpblm4yI_xOtNLGZYjG1dVCV7nWNSs-dVsYZnOjPlTdg_k4-9BatU1zvAeKizVNERgnogUh1GqaOyMBBoW2au4tICu5ONRLWodjoxZJ40kGmeUJ8lfZ9Z8LTP_66BlPwx51onakk7WJUJet0uYft914JH_W0cZujfUZpTUyU8REciRHfWs-B2I6L9qzyCuDkitIDXgvaXOiTxcBL3V3f_pdBDuDCaTsbJeHt35x5cpPQmfG8NVhfHlbmPhuJCPqhVk8Gbs5bhH_bxb80
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbtRAEC2FICFY8P8YAjQSiJUTu93-LVhYGUYT8hGERIrYNP0zGhjZUTwWCiuOwBE4AmfgBlyBk1DtXxgQQkLKgmW3u-1ydVV3lV31CuBhgmZAxPzcFTTULlMmciVVqavw9JLM0ywUNnd4eyea7LNnB-HBEnzpc2FafIjhg5vVjGa_tgp-qPO1E9BQoRvcIDShfdSULqxy0xy_R6eterIxwhV-ROn46d76xO3qCrjK4vi40ngSaUi0H8kYhTYXsTJaBzpIZaKoYbh7hDrKdeTlkrJYhIlMdGCR8wLqBSrA-56BsyzyUlssYrR7Alhl_YEG3S8I3TRiSQ8T6dG1RXoXj8HfbNtFU7k568aX4FvPpTbE5d1qPZer6sMvAJL_Exsvw8XO8CZZqylXYMkUV-HCT3CM1-BtRl7Ws7w-IhMbJFSqYzWbKvKinhZlYYhNliy1IXtNpHH19bONkfn-8dMumutEFJpslcUbbK_jNEMyZHVZV-RVgV1txqsiLZrp1FTXYf9UXvYGLFtabwGhsc6FsgUEdcqEjhPhqTyOGFqWua-odMDtRYOrDqjd1guZ8RZimnK7ZnxYMwceD-MPW4iSP45c6SWNd1tVxdHn9i1of-g78GC4jJuM_XMkCssqTmN0I2J0ZgMHbrYSOjwqsBBuHosdoI2c_YUGno22s6F1-18m3Ydzz0djvrWxs3kHztvuNnZvBZbnR7W5i1biXN5rFJPA69MW4R8fyG58
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sulfur+Heterocyclic+Quinone+Cathode+Towards+High%E2%80%90Rate+and+Long%E2%80%90Cycle+Aqueous+Zn%E2%80%90Organic+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Qi%E2%80%90Qi+Sun&rft.au=Sun%2C+Tao&rft.au=Jia%E2%80%90Yi+Du&rft.au=Li%2C+Kai&rft.date=2023-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=22&rft_id=info:doi/10.1002%2Fadma.202301088&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon