A Sulfur Heterocyclic Quinone Cathode Towards High‐Rate and Long‐Cycle Aqueous Zn‐Organic Batteries
Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability,...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 22; pp. e2301088 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2’,3’:5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone (BNDTH), with abundant electroactive groups and stable extended π‐conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well‐designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g−1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g−1, and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g−1. Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs.
A fully composited benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone/reduced graphene oxide (BNDTH/RGO) is designed to simultaneously conquer the low utilization of active sites, intrinsic poor conductivity, and strong solubility of organic electrode materials, realizing the construction of Zn‐organic batteries with record‐high cycling stability. This work brings new opportunities for the exploration of ultra‐stable organic cathode materials for Zn‐ion batteries. |
---|---|
AbstractList | Organic materials have attracted much attention in aqueous zinc-ion batteries (AZIBs) due to their sustainability and structure-designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexone (BNDTH), with abundant electroactive groups and stable extended π-conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well-designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g
(nearly a full utilization of the active groups), superior rate capability of 120 mAh g
, and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g
. Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs. Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2’,3’:5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone (BNDTH), with abundant electroactive groups and stable extended π ‐conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well‐designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g −1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g −1 , and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g −1 . Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs. Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2’,3’:5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone (BNDTH), with abundant electroactive groups and stable extended π‐conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well‐designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g−1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g−1, and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g−1. Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs. Organic materials have attracted much attention in aqueous zinc-ion batteries (AZIBs) due to their sustainability and structure-designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexone (BNDTH), with abundant electroactive groups and stable extended π-conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well-designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g-1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g-1 , and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g-1 . Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs.Organic materials have attracted much attention in aqueous zinc-ion batteries (AZIBs) due to their sustainability and structure-designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexone (BNDTH), with abundant electroactive groups and stable extended π-conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well-designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g-1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g-1 , and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g-1 . Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs. Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2’,3’:5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone (BNDTH), with abundant electroactive groups and stable extended π‐conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well‐designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g−1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g−1, and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g−1. Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs. A fully composited benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3‐i]thianthrene‐5,7,9,14,16,18‐hexone/reduced graphene oxide (BNDTH/RGO) is designed to simultaneously conquer the low utilization of active sites, intrinsic poor conductivity, and strong solubility of organic electrode materials, realizing the construction of Zn‐organic batteries with record‐high cycling stability. This work brings new opportunities for the exploration of ultra‐stable organic cathode materials for Zn‐ion batteries. |
Author | Li, Kai Sun, Qi‐Qi Zhang, Xin‐Bo Du, Jia‐Yi Sun, Tao Huang, Gang Xie, Hai‐Ming |
Author_xml | – sequence: 1 givenname: Qi‐Qi surname: Sun fullname: Sun, Qi‐Qi organization: Chinese Academy of Sciences – sequence: 2 givenname: Tao surname: Sun fullname: Sun, Tao organization: Jiangsu University – sequence: 3 givenname: Jia‐Yi surname: Du fullname: Du, Jia‐Yi organization: University of Science and Technology of China – sequence: 4 givenname: Kai surname: Li fullname: Li, Kai organization: Chinese Academy of Sciences – sequence: 5 givenname: Hai‐Ming surname: Xie fullname: Xie, Hai‐Ming email: xiehm136@nenu.edu.cn organization: Northeast Normal University – sequence: 6 givenname: Gang surname: Huang fullname: Huang, Gang email: ghuang@ciac.ac.cn organization: University of Science and Technology of China – sequence: 7 givenname: Xin‐Bo orcidid: 0000-0002-5806-159X surname: Zhang fullname: Zhang, Xin‐Bo email: xbzhang@ciac.ac.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37036047$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKeFLUsUiQ2bDNd2_JNlGCiDNKgCyoZN5NjO1KOM3dqJqtnxCH0EnoVH4UnwaEqRKiFWlq1z7v3k7wQd-eAtQs8xzDEAea3MVs0JEAoYpHyEZpgRXFZQsyM0g5qysuaVPEYnKW0AoObAn6BjKoByqMQMbZriyzT0UyyWdrQx6J0enC4-TW6_qFio8TIYW1yEGxVN-vlj6daXv77fflajLZQ3xSr4db4vsmaL5nqyYUrFN5-fzuNa-TzqjRrzYGfTU_S4V0Oyz-7OU_T17N3FYlmuzt9_WDSrUlNBZdlZ6CqmpMG8E1CRXgltjaGG1p3UxFa44szw3nDoO1IJxWQnDZVCCEqAanqKXh3mXsWQA6Wx3bqk7TAov0_XElHXWDAGNKMvH6CbMEWf07VEEkw4JQxn6sUdNXVba9qr6LYq7to_v5iB-QHQMaQUbX-PYGj3NbX7mtr7mrJQPRC0G9Xogh-jcsO_tfqg3bjB7v6zpG3efmz-ur8Boj2pmA |
CitedBy_id | crossref_primary_10_1002_ange_202418237 crossref_primary_10_1016_j_apsusc_2023_158374 crossref_primary_10_1002_smll_202406962 crossref_primary_10_1007_s12209_023_00373_y crossref_primary_10_1002_advs_202310319 crossref_primary_10_1039_D4TA09268F crossref_primary_10_1002_smtd_202301301 crossref_primary_10_1016_j_memsci_2023_122130 crossref_primary_10_1002_anie_202401049 crossref_primary_10_1016_j_nanoen_2024_109524 crossref_primary_10_1016_j_est_2025_116173 crossref_primary_10_1002_adfm_202405401 crossref_primary_10_1002_anie_202412830 crossref_primary_10_1007_s40820_024_01404_6 crossref_primary_10_1002_adfm_202408875 crossref_primary_10_1002_ange_202401049 crossref_primary_10_1002_adma_202407570 crossref_primary_10_1039_D4MH01809E crossref_primary_10_1016_j_est_2023_110326 crossref_primary_10_1021_acsaem_4c01379 crossref_primary_10_1002_smll_202401481 crossref_primary_10_1002_bte2_20230020 crossref_primary_10_1007_s12274_023_6401_8 crossref_primary_10_1007_s11426_024_2163_1 crossref_primary_10_1002_smll_202311012 crossref_primary_10_1002_adfm_202405710 crossref_primary_10_26599_NRE_2024_9120124 crossref_primary_10_1002_cssc_202401429 crossref_primary_10_1039_D3CC05493D crossref_primary_10_1007_s11426_023_1738_3 crossref_primary_10_1002_aenm_202404037 crossref_primary_10_1002_ange_202401253 crossref_primary_10_1021_acsenergylett_4c01692 crossref_primary_10_1039_D4TA04054F crossref_primary_10_1039_D3TA05892A crossref_primary_10_1002_ange_202309446 crossref_primary_10_1002_adfm_202313241 crossref_primary_10_1002_advs_202304146 crossref_primary_10_1021_acssuschemeng_4c06991 crossref_primary_10_1002_anie_202418237 crossref_primary_10_1002_ange_202502088 crossref_primary_10_26599_EMD_2023_9370007 crossref_primary_10_1039_D4SC05710D crossref_primary_10_1021_acs_langmuir_4c03536 crossref_primary_10_1039_D4TA02525C crossref_primary_10_1016_j_jallcom_2023_172419 crossref_primary_10_1021_acssuschemeng_4c02541 crossref_primary_10_1002_adfm_202306424 crossref_primary_10_1002_anie_202401253 crossref_primary_10_1039_D3TA04414A crossref_primary_10_1016_j_cej_2024_157627 crossref_primary_10_1016_j_jelechem_2024_118098 crossref_primary_10_1002_eem2_12785 crossref_primary_10_1002_adfm_202316182 crossref_primary_10_1002_anie_202502088 crossref_primary_10_1002_ange_202412830 crossref_primary_10_1021_acsami_3c11270 crossref_primary_10_1002_anie_202309446 |
Cites_doi | 10.1021/jacs.0c05130 10.1021/jacs.7b00159 10.1038/nchem.2085 10.1039/C8EE00378E 10.1002/anie.201703772 10.1002/aenm.201200947 10.1021/acs.chemrev.9b00628 10.1038/s41467-017-00467-x 10.1038/nmat4919 10.1016/j.ensm.2020.03.001 10.1002/advs.201500018 10.1038/s41467-019-12857-4 10.31635/ccschem.019.20190003 10.1016/j.ensm.2021.01.006 10.1002/anie.202002132 10.1039/D0EE02111C 10.1021/acs.chemmater.8b01317 10.1021/nl2039666 10.1039/C6TA07747A 10.1002/adfm.201804975 10.1002/anie.201805540 10.1149/2.0031514jes 10.1002/anie.201503072 10.1149/1945-7111/ab847a 10.1002/anie.201807121 10.1016/j.ensm.2022.08.005 10.1016/j.ensm.2021.02.022 10.1021/acs.jpclett.8b01123 10.1039/C7EE03232C 10.1021/acs.chemrev.7b00115 10.1039/C9EE02526J 10.1039/C8EE02892C 10.1126/sciadv.1500330 10.1002/aenm.201601792 10.1002/anie.201700148 10.1007/s40820-022-01009-x 10.1016/j.ensm.2020.08.027 10.1002/advs.202000146 10.1002/aenm.201703509 10.1002/adma.202000338 10.1038/nature11475 10.1038/s41560-018-0291-0 10.1021/cr100290v |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202301088 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 37036047 10_1002_adma_202301088 ADMA202301088 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Changchun Science and Technology Development Plan Funding Project funderid: 21ZY06 – fundername: National Key R&D Program of China funderid: 2022YFB2402200 – fundername: National Natural Science Foundation of China funderid: 52271140; 52171194 – fundername: Youth Innovation Promotion Association CAS funderid: 2021223 – fundername: National Natural Science Foundation of China grantid: 52271140 – fundername: National Natural Science Foundation of China grantid: 52171194 – fundername: National Key R&D Program of China grantid: 2022YFB2402200 – fundername: Changchun Science and Technology Development Plan Funding Project grantid: 21ZY06 – fundername: Youth Innovation Promotion Association CAS grantid: 2021223 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3738-be0b45a8d16b7042fa7cedd3d39b8c2e41465d6fd60fb247a58b8d387773203c3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 17:13:44 EDT 2025 Sun Jul 13 04:19:31 EDT 2025 Thu Apr 03 07:01:22 EDT 2025 Tue Jul 01 02:33:33 EDT 2025 Thu Apr 24 23:06:34 EDT 2025 Wed Jan 22 16:22:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Zn-organic batteries carbonyl compound materials organic electrodes Zn-ion batteries |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-be0b45a8d16b7042fa7cedd3d39b8c2e41465d6fd60fb247a58b8d387773203c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5806-159X |
PMID | 37036047 |
PQID | 2821263251 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2799175503 proquest_journals_2821263251 pubmed_primary_37036047 crossref_primary_10_1002_adma_202301088 crossref_citationtrail_10_1002_adma_202301088 wiley_primary_10_1002_adma_202301088_ADMA202301088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 1, 2023 2023-06-00 2023-Jun 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 1, 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 162 2015; 2 2015; 1 2017; 7 2017; 8 2018; 28 2019; 4 2013; 3 2020; 120 2023; 15 2020; 142 2019; 10 2019; 1 2019; 12 2015; 54 2020; 59 2020; 13 2020; 167 2020; 33 2020; 32 2012; 488 2012; 12 2015; 7 2011; 111 2017; 117 2017; 139 2007; 15 2021; 36 2016; 4 2020; 7 2018; 9 2018; 8 2021; 37 2017; 16 2017; 56 2020; 28 2018; 30 2022; 52 2018; 11 2018; 57 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 Cai Z. (e_1_2_7_29_1) 2007; 15 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 15 start-page: 36 year: 2023 publication-title: Nano‐Micro Lett. – volume: 12 start-page: 3288 year: 2019 publication-title: Energy Environ. Sci. – volume: 488 start-page: 294 year: 2012 publication-title: Nature – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 11 start-page: 941 year: 2018 publication-title: Energy Environ. Sci. – volume: 4 start-page: 51 year: 2019 publication-title: Nat. Energy – volume: 33 start-page: 283 year: 2020 publication-title: Energy Storage Mater. – volume: 12 start-page: 706 year: 2019 publication-title: Energy Environ. Sci. – volume: 52 start-page: 386 year: 2022 publication-title: Energy Storage Mater. – volume: 139 start-page: 4828 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 7354 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 120 start-page: 7795 year: 2020 publication-title: Chem. Rev. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 3573 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 57 start-page: 102 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 405 year: 2017 publication-title: Nat. Commun. – volume: 37 start-page: 378 year: 2021 publication-title: Energy Storage Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 3 start-page: 600 year: 2013 publication-title: Adv. Energy Mater. – volume: 12 start-page: 2205 year: 2012 publication-title: Nano Lett. – volume: 28 start-page: 64 year: 2020 publication-title: Energy Storage Mater. – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 10 start-page: 4948 year: 2019 publication-title: Nat. Commun. – volume: 15 start-page: 16 year: 2007 publication-title: Chin. J. Synth. Chem. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 13 start-page: 3950 year: 2020 publication-title: Energy Environ. Sci. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 11 start-page: 881 year: 2018 publication-title: Energy Environ. Sci. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 1 start-page: 365 year: 2019 publication-title: CCS Chem. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 162 year: 2015 publication-title: J. Electrochem. Soc. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 7 start-page: 19 year: 2015 publication-title: Nat. Chem. – volume: 36 start-page: 387 year: 2021 publication-title: Energy Storage Mater. – volume: 16 start-page: 841 year: 2017 publication-title: Nat. Mater. – volume: 56 start-page: 2909 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 30 start-page: 3874 year: 2018 publication-title: Chem. Mater. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 3577 year: 2011 publication-title: Chem. Rev. – volume: 57 start-page: 9443 year: 2018 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_25_1 doi: 10.1021/jacs.0c05130 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.7b00159 – ident: e_1_2_7_2_1 doi: 10.1038/nchem.2085 – ident: e_1_2_7_41_1 doi: 10.1039/C8EE00378E – ident: e_1_2_7_4_1 doi: 10.1002/anie.201703772 – ident: e_1_2_7_37_1 doi: 10.1002/aenm.201200947 – ident: e_1_2_7_7_1 doi: 10.1021/acs.chemrev.9b00628 – ident: e_1_2_7_11_1 doi: 10.1038/s41467-017-00467-x – ident: e_1_2_7_19_1 doi: 10.1038/nmat4919 – ident: e_1_2_7_26_1 doi: 10.1016/j.ensm.2020.03.001 – ident: e_1_2_7_38_1 doi: 10.1002/advs.201500018 – ident: e_1_2_7_8_1 doi: 10.1038/s41467-019-12857-4 – ident: e_1_2_7_36_1 doi: 10.31635/ccschem.019.20190003 – ident: e_1_2_7_10_1 doi: 10.1016/j.ensm.2021.01.006 – ident: e_1_2_7_15_1 doi: 10.1002/anie.202002132 – ident: e_1_2_7_14_1 doi: 10.1039/D0EE02111C – ident: e_1_2_7_18_1 doi: 10.1021/acs.chemmater.8b01317 – ident: e_1_2_7_33_1 doi: 10.1021/nl2039666 – ident: e_1_2_7_40_1 doi: 10.1039/C6TA07747A – volume: 15 start-page: 16 year: 2007 ident: e_1_2_7_29_1 publication-title: Chin. J. Synth. Chem. – ident: e_1_2_7_16_1 doi: 10.1002/adfm.201804975 – ident: e_1_2_7_12_1 doi: 10.1002/anie.201805540 – ident: e_1_2_7_32_1 doi: 10.1149/2.0031514jes – ident: e_1_2_7_35_1 doi: 10.1002/anie.201503072 – ident: e_1_2_7_42_1 doi: 10.1149/1945-7111/ab847a – ident: e_1_2_7_23_1 doi: 10.1002/anie.201807121 – ident: e_1_2_7_21_1 doi: 10.1016/j.ensm.2022.08.005 – ident: e_1_2_7_39_1 doi: 10.1016/j.ensm.2021.02.022 – ident: e_1_2_7_43_1 doi: 10.1021/acs.jpclett.8b01123 – ident: e_1_2_7_44_1 doi: 10.1039/C7EE03232C – ident: e_1_2_7_5_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_6_1 doi: 10.1039/C9EE02526J – ident: e_1_2_7_9_1 doi: 10.1039/C8EE02892C – ident: e_1_2_7_28_1 doi: 10.1126/sciadv.1500330 – ident: e_1_2_7_31_1 doi: 10.1002/aenm.201601792 – ident: e_1_2_7_34_1 doi: 10.1002/anie.201700148 – ident: e_1_2_7_20_1 doi: 10.1007/s40820-022-01009-x – ident: e_1_2_7_22_1 doi: 10.1016/j.ensm.2020.08.027 – ident: e_1_2_7_27_1 doi: 10.1002/advs.202000146 – ident: e_1_2_7_30_1 doi: 10.1002/aenm.201703509 – ident: e_1_2_7_17_1 doi: 10.1002/adma.202000338 – ident: e_1_2_7_1_1 doi: 10.1038/nature11475 – ident: e_1_2_7_24_1 doi: 10.1038/s41560-018-0291-0 – ident: e_1_2_7_3_1 doi: 10.1021/cr100290v |
SSID | ssj0009606 |
Score | 2.644855 |
Snippet | Organic materials have attracted much attention in aqueous zinc‐ion batteries (AZIBs) due to their sustainability and structure‐designable, but their further... Organic materials have attracted much attention in aqueous zinc-ion batteries (AZIBs) due to their sustainability and structure-designable, but their further... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2301088 |
SubjectTerms | carbonyl compound materials Cathodes Composition Electrode materials Graphene Materials science organic electrodes Organic materials Quinones Solvents Structural design Zn‐ion batteries Zn‐organic batteries |
Title | A Sulfur Heterocyclic Quinone Cathode Towards High‐Rate and Long‐Cycle Aqueous Zn‐Organic Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202301088 https://www.ncbi.nlm.nih.gov/pubmed/37036047 https://www.proquest.com/docview/2821263251 https://www.proquest.com/docview/2799175503 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIaPUFew4H4JFGQkJFZuE9uJM8uoUI0QRaK0UsUm8i2oMEpQZ7KAVR-hj8Cz8Ch9kp4Tz6QdEEKCXZzYim_H_p0cfwZ4UaIMKFTWcCNyz5ULBbfCTbjD2cuq1Kvc0N7hvXfF9FC9OcqPruzij3yI8YMbWcYwXpOBGzvfvoSGGj9wg1BCZ2gpOAiTwxapov1LfhTJ8wG2J3M-KVS5ojamYns9-fqs9JvUXFeuw9SzewvMKtPR4-TLVr-wW-77LzzH_ynVbbi51KWsih3pDlwL7V24cYVWeA8-V-xDP2v6EzYlH5rOfXOzY8fe98dt1wZGewk7H9jB4Ig7__mDXEjOT8_2Uc0y03r2tms_YXgHkwVWYdG7fs4-tngrbgh1LMI-ce1-Hw53Xx_sTPnyqAbuCI3EbUgtNmvps8JqHAcao13wXno5saUTQeGAnPui8UXaWKG0yUtbekkwQilS6eQD2KC8PgImtG-Mo_P1_EQZr0uTukYXCoVXkzlhE-CrpqrdkmNOx2nM6khgFjXVYT3WYQIvx_hfI8HjjzE3Vy1fLy15XuOSNCOmfZ4l8Hx8jDZIP1ZMS1VVC40qW-NaTybwMPaY8VWSCGep0gmIod3_koe6erVXjaHH_5LoCVyn6-jPtgkbi5M-PEXltLDPBuu4ABv3EfQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHpRyAA_8_gQJGAnFKmzjOzx44RF2qLd2tRNlKFZcQ_6TaskpQsxEqJx6BR-AVeAUegUfgSZjJX1kQQkLqgWMcO3HsGXvGGX8GeByhGRAIN7NT7mtbKBPYkquBrXD2ksLRwk9p7_BkNxjtixcH_sEKfOn2wjR8iH7BjTSjHq9JwWlBeuOUGprqGhyENrSLqtLGVe6Yk_fotZXPtofYxU8433o-3RzZ7cECtiKQjy2NI7ESkXYDGaLUZmmojNae9gYyUtwIHD58HWQ6cDLJRZj6kYy0R-g8jzue8vC55-A8HSNOuP7h3imxihyCGu_n-fYgEFHHiXT4xnJ9l-fB34zbZVu5nuy2rsC3rpmaGJe369VCrqsPvxAk_6t2vAqXW9ObxY2uXIMVk1-HSz8BGW_AUcxeVfOsOmYjChMq1ImazxR7Wc3yIjeMtksW2rBpHWtcfv1MUTLfP37aQ4Odpblm4yI_xOtNLGZYjG1dVCV7nWNSs-dVsYZnOjPlTdg_k4-9BatU1zvAeKizVNERgnogUh1GqaOyMBBoW2au4tICu5ONRLWodjoxZJ40kGmeUJ8lfZ9Z8LTP_66BlPwx51onakk7WJUJet0uYft914JH_W0cZujfUZpTUyU8REciRHfWs-B2I6L9qzyCuDkitIDXgvaXOiTxcBL3V3f_pdBDuDCaTsbJeHt35x5cpPQmfG8NVhfHlbmPhuJCPqhVk8Gbs5bhH_bxb80 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbtRAEC2FICFY8P8YAjQSiJUTu93-LVhYGUYT8hGERIrYNP0zGhjZUTwWCiuOwBE4AmfgBlyBk1DtXxgQQkLKgmW3u-1ydVV3lV31CuBhgmZAxPzcFTTULlMmciVVqavw9JLM0ywUNnd4eyea7LNnB-HBEnzpc2FafIjhg5vVjGa_tgp-qPO1E9BQoRvcIDShfdSULqxy0xy_R6eterIxwhV-ROn46d76xO3qCrjK4vi40ngSaUi0H8kYhTYXsTJaBzpIZaKoYbh7hDrKdeTlkrJYhIlMdGCR8wLqBSrA-56BsyzyUlssYrR7Alhl_YEG3S8I3TRiSQ8T6dG1RXoXj8HfbNtFU7k568aX4FvPpTbE5d1qPZer6sMvAJL_Exsvw8XO8CZZqylXYMkUV-HCT3CM1-BtRl7Ws7w-IhMbJFSqYzWbKvKinhZlYYhNliy1IXtNpHH19bONkfn-8dMumutEFJpslcUbbK_jNEMyZHVZV-RVgV1txqsiLZrp1FTXYf9UXvYGLFtabwGhsc6FsgUEdcqEjhPhqTyOGFqWua-odMDtRYOrDqjd1guZ8RZimnK7ZnxYMwceD-MPW4iSP45c6SWNd1tVxdHn9i1of-g78GC4jJuM_XMkCssqTmN0I2J0ZgMHbrYSOjwqsBBuHosdoI2c_YUGno22s6F1-18m3Ydzz0djvrWxs3kHztvuNnZvBZbnR7W5i1biXN5rFJPA69MW4R8fyG58 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sulfur+Heterocyclic+Quinone+Cathode+Towards+High%E2%80%90Rate+and+Long%E2%80%90Cycle+Aqueous+Zn%E2%80%90Organic+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Qi%E2%80%90Qi+Sun&rft.au=Sun%2C+Tao&rft.au=Jia%E2%80%90Yi+Du&rft.au=Li%2C+Kai&rft.date=2023-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=22&rft_id=info:doi/10.1002%2Fadma.202301088&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |