40 Years of Low‐Temperature Electrolytes for Rechargeable Lithium Batteries
Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub‐zero Celsius operation, especially below −20 °C, remains...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 37; pp. e202303888 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
11.09.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub‐zero Celsius operation, especially below −20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low‐temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low‐temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low‐temperature electrolytes in the past 40 years (1983–2022), followed by a comprehensive summary of the research progress as well as introducing the state‐of‐the‐art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low‐temperature electrolytes with particular emphasis on mechanism analysis and practical application.
The 40 years development of low‐temperature electrolytes for rechargeable batteries has been reviewed. Critical insights are given from both underlying mechanistic and practical engineering aspects while we traverse the history on the rational design of low‐temperature electrolyte systems. |
---|---|
AbstractList | Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub‐zero Celsius operation, especially below −20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low‐temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low‐temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low‐temperature electrolytes in the past 40 years (1983–2022), followed by a comprehensive summary of the research progress as well as introducing the state‐of‐the‐art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low‐temperature electrolytes with particular emphasis on mechanism analysis and practical application.
The 40 years development of low‐temperature electrolytes for rechargeable batteries has been reviewed. Critical insights are given from both underlying mechanistic and practical engineering aspects while we traverse the history on the rational design of low‐temperature electrolyte systems. Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub‐zero Celsius operation, especially below −20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low‐temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low‐temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low‐temperature electrolytes in the past 40 years (1983–2022), followed by a comprehensive summary of the research progress as well as introducing the state‐of‐the‐art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low‐temperature electrolytes with particular emphasis on mechanism analysis and practical application. Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub‐zero Celsius operation, especially below −20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li + diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low‐temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low‐temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low‐temperature electrolytes in the past 40 years (1983–2022), followed by a comprehensive summary of the research progress as well as introducing the state‐of‐the‐art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low‐temperature electrolytes with particular emphasis on mechanism analysis and practical application. Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub-zero Celsius operation, especially below -20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low-temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low-temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low-temperature electrolytes in the past 40 years (1983-2022), followed by a comprehensive summary of the research progress as well as introducing the state-of-the-art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low-temperature electrolytes with particular emphasis on mechanism analysis and practical application. Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub-zero Celsius operation, especially below -20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low-temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low-temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low-temperature electrolytes in the past 40 years (1983-2022), followed by a comprehensive summary of the research progress as well as introducing the state-of-the-art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low-temperature electrolytes with particular emphasis on mechanism analysis and practical application.Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub-zero Celsius operation, especially below -20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low-temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low-temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low-temperature electrolytes in the past 40 years (1983-2022), followed by a comprehensive summary of the research progress as well as introducing the state-of-the-art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low-temperature electrolytes with particular emphasis on mechanism analysis and practical application. |
Author | Yao, Yu‐Xing Jin, Cheng‐Bin Zhang, Qiang Sun, Shuo Yao, Nan Li, Zeheng Yan, Chong |
Author_xml | – sequence: 1 givenname: Zeheng surname: Li fullname: Li, Zeheng organization: Tsinghua University – sequence: 2 givenname: Yu‐Xing surname: Yao fullname: Yao, Yu‐Xing organization: Tsinghua University – sequence: 3 givenname: Shuo surname: Sun fullname: Sun, Shuo organization: Tsinghua University – sequence: 4 givenname: Cheng‐Bin surname: Jin fullname: Jin, Cheng‐Bin organization: Tsinghua University – sequence: 5 givenname: Nan surname: Yao fullname: Yao, Nan organization: Tsinghua University – sequence: 6 givenname: Chong surname: Yan fullname: Yan, Chong email: yanc@bit.edu.cn organization: Beijing Institute of Technology – sequence: 7 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37186770$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhq0KVD7aa48oEpdestieJHaOgJYPaaFSRQ89WbYzAaMk3tqO0N76E_iN_BKyWigSUsVp5vA8r0bz7pGtwQ9IyDdGZ4xSfqQHhzNOOVCQUn4iu6zkLAchYGvaC4BcyJLtkL0Y7ydeSlp9JjsgmKyEoLvkqqDZb9QhZr7NFv7h6e_jDfZLDDqNAbN5hzYF360Sxqz1IfuJ9k6HW9Smw2zh0p0b--xEp4TBYfxCtlvdRfz6MvfJr7P5zelFvvhxfnl6vMgtCJC5kVJLThtmdWtaxtva2kpAZUprWl0BZ9RIXleCVdBwAG1qA01jtWhEyaCAffJ9k7sM_s-IManeRYtdpwf0Y1RcsqLkNSv4hB6-Q-_9GIbpuomq2IQUch148EKNpsdGLYPrdVip10dNQLEBbPAxBmyVdUkn54cUtOsUo2rdh1r3of71MWmzd9pr8n-FeiM8uA5XH9Dq-Ppy_uY-A5SBnQ8 |
CitedBy_id | crossref_primary_10_1002_chem_202303683 crossref_primary_10_1002_anie_202416506 crossref_primary_10_1007_s10008_024_05884_9 crossref_primary_10_1007_s40820_023_01245_9 crossref_primary_10_1039_D4EE04306E crossref_primary_10_3390_ijms25052884 crossref_primary_10_1021_jacs_3c11134 crossref_primary_10_1039_D3EE03809B crossref_primary_10_1002_anie_202407075 crossref_primary_10_1088_2515_7655_ad3fe8 crossref_primary_10_1021_jacs_4c10187 crossref_primary_10_1002_anie_202409409 crossref_primary_10_1002_aenm_202402109 crossref_primary_10_1021_acs_energyfuels_4c06075 crossref_primary_10_1038_s41467_024_50455_1 crossref_primary_10_1002_aenm_202404120 crossref_primary_10_1021_acs_nanolett_4c01591 crossref_primary_10_1002_batt_202400052 crossref_primary_10_1021_acs_iecr_4c03843 crossref_primary_10_1002_adfm_202406215 crossref_primary_10_1002_anie_202414613 crossref_primary_10_1002_adma_202409272 crossref_primary_10_1021_jacs_4c16076 crossref_primary_10_1002_ange_202407075 crossref_primary_10_1002_adfm_202400996 crossref_primary_10_1039_D4EE03192J crossref_primary_10_1002_smll_202401200 crossref_primary_10_1002_celc_202300759 crossref_primary_10_1021_acsenergylett_4c00113 crossref_primary_10_1002_ange_202409409 crossref_primary_10_1002_aenm_202401526 crossref_primary_10_1021_acssuschemeng_4c06966 crossref_primary_10_1021_acsami_4c03149 crossref_primary_10_1002_adfm_202402182 crossref_primary_10_1002_aenm_202304502 crossref_primary_10_1002_aenm_202403183 crossref_primary_10_1007_s10008_025_06201_8 crossref_primary_10_1002_aenm_202404391 crossref_primary_10_1021_acs_chemrev_3c00728 crossref_primary_10_1021_jacs_4c07941 crossref_primary_10_1002_adfm_202421687 crossref_primary_10_1002_adfm_202403616 crossref_primary_10_1021_acs_energyfuels_4c02174 crossref_primary_10_1002_adma_202417981 crossref_primary_10_1002_ange_202416506 crossref_primary_10_1039_D3QM00759F crossref_primary_10_1039_D4EE02060J crossref_primary_10_1039_D3CS00551H crossref_primary_10_1002_smtd_202401580 crossref_primary_10_1007_s40820_024_01607_x crossref_primary_10_1021_acsami_3c17742 crossref_primary_10_26599_EMD_2023_9370003 crossref_primary_10_1002_smll_202311044 crossref_primary_10_1039_D4TA05871B crossref_primary_10_1002_smll_202401345 crossref_primary_10_1002_adfm_202419275 crossref_primary_10_1002_adfm_202400337 crossref_primary_10_1021_acsami_4c13009 crossref_primary_10_1088_0256_307X_40_8_086101 crossref_primary_10_1039_D4EB00034J crossref_primary_10_1002_adfm_202408465 crossref_primary_10_1002_adfm_202414652 crossref_primary_10_1002_ange_202414613 crossref_primary_10_1016_j_cej_2024_153347 crossref_primary_10_1002_smtd_202400183 crossref_primary_10_1039_D4EB00022F crossref_primary_10_1039_D4TA02290D crossref_primary_10_1002_adfm_202315498 crossref_primary_10_1002_smll_202312091 |
Cites_doi | 10.1016/j.ensm.2022.10.027 10.1021/acsami.5b05552 10.1021/acssuschemeng.9b02042 10.1021/acsenergylett.9b00381 10.1002/inf2.12000 10.31635/ccschem.020.202000341 10.1002/eom2.12200 10.1016/j.jpowsour.2012.05.114 10.1016/S0378-7753(01)00536-5 10.4028/www.scientific.net/MSF.91-93.647 10.1021/acsenergylett.1c01528 10.1002/adma.201903852 10.1002/aenm.202001972 10.1021/acs.chemrev.7b00115 10.1021/acsami.1c23934 10.1002/anie.202009738 10.1021/acsenergylett.0c00643 10.1149/2.1291610jes 10.1149/1.1353568 10.1149/1945-7111/ac5ba9 10.1039/D0CC04049E 10.1039/D0EE01446J 10.1016/j.matt.2022.01.011 10.1039/D1EE03292E 10.1016/j.coelec.2022.100949 10.1002/sus2.37 10.1016/0013-4686(92)80109-Y 10.1021/acsenergylett.1c00484 10.1039/C7TA05743A 10.1039/C7CS00858A 10.1021/acsaem.0c00130 10.1038/natrevmats.2016.13 10.1149/2.0711614jes 10.1016/S0378-7753(03)00153-8 10.1149/1.2042907 10.1016/j.jpowsour.2019.227080 10.1039/C5SC01398D 10.1149/1.1394077 10.1016/j.jpowsour.2006.10.038 10.23919/IEN.2022.0003 10.1002/adma.201800561 10.1002/anie.202011482 10.1002/aenm.201800802 10.1039/C7GC00252A 10.1002/anie.201908913 10.1149/1945-7111/ab6bc2 10.1002/adma.202107787 10.1016/S0378-7753(00)00367-0 10.1002/anie.202207927 10.1016/j.jpowsour.2016.04.017 10.34133/2021/1205324 10.1002/adma.201905879 10.1149/1.1763141 10.1016/j.electacta.2016.12.071 10.1038/s41557-021-00787-y 10.1002/aenm.202202432 10.1016/j.etran.2019.100011 10.1149/2.0591607jes 10.1016/j.jpowsour.2018.02.063 10.1038/s41560-019-0474-3 10.1016/j.electacta.2014.12.084 10.1002/anie.201900266 10.1002/anie.202210365 10.1038/s41560-019-0405-3 10.1038/s43017-021-00244-x 10.1021/acsami.5b12517 10.1021/acs.jpcc.8b05193 10.1016/j.jpowsour.2005.11.042 10.1149/1.1453407 10.1002/aesr.202100039 10.1002/aenm.201902654 10.1149/2.0141514jes 10.1149/2.023406jes 10.1007/s12039-009-0039-2 10.1016/S0378-7753(97)02545-7 10.1039/c2cs35178a 10.1016/j.esci.2021.12.003 10.1016/j.joule.2019.02.004 10.1021/acs.accounts.1c00420 10.1002/sstr.202000122 10.1016/j.jechem.2021.12.038 10.1149/1.2793578 10.1016/S0378-7753(03)00266-0 10.1002/aenm.202201197 10.1038/s41560-020-0601-1 10.1021/acs.chemrev.9b00535 10.1002/adfm.202206615 10.1016/j.jechem.2021.09.039 10.1016/j.electacta.2012.04.085 10.1016/j.nanoen.2015.03.042 10.1016/j.electacta.2010.04.041 10.1016/j.joule.2019.06.008 10.1021/acs.chemrev.9b00531 10.1002/aenm.201802624 10.1021/cm200679y 10.1021/acs.accounts.0c00360 10.1016/j.jpowsour.2019.05.024 10.1002/aenm.202202518 10.1016/j.jpowsour.2006.06.053 10.1016/j.jechem.2021.10.016 10.1002/adma.202107899 10.1039/C9CC04495G 10.1149/1.2938911 10.1021/acsami.9b03821 10.1002/anie.202200506 10.1016/j.jallcom.2021.159966 10.1016/j.jpowsour.2012.11.013 10.1016/j.jfluchem.2013.08.015 10.1149/1.1391630 10.1039/D1EE01789F 10.1016/j.joule.2022.05.005 10.1002/advs.202201893 10.1016/j.nanoen.2020.105430 10.1016/j.jpowsour.2016.08.015 10.1149/1.2069509 10.1016/j.electacta.2012.02.035 10.1016/j.electacta.2003.10.016 10.1149/2.0851709jes 10.1016/j.joule.2019.08.018 10.1016/S0378-7753(02)00272-0 10.1016/j.jpowsour.2020.229312 10.1016/j.scitotenv.2022.153839 10.1016/j.electacta.2004.05.038 10.1016/j.molliq.2010.04.025 10.1016/j.electacta.2020.136652 10.1126/science.aab1595 10.1149/2.0641503jes 10.1039/C6RA19482F 10.1002/anie.202208345 10.1002/adma.201903790 10.1002/sstr.202000010 10.1021/acsenergylett.2c01408 10.1016/j.electacta.2013.01.011 10.1016/0378-7753(91)85023-P 10.1149/1.3501236 10.1080/24701556.2020.1862214 10.1021/acsaem.1c00177 10.1016/j.jpowsour.2016.06.008 10.1149/1.2086855 10.1016/j.jpowsour.2005.12.061 10.1149/1.1545452 10.1016/0378-7753(91)80004-H 10.1016/j.jechem.2020.02.052 10.1016/S0167-2738(02)00526-X 10.1149/2.0601506jes 10.1002/aenm.202003905 10.1038/s41560-022-01051-4 10.1016/0378-7753(83)87024-4 10.1149/2.0051609jes 10.1039/c3ta13067c 10.1002/adfm.201605989 10.1021/jacs.9b05029 10.1016/j.electacta.2018.05.047 10.1002/adfm.202106811 10.1002/anie.201906494 10.1002/adfm.201704808 10.1038/s41467-021-23603-0 10.1016/j.jpowsour.2016.12.032 10.1016/j.ensm.2020.12.024 10.1002/anie.201912167 10.1149/1.1837495 10.1016/S0378-7753(99)00434-6 10.1149/1.3073552 10.1021/acs.jpcb.8b08815 10.1149/1.1393419 10.1016/j.jpowsour.2015.09.056 10.1002/aenm.201901152 10.1039/c3ta01182h 10.1149/1.2108650 10.1002/aenm.201703320 10.1002/aenm.202101775 10.1021/cr030203g 10.1016/j.electacta.2018.09.077 10.1021/am405973x 10.1002/aenm.201700418 10.1021/acsami.1c05894 10.1366/0003702991945858 10.1039/c2cc31712e 10.1039/C6EE01674J 10.1149/1.1812732 10.1039/C6CP04766A 10.1002/adfm.202001619 10.1007/s11581-014-1275-0 10.1126/science.264.5162.1115 10.1016/j.eng.2021.12.018 10.1016/j.chempr.2018.05.002 10.1021/jp506567p 10.1021/acsami.9b12020 10.1016/j.ensm.2020.06.027 10.1149/1.1392577 10.1002/adma.201908293 10.1126/science.aal4263 10.1016/j.joule.2018.01.017 10.1016/j.electacta.2018.02.151 10.1016/j.elecom.2015.10.013 10.1021/acsami.7b04099 10.1002/sus2.4 10.1016/S0378-7753(01)00670-X 10.1021/acsami.1c09667 10.1016/j.ensm.2021.08.002 10.1021/acsami.7b13887 10.1149/1945-7111/abd60e 10.1016/S1388-2481(02)00490-3 10.1021/acsaem.8b00355 10.1002/anie.202205967 10.1016/S1388-2481(99)00023-5 10.1002/eem2.12536 10.1016/j.jpowsour.2010.12.040 10.1002/anie.201809203 10.1016/j.jpowsour.2019.01.085 10.1016/j.electacta.2014.05.054 10.1038/s41560-020-0647-0 10.1016/j.ensm.2019.02.016 10.1002/adma.202206448 10.1002/adfm.202108449 10.1016/j.jpowsour.2007.10.084 10.1016/0378-7753(85)88029-0 10.1149/1.2220987 10.1016/j.elecom.2006.06.016 10.1038/s41467-020-16259-9 10.20964/2020.09.50 10.1016/j.jpowsour.2006.07.074 10.1016/j.jallcom.2022.164163 10.1016/j.electacta.2004.01.090 10.1002/advs.202000196 10.1021/acsmaterialslett.9b00043 10.1016/j.jiec.2016.03.045 10.1021/cr500003w 10.1002/jps.2600550822 10.1016/j.jechem.2020.11.016 10.1021/acsami.9b07827 10.1002/anie.202210859 10.1021/cm901452z 10.1002/chem.202102024 10.1039/C9CS00728H 10.1149/1945-7111/ac5a19 10.1016/j.jpowsour.2008.09.088 10.1021/jp804097j 10.1016/j.electacta.2016.10.037 10.1002/advs.202101646 10.1016/j.cej.2021.130253 10.1002/adma.202208340 10.1016/j.jpowsour.2021.229668 10.1016/j.electacta.2006.03.016 10.1002/adma.201706375 10.1149/1.1391633 10.1002/anie.202108397 10.1016/j.etran.2021.100145 10.1016/j.jelechem.2019.05.023 10.1149/1.2409866 10.1038/s41560-021-00783-z 10.1021/acs.chemrev.1c00904 10.1149/1.1774973 10.1016/S0378-7753(03)00154-X 10.1063/1.2204959 10.1039/D1EE01678D 10.1016/j.ensm.2019.04.033 10.1016/S0378-7753(02)00618-3 10.1002/anie.202102593 10.1021/acsenergylett.1c00647 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202303888 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 37186770 10_1002_anie_202303888 ANIE202303888 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Key Research and Development Program funderid: 2021YFB2500300 – fundername: Shanxi key research and development program funderid: 202102060301011 – fundername: National Natural Science Foundation of China funderid: 22005172, 22109083, and 21825501 – fundername: National Key Research and Development Program grantid: 2021YFB2500300 – fundername: National Natural Science Foundation of China grantid: 22005172, 22109083, and 21825501 – fundername: Shanxi key research and development program grantid: 202102060301011 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3738-b88a820d1cafbf12f9cc6736b5cbfa63210b82967163d233ab9b3ddca7d751343 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:47:28 EDT 2025 Sun Jul 13 04:35:06 EDT 2025 Wed Feb 19 02:24:10 EST 2025 Thu Apr 24 23:00:07 EDT 2025 Tue Jul 01 01:47:12 EDT 2025 Wed Jan 22 16:18:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | Ion-Solvent Complex Solid Electrolyte Interphase Organic Electrolyte Rechargeable Lithium Batteries Low-Temperature Kinetic Behaviour |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-b88a820d1cafbf12f9cc6736b5cbfa63210b82967163d233ab9b3ddca7d751343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3929-1541 |
PMID | 37186770 |
PQID | 2861142484 |
PQPubID | 946352 |
PageCount | 33 |
ParticipantIDs | proquest_miscellaneous_2814529142 proquest_journals_2861142484 pubmed_primary_37186770 crossref_citationtrail_10_1002_anie_202303888 crossref_primary_10_1002_anie_202303888 wiley_primary_10_1002_anie_202303888_ANIE202303888 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 11, 2023 |
PublicationDateYYYYMMDD | 2023-09-11 |
PublicationDate_xml | – month: 09 year: 2023 text: September 11, 2023 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 11 2004; 7 2003; 150 2020; 15 2020; 13 2019; 846 2020; 167 2020; 11 2020; 10 2016; 37 2001; 148 2021; 79 1994; 264 2016; 318 2019; 22 2019; 23 1999; 53 2017; 164 2008; 112 2022; 169 2021; 42 2019; 31 2004; 49 2021; 423 2016; 328 2007; 165 2013; 227 2013; 91 1992; 37 2016; 324 2020; 32 2016; 18 2015; 350 2016; 6 2021; 59 2021; 54 2004; 50 2016; 1 2022; 3 2020; 31 2022; 4 2020; 30 2022; 5 2022; 6 2007; 154 2022; 7 2022; 9 1992; 139 2009; 189 2022; 1 2012; 48 2021; 60 2016; 8 2016; 9 2012; 41 2010; 55 2023; 35 2002; 110 2020; 120 2019; 55 2019; 58 2020; 59 2016; 221 2020; 56 2021; 484 2017; 356 2017; 117 2020; 7 1992; 91 2020; 5 2020; 3 2020; 1 2020; 53 2010; 157 2010; 154 2020; 49 2014; 161 2014; 6 2012; 217 2015; 162 2021; 8 2021; 6 2015; 6 2021; 4 2005; 152 2021; 3 2021; 2 1991; 34 1991; 35 2017; 27 1997; 69 1993; 140 1999; 146 2021; 1 2006; 159 2015; 7 2023 2000; 147 2015; 154 2019 2017; 19 2019; 416 2020; 354 2017; 342 2017; 224 2018; 57 2013; 1 2021; 168 2006; 35 2002; 154 2015; 300 2000; 87 2000; 88 1983; 9 2011; 196 2018; 290 1966; 55 2019; 441 2014; 136 2018; 47 2010; 22 2018; 8 2018; 2 2018; 4 2018; 1 1997; 144 2022; 34 2009; 121 2006; 163 2006; 162 2002; 149 2018; 30 2022; 32 2022; 33 2007; 3 2019; 430 2021; 2021 1985; 14 2019; 7 2018; 28 2019; 9 2019; 4 2019; 3 2006; 51 2019; 1 2002; 4 2016; 163 2015; 61 2004; 151 2022; 12 2022; 14 2022; 15 2022; 905 2021; 493 2022; 11 2017; 5 2021; 27 2017; 7 2018; 122 2003; 119 1986; 133 2022; 67 2022; 68 2009; 156 2003; 115 2017; 9 2022; 122 2021; 36 1990; 137 2021; 876 2013; 156 2011; 23 2001; 97 2018; 384 2015; 13 2014; 118 2012; 82 2004; 104 2018; 269 2006; 8 2008; 11 1999; 1 2019; 141 2014; 114 2012; 74 2021; 14 2021; 13 2021; 12 2021; 11 2022; 61 2018; 278 2015; 21 2022; 52 2022; 825 2022; 54 2008; 177 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_223_1 e_1_2_11_246_1 e_1_2_11_269_1 e_1_2_11_200_2 e_1_2_11_186_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_261_1 e_1_2_11_284_1 e_1_2_11_125_2 e_1_2_11_4_1 e_1_2_11_148_1 e_1_2_11_29_2 e_1_2_11_102_1 e_1_2_11_163_1 e_1_2_11_140_1 e_1_2_11_211_1 e_1_2_11_257_1 e_1_2_11_81_1 e_1_2_11_234_1 e_1_2_11_66_2 e_1_2_11_197_2 e_1_2_11_295_1 e_1_2_11_20_1 e_1_2_11_89_1 e_1_2_11_272_2 e_1_2_11_43_1 e_1_2_11_17_2 e_1_2_11_159_2 e_1_2_11_136_1 e_1_2_11_113_1 e_1_2_11_174_2 e_1_2_11_208_1 e_1_2_11_151_1 e_1_2_11_247_1 e_1_2_11_92_1 e_1_2_11_201_2 e_1_2_11_224_1 e_1_2_11_187_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_285_1 e_1_2_11_262_1 e_1_2_11_54_1 e_1_2_11_28_2 e_1_2_11_103_1 e_1_2_11_149_1 e_1_2_11_5_2 e_1_2_11_126_2 e_1_2_11_141_1 e_1_2_11_164_1 e_1_2_11_190_1 e_1_2_11_235_1 e_1_2_11_258_1 e_1_2_11_80_1 e_1_2_11_212_2 e_1_2_11_198_2 e_1_2_11_250_1 e_1_2_11_88_1 e_1_2_11_273_2 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_16_2 e_1_2_11_114_1 Dharavath R. (e_1_2_11_181_1) 2019 e_1_2_11_137_1 e_1_2_11_39_1 e_1_2_11_152_1 e_1_2_11_175_1 e_1_2_11_209_1 e_1_2_11_180_1 e_1_2_11_248_1 e_1_2_11_263_2 e_1_2_11_202_1 e_1_2_11_225_1 e_1_2_11_188_1 e_1_2_11_57_2 e_1_2_11_240_2 e_1_2_11_72_2 e_1_2_11_11_2 e_1_2_11_34_1 e_1_2_11_95_1 e_1_2_11_104_1 e_1_2_11_127_2 e_1_2_11_2_2 e_1_2_11_165_1 e_1_2_11_142_1 e_1_2_11_83_1 e_1_2_11_191_1 e_1_2_11_236_1 e_1_2_11_60_1 e_1_2_11_259_1 e_1_2_11_213_2 e_1_2_11_45_1 e_1_2_11_199_1 e_1_2_11_251_1 e_1_2_11_274_1 e_1_2_11_68_1 e_1_2_11_22_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_19_1 e_1_2_11_176_1 e_1_2_11_153_1 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_71_2 e_1_2_11_249_1 e_1_2_11_264_2 e_1_2_11_287_2 e_1_2_11_226_1 e_1_2_11_203_1 e_1_2_11_56_2 e_1_2_11_189_1 e_1_2_11_79_1 e_1_2_11_10_2 e_1_2_11_33_1 e_1_2_11_105_1 e_1_2_11_128_1 Fan H. (e_1_2_11_286_2) 2021; 13 e_1_2_11_3_2 e_1_2_11_120_2 e_1_2_11_143_1 e_1_2_11_166_1 e_1_2_11_238_2 e_1_2_11_82_1 e_1_2_11_192_1 e_1_2_11_237_2 e_1_2_11_275_1 e_1_2_11_214_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_252_1 e_1_2_11_67_2 e_1_2_11_290_2 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_177_2 e_1_2_11_18_2 e_1_2_11_154_2 e_1_2_11_131_1 e_1_2_11_182_1 e_1_2_11_204_1 e_1_2_11_227_1 e_1_2_11_242_1 e_1_2_11_265_1 e_1_2_11_288_1 e_1_2_11_36_1 e_1_2_11_13_2 e_1_2_11_51_1 e_1_2_11_97_1 e_1_2_11_118_2 e_1_2_11_280_2 e_1_2_11_74_2 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_121_2 e_1_2_11_167_1 e_1_2_11_144_1 e_1_2_11_216_2 e_1_2_11_239_1 e_1_2_11_193_1 e_1_2_11_276_1 e_1_2_11_215_1 e_1_2_11_253_1 e_1_2_11_47_1 e_1_2_11_230_1 e_1_2_11_85_2 e_1_2_11_291_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_117_1 e_1_2_11_59_1 e_1_2_11_155_2 e_1_2_11_178_2 e_1_2_11_132_1 Sreekanth T. V. M. (e_1_2_11_241_2) 2022; 52 e_1_2_11_170_1 e_1_2_11_289_2 e_1_2_11_50_1 e_1_2_11_220_1 e_1_2_11_183_1 e_1_2_11_205_1 e_1_2_11_243_1 e_1_2_11_266_2 e_1_2_11_58_1 e_1_2_11_73_2 e_1_2_11_12_2 e_1_2_11_35_1 e_1_2_11_281_1 e_1_2_11_96_1 e_1_2_11_119_2 e_1_2_11_145_1 e_1_2_11_168_1 e_1_2_11_1_1 e_1_2_11_122_2 e_1_2_11_217_2 e_1_2_11_160_1 e_1_2_11_61_1 e_1_2_11_194_1 e_1_2_11_254_1 e_1_2_11_231_2 e_1_2_11_277_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_292_2 e_1_2_11_107_1 e_1_2_11_9_2 e_1_2_11_23_1 e_1_2_11_84_1 e_1_2_11_156_1 e_1_2_11_179_1 e_1_2_11_110_1 e_1_2_11_133_1 e_1_2_11_228_1 e_1_2_11_171_1 e_1_2_11_267_2 e_1_2_11_91_1 e_1_2_11_221_1 e_1_2_11_184_2 e_1_2_11_244_1 e_1_2_11_76_2 e_1_2_11_30_1 e_1_2_11_99_1 e_1_2_11_282_1 e_1_2_11_53_1 e_1_2_11_6_2 e_1_2_11_27_2 e_1_2_11_169_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 e_1_2_11_218_1 e_1_2_11_161_1 e_1_2_11_195_1 e_1_2_11_278_1 e_1_2_11_232_2 e_1_2_11_255_1 e_1_2_11_293_2 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_270_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 e_1_2_11_229_1 e_1_2_11_172_1 e_1_2_11_206_2 e_1_2_11_222_1 e_1_2_11_268_1 e_1_2_11_90_1 e_1_2_11_185_2 e_1_2_11_245_1 e_1_2_11_260_1 e_1_2_11_283_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_75_2 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_219_1 e_1_2_11_162_1 e_1_2_11_210_1 e_1_2_11_279_2 e_1_2_11_196_1 e_1_2_11_233_1 e_1_2_11_256_1 e_1_2_11_271_1 e_1_2_11_294_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_2 e_1_2_11_109_1 e_1_2_11_7_2 e_1_2_11_158_2 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_112_1 e_1_2_11_207_2 e_1_2_11_173_2 e_1_2_11_150_1 |
References_xml | – volume: 9 start-page: 239 year: 1983 end-page: 245 publication-title: J. Power Sources – volume: 430 start-page: 74 year: 2019 end-page: 79 publication-title: J. Power Sources – volume: 55 start-page: 5204 year: 2010 end-page: 5209 publication-title: Electrochim. Acta – volume: 4 start-page: 882 year: 2019 end-page: 890 publication-title: Nat. Energy – volume: 56 start-page: 9640 year: 2020 end-page: 9643 publication-title: Chem. Commun. – volume: 35 start-page: 1475 year: 2006 end-page: 1517 publication-title: J. Phys. Chem. Ref. Data – volume: 876 year: 2021 publication-title: J. Alloys Compd. – volume: 11 start-page: 21496 year: 2019 end-page: 21505 publication-title: ACS Appl. Mater. Interfaces – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 141 start-page: 9422 year: 2019 end-page: 9429 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 4882 year: 2021 end-page: 4889 publication-title: Energy Environ. Sci. – volume: 1 start-page: 12954 year: 2013 end-page: 12961 publication-title: J. Mater. Chem. A – volume: 154 start-page: 227 year: 2015 end-page: 234 publication-title: Electrochim. Acta – volume: 290 start-page: 568 year: 2018 end-page: 576 publication-title: Electrochim. Acta – volume: 1 year: 2019 publication-title: eTransportation – volume: 150 start-page: A306 year: 2003 end-page: A311 publication-title: J. Electrochem. Soc. – volume: 217 start-page: 503 year: 2012 end-page: 508 publication-title: J. Power Sources – volume: 146 start-page: 3963 year: 1999 end-page: 3969 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 18826 year: 2017 end-page: 18835 publication-title: ACS Appl. Mater. Interfaces – volume: 36 start-page: 222 year: 2021 end-page: 228 publication-title: Energy Storage Mater. – volume: 120 start-page: 6783 year: 2020 end-page: 6819 publication-title: Chem. Rev. – volume: 159 start-page: 702 year: 2006 end-page: 707 publication-title: J. Power Sources – volume: 162 start-page: 690 year: 2006 end-page: 695 publication-title: J. Power Sources – volume: 58 start-page: 16994 year: 2019 end-page: 16999 publication-title: Angew. Chem. Int. Ed. – volume: 269 start-page: 378 year: 2018 end-page: 387 publication-title: Electrochim. Acta – volume: 162 start-page: A413 year: 2015 end-page: A420 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 506 year: 2021 end-page: 536 publication-title: SusMat – volume: 162 start-page: A2529 year: 2015 publication-title: J. Electrochem. Soc. – volume: 15 start-page: 550 year: 2022 end-page: 578 publication-title: Energy Environ. Sci. – volume: 5 start-page: 386 year: 2020 end-page: 397 publication-title: Nat. Energy – volume: 121 start-page: 339 year: 2009 end-page: 346 publication-title: J. Chem. Sci. – volume: 3 start-page: 141 year: 2022 end-page: 155 publication-title: Nat. Rev. Earth Environ. – volume: 60 start-page: 13007 year: 2021 end-page: 13012 publication-title: Angew. Chem. Int. Ed. – volume: 119 start-page: 359 year: 2003 end-page: 367 publication-title: J. Power Sources – volume: 18 start-page: 25458 year: 2016 end-page: 25464 publication-title: Phys. Chem. Chem. Phys. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 169 year: 2022 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 928 year: 2002 end-page: 932 publication-title: Electrochem. Commun. – volume: 416 start-page: 29 year: 2019 end-page: 36 publication-title: J. Power Sources – volume: 119 start-page: 349 year: 2003 end-page: 358 publication-title: J. Power Sources – volume: 119 start-page: 343 year: 2003 end-page: 348 publication-title: J. Power Sources – volume: 14 start-page: 179 year: 1985 end-page: 191 publication-title: J. Power Sources – volume: 87 start-page: 112 year: 2000 end-page: 117 publication-title: J. Power Sources – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 168 year: 2021 publication-title: J. Electrochem. Soc. – volume: 47 start-page: 2145 year: 2018 end-page: 2164 publication-title: Chem. Soc. Rev. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 4 start-page: 896 year: 2019 end-page: 902 publication-title: ACS Energy Lett. – volume: 264 start-page: 1115 year: 1994 end-page: 1118 publication-title: Science – volume: 484 year: 2021 publication-title: J. Power Sources – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 151 start-page: A1120 year: 2004 end-page: A1123 publication-title: J. Electrochem. Soc. – volume: 97 start-page: 592 year: 2001 end-page: 594 publication-title: J. Power Sources – volume: 58 start-page: 5623 year: 2019 end-page: 5627 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 1828 year: 2017 end-page: 1849 publication-title: Green Chem. – volume: 154 start-page: 303 year: 2002 end-page: 309 publication-title: Solid State Ionics – volume: 60 start-page: 4090 year: 2021 end-page: 4097 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 6 year: 2019 end-page: 32 publication-title: InfoMat – volume: 54 start-page: 339 year: 2022 end-page: 365 publication-title: Energy Storage Mater. – volume: 162 start-page: A928 year: 2015 publication-title: J. Electrochem. Soc. – volume: 161 start-page: A875 year: 2014 end-page: A879 publication-title: J. Electrochem. Soc. – volume: 324 start-page: 704 year: 2016 end-page: 711 publication-title: J. Power Sources – volume: 356 year: 2017 publication-title: Science – volume: 133 start-page: 661 year: 1986 end-page: 666 publication-title: J. Electrochem. Soc. – volume: 67 start-page: 255 year: 2022 end-page: 262 publication-title: J. Energy Chem. – volume: 54 start-page: 3883 year: 2021 end-page: 3894 publication-title: Acc. Chem. Res. – volume: 146 start-page: 486 year: 1999 end-page: 492 publication-title: J. Electrochem. Soc. – volume: 104 start-page: 4303 year: 2004 end-page: 4417 publication-title: Chem. Rev. – volume: 6 start-page: 1172 year: 2022 end-page: 1198 publication-title: Joule – volume: 4 start-page: 1877 year: 2018 end-page: 1892 publication-title: Chem – volume: 300 start-page: 29 year: 2015 end-page: 40 publication-title: J. Power Sources – volume: 8 start-page: 5715 year: 2016 end-page: 5722 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 3170 year: 2021 end-page: 3179 publication-title: ACS Energy Lett. – volume: 4 start-page: 540 year: 2019 end-page: 550 publication-title: Nat. Energy – volume: 21 start-page: 901 year: 2015 end-page: 907 publication-title: Ionics – volume: 164 start-page: A1873 year: 2017 end-page: A1880 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 303 year: 2021 end-page: 313 publication-title: Nat. Energy – volume: 6 start-page: 2016 year: 2021 end-page: 2023 publication-title: ACS Energy Lett. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 224 start-page: 186 year: 2017 end-page: 193 publication-title: Electrochim. Acta – volume: 23 start-page: 2979 year: 2011 end-page: 2986 publication-title: Chem. Mater. – volume: 50 start-page: 247 year: 2004 end-page: 254 publication-title: Electrochim. Acta – volume: 68 start-page: 752 year: 2022 end-page: 761 publication-title: J. Energy Chem. – volume: 120 start-page: 7020 year: 2020 end-page: 7063 publication-title: Chem. Rev. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 37 start-page: 325 year: 2016 end-page: 329 publication-title: J. Ind. Eng. Chem. – volume: 384 start-page: 107 year: 2018 end-page: 124 publication-title: J. Power Sources – volume: 69 start-page: 41 year: 1997 end-page: 45 publication-title: J. Power Sources – volume: 22 start-page: 323 year: 2019 end-page: 329 publication-title: Energy Storage Mater. – volume: 278 start-page: 279 year: 2018 end-page: 289 publication-title: Electrochim. Acta – volume: 137 start-page: 2009 year: 1990 publication-title: J. Electrochem. Soc. – volume: 41 start-page: 7108 year: 2012 end-page: 7146 publication-title: Chem. Soc. Rev. – volume: 144 start-page: 823 year: 1997 end-page: 829 publication-title: J. Electrochem. Soc. – volume: 328 start-page: 124 year: 2016 end-page: 135 publication-title: J. Power Sources – volume: 13 start-page: 24995 year: 2021 end-page: 25001 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 3395 year: 2021 publication-title: Nat. Commun. – volume: 163 start-page: A2407 year: 2016 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 88683 year: 2016 end-page: 88700 publication-title: RSC Adv. – volume: 146 start-page: 470 year: 1999 end-page: 472 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 3659 year: 2013 end-page: 3666 publication-title: J. Mater. Chem. A – volume: 7 start-page: A273 year: 2004 publication-title: Electrochem. Solid-State Lett. – volume: 117 start-page: 10403 year: 2017 end-page: 10473 publication-title: Chem. Rev. – volume: 7 start-page: 14531 year: 2019 end-page: 14538 publication-title: ACS Sustainable Chem. Eng. – volume: 342 start-page: 17 year: 2017 end-page: 23 publication-title: J. Power Sources – volume: 3 start-page: 3653 year: 2020 end-page: 3664 publication-title: ACS Appl. Energy Mater. – volume: 4 start-page: 3777 year: 2021 end-page: 3784 publication-title: ACS Appl. Energy Mater. – volume: 196 start-page: 3623 year: 2011 end-page: 3632 publication-title: J. Power Sources – volume: 7 start-page: 3545 year: 2022 end-page: 3556 publication-title: ACS Energy Lett. – volume: 55 start-page: 12032 year: 2019 end-page: 12035 publication-title: Chem. Commun. – volume: 37 start-page: 1551 year: 1992 end-page: 1554 publication-title: Electrochim. Acta – volume: 58 start-page: 18892 year: 2019 end-page: 18897 publication-title: Angew. Chem. Int. Ed. – volume: 59 start-page: 306 year: 2021 end-page: 319 publication-title: J. Energy Chem. – volume: 49 start-page: 4857 year: 2004 end-page: 4863 publication-title: Electrochim. Acta – volume: 61 start-page: 121 year: 2015 end-page: 124 publication-title: Electrochem. Commun. – volume: 5 start-page: 578 year: 2020 end-page: 586 publication-title: Nat. Energy – volume: 55 start-page: 851 year: 1966 end-page: 853 publication-title: J. Pharm. Sci. – volume: 11 year: 2022 publication-title: eTransportation – volume: 27 start-page: 15842 year: 2021 end-page: 15865 publication-title: Chem. Eur. J. – volume: 3 start-page: 2322 year: 2019 end-page: 2333 publication-title: Joule – volume: 9 start-page: 3221 year: 2016 end-page: 3229 publication-title: Energy Environ. Sci. – volume: 6 start-page: 4306 year: 2015 end-page: 4310 publication-title: Chem. Sci. – volume: 318 start-page: 170 year: 2016 end-page: 177 publication-title: J. Power Sources – volume: 163 start-page: A3010 year: 2016 publication-title: J. Electrochem. Soc. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 1 start-page: 2664 year: 2018 end-page: 2670 publication-title: ACS Appl. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 147 start-page: 4399 year: 2000 publication-title: J. Electrochem. Soc. – volume: 825 year: 2022 publication-title: Sci. Total Environ. – volume: 152 start-page: A2151 year: 2005 publication-title: J. Electrochem. Soc. – volume: 31 start-page: 382 year: 2020 end-page: 400 publication-title: Energy Storage Mater. – volume: 350 start-page: 938 year: 2015 end-page: 943 publication-title: Science – volume: 157 start-page: A1361 year: 2010 end-page: A1374 publication-title: J. Electrochem. Soc. – volume: 53 start-page: 1648 year: 2020 end-page: 1659 publication-title: Acc. Chem. Res. – volume: 3 start-page: 51 year: 2007 publication-title: ECS Trans. – volume: 4 year: 2022 publication-title: EcoMat – start-page: 1 year: 2019 end-page: 5 publication-title: Int. J. Electrochem. Sci. – volume: 51 start-page: 5567 year: 2006 end-page: 5580 publication-title: Electrochim. Acta – volume: 15 start-page: 1711 year: 2022 end-page: 1759 publication-title: Energy Environ. Sci. – volume: 53 start-page: 1470 year: 1999 end-page: 1474 publication-title: Appl. Spectrosc. – volume: 2021 year: 2021 publication-title: Energy Mater. Adv. – volume: 165 start-page: 535 year: 2007 end-page: 543 publication-title: J. Power Sources – volume: 5 start-page: 1438 year: 2020 end-page: 1447 publication-title: ACS Energy Lett. – volume: 52 start-page: 37 year: 2022 end-page: 41 publication-title: Inorg. Nano-Met. Chem. – volume: 189 start-page: 602 year: 2009 end-page: 606 publication-title: J. Power Sources – volume: 7 start-page: 20687 year: 2015 end-page: 20695 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 8638 year: 2020 end-page: 8661 publication-title: Int. J. Electrochem. Sci. – volume: 67 start-page: 209 year: 2022 end-page: 224 publication-title: J. Energy Chem. – volume: 2 start-page: 902 year: 2018 end-page: 913 publication-title: Joule – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 1061 year: 2021 end-page: 1069 publication-title: Nat. Chem. – volume: 163 start-page: A1232 year: 2016 publication-title: J. Electrochem. Soc. – volume: 35 start-page: 59 year: 1991 end-page: 82 publication-title: J. Power Sources – volume: 42 start-page: 477 year: 2021 end-page: 483 publication-title: Energy Storage Mater. – volume: 13 start-page: 574 year: 2021 end-page: 580 publication-title: ACS Appl. Mater. Interfaces – volume: 140 start-page: 3071 year: 1993 publication-title: J. Electrochem. Soc. – volume: 23 start-page: 383 year: 2019 end-page: 389 publication-title: Energy Storage Mater. – volume: 122 start-page: 10970 year: 2022 end-page: 11021 publication-title: Chem. Rev. – volume: 1 start-page: 38 year: 2021 end-page: 50 publication-title: SusMat – volume: 88 start-page: 192 year: 2000 end-page: 196 publication-title: J. Power Sources – volume: 74 start-page: 260 year: 2012 end-page: 266 publication-title: Electrochim. Acta – volume: 11 start-page: 38285 year: 2019 end-page: 38293 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 11910 year: 2022 end-page: 11918 publication-title: ACS Appl. Mater. Interfaces – volume: 163 start-page: A1798 year: 2016 end-page: A1804 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 72 year: 2022 end-page: 81 publication-title: iEnergy – volume: 118 start-page: 19661 year: 2014 end-page: 19671 publication-title: J. Phys. Chem. C – volume: 22 start-page: 587 year: 2010 end-page: 603 publication-title: Chem. Mater. – volume: 6 start-page: 4920 year: 2014 end-page: 4926 publication-title: ACS Appl. Mater. Interfaces – volume: 2 year: 2021 publication-title: Adv. Energy Sustainability Res. – volume: 79 year: 2021 publication-title: Nano Energy – volume: 177 start-page: 194 year: 2008 end-page: 198 publication-title: J. Power Sources – volume: 423 year: 2021 publication-title: Chem. Eng. J. – year: 2023 publication-title: Energy Environ. Mater. – volume: 33 year: 2022 publication-title: Curr. Opin. Electrochem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 11 start-page: 2499 year: 2020 publication-title: Nat. Commun. – volume: 5 start-page: 19982 year: 2017 end-page: 19990 publication-title: J. Mater. Chem. A – volume: 163 start-page: 201 year: 2006 end-page: 206 publication-title: J. Power Sources – volume: 136 start-page: 182 year: 2014 end-page: 188 publication-title: Electrochim. Acta – volume: 354 year: 2020 publication-title: Electrochim. Acta – volume: 14 start-page: 52 year: 2022 end-page: 63 publication-title: Engineering – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 493 year: 2021 publication-title: J. Power Sources – volume: 1 start-page: 163 year: 2021 end-page: 177 publication-title: eScience – volume: 112 start-page: 12985 year: 2008 end-page: 12990 publication-title: J. Phys. Chem. B – volume: 60 start-page: 3402 year: 2021 end-page: 3406 publication-title: Angew. Chem. Int. Ed. – volume: 82 start-page: 69 year: 2012 end-page: 74 publication-title: Electrochim. Acta – volume: 13 start-page: 40042 year: 2021 end-page: 40052 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 1423 year: 2006 end-page: 1428 publication-title: Electrochem. Commun. – volume: 905 year: 2022 publication-title: J. Alloys Compd. – volume: 115 start-page: 137 year: 2003 end-page: 140 publication-title: J. Power Sources – volume: 48 start-page: 7268 year: 2012 end-page: 7270 publication-title: Chem. Commun. – volume: 34 start-page: 51 year: 1991 end-page: 64 publication-title: J. Power Sources – volume: 846 year: 2019 publication-title: J. Electroanal. Chem. – volume: 1 year: 2020 publication-title: Small Struct. – volume: 6 start-page: 2054 year: 2021 end-page: 2063 publication-title: ACS Energy Lett. – volume: 1 start-page: 44 year: 2019 end-page: 51 publication-title: ACS Mater. Lett. – volume: 91 start-page: 647 year: 1992 end-page: 652 publication-title: Mater. Sci. Forum – volume: 151 start-page: A2106 year: 2004 publication-title: J. Electrochem. Soc. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 57 start-page: 16643 year: 2018 end-page: 16647 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1245 year: 2021 end-page: 1255 publication-title: CCS Chem. – volume: 156 start-page: 136 year: 2013 end-page: 143 publication-title: J. Fluorine Chem. – volume: 13 start-page: 546 year: 2015 end-page: 553 publication-title: Nano Energy – volume: 122 start-page: 12077 year: 2018 end-page: 12086 publication-title: J. Phys. Chem. B – volume: 110 start-page: 216 year: 2002 end-page: 221 publication-title: J. Power Sources – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 49 start-page: 1057 year: 2004 end-page: 1061 publication-title: Electrochim. Acta – volume: 11 start-page: 91 year: 2008 publication-title: ECS Trans. – volume: 122 start-page: 16624 year: 2018 end-page: 16629 publication-title: J. Phys. Chem. C – volume: 3 start-page: 1986 year: 2019 end-page: 2000 publication-title: Joule – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 60 start-page: 25624 year: 2021 end-page: 25638 publication-title: Angew. Chem. Int. Ed. – volume: 441 year: 2019 publication-title: J. Power Sources – volume: 3 start-page: 1094 year: 2019 end-page: 1105 publication-title: Joule – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 156 start-page: A272 year: 2009 end-page: A276 publication-title: J. Electrochem. Soc. – volume: 59 start-page: 3400 year: 2020 end-page: 3415 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 548 year: 2022 end-page: 559 publication-title: Nat. Energy – volume: 154 start-page: 131 year: 2010 end-page: 133 publication-title: J. Mol. Liq. – volume: 148 start-page: A299 year: 2001 end-page: A304 publication-title: J. Electrochem. Soc. – volume: 2 year: 2021 publication-title: Small Struct. – volume: 1 start-page: 16013 year: 2016 publication-title: Nat. Rev. Mater. – volume: 139 start-page: 1845 year: 1992 end-page: 1849 publication-title: J. Electrochem. Soc. – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 149 start-page: A361 year: 2002 end-page: A370 publication-title: J. Electrochem. Soc. – volume: 13 start-page: 2209 year: 2020 end-page: 2219 publication-title: Energy Environ. Sci. – volume: 154 start-page: A162 year: 2007 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 42761 year: 2017 end-page: 42768 publication-title: ACS Appl. Mater. Interfaces – volume: 162 start-page: 1379 year: 2006 end-page: 1394 publication-title: J. Power Sources – volume: 11 start-page: 27854 year: 2019 end-page: 27861 publication-title: ACS Appl. Mater. Interfaces – volume: 147 start-page: 1688 year: 2000 end-page: 1694 publication-title: J. Electrochem. Soc. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 1 start-page: 148 year: 1999 end-page: 150 publication-title: Electrochem. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 91 start-page: 282 year: 2013 end-page: 292 publication-title: Electrochim. Acta – volume: 5 start-page: 876 year: 2022 end-page: 898 publication-title: Matter – volume: 97 start-page: 576 year: 2001 end-page: 580 publication-title: J. Power Sources – volume: 49 start-page: 335 year: 2020 end-page: 338 publication-title: J. Energy Chem. – volume: 221 start-page: 107 year: 2016 end-page: 114 publication-title: Electrochim. Acta – volume: 49 start-page: 3806 year: 2020 end-page: 3833 publication-title: Chem. Soc. Rev. – volume: 227 start-page: 60 year: 2013 end-page: 64 publication-title: J. Power Sources – ident: e_1_2_11_37_1 doi: 10.1016/j.ensm.2022.10.027 – ident: e_1_2_11_224_1 doi: 10.1021/acsami.5b05552 – ident: e_1_2_11_260_1 doi: 10.1021/acssuschemeng.9b02042 – ident: e_1_2_11_226_1 doi: 10.1021/acsenergylett.9b00381 – ident: e_1_2_11_9_2 doi: 10.1002/inf2.12000 – ident: e_1_2_11_133_1 doi: 10.31635/ccschem.020.202000341 – ident: e_1_2_11_136_1 doi: 10.1002/eom2.12200 – ident: e_1_2_11_158_2 doi: 10.1016/j.jpowsour.2012.05.114 – ident: e_1_2_11_160_1 doi: 10.1016/S0378-7753(01)00536-5 – ident: e_1_2_11_263_2 doi: 10.4028/www.scientific.net/MSF.91-93.647 – ident: e_1_2_11_165_1 doi: 10.1021/acsenergylett.1c01528 – ident: e_1_2_11_272_2 doi: 10.1002/adma.201903852 – ident: e_1_2_11_20_1 doi: 10.1002/aenm.202001972 – ident: e_1_2_11_79_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_11_215_1 – ident: e_1_2_11_214_1 doi: 10.1021/acsami.1c23934 – ident: e_1_2_11_187_1 doi: 10.1002/anie.202009738 – ident: e_1_2_11_113_1 doi: 10.1021/acsenergylett.0c00643 – ident: e_1_2_11_122_2 doi: 10.1149/2.1291610jes – ident: e_1_2_11_106_1 doi: 10.1149/1.1353568 – ident: e_1_2_11_101_1 doi: 10.1149/1945-7111/ac5ba9 – ident: e_1_2_11_134_1 doi: 10.1039/D0CC04049E – ident: e_1_2_11_246_1 doi: 10.1039/D0EE01446J – ident: e_1_2_11_5_2 doi: 10.1016/j.matt.2022.01.011 – ident: e_1_2_11_23_1 doi: 10.1039/D1EE03292E – ident: e_1_2_11_36_1 doi: 10.1016/j.coelec.2022.100949 – ident: e_1_2_11_74_2 doi: 10.1002/sus2.37 – ident: e_1_2_11_176_1 – ident: e_1_2_11_179_1 doi: 10.1016/0013-4686(92)80109-Y – ident: e_1_2_11_116_1 doi: 10.1021/acsenergylett.1c00484 – ident: e_1_2_11_139_1 doi: 10.1039/C7TA05743A – ident: e_1_2_11_62_1 doi: 10.1039/C7CS00858A – ident: e_1_2_11_78_1 doi: 10.1021/acsaem.0c00130 – ident: e_1_2_11_13_2 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_11_71_2 doi: 10.1149/2.0711614jes – ident: e_1_2_11_170_1 doi: 10.1016/S0378-7753(03)00153-8 – ident: e_1_2_11_46_1 doi: 10.1149/1.2042907 – ident: e_1_2_11_119_2 doi: 10.1016/j.jpowsour.2019.227080 – ident: e_1_2_11_242_1 doi: 10.1039/C5SC01398D – ident: e_1_2_11_189_1 doi: 10.1149/1.1394077 – ident: e_1_2_11_205_1 – ident: e_1_2_11_130_1 doi: 10.1016/j.jpowsour.2006.10.038 – ident: e_1_2_11_183_1 – ident: e_1_2_11_19_1 doi: 10.23919/IEN.2022.0003 – ident: e_1_2_11_11_2 doi: 10.1002/adma.201800561 – ident: e_1_2_11_137_1 doi: 10.1002/anie.202011482 – ident: e_1_2_11_219_1 doi: 10.1002/aenm.201800802 – ident: e_1_2_11_32_1 doi: 10.1039/C7GC00252A – ident: e_1_2_11_259_1 doi: 10.1002/anie.201908913 – ident: e_1_2_11_236_1 – ident: e_1_2_11_204_1 doi: 10.1149/1945-7111/ab6bc2 – ident: e_1_2_11_230_1 – ident: e_1_2_11_63_1 doi: 10.1002/adma.202107787 – ident: e_1_2_11_41_1 doi: 10.1016/S0378-7753(00)00367-0 – ident: e_1_2_11_145_1 doi: 10.1002/anie.202207927 – ident: e_1_2_11_191_1 doi: 10.1016/j.jpowsour.2016.04.017 – ident: e_1_2_11_28_2 doi: 10.34133/2021/1205324 – ident: e_1_2_11_274_1 doi: 10.1002/adma.201905879 – ident: e_1_2_11_45_1 doi: 10.1149/1.1763141 – ident: e_1_2_11_118_2 doi: 10.1016/j.electacta.2016.12.071 – ident: e_1_2_11_105_1 doi: 10.1038/s41557-021-00787-y – ident: e_1_2_11_1_1 – ident: e_1_2_11_168_1 doi: 10.1002/aenm.202202432 – ident: e_1_2_11_67_2 doi: 10.1016/j.etran.2019.100011 – ident: e_1_2_11_265_1 – ident: e_1_2_11_68_1 doi: 10.1149/2.0591607jes – ident: e_1_2_11_199_1 – ident: e_1_2_11_59_1 doi: 10.1016/j.jpowsour.2018.02.063 – ident: e_1_2_11_100_1 doi: 10.1038/s41560-019-0474-3 – ident: e_1_2_11_208_1 doi: 10.1016/j.electacta.2014.12.084 – ident: e_1_2_11_228_1 doi: 10.1002/anie.201900266 – ident: e_1_2_11_58_1 doi: 10.1002/anie.202210365 – ident: e_1_2_11_211_1 – ident: e_1_2_11_60_1 doi: 10.1038/s41560-019-0405-3 – ident: e_1_2_11_2_2 doi: 10.1038/s43017-021-00244-x – ident: e_1_2_11_109_1 doi: 10.1021/acsami.5b12517 – ident: e_1_2_11_254_1 doi: 10.1021/acs.jpcc.8b05193 – ident: e_1_2_11_175_1 doi: 10.1016/j.jpowsour.2005.11.042 – ident: e_1_2_11_52_1 doi: 10.1149/1.1453407 – ident: e_1_2_11_250_1 doi: 10.1002/aesr.202100039 – ident: e_1_2_11_257_1 doi: 10.1002/aenm.201902654 – ident: e_1_2_11_292_2 doi: 10.1149/2.0141514jes – start-page: 1 year: 2019 ident: e_1_2_11_181_1 publication-title: Int. J. Electrochem. Sci. – ident: e_1_2_11_177_2 doi: 10.1149/2.023406jes – ident: e_1_2_11_92_1 doi: 10.1007/s12039-009-0039-2 – ident: e_1_2_11_127_2 doi: 10.1016/S0378-7753(97)02545-7 – ident: e_1_2_11_267_2 doi: 10.1039/c2cs35178a – ident: e_1_2_11_288_1 – ident: e_1_2_11_93_1 doi: 10.1016/j.esci.2021.12.003 – ident: e_1_2_11_289_2 doi: 10.1016/j.joule.2019.02.004 – ident: e_1_2_11_18_2 doi: 10.1021/acs.accounts.1c00420 – ident: e_1_2_11_225_1 doi: 10.1002/sstr.202000122 – ident: e_1_2_11_229_1 doi: 10.1016/j.jechem.2021.12.038 – ident: e_1_2_11_47_1 doi: 10.1149/1.2793578 – ident: e_1_2_11_107_1 doi: 10.1016/S0378-7753(03)00266-0 – ident: e_1_2_11_121_2 doi: 10.1002/aenm.202201197 – ident: e_1_2_11_151_1 doi: 10.1038/s41560-020-0601-1 – ident: e_1_2_11_14_1 doi: 10.1021/acs.chemrev.9b00535 – ident: e_1_2_11_213_2 doi: 10.1002/adfm.202206615 – ident: e_1_2_11_293_2 doi: 10.1016/j.jechem.2021.09.039 – ident: e_1_2_11_157_1 – ident: e_1_2_11_51_1 doi: 10.1016/j.electacta.2012.04.085 – ident: e_1_2_11_159_2 doi: 10.1016/j.nanoen.2015.03.042 – ident: e_1_2_11_243_1 doi: 10.1016/j.electacta.2010.04.041 – ident: e_1_2_11_245_1 doi: 10.1016/j.joule.2019.06.008 – ident: e_1_2_11_27_2 doi: 10.1021/acs.chemrev.9b00531 – ident: e_1_2_11_253_1 doi: 10.1002/aenm.201802624 – ident: e_1_2_11_284_1 doi: 10.1021/cm200679y – ident: e_1_2_11_266_2 doi: 10.1021/acs.accounts.0c00360 – ident: e_1_2_11_144_1 doi: 10.1016/j.jpowsour.2019.05.024 – ident: e_1_2_11_290_2 doi: 10.1002/aenm.202202518 – ident: e_1_2_11_103_1 doi: 10.1016/j.jpowsour.2006.06.053 – ident: e_1_2_11_294_1 doi: 10.1016/j.jechem.2021.10.016 – ident: e_1_2_11_110_1 doi: 10.1002/adma.202107899 – ident: e_1_2_11_256_1 doi: 10.1039/C9CC04495G – ident: e_1_2_11_128_1 doi: 10.1149/1.2938911 – ident: e_1_2_11_287_2 doi: 10.1021/acsami.9b03821 – ident: e_1_2_11_96_1 doi: 10.1002/anie.202200506 – ident: e_1_2_11_218_1 doi: 10.1016/j.jallcom.2021.159966 – ident: e_1_2_11_235_1 doi: 10.1016/j.jpowsour.2012.11.013 – ident: e_1_2_11_8_1 – ident: e_1_2_11_131_1 doi: 10.1016/j.jfluchem.2013.08.015 – ident: e_1_2_11_197_2 doi: 10.1149/1.1391630 – ident: e_1_2_11_42_1 doi: 10.1039/D1EE01789F – ident: e_1_2_11_50_1 doi: 10.1016/j.joule.2022.05.005 – volume: 13 start-page: 574 year: 2021 ident: e_1_2_11_286_2 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_11_279_2 doi: 10.1002/advs.202201893 – ident: e_1_2_11_120_2 doi: 10.1016/j.nanoen.2020.105430 – ident: e_1_2_11_15_1 – ident: e_1_2_11_207_2 doi: 10.1016/j.jpowsour.2016.08.015 – ident: e_1_2_11_169_1 doi: 10.1149/1.2069509 – ident: e_1_2_11_237_2 doi: 10.1016/j.electacta.2012.02.035 – ident: e_1_2_11_43_1 doi: 10.1016/j.electacta.2003.10.016 – ident: e_1_2_11_161_1 doi: 10.1149/2.0851709jes – ident: e_1_2_11_210_1 doi: 10.1016/j.joule.2019.08.018 – ident: e_1_2_11_108_1 doi: 10.1016/S0378-7753(02)00272-0 – ident: e_1_2_11_77_1 doi: 10.1016/j.jpowsour.2020.229312 – ident: e_1_2_11_6_2 doi: 10.1016/j.scitotenv.2022.153839 – ident: e_1_2_11_88_1 doi: 10.1016/j.electacta.2004.05.038 – ident: e_1_2_11_95_1 doi: 10.1016/j.molliq.2010.04.025 – ident: e_1_2_11_112_1 doi: 10.1016/j.electacta.2020.136652 – ident: e_1_2_11_251_1 doi: 10.1126/science.aab1595 – ident: e_1_2_11_34_1 doi: 10.1149/2.0641503jes – ident: e_1_2_11_295_1 doi: 10.1039/C6RA19482F – ident: e_1_2_11_115_1 doi: 10.1002/anie.202208345 – ident: e_1_2_11_55_1 – ident: e_1_2_11_273_2 doi: 10.1002/adma.201903790 – ident: e_1_2_11_277_1 doi: 10.1002/sstr.202000010 – ident: e_1_2_11_227_1 doi: 10.1021/acsenergylett.2c01408 – ident: e_1_2_11_162_1 doi: 10.1016/j.electacta.2013.01.011 – ident: e_1_2_11_126_2 doi: 10.1016/0378-7753(91)85023-P – ident: e_1_2_11_129_1 doi: 10.1149/1.3501236 – volume: 52 start-page: 37 year: 2022 ident: e_1_2_11_241_2 publication-title: Inorg. Nano-Met. Chem. doi: 10.1080/24701556.2020.1862214 – ident: e_1_2_11_231_2 doi: 10.1021/acsaem.1c00177 – ident: e_1_2_11_194_1 doi: 10.1016/j.jpowsour.2016.06.008 – ident: e_1_2_11_125_2 doi: 10.1149/1.2086855 – ident: e_1_2_11_278_1 – ident: e_1_2_11_117_1 – ident: e_1_2_11_146_1 doi: 10.1016/j.jpowsour.2005.12.061 – ident: e_1_2_11_91_1 doi: 10.1149/1.1545452 – ident: e_1_2_11_166_1 doi: 10.1016/0378-7753(91)80004-H – ident: e_1_2_11_73_2 doi: 10.1016/j.jechem.2020.02.052 – ident: e_1_2_11_234_1 doi: 10.1016/S0167-2738(02)00526-X – ident: e_1_2_11_84_1 – ident: e_1_2_11_138_1 doi: 10.1149/2.0601506jes – ident: e_1_2_11_111_1 doi: 10.1002/aenm.202003905 – ident: e_1_2_11_249_1 doi: 10.1038/s41560-022-01051-4 – ident: e_1_2_11_81_1 doi: 10.1016/0378-7753(83)87024-4 – ident: e_1_2_11_202_1 doi: 10.1149/2.0051609jes – ident: e_1_2_11_201_2 doi: 10.1039/c3ta13067c – ident: e_1_2_11_123_1 doi: 10.1002/adfm.201605989 – ident: e_1_2_11_75_2 doi: 10.1021/jacs.9b05029 – ident: e_1_2_11_252_1 doi: 10.1016/j.electacta.2018.05.047 – ident: e_1_2_11_261_1 doi: 10.1002/adfm.202106811 – ident: e_1_2_11_190_1 doi: 10.1002/anie.201906494 – ident: e_1_2_11_56_2 doi: 10.1002/adfm.201704808 – ident: e_1_2_11_247_1 doi: 10.1038/s41467-021-23603-0 – ident: e_1_2_11_69_1 doi: 10.1016/j.jpowsour.2016.12.032 – ident: e_1_2_11_258_1 doi: 10.1016/j.ensm.2020.12.024 – ident: e_1_2_11_114_1 doi: 10.1002/anie.201912167 – ident: e_1_2_11_54_1 doi: 10.1149/1.1837495 – ident: e_1_2_11_85_2 doi: 10.1016/S0378-7753(99)00434-6 – ident: e_1_2_11_148_1 doi: 10.1149/1.3073552 – ident: e_1_2_11_238_2 doi: 10.1021/acs.jpcb.8b08815 – ident: e_1_2_11_40_1 doi: 10.1149/1.1393419 – ident: e_1_2_11_22_1 doi: 10.1016/j.jpowsour.2015.09.056 – ident: e_1_2_11_182_1 doi: 10.1002/aenm.201901152 – ident: e_1_2_11_221_1 doi: 10.1039/c3ta01182h – ident: e_1_2_11_141_1 doi: 10.1149/1.2108650 – ident: e_1_2_11_269_1 doi: 10.1002/aenm.201703320 – ident: e_1_2_11_192_1 doi: 10.1002/aenm.202101775 – ident: e_1_2_11_24_1 doi: 10.1021/cr030203g – ident: e_1_2_11_57_2 doi: 10.1016/j.electacta.2018.09.077 – ident: e_1_2_11_163_1 doi: 10.1021/am405973x – ident: e_1_2_11_70_1 – ident: e_1_2_11_291_1 – ident: e_1_2_11_156_1 doi: 10.1002/aenm.201700418 – ident: e_1_2_11_164_1 doi: 10.1021/acsami.1c05894 – ident: e_1_2_11_276_1 doi: 10.1366/0003702991945858 – ident: e_1_2_11_212_2 doi: 10.1039/c2cc31712e – ident: e_1_2_11_26_1 – ident: e_1_2_11_154_2 doi: 10.1039/C6EE01674J – ident: e_1_2_11_4_1 – ident: e_1_2_11_174_2 doi: 10.1149/1.1812732 – ident: e_1_2_11_244_1 doi: 10.1039/C6CP04766A – ident: e_1_2_11_275_1 doi: 10.1002/adfm.202001619 – ident: e_1_2_11_178_2 doi: 10.1007/s11581-014-1275-0 – ident: e_1_2_11_264_2 doi: 10.1126/science.264.5162.1115 – ident: e_1_2_11_3_2 doi: 10.1016/j.eng.2021.12.018 – ident: e_1_2_11_149_1 doi: 10.1016/j.chempr.2018.05.002 – ident: e_1_2_11_196_1 – ident: e_1_2_11_185_2 doi: 10.1021/jp506567p – ident: e_1_2_11_262_1 – ident: e_1_2_11_203_1 doi: 10.1021/acsami.9b12020 – ident: e_1_2_11_193_1 doi: 10.1016/j.ensm.2020.06.027 – ident: e_1_2_11_83_1 doi: 10.1149/1.1392577 – ident: e_1_2_11_239_1 – ident: e_1_2_11_281_1 doi: 10.1002/adma.201908293 – ident: e_1_2_11_97_1 doi: 10.1126/science.aal4263 – ident: e_1_2_11_104_1 doi: 10.1016/j.joule.2018.01.017 – ident: e_1_2_11_132_1 doi: 10.1016/j.electacta.2018.02.151 – ident: e_1_2_11_216_2 doi: 10.1016/j.elecom.2015.10.013 – ident: e_1_2_11_48_1 doi: 10.1021/acsami.7b04099 – ident: e_1_2_11_12_2 doi: 10.1002/sus2.4 – ident: e_1_2_11_86_2 doi: 10.1016/S0378-7753(01)00670-X – ident: e_1_2_11_172_1 – ident: e_1_2_11_220_1 doi: 10.1021/acsami.1c09667 – ident: e_1_2_11_21_1 doi: 10.1021/acs.accounts.1c00420 – ident: e_1_2_11_135_1 doi: 10.1016/j.ensm.2021.08.002 – ident: e_1_2_11_89_1 doi: 10.1021/acsami.7b13887 – ident: e_1_2_11_150_1 doi: 10.1149/1945-7111/abd60e – ident: e_1_2_11_39_1 doi: 10.1016/S1388-2481(02)00490-3 – ident: e_1_2_11_99_1 doi: 10.1021/acsaem.8b00355 – ident: e_1_2_11_285_1 – ident: e_1_2_11_188_1 doi: 10.1002/anie.202205967 – ident: e_1_2_11_271_1 – ident: e_1_2_11_65_1 – ident: e_1_2_11_198_2 doi: 10.1016/S1388-2481(99)00023-5 – ident: e_1_2_11_7_2 doi: 10.1002/eem2.12536 – ident: e_1_2_11_184_2 doi: 10.1016/j.jpowsour.2010.12.040 – ident: e_1_2_11_124_1 – ident: e_1_2_11_283_1 doi: 10.1002/anie.201809203 – ident: e_1_2_11_53_1 doi: 10.1016/j.jpowsour.2019.01.085 – ident: e_1_2_11_222_1 doi: 10.1016/j.electacta.2014.05.054 – ident: e_1_2_11_180_1 doi: 10.1038/s41560-020-0647-0 – ident: e_1_2_11_152_1 doi: 10.1016/j.ensm.2019.02.016 – ident: e_1_2_11_17_2 doi: 10.1002/aenm.202001972 – ident: e_1_2_11_35_1 doi: 10.1002/adma.202206448 – ident: e_1_2_11_49_1 doi: 10.1002/adfm.202108449 – ident: e_1_2_11_147_1 doi: 10.1016/j.jpowsour.2007.10.084 – ident: e_1_2_11_140_1 doi: 10.1016/0378-7753(85)88029-0 – ident: e_1_2_11_142_1 doi: 10.1149/1.2220987 – ident: e_1_2_11_153_1 – ident: e_1_2_11_171_1 doi: 10.1016/j.elecom.2006.06.016 – ident: e_1_2_11_10_2 doi: 10.1038/s41467-020-16259-9 – ident: e_1_2_11_16_2 doi: 10.20964/2020.09.50 – ident: e_1_2_11_206_2 doi: 10.1016/j.jpowsour.2006.07.074 – ident: e_1_2_11_30_1 doi: 10.1016/j.jallcom.2022.164163 – ident: e_1_2_11_167_1 doi: 10.1016/j.electacta.2004.01.090 – ident: e_1_2_11_270_1 doi: 10.1002/advs.202000196 – ident: e_1_2_11_255_1 doi: 10.1021/acsmaterialslett.9b00043 – ident: e_1_2_11_223_1 doi: 10.1016/j.jiec.2016.03.045 – ident: e_1_2_11_25_1 doi: 10.1021/cr500003w – ident: e_1_2_11_268_1 doi: 10.1002/jps.2600550822 – ident: e_1_2_11_72_2 doi: 10.1016/j.jechem.2020.11.016 – ident: e_1_2_11_232_2 doi: 10.1021/acsami.9b07827 – ident: e_1_2_11_76_2 doi: 10.1002/anie.202210859 – ident: e_1_2_11_38_1 doi: 10.1021/cm901452z – ident: e_1_2_11_31_1 doi: 10.1002/chem.202102024 – ident: e_1_2_11_66_2 doi: 10.1039/C9CS00728H – ident: e_1_2_11_209_1 doi: 10.1149/1945-7111/ac5a19 – ident: e_1_2_11_200_2 doi: 10.1016/j.jpowsour.2008.09.088 – ident: e_1_2_11_240_2 doi: 10.1021/jp804097j – ident: e_1_2_11_217_2 doi: 10.1016/j.electacta.2016.10.037 – ident: e_1_2_11_186_1 doi: 10.1002/advs.202101646 – ident: e_1_2_11_102_1 doi: 10.1016/j.cej.2021.130253 – ident: e_1_2_11_90_1 doi: 10.1002/adma.202208340 – ident: e_1_2_11_248_1 doi: 10.1016/j.jpowsour.2021.229668 – ident: e_1_2_11_98_1 doi: 10.1016/j.electacta.2006.03.016 – ident: e_1_2_11_155_2 doi: 10.1002/adma.201706375 – ident: e_1_2_11_82_1 doi: 10.1149/1.1391633 – ident: e_1_2_11_29_2 doi: 10.1002/anie.202108397 – ident: e_1_2_11_64_1 doi: 10.1016/j.etran.2021.100145 – ident: e_1_2_11_195_1 doi: 10.1016/j.jelechem.2019.05.023 – ident: e_1_2_11_33_1 doi: 10.1149/1.2409866 – ident: e_1_2_11_80_1 doi: 10.1038/s41560-021-00783-z – ident: e_1_2_11_94_1 doi: 10.1021/acs.chemrev.1c00904 – ident: e_1_2_11_173_2 doi: 10.1149/1.1774973 – ident: e_1_2_11_87_1 doi: 10.1016/S0378-7753(03)00154-X – ident: e_1_2_11_233_1 doi: 10.1063/1.2204959 – ident: e_1_2_11_282_1 doi: 10.1039/D1EE01678D – ident: e_1_2_11_143_1 doi: 10.1016/j.ensm.2019.04.033 – ident: e_1_2_11_44_1 doi: 10.1016/S0378-7753(02)00618-3 – ident: e_1_2_11_61_1 doi: 10.1002/anie.202102593 – ident: e_1_2_11_280_2 doi: 10.1021/acsenergylett.1c00647 |
SSID | ssj0028806 |
Score | 2.6825335 |
SecondaryResourceType | review_article |
Snippet | Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202303888 |
SubjectTerms | Charge transfer Chemical energy Diffusion rate Electric vehicles Electrolytes Electronic equipment Energy storage Extreme environments Failure mechanisms Ion transport Ion-Solvent Complex Lithium Lithium batteries Low-Temperature Kinetic Behaviour Organic Electrolyte Portable equipment Rechargeable batteries Rechargeable Lithium Batteries Solid Electrolyte Interphase Storage systems |
Title | 40 Years of Low‐Temperature Electrolytes for Rechargeable Lithium Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303888 https://www.ncbi.nlm.nih.gov/pubmed/37186770 https://www.proquest.com/docview/2861142484 https://www.proquest.com/docview/2814529142 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL1CbGBDebUNLxmpUlceEtuTOEuEBgECFggkuor8VFGHGcTMCLUrPqHf2C_BN54EBoQqtbs8rhXHvo6P43vOBfhSOi-NlZqyUloquDVUFaJLveGpV06lqqaPnZ3nR1fi5Lp7_YLFH_Uh2h9uODLq7zUOcKVHe8-iocjA7mDyb9QzQbYvBmwhKrpo9aNYcM5IL-KcYhb6RrUxZXuzxWdnpTdQcxa51lPP4QdQTaVjxMmPzmSsO-bXKz3H_3mrZVia4lKyHx1pBebcYBUWDpp0cGtwJlLyLQyLERl6cjp8-PP4-9IFzB01mUkvptPp_wzQlQQgTAIeRREmh9Qscnoz_n4zuSVRzTMsztfh6rB3eXBEp7kYqEHtI6qlVAEs2Mwor33GfGkMhoTprtFe5cgE0pKVeVh-ccs4V7rU3FqjClt0My74R5gfDAfuMxDpRS4LwwLwsiIYlSz3vggXAjj1xrEEaNMXlZkKlWO-jH4VJZZZhY1UtY2UwNfW_i5KdLxrudV0bTUdqqOKyRz5xEKKBHbb26FxcedEDdxwgjYZblAHswQ-RZdoH8WLWhMwTYDVHfuXOlT758e99mzjXwptwiIeY9RKlm3B_Ph-4rYDNBrrndr9nwBNqQWC |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BclguvB-BBYyExMndxHYT57haddWFtgfUleAU-SlWLO1qtxWCEz-B38gvYSZuggpCSHCMM1Zsjyf-bM98A_CiDlE7ry0XtfZcSe-4qdSQRyfzaILJTRs-Np2V4xP16u2w8yakWJjED9EfuJFltP9rMnA6kN7_yRpKIdgDyv5NhCb6KlyjtN7trupNzyAlcHqmACMpOeWh73gbc7G_XX97XfoNbG5j13bxOboJtmt28jn5MFiv7MB9-YXR8b_6dQtubKApO0hz6TZcCYs7sHvYZYS7C1OVs3doGZdsGdlk-en712_zgLA70TKzUcqoc_YZ0StDLMwQkhIPU6DoLDY5Xb0_XX9kidAT9-f34ORoND8c8006Bu6I_ohbrQ3iBV84E20sRKydI68wO3Q2mpKCgawWdYk7MOmFlMbWVnrvTOUrVIyS92FnsVyEh8B0VKWunEDs5RUK1aKMscICxKfRBZEB75TRuA1XOaXMOGsSy7JoaJCafpAyeNnLnyeWjj9K7nW6bTbWetkIXVJIsdIqg-f9axxcujwxi7Bck0xBd9QolsGDNCf6T8mqpQXMMxCtZv_ShuZgdjzqnx79S6VnsDueTyfN5Hj2-jFcp3JyYimKPdhZXazDE0RKK_u0tYUfp10JnQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dTxQxFL0RTMQXEfFjEKUmJjx1mWm7M51HArsBWTbGQAJPk35GIu4S2Y3RJ36Cv9FfYu90Z2AlxgQep3Ob6bT3Tk-nPecCvC-dl8ZKTVkpLRXcGqoK0aXe8NQrp1JV08cOh_nesfhw0j25weKP-hDtDzeMjPp7jQF-Yf3WtWgoMrA7mPwb9UzkAjwUeSrRr3c_tQJSLHhn5BdxTjENfSPbmLKt-frz09ItrDkPXeu5p78Mqml1PHLypTOd6I75-Zeg431e6yk8mQFTsh09aQUeuNEzWNpp8sGtwqFIyWmIi0sy9mQw_v776teRC6A7ijKTXsync_4jYFcSkDAJgBRVmBxys8jgbPL5bPqVRDnPsDp_Dsf93tHOHp0lY6AGxY-ollIFtGAzo7z2GfOlMXgmTHeN9ipHKpCWrMzD-otbxrnSpebWGlXYoptxwV_A4mg8cq-ASC9yWRgWkJcVwahkufdFKAjo1BvHEqDNWFRmplSOCTPOq6ixzCrspKrtpAQ2W_uLqNHxT8v1ZmirWaxeVkzmSCgWUiTwrr0dOhe3TtTIjadok-EOdTBL4GV0ifZRvKhFAdMEWD2w_2lDtT3c77VXa3eptAGPPu72q8H-8OA1PMZiPMGSZeuwOPk2dW8CTJrot3Uk_AGX-QhV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=40+Years+of+Low%E2%80%90Temperature+Electrolytes+for+Rechargeable+Lithium+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Zeheng&rft.au=Yu%E2%80%90Xing+Yao&rft.au=Sun%2C+Shuo&rft.au=Cheng%E2%80%90Bin+Jin&rft.date=2023-09-11&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=37&rft_id=info:doi/10.1002%2Fanie.202303888&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |