40 Years of Low‐Temperature Electrolytes for Rechargeable Lithium Batteries

Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub‐zero Celsius operation, especially below −20 °C, remains...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 37; pp. e202303888 - n/a
Main Authors Li, Zeheng, Yao, Yu‐Xing, Sun, Shuo, Jin, Cheng‐Bin, Yao, Nan, Yan, Chong, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 11.09.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub‐zero Celsius operation, especially below −20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low‐temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low‐temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low‐temperature electrolytes in the past 40 years (1983–2022), followed by a comprehensive summary of the research progress as well as introducing the state‐of‐the‐art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low‐temperature electrolytes with particular emphasis on mechanism analysis and practical application. The 40 years development of low‐temperature electrolytes for rechargeable batteries has been reviewed. Critical insights are given from both underlying mechanistic and practical engineering aspects while we traverse the history on the rational design of low‐temperature electrolyte systems.
AbstractList Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub‐zero Celsius operation, especially below −20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low‐temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low‐temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low‐temperature electrolytes in the past 40 years (1983–2022), followed by a comprehensive summary of the research progress as well as introducing the state‐of‐the‐art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low‐temperature electrolytes with particular emphasis on mechanism analysis and practical application. The 40 years development of low‐temperature electrolytes for rechargeable batteries has been reviewed. Critical insights are given from both underlying mechanistic and practical engineering aspects while we traverse the history on the rational design of low‐temperature electrolyte systems.
Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub‐zero Celsius operation, especially below −20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low‐temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low‐temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low‐temperature electrolytes in the past 40 years (1983–2022), followed by a comprehensive summary of the research progress as well as introducing the state‐of‐the‐art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low‐temperature electrolytes with particular emphasis on mechanism analysis and practical application.
Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub‐zero Celsius operation, especially below −20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li + diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low‐temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low‐temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low‐temperature electrolytes in the past 40 years (1983–2022), followed by a comprehensive summary of the research progress as well as introducing the state‐of‐the‐art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low‐temperature electrolytes with particular emphasis on mechanism analysis and practical application.
Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub-zero Celsius operation, especially below -20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low-temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low-temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low-temperature electrolytes in the past 40 years (1983-2022), followed by a comprehensive summary of the research progress as well as introducing the state-of-the-art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low-temperature electrolytes with particular emphasis on mechanism analysis and practical application.
Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub-zero Celsius operation, especially below -20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low-temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low-temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low-temperature electrolytes in the past 40 years (1983-2022), followed by a comprehensive summary of the research progress as well as introducing the state-of-the-art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low-temperature electrolytes with particular emphasis on mechanism analysis and practical application.Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub-zero Celsius operation, especially below -20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low-temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low-temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low-temperature electrolytes in the past 40 years (1983-2022), followed by a comprehensive summary of the research progress as well as introducing the state-of-the-art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low-temperature electrolytes with particular emphasis on mechanism analysis and practical application.
Author Yao, Yu‐Xing
Jin, Cheng‐Bin
Zhang, Qiang
Sun, Shuo
Yao, Nan
Li, Zeheng
Yan, Chong
Author_xml – sequence: 1
  givenname: Zeheng
  surname: Li
  fullname: Li, Zeheng
  organization: Tsinghua University
– sequence: 2
  givenname: Yu‐Xing
  surname: Yao
  fullname: Yao, Yu‐Xing
  organization: Tsinghua University
– sequence: 3
  givenname: Shuo
  surname: Sun
  fullname: Sun, Shuo
  organization: Tsinghua University
– sequence: 4
  givenname: Cheng‐Bin
  surname: Jin
  fullname: Jin, Cheng‐Bin
  organization: Tsinghua University
– sequence: 5
  givenname: Nan
  surname: Yao
  fullname: Yao, Nan
  organization: Tsinghua University
– sequence: 6
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  email: yanc@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37186770$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhq0KVD7aa48oEpdestieJHaOgJYPaaFSRQ89WbYzAaMk3tqO0N76E_iN_BKyWigSUsVp5vA8r0bz7pGtwQ9IyDdGZ4xSfqQHhzNOOVCQUn4iu6zkLAchYGvaC4BcyJLtkL0Y7ydeSlp9JjsgmKyEoLvkqqDZb9QhZr7NFv7h6e_jDfZLDDqNAbN5hzYF360Sxqz1IfuJ9k6HW9Smw2zh0p0b--xEp4TBYfxCtlvdRfz6MvfJr7P5zelFvvhxfnl6vMgtCJC5kVJLThtmdWtaxtva2kpAZUprWl0BZ9RIXleCVdBwAG1qA01jtWhEyaCAffJ9k7sM_s-IManeRYtdpwf0Y1RcsqLkNSv4hB6-Q-_9GIbpuomq2IQUch148EKNpsdGLYPrdVip10dNQLEBbPAxBmyVdUkn54cUtOsUo2rdh1r3of71MWmzd9pr8n-FeiM8uA5XH9Dq-Ppy_uY-A5SBnQ8
CitedBy_id crossref_primary_10_1002_chem_202303683
crossref_primary_10_1002_anie_202416506
crossref_primary_10_1007_s10008_024_05884_9
crossref_primary_10_1007_s40820_023_01245_9
crossref_primary_10_1039_D4EE04306E
crossref_primary_10_3390_ijms25052884
crossref_primary_10_1021_jacs_3c11134
crossref_primary_10_1039_D3EE03809B
crossref_primary_10_1002_anie_202407075
crossref_primary_10_1088_2515_7655_ad3fe8
crossref_primary_10_1021_jacs_4c10187
crossref_primary_10_1002_anie_202409409
crossref_primary_10_1002_aenm_202402109
crossref_primary_10_1021_acs_energyfuels_4c06075
crossref_primary_10_1038_s41467_024_50455_1
crossref_primary_10_1002_aenm_202404120
crossref_primary_10_1021_acs_nanolett_4c01591
crossref_primary_10_1002_batt_202400052
crossref_primary_10_1021_acs_iecr_4c03843
crossref_primary_10_1002_adfm_202406215
crossref_primary_10_1002_anie_202414613
crossref_primary_10_1002_adma_202409272
crossref_primary_10_1021_jacs_4c16076
crossref_primary_10_1002_ange_202407075
crossref_primary_10_1002_adfm_202400996
crossref_primary_10_1039_D4EE03192J
crossref_primary_10_1002_smll_202401200
crossref_primary_10_1002_celc_202300759
crossref_primary_10_1021_acsenergylett_4c00113
crossref_primary_10_1002_ange_202409409
crossref_primary_10_1002_aenm_202401526
crossref_primary_10_1021_acssuschemeng_4c06966
crossref_primary_10_1021_acsami_4c03149
crossref_primary_10_1002_adfm_202402182
crossref_primary_10_1002_aenm_202304502
crossref_primary_10_1002_aenm_202403183
crossref_primary_10_1007_s10008_025_06201_8
crossref_primary_10_1002_aenm_202404391
crossref_primary_10_1021_acs_chemrev_3c00728
crossref_primary_10_1021_jacs_4c07941
crossref_primary_10_1002_adfm_202421687
crossref_primary_10_1002_adfm_202403616
crossref_primary_10_1021_acs_energyfuels_4c02174
crossref_primary_10_1002_adma_202417981
crossref_primary_10_1002_ange_202416506
crossref_primary_10_1039_D3QM00759F
crossref_primary_10_1039_D4EE02060J
crossref_primary_10_1039_D3CS00551H
crossref_primary_10_1002_smtd_202401580
crossref_primary_10_1007_s40820_024_01607_x
crossref_primary_10_1021_acsami_3c17742
crossref_primary_10_26599_EMD_2023_9370003
crossref_primary_10_1002_smll_202311044
crossref_primary_10_1039_D4TA05871B
crossref_primary_10_1002_smll_202401345
crossref_primary_10_1002_adfm_202419275
crossref_primary_10_1002_adfm_202400337
crossref_primary_10_1021_acsami_4c13009
crossref_primary_10_1088_0256_307X_40_8_086101
crossref_primary_10_1039_D4EB00034J
crossref_primary_10_1002_adfm_202408465
crossref_primary_10_1002_adfm_202414652
crossref_primary_10_1002_ange_202414613
crossref_primary_10_1016_j_cej_2024_153347
crossref_primary_10_1002_smtd_202400183
crossref_primary_10_1039_D4EB00022F
crossref_primary_10_1039_D4TA02290D
crossref_primary_10_1002_adfm_202315498
crossref_primary_10_1002_smll_202312091
Cites_doi 10.1016/j.ensm.2022.10.027
10.1021/acsami.5b05552
10.1021/acssuschemeng.9b02042
10.1021/acsenergylett.9b00381
10.1002/inf2.12000
10.31635/ccschem.020.202000341
10.1002/eom2.12200
10.1016/j.jpowsour.2012.05.114
10.1016/S0378-7753(01)00536-5
10.4028/www.scientific.net/MSF.91-93.647
10.1021/acsenergylett.1c01528
10.1002/adma.201903852
10.1002/aenm.202001972
10.1021/acs.chemrev.7b00115
10.1021/acsami.1c23934
10.1002/anie.202009738
10.1021/acsenergylett.0c00643
10.1149/2.1291610jes
10.1149/1.1353568
10.1149/1945-7111/ac5ba9
10.1039/D0CC04049E
10.1039/D0EE01446J
10.1016/j.matt.2022.01.011
10.1039/D1EE03292E
10.1016/j.coelec.2022.100949
10.1002/sus2.37
10.1016/0013-4686(92)80109-Y
10.1021/acsenergylett.1c00484
10.1039/C7TA05743A
10.1039/C7CS00858A
10.1021/acsaem.0c00130
10.1038/natrevmats.2016.13
10.1149/2.0711614jes
10.1016/S0378-7753(03)00153-8
10.1149/1.2042907
10.1016/j.jpowsour.2019.227080
10.1039/C5SC01398D
10.1149/1.1394077
10.1016/j.jpowsour.2006.10.038
10.23919/IEN.2022.0003
10.1002/adma.201800561
10.1002/anie.202011482
10.1002/aenm.201800802
10.1039/C7GC00252A
10.1002/anie.201908913
10.1149/1945-7111/ab6bc2
10.1002/adma.202107787
10.1016/S0378-7753(00)00367-0
10.1002/anie.202207927
10.1016/j.jpowsour.2016.04.017
10.34133/2021/1205324
10.1002/adma.201905879
10.1149/1.1763141
10.1016/j.electacta.2016.12.071
10.1038/s41557-021-00787-y
10.1002/aenm.202202432
10.1016/j.etran.2019.100011
10.1149/2.0591607jes
10.1016/j.jpowsour.2018.02.063
10.1038/s41560-019-0474-3
10.1016/j.electacta.2014.12.084
10.1002/anie.201900266
10.1002/anie.202210365
10.1038/s41560-019-0405-3
10.1038/s43017-021-00244-x
10.1021/acsami.5b12517
10.1021/acs.jpcc.8b05193
10.1016/j.jpowsour.2005.11.042
10.1149/1.1453407
10.1002/aesr.202100039
10.1002/aenm.201902654
10.1149/2.0141514jes
10.1149/2.023406jes
10.1007/s12039-009-0039-2
10.1016/S0378-7753(97)02545-7
10.1039/c2cs35178a
10.1016/j.esci.2021.12.003
10.1016/j.joule.2019.02.004
10.1021/acs.accounts.1c00420
10.1002/sstr.202000122
10.1016/j.jechem.2021.12.038
10.1149/1.2793578
10.1016/S0378-7753(03)00266-0
10.1002/aenm.202201197
10.1038/s41560-020-0601-1
10.1021/acs.chemrev.9b00535
10.1002/adfm.202206615
10.1016/j.jechem.2021.09.039
10.1016/j.electacta.2012.04.085
10.1016/j.nanoen.2015.03.042
10.1016/j.electacta.2010.04.041
10.1016/j.joule.2019.06.008
10.1021/acs.chemrev.9b00531
10.1002/aenm.201802624
10.1021/cm200679y
10.1021/acs.accounts.0c00360
10.1016/j.jpowsour.2019.05.024
10.1002/aenm.202202518
10.1016/j.jpowsour.2006.06.053
10.1016/j.jechem.2021.10.016
10.1002/adma.202107899
10.1039/C9CC04495G
10.1149/1.2938911
10.1021/acsami.9b03821
10.1002/anie.202200506
10.1016/j.jallcom.2021.159966
10.1016/j.jpowsour.2012.11.013
10.1016/j.jfluchem.2013.08.015
10.1149/1.1391630
10.1039/D1EE01789F
10.1016/j.joule.2022.05.005
10.1002/advs.202201893
10.1016/j.nanoen.2020.105430
10.1016/j.jpowsour.2016.08.015
10.1149/1.2069509
10.1016/j.electacta.2012.02.035
10.1016/j.electacta.2003.10.016
10.1149/2.0851709jes
10.1016/j.joule.2019.08.018
10.1016/S0378-7753(02)00272-0
10.1016/j.jpowsour.2020.229312
10.1016/j.scitotenv.2022.153839
10.1016/j.electacta.2004.05.038
10.1016/j.molliq.2010.04.025
10.1016/j.electacta.2020.136652
10.1126/science.aab1595
10.1149/2.0641503jes
10.1039/C6RA19482F
10.1002/anie.202208345
10.1002/adma.201903790
10.1002/sstr.202000010
10.1021/acsenergylett.2c01408
10.1016/j.electacta.2013.01.011
10.1016/0378-7753(91)85023-P
10.1149/1.3501236
10.1080/24701556.2020.1862214
10.1021/acsaem.1c00177
10.1016/j.jpowsour.2016.06.008
10.1149/1.2086855
10.1016/j.jpowsour.2005.12.061
10.1149/1.1545452
10.1016/0378-7753(91)80004-H
10.1016/j.jechem.2020.02.052
10.1016/S0167-2738(02)00526-X
10.1149/2.0601506jes
10.1002/aenm.202003905
10.1038/s41560-022-01051-4
10.1016/0378-7753(83)87024-4
10.1149/2.0051609jes
10.1039/c3ta13067c
10.1002/adfm.201605989
10.1021/jacs.9b05029
10.1016/j.electacta.2018.05.047
10.1002/adfm.202106811
10.1002/anie.201906494
10.1002/adfm.201704808
10.1038/s41467-021-23603-0
10.1016/j.jpowsour.2016.12.032
10.1016/j.ensm.2020.12.024
10.1002/anie.201912167
10.1149/1.1837495
10.1016/S0378-7753(99)00434-6
10.1149/1.3073552
10.1021/acs.jpcb.8b08815
10.1149/1.1393419
10.1016/j.jpowsour.2015.09.056
10.1002/aenm.201901152
10.1039/c3ta01182h
10.1149/1.2108650
10.1002/aenm.201703320
10.1002/aenm.202101775
10.1021/cr030203g
10.1016/j.electacta.2018.09.077
10.1021/am405973x
10.1002/aenm.201700418
10.1021/acsami.1c05894
10.1366/0003702991945858
10.1039/c2cc31712e
10.1039/C6EE01674J
10.1149/1.1812732
10.1039/C6CP04766A
10.1002/adfm.202001619
10.1007/s11581-014-1275-0
10.1126/science.264.5162.1115
10.1016/j.eng.2021.12.018
10.1016/j.chempr.2018.05.002
10.1021/jp506567p
10.1021/acsami.9b12020
10.1016/j.ensm.2020.06.027
10.1149/1.1392577
10.1002/adma.201908293
10.1126/science.aal4263
10.1016/j.joule.2018.01.017
10.1016/j.electacta.2018.02.151
10.1016/j.elecom.2015.10.013
10.1021/acsami.7b04099
10.1002/sus2.4
10.1016/S0378-7753(01)00670-X
10.1021/acsami.1c09667
10.1016/j.ensm.2021.08.002
10.1021/acsami.7b13887
10.1149/1945-7111/abd60e
10.1016/S1388-2481(02)00490-3
10.1021/acsaem.8b00355
10.1002/anie.202205967
10.1016/S1388-2481(99)00023-5
10.1002/eem2.12536
10.1016/j.jpowsour.2010.12.040
10.1002/anie.201809203
10.1016/j.jpowsour.2019.01.085
10.1016/j.electacta.2014.05.054
10.1038/s41560-020-0647-0
10.1016/j.ensm.2019.02.016
10.1002/adma.202206448
10.1002/adfm.202108449
10.1016/j.jpowsour.2007.10.084
10.1016/0378-7753(85)88029-0
10.1149/1.2220987
10.1016/j.elecom.2006.06.016
10.1038/s41467-020-16259-9
10.20964/2020.09.50
10.1016/j.jpowsour.2006.07.074
10.1016/j.jallcom.2022.164163
10.1016/j.electacta.2004.01.090
10.1002/advs.202000196
10.1021/acsmaterialslett.9b00043
10.1016/j.jiec.2016.03.045
10.1021/cr500003w
10.1002/jps.2600550822
10.1016/j.jechem.2020.11.016
10.1021/acsami.9b07827
10.1002/anie.202210859
10.1021/cm901452z
10.1002/chem.202102024
10.1039/C9CS00728H
10.1149/1945-7111/ac5a19
10.1016/j.jpowsour.2008.09.088
10.1021/jp804097j
10.1016/j.electacta.2016.10.037
10.1002/advs.202101646
10.1016/j.cej.2021.130253
10.1002/adma.202208340
10.1016/j.jpowsour.2021.229668
10.1016/j.electacta.2006.03.016
10.1002/adma.201706375
10.1149/1.1391633
10.1002/anie.202108397
10.1016/j.etran.2021.100145
10.1016/j.jelechem.2019.05.023
10.1149/1.2409866
10.1038/s41560-021-00783-z
10.1021/acs.chemrev.1c00904
10.1149/1.1774973
10.1016/S0378-7753(03)00154-X
10.1063/1.2204959
10.1039/D1EE01678D
10.1016/j.ensm.2019.04.033
10.1016/S0378-7753(02)00618-3
10.1002/anie.202102593
10.1021/acsenergylett.1c00647
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202303888
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 37186770
10_1002_anie_202303888
ANIE202303888
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Key Research and Development Program
  funderid: 2021YFB2500300
– fundername: Shanxi key research and development program
  funderid: 202102060301011
– fundername: National Natural Science Foundation of China
  funderid: 22005172, 22109083, and 21825501
– fundername: National Key Research and Development Program
  grantid: 2021YFB2500300
– fundername: National Natural Science Foundation of China
  grantid: 22005172, 22109083, and 21825501
– fundername: Shanxi key research and development program
  grantid: 202102060301011
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3738-b88a820d1cafbf12f9cc6736b5cbfa63210b82967163d233ab9b3ddca7d751343
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:47:28 EDT 2025
Sun Jul 13 04:35:06 EDT 2025
Wed Feb 19 02:24:10 EST 2025
Thu Apr 24 23:00:07 EDT 2025
Tue Jul 01 01:47:12 EDT 2025
Wed Jan 22 16:18:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords Ion-Solvent Complex
Solid Electrolyte Interphase
Organic Electrolyte
Rechargeable Lithium Batteries
Low-Temperature Kinetic Behaviour
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-b88a820d1cafbf12f9cc6736b5cbfa63210b82967163d233ab9b3ddca7d751343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3929-1541
PMID 37186770
PQID 2861142484
PQPubID 946352
PageCount 33
ParticipantIDs proquest_miscellaneous_2814529142
proquest_journals_2861142484
pubmed_primary_37186770
crossref_citationtrail_10_1002_anie_202303888
crossref_primary_10_1002_anie_202303888
wiley_primary_10_1002_anie_202303888_ANIE202303888
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 11, 2023
PublicationDateYYYYMMDD 2023-09-11
PublicationDate_xml – month: 09
  year: 2023
  text: September 11, 2023
  day: 11
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 11
2004; 7
2003; 150
2020; 15
2020; 13
2019; 846
2020; 167
2020; 11
2020; 10
2016; 37
2001; 148
2021; 79
1994; 264
2016; 318
2019; 22
2019; 23
1999; 53
2017; 164
2008; 112
2022; 169
2021; 42
2019; 31
2004; 49
2021; 423
2016; 328
2007; 165
2013; 227
2013; 91
1992; 37
2016; 324
2020; 32
2016; 18
2015; 350
2016; 6
2021; 59
2021; 54
2004; 50
2016; 1
2022; 3
2020; 31
2022; 4
2020; 30
2022; 5
2022; 6
2007; 154
2022; 7
2022; 9
1992; 139
2009; 189
2022; 1
2012; 48
2021; 60
2016; 8
2016; 9
2012; 41
2010; 55
2023; 35
2002; 110
2020; 120
2019; 55
2019; 58
2020; 59
2016; 221
2020; 56
2021; 484
2017; 356
2017; 117
2020; 7
1992; 91
2020; 5
2020; 3
2020; 1
2020; 53
2010; 157
2010; 154
2020; 49
2014; 161
2014; 6
2012; 217
2015; 162
2021; 8
2021; 6
2015; 6
2021; 4
2005; 152
2021; 3
2021; 2
1991; 34
1991; 35
2017; 27
1997; 69
1993; 140
1999; 146
2021; 1
2006; 159
2015; 7
2023
2000; 147
2015; 154
2019
2017; 19
2019; 416
2020; 354
2017; 342
2017; 224
2018; 57
2013; 1
2021; 168
2006; 35
2002; 154
2015; 300
2000; 87
2000; 88
1983; 9
2011; 196
2018; 290
1966; 55
2019; 441
2014; 136
2018; 47
2010; 22
2018; 8
2018; 2
2018; 4
2018; 1
1997; 144
2022; 34
2009; 121
2006; 163
2006; 162
2002; 149
2018; 30
2022; 32
2022; 33
2007; 3
2019; 430
2021; 2021
1985; 14
2019; 7
2018; 28
2019; 9
2019; 4
2019; 3
2006; 51
2019; 1
2002; 4
2016; 163
2015; 61
2004; 151
2022; 12
2022; 14
2022; 15
2022; 905
2021; 493
2022; 11
2017; 5
2021; 27
2017; 7
2018; 122
2003; 119
1986; 133
2022; 67
2022; 68
2009; 156
2003; 115
2017; 9
2022; 122
2021; 36
1990; 137
2021; 876
2013; 156
2011; 23
2001; 97
2018; 384
2015; 13
2014; 118
2012; 82
2004; 104
2018; 269
2006; 8
2008; 11
1999; 1
2019; 141
2014; 114
2012; 74
2021; 14
2021; 13
2021; 12
2021; 11
2022; 61
2018; 278
2015; 21
2022; 52
2022; 825
2022; 54
2008; 177
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_223_1
e_1_2_11_246_1
e_1_2_11_269_1
e_1_2_11_200_2
e_1_2_11_186_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_261_1
e_1_2_11_284_1
e_1_2_11_125_2
e_1_2_11_4_1
e_1_2_11_148_1
e_1_2_11_29_2
e_1_2_11_102_1
e_1_2_11_163_1
e_1_2_11_140_1
e_1_2_11_211_1
e_1_2_11_257_1
e_1_2_11_81_1
e_1_2_11_234_1
e_1_2_11_66_2
e_1_2_11_197_2
e_1_2_11_295_1
e_1_2_11_20_1
e_1_2_11_89_1
e_1_2_11_272_2
e_1_2_11_43_1
e_1_2_11_17_2
e_1_2_11_159_2
e_1_2_11_136_1
e_1_2_11_113_1
e_1_2_11_174_2
e_1_2_11_208_1
e_1_2_11_151_1
e_1_2_11_247_1
e_1_2_11_92_1
e_1_2_11_201_2
e_1_2_11_224_1
e_1_2_11_187_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_285_1
e_1_2_11_262_1
e_1_2_11_54_1
e_1_2_11_28_2
e_1_2_11_103_1
e_1_2_11_149_1
e_1_2_11_5_2
e_1_2_11_126_2
e_1_2_11_141_1
e_1_2_11_164_1
e_1_2_11_190_1
e_1_2_11_235_1
e_1_2_11_258_1
e_1_2_11_80_1
e_1_2_11_212_2
e_1_2_11_198_2
e_1_2_11_250_1
e_1_2_11_88_1
e_1_2_11_273_2
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_16_2
e_1_2_11_114_1
Dharavath R. (e_1_2_11_181_1) 2019
e_1_2_11_137_1
e_1_2_11_39_1
e_1_2_11_152_1
e_1_2_11_175_1
e_1_2_11_209_1
e_1_2_11_180_1
e_1_2_11_248_1
e_1_2_11_263_2
e_1_2_11_202_1
e_1_2_11_225_1
e_1_2_11_188_1
e_1_2_11_57_2
e_1_2_11_240_2
e_1_2_11_72_2
e_1_2_11_11_2
e_1_2_11_34_1
e_1_2_11_95_1
e_1_2_11_104_1
e_1_2_11_127_2
e_1_2_11_2_2
e_1_2_11_165_1
e_1_2_11_142_1
e_1_2_11_83_1
e_1_2_11_191_1
e_1_2_11_236_1
e_1_2_11_60_1
e_1_2_11_259_1
e_1_2_11_213_2
e_1_2_11_45_1
e_1_2_11_199_1
e_1_2_11_251_1
e_1_2_11_274_1
e_1_2_11_68_1
e_1_2_11_22_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_19_1
e_1_2_11_176_1
e_1_2_11_153_1
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_71_2
e_1_2_11_249_1
e_1_2_11_264_2
e_1_2_11_287_2
e_1_2_11_226_1
e_1_2_11_203_1
e_1_2_11_56_2
e_1_2_11_189_1
e_1_2_11_79_1
e_1_2_11_10_2
e_1_2_11_33_1
e_1_2_11_105_1
e_1_2_11_128_1
Fan H. (e_1_2_11_286_2) 2021; 13
e_1_2_11_3_2
e_1_2_11_120_2
e_1_2_11_143_1
e_1_2_11_166_1
e_1_2_11_238_2
e_1_2_11_82_1
e_1_2_11_192_1
e_1_2_11_237_2
e_1_2_11_275_1
e_1_2_11_214_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_252_1
e_1_2_11_67_2
e_1_2_11_290_2
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_177_2
e_1_2_11_18_2
e_1_2_11_154_2
e_1_2_11_131_1
e_1_2_11_182_1
e_1_2_11_204_1
e_1_2_11_227_1
e_1_2_11_242_1
e_1_2_11_265_1
e_1_2_11_288_1
e_1_2_11_36_1
e_1_2_11_13_2
e_1_2_11_51_1
e_1_2_11_97_1
e_1_2_11_118_2
e_1_2_11_280_2
e_1_2_11_74_2
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_2
e_1_2_11_167_1
e_1_2_11_144_1
e_1_2_11_216_2
e_1_2_11_239_1
e_1_2_11_193_1
e_1_2_11_276_1
e_1_2_11_215_1
e_1_2_11_253_1
e_1_2_11_47_1
e_1_2_11_230_1
e_1_2_11_85_2
e_1_2_11_291_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_117_1
e_1_2_11_59_1
e_1_2_11_155_2
e_1_2_11_178_2
e_1_2_11_132_1
Sreekanth T. V. M. (e_1_2_11_241_2) 2022; 52
e_1_2_11_170_1
e_1_2_11_289_2
e_1_2_11_50_1
e_1_2_11_220_1
e_1_2_11_183_1
e_1_2_11_205_1
e_1_2_11_243_1
e_1_2_11_266_2
e_1_2_11_58_1
e_1_2_11_73_2
e_1_2_11_12_2
e_1_2_11_35_1
e_1_2_11_281_1
e_1_2_11_96_1
e_1_2_11_119_2
e_1_2_11_145_1
e_1_2_11_168_1
e_1_2_11_1_1
e_1_2_11_122_2
e_1_2_11_217_2
e_1_2_11_160_1
e_1_2_11_61_1
e_1_2_11_194_1
e_1_2_11_254_1
e_1_2_11_231_2
e_1_2_11_277_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_292_2
e_1_2_11_107_1
e_1_2_11_9_2
e_1_2_11_23_1
e_1_2_11_84_1
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_110_1
e_1_2_11_133_1
e_1_2_11_228_1
e_1_2_11_171_1
e_1_2_11_267_2
e_1_2_11_91_1
e_1_2_11_221_1
e_1_2_11_184_2
e_1_2_11_244_1
e_1_2_11_76_2
e_1_2_11_30_1
e_1_2_11_99_1
e_1_2_11_282_1
e_1_2_11_53_1
e_1_2_11_6_2
e_1_2_11_27_2
e_1_2_11_169_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_218_1
e_1_2_11_161_1
e_1_2_11_195_1
e_1_2_11_278_1
e_1_2_11_232_2
e_1_2_11_255_1
e_1_2_11_293_2
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_270_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_229_1
e_1_2_11_172_1
e_1_2_11_206_2
e_1_2_11_222_1
e_1_2_11_268_1
e_1_2_11_90_1
e_1_2_11_185_2
e_1_2_11_245_1
e_1_2_11_260_1
e_1_2_11_283_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_75_2
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_219_1
e_1_2_11_162_1
e_1_2_11_210_1
e_1_2_11_279_2
e_1_2_11_196_1
e_1_2_11_233_1
e_1_2_11_256_1
e_1_2_11_271_1
e_1_2_11_294_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_2
e_1_2_11_109_1
e_1_2_11_7_2
e_1_2_11_158_2
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_207_2
e_1_2_11_173_2
e_1_2_11_150_1
References_xml – volume: 9
  start-page: 239
  year: 1983
  end-page: 245
  publication-title: J. Power Sources
– volume: 430
  start-page: 74
  year: 2019
  end-page: 79
  publication-title: J. Power Sources
– volume: 55
  start-page: 5204
  year: 2010
  end-page: 5209
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 882
  year: 2019
  end-page: 890
  publication-title: Nat. Energy
– volume: 56
  start-page: 9640
  year: 2020
  end-page: 9643
  publication-title: Chem. Commun.
– volume: 35
  start-page: 1475
  year: 2006
  end-page: 1517
  publication-title: J. Phys. Chem. Ref. Data
– volume: 876
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 11
  start-page: 21496
  year: 2019
  end-page: 21505
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 141
  start-page: 9422
  year: 2019
  end-page: 9429
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 4882
  year: 2021
  end-page: 4889
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 12954
  year: 2013
  end-page: 12961
  publication-title: J. Mater. Chem. A
– volume: 154
  start-page: 227
  year: 2015
  end-page: 234
  publication-title: Electrochim. Acta
– volume: 290
  start-page: 568
  year: 2018
  end-page: 576
  publication-title: Electrochim. Acta
– volume: 1
  year: 2019
  publication-title: eTransportation
– volume: 150
  start-page: A306
  year: 2003
  end-page: A311
  publication-title: J. Electrochem. Soc.
– volume: 217
  start-page: 503
  year: 2012
  end-page: 508
  publication-title: J. Power Sources
– volume: 146
  start-page: 3963
  year: 1999
  end-page: 3969
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 18826
  year: 2017
  end-page: 18835
  publication-title: ACS Appl. Mater. Interfaces
– volume: 36
  start-page: 222
  year: 2021
  end-page: 228
  publication-title: Energy Storage Mater.
– volume: 120
  start-page: 6783
  year: 2020
  end-page: 6819
  publication-title: Chem. Rev.
– volume: 159
  start-page: 702
  year: 2006
  end-page: 707
  publication-title: J. Power Sources
– volume: 162
  start-page: 690
  year: 2006
  end-page: 695
  publication-title: J. Power Sources
– volume: 58
  start-page: 16994
  year: 2019
  end-page: 16999
  publication-title: Angew. Chem. Int. Ed.
– volume: 269
  start-page: 378
  year: 2018
  end-page: 387
  publication-title: Electrochim. Acta
– volume: 162
  start-page: A413
  year: 2015
  end-page: A420
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 506
  year: 2021
  end-page: 536
  publication-title: SusMat
– volume: 162
  start-page: A2529
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 15
  start-page: 550
  year: 2022
  end-page: 578
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 386
  year: 2020
  end-page: 397
  publication-title: Nat. Energy
– volume: 121
  start-page: 339
  year: 2009
  end-page: 346
  publication-title: J. Chem. Sci.
– volume: 3
  start-page: 141
  year: 2022
  end-page: 155
  publication-title: Nat. Rev. Earth Environ.
– volume: 60
  start-page: 13007
  year: 2021
  end-page: 13012
  publication-title: Angew. Chem. Int. Ed.
– volume: 119
  start-page: 359
  year: 2003
  end-page: 367
  publication-title: J. Power Sources
– volume: 18
  start-page: 25458
  year: 2016
  end-page: 25464
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 169
  year: 2022
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 928
  year: 2002
  end-page: 932
  publication-title: Electrochem. Commun.
– volume: 416
  start-page: 29
  year: 2019
  end-page: 36
  publication-title: J. Power Sources
– volume: 119
  start-page: 349
  year: 2003
  end-page: 358
  publication-title: J. Power Sources
– volume: 119
  start-page: 343
  year: 2003
  end-page: 348
  publication-title: J. Power Sources
– volume: 14
  start-page: 179
  year: 1985
  end-page: 191
  publication-title: J. Power Sources
– volume: 87
  start-page: 112
  year: 2000
  end-page: 117
  publication-title: J. Power Sources
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 168
  year: 2021
  publication-title: J. Electrochem. Soc.
– volume: 47
  start-page: 2145
  year: 2018
  end-page: 2164
  publication-title: Chem. Soc. Rev.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 4
  start-page: 896
  year: 2019
  end-page: 902
  publication-title: ACS Energy Lett.
– volume: 264
  start-page: 1115
  year: 1994
  end-page: 1118
  publication-title: Science
– volume: 484
  year: 2021
  publication-title: J. Power Sources
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 151
  start-page: A1120
  year: 2004
  end-page: A1123
  publication-title: J. Electrochem. Soc.
– volume: 97
  start-page: 592
  year: 2001
  end-page: 594
  publication-title: J. Power Sources
– volume: 58
  start-page: 5623
  year: 2019
  end-page: 5627
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 1828
  year: 2017
  end-page: 1849
  publication-title: Green Chem.
– volume: 154
  start-page: 303
  year: 2002
  end-page: 309
  publication-title: Solid State Ionics
– volume: 60
  start-page: 4090
  year: 2021
  end-page: 4097
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 6
  year: 2019
  end-page: 32
  publication-title: InfoMat
– volume: 54
  start-page: 339
  year: 2022
  end-page: 365
  publication-title: Energy Storage Mater.
– volume: 162
  start-page: A928
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 161
  start-page: A875
  year: 2014
  end-page: A879
  publication-title: J. Electrochem. Soc.
– volume: 324
  start-page: 704
  year: 2016
  end-page: 711
  publication-title: J. Power Sources
– volume: 356
  year: 2017
  publication-title: Science
– volume: 133
  start-page: 661
  year: 1986
  end-page: 666
  publication-title: J. Electrochem. Soc.
– volume: 67
  start-page: 255
  year: 2022
  end-page: 262
  publication-title: J. Energy Chem.
– volume: 54
  start-page: 3883
  year: 2021
  end-page: 3894
  publication-title: Acc. Chem. Res.
– volume: 146
  start-page: 486
  year: 1999
  end-page: 492
  publication-title: J. Electrochem. Soc.
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4417
  publication-title: Chem. Rev.
– volume: 6
  start-page: 1172
  year: 2022
  end-page: 1198
  publication-title: Joule
– volume: 4
  start-page: 1877
  year: 2018
  end-page: 1892
  publication-title: Chem
– volume: 300
  start-page: 29
  year: 2015
  end-page: 40
  publication-title: J. Power Sources
– volume: 8
  start-page: 5715
  year: 2016
  end-page: 5722
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 3170
  year: 2021
  end-page: 3179
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 540
  year: 2019
  end-page: 550
  publication-title: Nat. Energy
– volume: 21
  start-page: 901
  year: 2015
  end-page: 907
  publication-title: Ionics
– volume: 164
  start-page: A1873
  year: 2017
  end-page: A1880
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 303
  year: 2021
  end-page: 313
  publication-title: Nat. Energy
– volume: 6
  start-page: 2016
  year: 2021
  end-page: 2023
  publication-title: ACS Energy Lett.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 224
  start-page: 186
  year: 2017
  end-page: 193
  publication-title: Electrochim. Acta
– volume: 23
  start-page: 2979
  year: 2011
  end-page: 2986
  publication-title: Chem. Mater.
– volume: 50
  start-page: 247
  year: 2004
  end-page: 254
  publication-title: Electrochim. Acta
– volume: 68
  start-page: 752
  year: 2022
  end-page: 761
  publication-title: J. Energy Chem.
– volume: 120
  start-page: 7020
  year: 2020
  end-page: 7063
  publication-title: Chem. Rev.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 37
  start-page: 325
  year: 2016
  end-page: 329
  publication-title: J. Ind. Eng. Chem.
– volume: 384
  start-page: 107
  year: 2018
  end-page: 124
  publication-title: J. Power Sources
– volume: 69
  start-page: 41
  year: 1997
  end-page: 45
  publication-title: J. Power Sources
– volume: 22
  start-page: 323
  year: 2019
  end-page: 329
  publication-title: Energy Storage Mater.
– volume: 278
  start-page: 279
  year: 2018
  end-page: 289
  publication-title: Electrochim. Acta
– volume: 137
  start-page: 2009
  year: 1990
  publication-title: J. Electrochem. Soc.
– volume: 41
  start-page: 7108
  year: 2012
  end-page: 7146
  publication-title: Chem. Soc. Rev.
– volume: 144
  start-page: 823
  year: 1997
  end-page: 829
  publication-title: J. Electrochem. Soc.
– volume: 328
  start-page: 124
  year: 2016
  end-page: 135
  publication-title: J. Power Sources
– volume: 13
  start-page: 24995
  year: 2021
  end-page: 25001
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 3395
  year: 2021
  publication-title: Nat. Commun.
– volume: 163
  start-page: A2407
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 88683
  year: 2016
  end-page: 88700
  publication-title: RSC Adv.
– volume: 146
  start-page: 470
  year: 1999
  end-page: 472
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 3659
  year: 2013
  end-page: 3666
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: A273
  year: 2004
  publication-title: Electrochem. Solid-State Lett.
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  publication-title: Chem. Rev.
– volume: 7
  start-page: 14531
  year: 2019
  end-page: 14538
  publication-title: ACS Sustainable Chem. Eng.
– volume: 342
  start-page: 17
  year: 2017
  end-page: 23
  publication-title: J. Power Sources
– volume: 3
  start-page: 3653
  year: 2020
  end-page: 3664
  publication-title: ACS Appl. Energy Mater.
– volume: 4
  start-page: 3777
  year: 2021
  end-page: 3784
  publication-title: ACS Appl. Energy Mater.
– volume: 196
  start-page: 3623
  year: 2011
  end-page: 3632
  publication-title: J. Power Sources
– volume: 7
  start-page: 3545
  year: 2022
  end-page: 3556
  publication-title: ACS Energy Lett.
– volume: 55
  start-page: 12032
  year: 2019
  end-page: 12035
  publication-title: Chem. Commun.
– volume: 37
  start-page: 1551
  year: 1992
  end-page: 1554
  publication-title: Electrochim. Acta
– volume: 58
  start-page: 18892
  year: 2019
  end-page: 18897
  publication-title: Angew. Chem. Int. Ed.
– volume: 59
  start-page: 306
  year: 2021
  end-page: 319
  publication-title: J. Energy Chem.
– volume: 49
  start-page: 4857
  year: 2004
  end-page: 4863
  publication-title: Electrochim. Acta
– volume: 61
  start-page: 121
  year: 2015
  end-page: 124
  publication-title: Electrochem. Commun.
– volume: 5
  start-page: 578
  year: 2020
  end-page: 586
  publication-title: Nat. Energy
– volume: 55
  start-page: 851
  year: 1966
  end-page: 853
  publication-title: J. Pharm. Sci.
– volume: 11
  year: 2022
  publication-title: eTransportation
– volume: 27
  start-page: 15842
  year: 2021
  end-page: 15865
  publication-title: Chem. Eur. J.
– volume: 3
  start-page: 2322
  year: 2019
  end-page: 2333
  publication-title: Joule
– volume: 9
  start-page: 3221
  year: 2016
  end-page: 3229
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 4306
  year: 2015
  end-page: 4310
  publication-title: Chem. Sci.
– volume: 318
  start-page: 170
  year: 2016
  end-page: 177
  publication-title: J. Power Sources
– volume: 163
  start-page: A3010
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 2664
  year: 2018
  end-page: 2670
  publication-title: ACS Appl. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 147
  start-page: 4399
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 825
  year: 2022
  publication-title: Sci. Total Environ.
– volume: 152
  start-page: A2151
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 31
  start-page: 382
  year: 2020
  end-page: 400
  publication-title: Energy Storage Mater.
– volume: 350
  start-page: 938
  year: 2015
  end-page: 943
  publication-title: Science
– volume: 157
  start-page: A1361
  year: 2010
  end-page: A1374
  publication-title: J. Electrochem. Soc.
– volume: 53
  start-page: 1648
  year: 2020
  end-page: 1659
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 51
  year: 2007
  publication-title: ECS Trans.
– volume: 4
  year: 2022
  publication-title: EcoMat
– start-page: 1
  year: 2019
  end-page: 5
  publication-title: Int. J. Electrochem. Sci.
– volume: 51
  start-page: 5567
  year: 2006
  end-page: 5580
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 1711
  year: 2022
  end-page: 1759
  publication-title: Energy Environ. Sci.
– volume: 53
  start-page: 1470
  year: 1999
  end-page: 1474
  publication-title: Appl. Spectrosc.
– volume: 2021
  year: 2021
  publication-title: Energy Mater. Adv.
– volume: 165
  start-page: 535
  year: 2007
  end-page: 543
  publication-title: J. Power Sources
– volume: 5
  start-page: 1438
  year: 2020
  end-page: 1447
  publication-title: ACS Energy Lett.
– volume: 52
  start-page: 37
  year: 2022
  end-page: 41
  publication-title: Inorg. Nano-Met. Chem.
– volume: 189
  start-page: 602
  year: 2009
  end-page: 606
  publication-title: J. Power Sources
– volume: 7
  start-page: 20687
  year: 2015
  end-page: 20695
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 8638
  year: 2020
  end-page: 8661
  publication-title: Int. J. Electrochem. Sci.
– volume: 67
  start-page: 209
  year: 2022
  end-page: 224
  publication-title: J. Energy Chem.
– volume: 2
  start-page: 902
  year: 2018
  end-page: 913
  publication-title: Joule
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 1061
  year: 2021
  end-page: 1069
  publication-title: Nat. Chem.
– volume: 163
  start-page: A1232
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 35
  start-page: 59
  year: 1991
  end-page: 82
  publication-title: J. Power Sources
– volume: 42
  start-page: 477
  year: 2021
  end-page: 483
  publication-title: Energy Storage Mater.
– volume: 13
  start-page: 574
  year: 2021
  end-page: 580
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  start-page: 3071
  year: 1993
  publication-title: J. Electrochem. Soc.
– volume: 23
  start-page: 383
  year: 2019
  end-page: 389
  publication-title: Energy Storage Mater.
– volume: 122
  start-page: 10970
  year: 2022
  end-page: 11021
  publication-title: Chem. Rev.
– volume: 1
  start-page: 38
  year: 2021
  end-page: 50
  publication-title: SusMat
– volume: 88
  start-page: 192
  year: 2000
  end-page: 196
  publication-title: J. Power Sources
– volume: 74
  start-page: 260
  year: 2012
  end-page: 266
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 38285
  year: 2019
  end-page: 38293
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 11910
  year: 2022
  end-page: 11918
  publication-title: ACS Appl. Mater. Interfaces
– volume: 163
  start-page: A1798
  year: 2016
  end-page: A1804
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 72
  year: 2022
  end-page: 81
  publication-title: iEnergy
– volume: 118
  start-page: 19661
  year: 2014
  end-page: 19671
  publication-title: J. Phys. Chem. C
– volume: 22
  start-page: 587
  year: 2010
  end-page: 603
  publication-title: Chem. Mater.
– volume: 6
  start-page: 4920
  year: 2014
  end-page: 4926
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  year: 2021
  publication-title: Adv. Energy Sustainability Res.
– volume: 79
  year: 2021
  publication-title: Nano Energy
– volume: 177
  start-page: 194
  year: 2008
  end-page: 198
  publication-title: J. Power Sources
– volume: 423
  year: 2021
  publication-title: Chem. Eng. J.
– year: 2023
  publication-title: Energy Environ. Mater.
– volume: 33
  year: 2022
  publication-title: Curr. Opin. Electrochem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2499
  year: 2020
  publication-title: Nat. Commun.
– volume: 5
  start-page: 19982
  year: 2017
  end-page: 19990
  publication-title: J. Mater. Chem. A
– volume: 163
  start-page: 201
  year: 2006
  end-page: 206
  publication-title: J. Power Sources
– volume: 136
  start-page: 182
  year: 2014
  end-page: 188
  publication-title: Electrochim. Acta
– volume: 354
  year: 2020
  publication-title: Electrochim. Acta
– volume: 14
  start-page: 52
  year: 2022
  end-page: 63
  publication-title: Engineering
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 493
  year: 2021
  publication-title: J. Power Sources
– volume: 1
  start-page: 163
  year: 2021
  end-page: 177
  publication-title: eScience
– volume: 112
  start-page: 12985
  year: 2008
  end-page: 12990
  publication-title: J. Phys. Chem. B
– volume: 60
  start-page: 3402
  year: 2021
  end-page: 3406
  publication-title: Angew. Chem. Int. Ed.
– volume: 82
  start-page: 69
  year: 2012
  end-page: 74
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 40042
  year: 2021
  end-page: 40052
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 1423
  year: 2006
  end-page: 1428
  publication-title: Electrochem. Commun.
– volume: 905
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 115
  start-page: 137
  year: 2003
  end-page: 140
  publication-title: J. Power Sources
– volume: 48
  start-page: 7268
  year: 2012
  end-page: 7270
  publication-title: Chem. Commun.
– volume: 34
  start-page: 51
  year: 1991
  end-page: 64
  publication-title: J. Power Sources
– volume: 846
  year: 2019
  publication-title: J. Electroanal. Chem.
– volume: 1
  year: 2020
  publication-title: Small Struct.
– volume: 6
  start-page: 2054
  year: 2021
  end-page: 2063
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 44
  year: 2019
  end-page: 51
  publication-title: ACS Mater. Lett.
– volume: 91
  start-page: 647
  year: 1992
  end-page: 652
  publication-title: Mater. Sci. Forum
– volume: 151
  start-page: A2106
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 57
  start-page: 16643
  year: 2018
  end-page: 16647
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1245
  year: 2021
  end-page: 1255
  publication-title: CCS Chem.
– volume: 156
  start-page: 136
  year: 2013
  end-page: 143
  publication-title: J. Fluorine Chem.
– volume: 13
  start-page: 546
  year: 2015
  end-page: 553
  publication-title: Nano Energy
– volume: 122
  start-page: 12077
  year: 2018
  end-page: 12086
  publication-title: J. Phys. Chem. B
– volume: 110
  start-page: 216
  year: 2002
  end-page: 221
  publication-title: J. Power Sources
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 49
  start-page: 1057
  year: 2004
  end-page: 1061
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 91
  year: 2008
  publication-title: ECS Trans.
– volume: 122
  start-page: 16624
  year: 2018
  end-page: 16629
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 1986
  year: 2019
  end-page: 2000
  publication-title: Joule
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 60
  start-page: 25624
  year: 2021
  end-page: 25638
  publication-title: Angew. Chem. Int. Ed.
– volume: 441
  year: 2019
  publication-title: J. Power Sources
– volume: 3
  start-page: 1094
  year: 2019
  end-page: 1105
  publication-title: Joule
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 156
  start-page: A272
  year: 2009
  end-page: A276
  publication-title: J. Electrochem. Soc.
– volume: 59
  start-page: 3400
  year: 2020
  end-page: 3415
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 548
  year: 2022
  end-page: 559
  publication-title: Nat. Energy
– volume: 154
  start-page: 131
  year: 2010
  end-page: 133
  publication-title: J. Mol. Liq.
– volume: 148
  start-page: A299
  year: 2001
  end-page: A304
  publication-title: J. Electrochem. Soc.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 1
  start-page: 16013
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 139
  start-page: 1845
  year: 1992
  end-page: 1849
  publication-title: J. Electrochem. Soc.
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  publication-title: Chem. Rev.
– volume: 149
  start-page: A361
  year: 2002
  end-page: A370
  publication-title: J. Electrochem. Soc.
– volume: 13
  start-page: 2209
  year: 2020
  end-page: 2219
  publication-title: Energy Environ. Sci.
– volume: 154
  start-page: A162
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 42761
  year: 2017
  end-page: 42768
  publication-title: ACS Appl. Mater. Interfaces
– volume: 162
  start-page: 1379
  year: 2006
  end-page: 1394
  publication-title: J. Power Sources
– volume: 11
  start-page: 27854
  year: 2019
  end-page: 27861
  publication-title: ACS Appl. Mater. Interfaces
– volume: 147
  start-page: 1688
  year: 2000
  end-page: 1694
  publication-title: J. Electrochem. Soc.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 148
  year: 1999
  end-page: 150
  publication-title: Electrochem. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 91
  start-page: 282
  year: 2013
  end-page: 292
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 876
  year: 2022
  end-page: 898
  publication-title: Matter
– volume: 97
  start-page: 576
  year: 2001
  end-page: 580
  publication-title: J. Power Sources
– volume: 49
  start-page: 335
  year: 2020
  end-page: 338
  publication-title: J. Energy Chem.
– volume: 221
  start-page: 107
  year: 2016
  end-page: 114
  publication-title: Electrochim. Acta
– volume: 49
  start-page: 3806
  year: 2020
  end-page: 3833
  publication-title: Chem. Soc. Rev.
– volume: 227
  start-page: 60
  year: 2013
  end-page: 64
  publication-title: J. Power Sources
– ident: e_1_2_11_37_1
  doi: 10.1016/j.ensm.2022.10.027
– ident: e_1_2_11_224_1
  doi: 10.1021/acsami.5b05552
– ident: e_1_2_11_260_1
  doi: 10.1021/acssuschemeng.9b02042
– ident: e_1_2_11_226_1
  doi: 10.1021/acsenergylett.9b00381
– ident: e_1_2_11_9_2
  doi: 10.1002/inf2.12000
– ident: e_1_2_11_133_1
  doi: 10.31635/ccschem.020.202000341
– ident: e_1_2_11_136_1
  doi: 10.1002/eom2.12200
– ident: e_1_2_11_158_2
  doi: 10.1016/j.jpowsour.2012.05.114
– ident: e_1_2_11_160_1
  doi: 10.1016/S0378-7753(01)00536-5
– ident: e_1_2_11_263_2
  doi: 10.4028/www.scientific.net/MSF.91-93.647
– ident: e_1_2_11_165_1
  doi: 10.1021/acsenergylett.1c01528
– ident: e_1_2_11_272_2
  doi: 10.1002/adma.201903852
– ident: e_1_2_11_20_1
  doi: 10.1002/aenm.202001972
– ident: e_1_2_11_79_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_11_215_1
– ident: e_1_2_11_214_1
  doi: 10.1021/acsami.1c23934
– ident: e_1_2_11_187_1
  doi: 10.1002/anie.202009738
– ident: e_1_2_11_113_1
  doi: 10.1021/acsenergylett.0c00643
– ident: e_1_2_11_122_2
  doi: 10.1149/2.1291610jes
– ident: e_1_2_11_106_1
  doi: 10.1149/1.1353568
– ident: e_1_2_11_101_1
  doi: 10.1149/1945-7111/ac5ba9
– ident: e_1_2_11_134_1
  doi: 10.1039/D0CC04049E
– ident: e_1_2_11_246_1
  doi: 10.1039/D0EE01446J
– ident: e_1_2_11_5_2
  doi: 10.1016/j.matt.2022.01.011
– ident: e_1_2_11_23_1
  doi: 10.1039/D1EE03292E
– ident: e_1_2_11_36_1
  doi: 10.1016/j.coelec.2022.100949
– ident: e_1_2_11_74_2
  doi: 10.1002/sus2.37
– ident: e_1_2_11_176_1
– ident: e_1_2_11_179_1
  doi: 10.1016/0013-4686(92)80109-Y
– ident: e_1_2_11_116_1
  doi: 10.1021/acsenergylett.1c00484
– ident: e_1_2_11_139_1
  doi: 10.1039/C7TA05743A
– ident: e_1_2_11_62_1
  doi: 10.1039/C7CS00858A
– ident: e_1_2_11_78_1
  doi: 10.1021/acsaem.0c00130
– ident: e_1_2_11_13_2
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_11_71_2
  doi: 10.1149/2.0711614jes
– ident: e_1_2_11_170_1
  doi: 10.1016/S0378-7753(03)00153-8
– ident: e_1_2_11_46_1
  doi: 10.1149/1.2042907
– ident: e_1_2_11_119_2
  doi: 10.1016/j.jpowsour.2019.227080
– ident: e_1_2_11_242_1
  doi: 10.1039/C5SC01398D
– ident: e_1_2_11_189_1
  doi: 10.1149/1.1394077
– ident: e_1_2_11_205_1
– ident: e_1_2_11_130_1
  doi: 10.1016/j.jpowsour.2006.10.038
– ident: e_1_2_11_183_1
– ident: e_1_2_11_19_1
  doi: 10.23919/IEN.2022.0003
– ident: e_1_2_11_11_2
  doi: 10.1002/adma.201800561
– ident: e_1_2_11_137_1
  doi: 10.1002/anie.202011482
– ident: e_1_2_11_219_1
  doi: 10.1002/aenm.201800802
– ident: e_1_2_11_32_1
  doi: 10.1039/C7GC00252A
– ident: e_1_2_11_259_1
  doi: 10.1002/anie.201908913
– ident: e_1_2_11_236_1
– ident: e_1_2_11_204_1
  doi: 10.1149/1945-7111/ab6bc2
– ident: e_1_2_11_230_1
– ident: e_1_2_11_63_1
  doi: 10.1002/adma.202107787
– ident: e_1_2_11_41_1
  doi: 10.1016/S0378-7753(00)00367-0
– ident: e_1_2_11_145_1
  doi: 10.1002/anie.202207927
– ident: e_1_2_11_191_1
  doi: 10.1016/j.jpowsour.2016.04.017
– ident: e_1_2_11_28_2
  doi: 10.34133/2021/1205324
– ident: e_1_2_11_274_1
  doi: 10.1002/adma.201905879
– ident: e_1_2_11_45_1
  doi: 10.1149/1.1763141
– ident: e_1_2_11_118_2
  doi: 10.1016/j.electacta.2016.12.071
– ident: e_1_2_11_105_1
  doi: 10.1038/s41557-021-00787-y
– ident: e_1_2_11_1_1
– ident: e_1_2_11_168_1
  doi: 10.1002/aenm.202202432
– ident: e_1_2_11_67_2
  doi: 10.1016/j.etran.2019.100011
– ident: e_1_2_11_265_1
– ident: e_1_2_11_68_1
  doi: 10.1149/2.0591607jes
– ident: e_1_2_11_199_1
– ident: e_1_2_11_59_1
  doi: 10.1016/j.jpowsour.2018.02.063
– ident: e_1_2_11_100_1
  doi: 10.1038/s41560-019-0474-3
– ident: e_1_2_11_208_1
  doi: 10.1016/j.electacta.2014.12.084
– ident: e_1_2_11_228_1
  doi: 10.1002/anie.201900266
– ident: e_1_2_11_58_1
  doi: 10.1002/anie.202210365
– ident: e_1_2_11_211_1
– ident: e_1_2_11_60_1
  doi: 10.1038/s41560-019-0405-3
– ident: e_1_2_11_2_2
  doi: 10.1038/s43017-021-00244-x
– ident: e_1_2_11_109_1
  doi: 10.1021/acsami.5b12517
– ident: e_1_2_11_254_1
  doi: 10.1021/acs.jpcc.8b05193
– ident: e_1_2_11_175_1
  doi: 10.1016/j.jpowsour.2005.11.042
– ident: e_1_2_11_52_1
  doi: 10.1149/1.1453407
– ident: e_1_2_11_250_1
  doi: 10.1002/aesr.202100039
– ident: e_1_2_11_257_1
  doi: 10.1002/aenm.201902654
– ident: e_1_2_11_292_2
  doi: 10.1149/2.0141514jes
– start-page: 1
  year: 2019
  ident: e_1_2_11_181_1
  publication-title: Int. J. Electrochem. Sci.
– ident: e_1_2_11_177_2
  doi: 10.1149/2.023406jes
– ident: e_1_2_11_92_1
  doi: 10.1007/s12039-009-0039-2
– ident: e_1_2_11_127_2
  doi: 10.1016/S0378-7753(97)02545-7
– ident: e_1_2_11_267_2
  doi: 10.1039/c2cs35178a
– ident: e_1_2_11_288_1
– ident: e_1_2_11_93_1
  doi: 10.1016/j.esci.2021.12.003
– ident: e_1_2_11_289_2
  doi: 10.1016/j.joule.2019.02.004
– ident: e_1_2_11_18_2
  doi: 10.1021/acs.accounts.1c00420
– ident: e_1_2_11_225_1
  doi: 10.1002/sstr.202000122
– ident: e_1_2_11_229_1
  doi: 10.1016/j.jechem.2021.12.038
– ident: e_1_2_11_47_1
  doi: 10.1149/1.2793578
– ident: e_1_2_11_107_1
  doi: 10.1016/S0378-7753(03)00266-0
– ident: e_1_2_11_121_2
  doi: 10.1002/aenm.202201197
– ident: e_1_2_11_151_1
  doi: 10.1038/s41560-020-0601-1
– ident: e_1_2_11_14_1
  doi: 10.1021/acs.chemrev.9b00535
– ident: e_1_2_11_213_2
  doi: 10.1002/adfm.202206615
– ident: e_1_2_11_293_2
  doi: 10.1016/j.jechem.2021.09.039
– ident: e_1_2_11_157_1
– ident: e_1_2_11_51_1
  doi: 10.1016/j.electacta.2012.04.085
– ident: e_1_2_11_159_2
  doi: 10.1016/j.nanoen.2015.03.042
– ident: e_1_2_11_243_1
  doi: 10.1016/j.electacta.2010.04.041
– ident: e_1_2_11_245_1
  doi: 10.1016/j.joule.2019.06.008
– ident: e_1_2_11_27_2
  doi: 10.1021/acs.chemrev.9b00531
– ident: e_1_2_11_253_1
  doi: 10.1002/aenm.201802624
– ident: e_1_2_11_284_1
  doi: 10.1021/cm200679y
– ident: e_1_2_11_266_2
  doi: 10.1021/acs.accounts.0c00360
– ident: e_1_2_11_144_1
  doi: 10.1016/j.jpowsour.2019.05.024
– ident: e_1_2_11_290_2
  doi: 10.1002/aenm.202202518
– ident: e_1_2_11_103_1
  doi: 10.1016/j.jpowsour.2006.06.053
– ident: e_1_2_11_294_1
  doi: 10.1016/j.jechem.2021.10.016
– ident: e_1_2_11_110_1
  doi: 10.1002/adma.202107899
– ident: e_1_2_11_256_1
  doi: 10.1039/C9CC04495G
– ident: e_1_2_11_128_1
  doi: 10.1149/1.2938911
– ident: e_1_2_11_287_2
  doi: 10.1021/acsami.9b03821
– ident: e_1_2_11_96_1
  doi: 10.1002/anie.202200506
– ident: e_1_2_11_218_1
  doi: 10.1016/j.jallcom.2021.159966
– ident: e_1_2_11_235_1
  doi: 10.1016/j.jpowsour.2012.11.013
– ident: e_1_2_11_8_1
– ident: e_1_2_11_131_1
  doi: 10.1016/j.jfluchem.2013.08.015
– ident: e_1_2_11_197_2
  doi: 10.1149/1.1391630
– ident: e_1_2_11_42_1
  doi: 10.1039/D1EE01789F
– ident: e_1_2_11_50_1
  doi: 10.1016/j.joule.2022.05.005
– volume: 13
  start-page: 574
  year: 2021
  ident: e_1_2_11_286_2
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_11_279_2
  doi: 10.1002/advs.202201893
– ident: e_1_2_11_120_2
  doi: 10.1016/j.nanoen.2020.105430
– ident: e_1_2_11_15_1
– ident: e_1_2_11_207_2
  doi: 10.1016/j.jpowsour.2016.08.015
– ident: e_1_2_11_169_1
  doi: 10.1149/1.2069509
– ident: e_1_2_11_237_2
  doi: 10.1016/j.electacta.2012.02.035
– ident: e_1_2_11_43_1
  doi: 10.1016/j.electacta.2003.10.016
– ident: e_1_2_11_161_1
  doi: 10.1149/2.0851709jes
– ident: e_1_2_11_210_1
  doi: 10.1016/j.joule.2019.08.018
– ident: e_1_2_11_108_1
  doi: 10.1016/S0378-7753(02)00272-0
– ident: e_1_2_11_77_1
  doi: 10.1016/j.jpowsour.2020.229312
– ident: e_1_2_11_6_2
  doi: 10.1016/j.scitotenv.2022.153839
– ident: e_1_2_11_88_1
  doi: 10.1016/j.electacta.2004.05.038
– ident: e_1_2_11_95_1
  doi: 10.1016/j.molliq.2010.04.025
– ident: e_1_2_11_112_1
  doi: 10.1016/j.electacta.2020.136652
– ident: e_1_2_11_251_1
  doi: 10.1126/science.aab1595
– ident: e_1_2_11_34_1
  doi: 10.1149/2.0641503jes
– ident: e_1_2_11_295_1
  doi: 10.1039/C6RA19482F
– ident: e_1_2_11_115_1
  doi: 10.1002/anie.202208345
– ident: e_1_2_11_55_1
– ident: e_1_2_11_273_2
  doi: 10.1002/adma.201903790
– ident: e_1_2_11_277_1
  doi: 10.1002/sstr.202000010
– ident: e_1_2_11_227_1
  doi: 10.1021/acsenergylett.2c01408
– ident: e_1_2_11_162_1
  doi: 10.1016/j.electacta.2013.01.011
– ident: e_1_2_11_126_2
  doi: 10.1016/0378-7753(91)85023-P
– ident: e_1_2_11_129_1
  doi: 10.1149/1.3501236
– volume: 52
  start-page: 37
  year: 2022
  ident: e_1_2_11_241_2
  publication-title: Inorg. Nano-Met. Chem.
  doi: 10.1080/24701556.2020.1862214
– ident: e_1_2_11_231_2
  doi: 10.1021/acsaem.1c00177
– ident: e_1_2_11_194_1
  doi: 10.1016/j.jpowsour.2016.06.008
– ident: e_1_2_11_125_2
  doi: 10.1149/1.2086855
– ident: e_1_2_11_278_1
– ident: e_1_2_11_117_1
– ident: e_1_2_11_146_1
  doi: 10.1016/j.jpowsour.2005.12.061
– ident: e_1_2_11_91_1
  doi: 10.1149/1.1545452
– ident: e_1_2_11_166_1
  doi: 10.1016/0378-7753(91)80004-H
– ident: e_1_2_11_73_2
  doi: 10.1016/j.jechem.2020.02.052
– ident: e_1_2_11_234_1
  doi: 10.1016/S0167-2738(02)00526-X
– ident: e_1_2_11_84_1
– ident: e_1_2_11_138_1
  doi: 10.1149/2.0601506jes
– ident: e_1_2_11_111_1
  doi: 10.1002/aenm.202003905
– ident: e_1_2_11_249_1
  doi: 10.1038/s41560-022-01051-4
– ident: e_1_2_11_81_1
  doi: 10.1016/0378-7753(83)87024-4
– ident: e_1_2_11_202_1
  doi: 10.1149/2.0051609jes
– ident: e_1_2_11_201_2
  doi: 10.1039/c3ta13067c
– ident: e_1_2_11_123_1
  doi: 10.1002/adfm.201605989
– ident: e_1_2_11_75_2
  doi: 10.1021/jacs.9b05029
– ident: e_1_2_11_252_1
  doi: 10.1016/j.electacta.2018.05.047
– ident: e_1_2_11_261_1
  doi: 10.1002/adfm.202106811
– ident: e_1_2_11_190_1
  doi: 10.1002/anie.201906494
– ident: e_1_2_11_56_2
  doi: 10.1002/adfm.201704808
– ident: e_1_2_11_247_1
  doi: 10.1038/s41467-021-23603-0
– ident: e_1_2_11_69_1
  doi: 10.1016/j.jpowsour.2016.12.032
– ident: e_1_2_11_258_1
  doi: 10.1016/j.ensm.2020.12.024
– ident: e_1_2_11_114_1
  doi: 10.1002/anie.201912167
– ident: e_1_2_11_54_1
  doi: 10.1149/1.1837495
– ident: e_1_2_11_85_2
  doi: 10.1016/S0378-7753(99)00434-6
– ident: e_1_2_11_148_1
  doi: 10.1149/1.3073552
– ident: e_1_2_11_238_2
  doi: 10.1021/acs.jpcb.8b08815
– ident: e_1_2_11_40_1
  doi: 10.1149/1.1393419
– ident: e_1_2_11_22_1
  doi: 10.1016/j.jpowsour.2015.09.056
– ident: e_1_2_11_182_1
  doi: 10.1002/aenm.201901152
– ident: e_1_2_11_221_1
  doi: 10.1039/c3ta01182h
– ident: e_1_2_11_141_1
  doi: 10.1149/1.2108650
– ident: e_1_2_11_269_1
  doi: 10.1002/aenm.201703320
– ident: e_1_2_11_192_1
  doi: 10.1002/aenm.202101775
– ident: e_1_2_11_24_1
  doi: 10.1021/cr030203g
– ident: e_1_2_11_57_2
  doi: 10.1016/j.electacta.2018.09.077
– ident: e_1_2_11_163_1
  doi: 10.1021/am405973x
– ident: e_1_2_11_70_1
– ident: e_1_2_11_291_1
– ident: e_1_2_11_156_1
  doi: 10.1002/aenm.201700418
– ident: e_1_2_11_164_1
  doi: 10.1021/acsami.1c05894
– ident: e_1_2_11_276_1
  doi: 10.1366/0003702991945858
– ident: e_1_2_11_212_2
  doi: 10.1039/c2cc31712e
– ident: e_1_2_11_26_1
– ident: e_1_2_11_154_2
  doi: 10.1039/C6EE01674J
– ident: e_1_2_11_4_1
– ident: e_1_2_11_174_2
  doi: 10.1149/1.1812732
– ident: e_1_2_11_244_1
  doi: 10.1039/C6CP04766A
– ident: e_1_2_11_275_1
  doi: 10.1002/adfm.202001619
– ident: e_1_2_11_178_2
  doi: 10.1007/s11581-014-1275-0
– ident: e_1_2_11_264_2
  doi: 10.1126/science.264.5162.1115
– ident: e_1_2_11_3_2
  doi: 10.1016/j.eng.2021.12.018
– ident: e_1_2_11_149_1
  doi: 10.1016/j.chempr.2018.05.002
– ident: e_1_2_11_196_1
– ident: e_1_2_11_185_2
  doi: 10.1021/jp506567p
– ident: e_1_2_11_262_1
– ident: e_1_2_11_203_1
  doi: 10.1021/acsami.9b12020
– ident: e_1_2_11_193_1
  doi: 10.1016/j.ensm.2020.06.027
– ident: e_1_2_11_83_1
  doi: 10.1149/1.1392577
– ident: e_1_2_11_239_1
– ident: e_1_2_11_281_1
  doi: 10.1002/adma.201908293
– ident: e_1_2_11_97_1
  doi: 10.1126/science.aal4263
– ident: e_1_2_11_104_1
  doi: 10.1016/j.joule.2018.01.017
– ident: e_1_2_11_132_1
  doi: 10.1016/j.electacta.2018.02.151
– ident: e_1_2_11_216_2
  doi: 10.1016/j.elecom.2015.10.013
– ident: e_1_2_11_48_1
  doi: 10.1021/acsami.7b04099
– ident: e_1_2_11_12_2
  doi: 10.1002/sus2.4
– ident: e_1_2_11_86_2
  doi: 10.1016/S0378-7753(01)00670-X
– ident: e_1_2_11_172_1
– ident: e_1_2_11_220_1
  doi: 10.1021/acsami.1c09667
– ident: e_1_2_11_21_1
  doi: 10.1021/acs.accounts.1c00420
– ident: e_1_2_11_135_1
  doi: 10.1016/j.ensm.2021.08.002
– ident: e_1_2_11_89_1
  doi: 10.1021/acsami.7b13887
– ident: e_1_2_11_150_1
  doi: 10.1149/1945-7111/abd60e
– ident: e_1_2_11_39_1
  doi: 10.1016/S1388-2481(02)00490-3
– ident: e_1_2_11_99_1
  doi: 10.1021/acsaem.8b00355
– ident: e_1_2_11_285_1
– ident: e_1_2_11_188_1
  doi: 10.1002/anie.202205967
– ident: e_1_2_11_271_1
– ident: e_1_2_11_65_1
– ident: e_1_2_11_198_2
  doi: 10.1016/S1388-2481(99)00023-5
– ident: e_1_2_11_7_2
  doi: 10.1002/eem2.12536
– ident: e_1_2_11_184_2
  doi: 10.1016/j.jpowsour.2010.12.040
– ident: e_1_2_11_124_1
– ident: e_1_2_11_283_1
  doi: 10.1002/anie.201809203
– ident: e_1_2_11_53_1
  doi: 10.1016/j.jpowsour.2019.01.085
– ident: e_1_2_11_222_1
  doi: 10.1016/j.electacta.2014.05.054
– ident: e_1_2_11_180_1
  doi: 10.1038/s41560-020-0647-0
– ident: e_1_2_11_152_1
  doi: 10.1016/j.ensm.2019.02.016
– ident: e_1_2_11_17_2
  doi: 10.1002/aenm.202001972
– ident: e_1_2_11_35_1
  doi: 10.1002/adma.202206448
– ident: e_1_2_11_49_1
  doi: 10.1002/adfm.202108449
– ident: e_1_2_11_147_1
  doi: 10.1016/j.jpowsour.2007.10.084
– ident: e_1_2_11_140_1
  doi: 10.1016/0378-7753(85)88029-0
– ident: e_1_2_11_142_1
  doi: 10.1149/1.2220987
– ident: e_1_2_11_153_1
– ident: e_1_2_11_171_1
  doi: 10.1016/j.elecom.2006.06.016
– ident: e_1_2_11_10_2
  doi: 10.1038/s41467-020-16259-9
– ident: e_1_2_11_16_2
  doi: 10.20964/2020.09.50
– ident: e_1_2_11_206_2
  doi: 10.1016/j.jpowsour.2006.07.074
– ident: e_1_2_11_30_1
  doi: 10.1016/j.jallcom.2022.164163
– ident: e_1_2_11_167_1
  doi: 10.1016/j.electacta.2004.01.090
– ident: e_1_2_11_270_1
  doi: 10.1002/advs.202000196
– ident: e_1_2_11_255_1
  doi: 10.1021/acsmaterialslett.9b00043
– ident: e_1_2_11_223_1
  doi: 10.1016/j.jiec.2016.03.045
– ident: e_1_2_11_25_1
  doi: 10.1021/cr500003w
– ident: e_1_2_11_268_1
  doi: 10.1002/jps.2600550822
– ident: e_1_2_11_72_2
  doi: 10.1016/j.jechem.2020.11.016
– ident: e_1_2_11_232_2
  doi: 10.1021/acsami.9b07827
– ident: e_1_2_11_76_2
  doi: 10.1002/anie.202210859
– ident: e_1_2_11_38_1
  doi: 10.1021/cm901452z
– ident: e_1_2_11_31_1
  doi: 10.1002/chem.202102024
– ident: e_1_2_11_66_2
  doi: 10.1039/C9CS00728H
– ident: e_1_2_11_209_1
  doi: 10.1149/1945-7111/ac5a19
– ident: e_1_2_11_200_2
  doi: 10.1016/j.jpowsour.2008.09.088
– ident: e_1_2_11_240_2
  doi: 10.1021/jp804097j
– ident: e_1_2_11_217_2
  doi: 10.1016/j.electacta.2016.10.037
– ident: e_1_2_11_186_1
  doi: 10.1002/advs.202101646
– ident: e_1_2_11_102_1
  doi: 10.1016/j.cej.2021.130253
– ident: e_1_2_11_90_1
  doi: 10.1002/adma.202208340
– ident: e_1_2_11_248_1
  doi: 10.1016/j.jpowsour.2021.229668
– ident: e_1_2_11_98_1
  doi: 10.1016/j.electacta.2006.03.016
– ident: e_1_2_11_155_2
  doi: 10.1002/adma.201706375
– ident: e_1_2_11_82_1
  doi: 10.1149/1.1391633
– ident: e_1_2_11_29_2
  doi: 10.1002/anie.202108397
– ident: e_1_2_11_64_1
  doi: 10.1016/j.etran.2021.100145
– ident: e_1_2_11_195_1
  doi: 10.1016/j.jelechem.2019.05.023
– ident: e_1_2_11_33_1
  doi: 10.1149/1.2409866
– ident: e_1_2_11_80_1
  doi: 10.1038/s41560-021-00783-z
– ident: e_1_2_11_94_1
  doi: 10.1021/acs.chemrev.1c00904
– ident: e_1_2_11_173_2
  doi: 10.1149/1.1774973
– ident: e_1_2_11_87_1
  doi: 10.1016/S0378-7753(03)00154-X
– ident: e_1_2_11_233_1
  doi: 10.1063/1.2204959
– ident: e_1_2_11_282_1
  doi: 10.1039/D1EE01678D
– ident: e_1_2_11_143_1
  doi: 10.1016/j.ensm.2019.04.033
– ident: e_1_2_11_44_1
  doi: 10.1016/S0378-7753(02)00618-3
– ident: e_1_2_11_61_1
  doi: 10.1002/anie.202102593
– ident: e_1_2_11_280_2
  doi: 10.1021/acsenergylett.1c00647
SSID ssj0028806
Score 2.6825335
SecondaryResourceType review_article
Snippet Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202303888
SubjectTerms Charge transfer
Chemical energy
Diffusion rate
Electric vehicles
Electrolytes
Electronic equipment
Energy storage
Extreme environments
Failure mechanisms
Ion transport
Ion-Solvent Complex
Lithium
Lithium batteries
Low-Temperature Kinetic Behaviour
Organic Electrolyte
Portable equipment
Rechargeable batteries
Rechargeable Lithium Batteries
Solid Electrolyte Interphase
Storage systems
Title 40 Years of Low‐Temperature Electrolytes for Rechargeable Lithium Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303888
https://www.ncbi.nlm.nih.gov/pubmed/37186770
https://www.proquest.com/docview/2861142484
https://www.proquest.com/docview/2814529142
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL1CbGBDebUNLxmpUlceEtuTOEuEBgECFggkuor8VFGHGcTMCLUrPqHf2C_BN54EBoQqtbs8rhXHvo6P43vOBfhSOi-NlZqyUloquDVUFaJLveGpV06lqqaPnZ3nR1fi5Lp7_YLFH_Uh2h9uODLq7zUOcKVHe8-iocjA7mDyb9QzQbYvBmwhKrpo9aNYcM5IL-KcYhb6RrUxZXuzxWdnpTdQcxa51lPP4QdQTaVjxMmPzmSsO-bXKz3H_3mrZVia4lKyHx1pBebcYBUWDpp0cGtwJlLyLQyLERl6cjp8-PP4-9IFzB01mUkvptPp_wzQlQQgTAIeRREmh9Qscnoz_n4zuSVRzTMsztfh6rB3eXBEp7kYqEHtI6qlVAEs2Mwor33GfGkMhoTprtFe5cgE0pKVeVh-ccs4V7rU3FqjClt0My74R5gfDAfuMxDpRS4LwwLwsiIYlSz3vggXAjj1xrEEaNMXlZkKlWO-jH4VJZZZhY1UtY2UwNfW_i5KdLxrudV0bTUdqqOKyRz5xEKKBHbb26FxcedEDdxwgjYZblAHswQ-RZdoH8WLWhMwTYDVHfuXOlT758e99mzjXwptwiIeY9RKlm3B_Ph-4rYDNBrrndr9nwBNqQWC
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BclguvB-BBYyExMndxHYT57haddWFtgfUleAU-SlWLO1qtxWCEz-B38gvYSZuggpCSHCMM1Zsjyf-bM98A_CiDlE7ry0XtfZcSe-4qdSQRyfzaILJTRs-Np2V4xP16u2w8yakWJjED9EfuJFltP9rMnA6kN7_yRpKIdgDyv5NhCb6KlyjtN7trupNzyAlcHqmACMpOeWh73gbc7G_XX97XfoNbG5j13bxOboJtmt28jn5MFiv7MB9-YXR8b_6dQtubKApO0hz6TZcCYs7sHvYZYS7C1OVs3doGZdsGdlk-en712_zgLA70TKzUcqoc_YZ0StDLMwQkhIPU6DoLDY5Xb0_XX9kidAT9-f34ORoND8c8006Bu6I_ohbrQ3iBV84E20sRKydI68wO3Q2mpKCgawWdYk7MOmFlMbWVnrvTOUrVIyS92FnsVyEh8B0VKWunEDs5RUK1aKMscICxKfRBZEB75TRuA1XOaXMOGsSy7JoaJCafpAyeNnLnyeWjj9K7nW6bTbWetkIXVJIsdIqg-f9axxcujwxi7Bck0xBd9QolsGDNCf6T8mqpQXMMxCtZv_ShuZgdjzqnx79S6VnsDueTyfN5Hj2-jFcp3JyYimKPdhZXazDE0RKK_u0tYUfp10JnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dTxQxFL0RTMQXEfFjEKUmJjx1mWm7M51HArsBWTbGQAJPk35GIu4S2Y3RJ36Cv9FfYu90Z2AlxgQep3Ob6bT3Tk-nPecCvC-dl8ZKTVkpLRXcGqoK0aXe8NQrp1JV08cOh_nesfhw0j25weKP-hDtDzeMjPp7jQF-Yf3WtWgoMrA7mPwb9UzkAjwUeSrRr3c_tQJSLHhn5BdxTjENfSPbmLKt-frz09ItrDkPXeu5p78Mqml1PHLypTOd6I75-Zeg431e6yk8mQFTsh09aQUeuNEzWNpp8sGtwqFIyWmIi0sy9mQw_v776teRC6A7ijKTXsync_4jYFcSkDAJgBRVmBxys8jgbPL5bPqVRDnPsDp_Dsf93tHOHp0lY6AGxY-ollIFtGAzo7z2GfOlMXgmTHeN9ipHKpCWrMzD-otbxrnSpebWGlXYoptxwV_A4mg8cq-ASC9yWRgWkJcVwahkufdFKAjo1BvHEqDNWFRmplSOCTPOq6ixzCrspKrtpAQ2W_uLqNHxT8v1ZmirWaxeVkzmSCgWUiTwrr0dOhe3TtTIjadok-EOdTBL4GV0ifZRvKhFAdMEWD2w_2lDtT3c77VXa3eptAGPPu72q8H-8OA1PMZiPMGSZeuwOPk2dW8CTJrot3Uk_AGX-QhV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=40+Years+of+Low%E2%80%90Temperature+Electrolytes+for+Rechargeable+Lithium+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Zeheng&rft.au=Yu%E2%80%90Xing+Yao&rft.au=Sun%2C+Shuo&rft.au=Cheng%E2%80%90Bin+Jin&rft.date=2023-09-11&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=37&rft_id=info:doi/10.1002%2Fanie.202303888&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon