Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation

High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dy...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 31; pp. e2404828 - n/a
Main Authors Xiang, Fei‐Fan, Zhang, Hong, Wu, Yan‐Ling, Chen, Yu‐Jin, Liu, Yan‐Zhao, Chen, Shan‐Yong, Guo, Yan‐Zhi, Yu, Xiao‐Qi, Li, Kun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers. The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications.
AbstractList High-performance fluorescent probes stand as indispensable tools in fluorescence-guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine-learning-assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin-pH (SiR─CTS-pH) is constructed. The results reveal that SiR─CTS-pH exhibits higher signal-to-noise ratio of fluorescence imaging, compared to single pH or cathepsin-activated probe. Moreover, SiR─CTS-pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine-learning-assisted model broaden the path and provide more advanced methods to researchers.
High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH ( SiR─CTS‐pH ) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers.
High-performance fluorescent probes stand as indispensable tools in fluorescence-guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine-learning-assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin-pH (SiR─CTS-pH) is constructed. The results reveal that SiR─CTS-pH exhibits higher signal-to-noise ratio of fluorescence imaging, compared to single pH or cathepsin-activated probe. Moreover, SiR─CTS-pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine-learning-assisted model broaden the path and provide more advanced methods to researchers.High-performance fluorescent probes stand as indispensable tools in fluorescence-guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine-learning-assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin-pH (SiR─CTS-pH) is constructed. The results reveal that SiR─CTS-pH exhibits higher signal-to-noise ratio of fluorescence imaging, compared to single pH or cathepsin-activated probe. Moreover, SiR─CTS-pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine-learning-assisted model broaden the path and provide more advanced methods to researchers.
High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers. The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications.
Author Wu, Yan‐Ling
Li, Kun
Guo, Yan‐Zhi
Yu, Xiao‐Qi
Zhang, Hong
Liu, Yan‐Zhao
Chen, Yu‐Jin
Chen, Shan‐Yong
Xiang, Fei‐Fan
Author_xml – sequence: 1
  givenname: Fei‐Fan
  surname: Xiang
  fullname: Xiang, Fei‐Fan
  organization: Sichuan University
– sequence: 2
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: West China Hospital of Sichuan University
– sequence: 3
  givenname: Yan‐Ling
  surname: Wu
  fullname: Wu, Yan‐Ling
  organization: Sichuan University
– sequence: 4
  givenname: Yu‐Jin
  surname: Chen
  fullname: Chen, Yu‐Jin
  organization: Sichuan University
– sequence: 5
  givenname: Yan‐Zhao
  surname: Liu
  fullname: Liu, Yan‐Zhao
  organization: Sichuan University
– sequence: 6
  givenname: Shan‐Yong
  surname: Chen
  fullname: Chen, Shan‐Yong
  organization: Sichuan University
– sequence: 7
  givenname: Yan‐Zhi
  surname: Guo
  fullname: Guo, Yan‐Zhi
  organization: Sichuan University
– sequence: 8
  givenname: Xiao‐Qi
  surname: Yu
  fullname: Yu, Xiao‐Qi
  organization: Xihua University
– sequence: 9
  givenname: Kun
  orcidid: 0000-0002-8788-1036
  surname: Li
  fullname: Li, Kun
  email: kli@scu.edu.cn
  organization: Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38781580$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFK0cUiQuXLOM4H_ZxtW0p0hZQgXM0cSa7rpJ4sZOi3nrk2EN_YX8JTrcUqRLiZMt6Hs_MOwdsr7c9Mfaaw5wDJO-x7nCeQJJCKhP5jM14lvA4BZXtsRkokcUqT-U-O_D-AgBUDvkLti9kIXkmYcZ-naHemJ7urm9WhK43_TpcF94bP1AdneNgbI9tdETerPvINtFXc3d7fb6xNXbBi9BHSxw2tPWmD-b2dNL1YC5x8r84W1HUWBcttB5deItO2tE68pp6TdEnvDTr-xov2fMGW0-vHs5D9v3k-NvyNF59_vBxuVjFWhRCxlVGYUKFICpAUJzXRVY0mIpEJwUhVpCQULzJqE5TTaS0AsGrIkepsZBaHLJ3u3-3zv4YyQ9lZ0IzbYs92dGXAnIQMk1VEdC3T9ALO7qQxkTJXELoSATqzQM1Vh3V5daZDt1V-SfjAMx3gHbWe0fNI8KhnJZYTkssH5cYhPSJoM1wH9Lg0LT_1tRO-2lauvpPkXJxdLb46_4GNnK2uQ
CitedBy_id crossref_primary_10_1016_j_ccr_2024_216402
crossref_primary_10_1002_asia_202401647
crossref_primary_10_1039_D5CC00515A
crossref_primary_10_1016_j_jhazmat_2024_136059
crossref_primary_10_1021_acsmaterialslett_4c01214
crossref_primary_10_3390_bios14100501
crossref_primary_10_1039_D4TB01867B
crossref_primary_10_1016_j_snb_2024_136485
crossref_primary_10_1039_D4TB02480J
crossref_primary_10_1039_D4TB01835D
crossref_primary_10_1016_j_scib_2025_01_037
Cites_doi 10.1002/anie.201704793
10.1002/anie.201603328
10.1021/acs.analchem.6b03717
10.1038/s41467-019-13993-7
10.1039/D1SC02763H
10.1002/anie.202009796
10.1186/s12951-023-01864-9
10.1021/acscentsci.3c00261
10.1038/s41557-019-0371-1
10.1016/j.cclet.2022.02.020
10.1038/s41592-020-0909-6
10.1038/s41467-023-36913-2
10.1016/j.aca.2019.09.053
10.1002/anie.202010169
10.1039/c2cc34159j
10.1002/chem.201503426
10.1002/anie.202013265
10.1021/acscentsci.2c00387
10.1007/s12307-017-0196-7
10.1021/acs.bioconjchem.6b00037
10.1038/s44222-022-00017-1
10.1002/anie.201808670
10.1002/anie.202114766
10.1039/D2CC05782D
10.1039/D0CC05126H
10.1002/anie.202101278
10.1016/j.chembiol.2016.05.019
10.1038/nrc1738
10.1039/D1CS00525A
10.1002/adma.201907365
10.1021/acs.bioconjchem.7b00776
10.1021/acs.analchem.6b04385
10.1186/s12943-016-0503-9
10.1002/anie.202117330
10.1038/nchem.2002
10.1016/j.chembiol.2006.09.013
10.1038/s42004-020-0326-x
10.1007/s10895-015-1519-z
10.1021/jacs.8b11369
10.1021/acscentsci.0c01189
10.1038/s41551-020-00616-6
10.1016/j.cclet.2021.06.038
10.1021/jacsau.3c00613
10.1039/C4TB01763C
10.1002/chem.201802875
10.1021/ja4056068
10.1021/acs.jctc.7b00675
10.1002/jcc.22885
10.1002/anie.202000165
10.1126/science.adg2114
10.1091/mbc.E20-06-0383
10.1016/j.cell.2020.01.021
10.1038/s41586-020-2242-8
10.1039/C5CC02496J
10.1039/D1SC06889J
10.1002/anie.202202961
10.1021/jacs.1c02112
10.1021/acs.analchem.9b01662
10.1021/acs.jcim.0c01203
10.1021/jacsau.1c00553
10.1038/s41570-021-00277-2
10.1021/bc5003289
10.1021/jacs.7b05833
10.1021/cbmi.3c00071
10.1021/jacs.1c06786
10.1038/s41551-020-0528-7
10.1038/nchembio.2007.26
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202404828
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 38781580
10_1002_adma_202404828
ADMA202404828
Genre article
Journal Article
GrantInformation_xml – fundername: Science and Technology Plan Projects of Tibet Autonomous Region
  funderid: XZ202201ZD0001G
– fundername: National Natural Science Foundation of China
  funderid: U21A20308; 22077088
– fundername: National Natural Science Foundation of China
  grantid: U21A20308
– fundername: National Natural Science Foundation of China
  grantid: 22077088
– fundername: Science and Technology Plan Projects of Tibet Autonomous Region
  grantid: XZ202201ZD0001G
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3738-b5e1529a03b0a0911d757fa432c27eaab02e391f5ed44cee9c9031b76a8ca78c3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 15:11:57 EDT 2025
Mon Aug 04 23:10:33 EDT 2025
Wed Feb 19 02:07:27 EST 2025
Tue Jul 01 00:54:50 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
Wed Jan 22 17:17:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords fluorescent probe
xanthene dyes
fluorescence navigation
signal‐to‐background ratio
machine learning
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-b5e1529a03b0a0911d757fa432c27eaab02e391f5ed44cee9c9031b76a8ca78c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8788-1036
PMID 38781580
PQID 3086803733
PQPubID 2045203
PageCount 13
ParticipantIDs proquest_miscellaneous_3060384497
proquest_journals_3086803733
pubmed_primary_38781580
crossref_primary_10_1002_adma_202404828
crossref_citationtrail_10_1002_adma_202404828
wiley_primary_10_1002_adma_202404828_ADMA202404828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 1, 2024
2024-08-00
2024-Aug
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023 2013 2007 2006; 9 135 3 13
2019; 91
2017 2019 2015 2020 2015 2012 2022 2018 2017 2016 2018 2016 2016 2019 2020 2023 2014 2015; 1092 3 56 51 48 61 57 56 55 24 22 27 141 17 14 6 25
2018; 29
2021; 5
2020; 581
2022; 51
2023; 381
2020; 180
2017; 89
2020; 59
2014; 25
2023; 1
2020; 12
2020; 11
2023; 2
2023; 3
2021; 143
2020; 32
2021 2022; 60 2
2021 2017; 61 13
2016; 15
2012; 33
2020; 4
2021; 32
2020; 3
2023 2017; 21 139
2022; 61
2021 2021; 5 60
2022; 8
2017; 10
2005; 5
2022; 13
2022; 58
2020 2022 2020; 6 61 32
2022; 33
2021 2021; 60 12
2016; 23
2016; 88
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_35_13
e_1_2_8_35_12
e_1_2_8_5_1
e_1_2_8_35_11
e_1_2_8_35_10
e_1_2_8_7_1
e_1_2_8_35_17
e_1_2_8_35_16
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_35_15
e_1_2_8_7_2
e_1_2_8_35_14
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_35_18
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_15_2
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
Ke G. (e_1_2_8_35_1) 2017
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_21_4
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_21_3
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_35_6
e_1_2_8_18_1
e_1_2_8_35_5
e_1_2_8_39_1
e_1_2_8_35_8
e_1_2_8_35_7
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_14_1
e_1_2_8_35_4
e_1_2_8_16_1
e_1_2_8_35_3
e_1_2_8_37_1
e_1_2_8_35_9
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 13
  start-page: 4474
  year: 2022
  publication-title: Chem. Sci.
– volume: 12
  start-page: 165
  year: 2020
  publication-title: Nat. Chem.
– volume: 2
  start-page: 126
  year: 2023
  publication-title: Chem Biomed Imaging
– volume: 88
  year: 2016
  publication-title: Anal. Chem.
– volume: 58
  year: 2022
  publication-title: Chem. Commun.
– volume: 6 61 32
  start-page: 2217
  year: 2020 2022 2020
  publication-title: ACS Cent. Sci. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 25
  start-page: 1838
  year: 2014
  publication-title: Bioconjugate Chem.
– volume: 10
  start-page: 49
  year: 2017
  publication-title: Cancer Microenviron.
– volume: 5
  start-page: 406
  year: 2021
  publication-title: Nat. Rev. Chem.
– volume: 89
  start-page: 552
  year: 2017
  publication-title: Anal. Chem.
– volume: 180
  start-page: 688
  year: 2020
  publication-title: Cell
– volume: 581
  start-page: 178
  year: 2020
  publication-title: Nature
– volume: 5
  start-page: 886
  year: 2005
  publication-title: Nat. Rev. Cancer
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 61 13
  start-page: 1053 4972
  year: 2021 2017
  publication-title: J. Chem. Inf. Model. J. Chem. Theory Comput.
– volume: 59
  start-page: 9059
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  start-page: 3890
  year: 2021
  publication-title: Chin. Chem. Lett.
– volume: 33
  start-page: 4233
  year: 2022
  publication-title: Chin. Chem. Lett.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 4
  start-page: 298
  year: 2020
  publication-title: Nat. Biomed. Eng.
– volume: 5 60
  start-page: 264 2125
  year: 2021 2021
  publication-title: Nat. Biomed. Eng. Angew. Chem., Int. Ed.
– volume: 21 139
  start-page: 107
  year: 2023 2017
  publication-title: J. Nanobiotechnol. J. Am. Chem. Soc.
– volume: 9 135 3 13
  start-page: 1059 668 1217
  year: 2023 2013 2007 2006
  publication-title: ACS Cent. Sci. J. Am. Chem. Soc. Nat. Chem. Biol. Chem. Biol.
– volume: 32
  start-page: 131
  year: 2020
  publication-title: Mol. Biol. Cell
– volume: 29
  start-page: 241
  year: 2018
  publication-title: Bioconjugate Chem.
– volume: 8
  start-page: 837
  year: 2022
  publication-title: ACS Cent. Sci.
– volume: 143
  start-page: 5674
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 91
  start-page: 7032
  year: 2019
  publication-title: Anal. Chem.
– volume: 15
  start-page: 17
  year: 2016
  publication-title: Mol Cancer
– volume: 60 2
  start-page: 246
  year: 2021 2022
  publication-title: Angew. Chem., Int. Ed. JACS Au
– volume: 381
  start-page: 965
  year: 2023
  publication-title: Science
– volume: 3
  start-page: 82
  year: 2020
  publication-title: Commun Chem
– volume: 3
  start-page: 3462
  year: 2023
  publication-title: JACS Au
– volume: 1
  start-page: 161
  year: 2023
  publication-title: Nat Rev Bioeng
– volume: 51
  start-page: 566
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 23
  start-page: 793
  year: 2016
  publication-title: Cell Chem. Biol.
– volume: 1092 3 56 51 48 61 57 56 55 24 22 27 141 17 14 6 25
  start-page: 3149 117 919 9608 8781 9620 1696 973 6527 815 1306 681 231
  year: 2017 2019 2015 2020 2015 2012 2022 2018 2017 2016 2018 2016 2016 2019 2020 2023 2014 2015
  end-page: 3157
  publication-title: Anal. Chim. Acta J. Mater. Chem. B Chem. Commun. Chem. Commun. Chem. Commun. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Chemistry Chemistry Bioconjugate Chem. J. Am. Chem. Soc. Nat. Methods Nat. Commun. Nat. Chem. J Fluoresc
– volume: 60 12
  year: 2021 2021
  publication-title: Angew. Chem., Int. Ed. Chem. Sci.
– volume: 11
  start-page: 1
  year: 2020
  publication-title: Nat. Commun.
– ident: e_1_2_8_35_9
  doi: 10.1002/anie.201704793
– ident: e_1_2_8_35_10
  doi: 10.1002/anie.201603328
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.analchem.6b03717
– ident: e_1_2_8_34_1
  doi: 10.1038/s41467-019-13993-7
– ident: e_1_2_8_15_2
  doi: 10.1039/D1SC02763H
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.202009796
– ident: e_1_2_8_28_1
  doi: 10.1186/s12951-023-01864-9
– ident: e_1_2_8_21_1
  doi: 10.1021/acscentsci.3c00261
– ident: e_1_2_8_26_1
  doi: 10.1038/s41557-019-0371-1
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cclet.2022.02.020
– ident: e_1_2_8_35_15
  doi: 10.1038/s41592-020-0909-6
– ident: e_1_2_8_35_16
  doi: 10.1038/s41467-023-36913-2
– ident: e_1_2_8_35_2
  doi: 10.1016/j.aca.2019.09.053
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.202010169
– ident: e_1_2_8_35_6
  doi: 10.1039/c2cc34159j
– ident: e_1_2_8_35_12
  doi: 10.1002/chem.201503426
– ident: e_1_2_8_12_2
  doi: 10.1002/anie.202013265
– ident: e_1_2_8_13_1
  doi: 10.1021/acscentsci.2c00387
– ident: e_1_2_8_22_1
  doi: 10.1007/s12307-017-0196-7
– ident: e_1_2_8_35_13
  doi: 10.1021/acs.bioconjchem.6b00037
– ident: e_1_2_8_8_1
  doi: 10.1038/s44222-022-00017-1
– ident: e_1_2_8_35_8
  doi: 10.1002/anie.201808670
– ident: e_1_2_8_37_1
  doi: 10.1002/anie.202114766
– ident: e_1_2_8_11_1
  doi: 10.1039/D2CC05782D
– ident: e_1_2_8_35_4
  doi: 10.1039/D0CC05126H
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.202101278
– ident: e_1_2_8_23_1
  doi: 10.1016/j.chembiol.2016.05.019
– ident: e_1_2_8_18_1
  doi: 10.1038/nrc1738
– ident: e_1_2_8_4_1
  doi: 10.1039/D1CS00525A
– ident: e_1_2_8_7_3
  doi: 10.1002/adma.201907365
– start-page: 3149
  volume-title: NIPS'17: Proc. 31st Int. Conf. Neural Information Processing Systems
  year: 2017
  ident: e_1_2_8_35_1
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.bioconjchem.7b00776
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.analchem.6b04385
– ident: e_1_2_8_36_1
  doi: 10.1186/s12943-016-0503-9
– ident: e_1_2_8_7_2
  doi: 10.1002/anie.202117330
– ident: e_1_2_8_35_17
  doi: 10.1038/nchem.2002
– ident: e_1_2_8_21_4
  doi: 10.1016/j.chembiol.2006.09.013
– ident: e_1_2_8_25_1
  doi: 10.1038/s42004-020-0326-x
– ident: e_1_2_8_35_18
  doi: 10.1007/s10895-015-1519-z
– ident: e_1_2_8_35_14
  doi: 10.1021/jacs.8b11369
– ident: e_1_2_8_7_1
  doi: 10.1021/acscentsci.0c01189
– ident: e_1_2_8_12_1
  doi: 10.1038/s41551-020-00616-6
– ident: e_1_2_8_5_1
  doi: 10.1016/j.cclet.2021.06.038
– ident: e_1_2_8_2_1
  doi: 10.1021/jacsau.3c00613
– ident: e_1_2_8_35_3
  doi: 10.1039/C4TB01763C
– ident: e_1_2_8_35_11
  doi: 10.1002/chem.201802875
– ident: e_1_2_8_21_2
  doi: 10.1021/ja4056068
– ident: e_1_2_8_29_2
  doi: 10.1021/acs.jctc.7b00675
– ident: e_1_2_8_39_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_8_9_1
  doi: 10.1002/anie.202000165
– ident: e_1_2_8_31_1
  doi: 10.1126/science.adg2114
– ident: e_1_2_8_20_1
  doi: 10.1091/mbc.E20-06-0383
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cell.2020.01.021
– ident: e_1_2_8_33_1
  doi: 10.1038/s41586-020-2242-8
– ident: e_1_2_8_35_5
  doi: 10.1039/C5CC02496J
– ident: e_1_2_8_3_1
  doi: 10.1039/D1SC06889J
– ident: e_1_2_8_35_7
  doi: 10.1002/anie.202202961
– ident: e_1_2_8_16_1
  doi: 10.1021/jacs.1c02112
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.analchem.9b01662
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.jcim.0c01203
– ident: e_1_2_8_10_2
  doi: 10.1021/jacsau.1c00553
– ident: e_1_2_8_17_1
  doi: 10.1038/s41570-021-00277-2
– ident: e_1_2_8_24_1
  doi: 10.1021/bc5003289
– ident: e_1_2_8_28_2
  doi: 10.1021/jacs.7b05833
– ident: e_1_2_8_40_1
  doi: 10.1021/cbmi.3c00071
– ident: e_1_2_8_32_1
  doi: 10.1021/jacs.1c06786
– ident: e_1_2_8_1_1
  doi: 10.1038/s41551-020-0528-7
– ident: e_1_2_8_21_3
  doi: 10.1038/nchembio.2007.26
SSID ssj0009606
Score 2.528843
Snippet High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while...
High-performance fluorescent probes stand as indispensable tools in fluorescence-guided imaging, and are crucial for precise delineation of focal tissue while...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2404828
SubjectTerms Carcinoma, Hepatocellular - diagnostic imaging
Cathepsins - metabolism
Chemical synthesis
Dyes
fluorescence navigation
Fluorescent Dyes - chemistry
Fluorescent indicators
fluorescent probe
Humans
Hydrogen-Ion Concentration
Liver Neoplasms - diagnostic imaging
Machine Learning
Optical Imaging - methods
Prediction models
Rhodamine
Rhodamines - chemistry
signal‐to‐background ratio
Silicon - chemistry
xanthene dyes
Title Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202404828
https://www.ncbi.nlm.nih.gov/pubmed/38781580
https://www.proquest.com/docview/3086803733
https://www.proquest.com/docview/3060384497
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTuXQ0tJHKFRGqtRTIBs7G_u4AlarSovQtkjcovFjW1SarNhNDz1x7LGH_kJ-CWMnG9hWFVJ7cxSP4sc8PjvjzwBv-0I6IXgac62TWGgqqSwlZ2hyCnCKIor1-x3jk_7oTLw_z87vneJv-CG6DTdvGcFfewNHPT-4Iw1FG3iDKCIJWjWQE_YJWx4VTe74ozw8D2R7PIsVNWvJ2pikB6viq1HpD6i5ilxD6Bk-AVw2usk4-bJfL_S--f4bn-P_9GoTHre4lA0aRXoKa658Bhv32Aq34Mc4JF66m-ufLSvrJyrS_HpNsWzSbiuyo5AUwqop-3Bx8-t68rmy-JXkGM5ZOHA4m1-UJDkbeXET7lcj-VN_MIkRhmYDY2rPYMGGl3V1FfimjGMn-C3QgVTlczgbHn88HMXtRQ6x8cRJsc4cwQSFCdcJEkDp2TzLp0gqYtLcIeokdVz1ppmzQlDUVkaRr9F5H6XBXBr-AtbLqnSvgClj9VRT1O1ZLaTmCg06mwoUgr7CdQTxciIL07Kc-8s2LouGnzkt_AgX3QhH8K6rP2v4Pf5ac2epF0Vr5_OC04pQJtRJHsFe95os1P92wdJVta_TT7gUQuURvGz0qfsUl7nsZTKJIA1a8UAbisHReNA9bf-L0Gt45MtNDuMOrC-uardLuGqh3wTbuQWW5B7Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUA7AgXchUMBISJzSZmNnYx9XLKsFuiu0tBK3yHa8bUVJVt0NB049cuyhv7C_hBnnURaEkOCWh0dx7BnPxBl_BnjZF9IJweOQGxOFwuCRSmIcDG2KDk6hR8lpvmMy7Y_3xbtPSZtNSGthaj5EN-FGluHHazJwmpDeuaSG6tyDg9AlCfxsuArXaFtvwucPZ5cEKQrQPW6PJ6HCirXcxijeWZdf90u_BZvrsat3PqPbYNpq1zknn7erldm2334hOv7Xe92BW01oyga1Lt2FK664Bzd_Ahbeh-8Tn3vpLk7PGjDrAR5iF5Oy5GzWzCyyoc8LYeWcfTy6OD-dHZa5_oJyTC-ZX3O4WB4VKLkYk7j1W6yh_Adam8QwjGYDayuCWLDRcVWeeOSUdWyqv3oiSFk8gP3Rm73X47DZyyG0xE4KTeIwUlA64ibSGKP08jRJ5xq1xMap09pEseOqN09cLgQ6bmUVDjcm7WtpdSot34SNoizcI2DK5mZu0PH2ciOk4Upb7fJYaCHwKdwEELY9mdkGdE77bRxnNaI5zqiFs66FA3jVlV_UiI8_ltxqFSNrTH2ZcfwolBG-JA_gRXcbjZT-vOjClRWV6UdcCqHSAB7WCtU9istU9hIZBRB7tfhLHbLBcDLozh7_i9BzuD7em-xmu2-n75_ADbpepzRuwcbqpHJPMcxamWfekH4AZqwi7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyExCmtN3YS-7hiWS2PXVULlXqL_ApUlGTV3XDg1CNHDvzC_hLGTjbtghAS3JzEI79mPJ8d-xuAZxkXjnOWxExrGnONKZkmOBmaHB2cRI9i_X7HdJZN9vnrg_Tg3C3-lh-i33DzlhHma2_gC1vunpGGKht4g9AjcVw1XIRLPKPSB28Yzc8IpDw-D2x7LI0l1mtN20iT3U35Tbf0G9bchK7B94yvg1rXuj1y8mmnWekd8_UXQsf_adYNuNYBUzJsNekmXHDVLbh6jq7wNnybhpOX7vTke0fL-gGTOMBeVSyZd_uKZBROhZC6JO8OT3-czD_WVn1GOaKWJNw4XCwPK5RcTLy4CQHWUH7P30wiCKLJ0JjGU1iQ8VFTHwfCKePITH0JfCB1dQf2xy_fv5jEXSSH2HjmpFinDnGCVJRpqhChDGye5qVCHTFJ7pTSNHFMDsrUWc7RbUsjcbLReaaEUbkw7C5sVXXl7gORxupSo9sdWM2FZlIZ5WzCFedYCtMRxOuBLExHc-6jbRwVLUFzUvgeLvoejuB5n3_REnz8Mef2Wi-KztCXBcMloaDYSBbB0_4zmqj_76IqVzc-T0aZ4FzmEdxr9akviolcDFJBI0iCVvylDsVwNB32Tw_-RegJXN4bjYu3r2ZvHsIV_7o9z7gNW6vjxj1CjLXSj4MZ_QTrviGb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-Learning-Assisted+Rational+Design+of+Si%E2%94%80Rhodamine+as+Cathepsin-pH-Activated+Probe+for+Accurate+Fluorescence+Navigation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xiang%2C+Fei-Fan&rft.au=Zhang%2C+Hong&rft.au=Wu%2C+Yan-Ling&rft.au=Chen%2C+Yu-Jin&rft.date=2024-08-01&rft.eissn=1521-4095&rft.volume=36&rft.issue=31&rft.spage=e2404828&rft_id=info:doi/10.1002%2Fadma.202404828&rft_id=info%3Apmid%2F38781580&rft.externalDocID=38781580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon