Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation
High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dy...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 31; pp. e2404828 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers.
The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications. |
---|---|
AbstractList | High-performance fluorescent probes stand as indispensable tools in fluorescence-guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine-learning-assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin-pH (SiR─CTS-pH) is constructed. The results reveal that SiR─CTS-pH exhibits higher signal-to-noise ratio of fluorescence imaging, compared to single pH or cathepsin-activated probe. Moreover, SiR─CTS-pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine-learning-assisted model broaden the path and provide more advanced methods to researchers. High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH ( SiR─CTS‐pH ) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers. High-performance fluorescent probes stand as indispensable tools in fluorescence-guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine-learning-assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin-pH (SiR─CTS-pH) is constructed. The results reveal that SiR─CTS-pH exhibits higher signal-to-noise ratio of fluorescence imaging, compared to single pH or cathepsin-activated probe. Moreover, SiR─CTS-pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine-learning-assisted model broaden the path and provide more advanced methods to researchers.High-performance fluorescent probes stand as indispensable tools in fluorescence-guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine-learning-assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin-pH (SiR─CTS-pH) is constructed. The results reveal that SiR─CTS-pH exhibits higher signal-to-noise ratio of fluorescence imaging, compared to single pH or cathepsin-activated probe. Moreover, SiR─CTS-pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine-learning-assisted model broaden the path and provide more advanced methods to researchers. High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine‐learning‐assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin‐pH (SiR─CTS‐pH) is constructed. The results reveal that SiR─CTS‐pH exhibits higher signal‐to‐noise ratio of fluorescence imaging, compared to single pH or cathepsin‐activated probe. Moreover, SiR─CTS‐pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine‐learning‐assisted model broaden the path and provide more advanced methods to researchers. The development of machine learning has dramatically revolutionized the process of material discovery. Here, the desired xanthene dyes are rational designed through machine learning and dual‐locked probe for precise imaging of complex hepatocellular carcinoma is constructed. These results not only affirm the validity of the model but also guide the design of novel probes with practical applications. |
Author | Wu, Yan‐Ling Li, Kun Guo, Yan‐Zhi Yu, Xiao‐Qi Zhang, Hong Liu, Yan‐Zhao Chen, Yu‐Jin Chen, Shan‐Yong Xiang, Fei‐Fan |
Author_xml | – sequence: 1 givenname: Fei‐Fan surname: Xiang fullname: Xiang, Fei‐Fan organization: Sichuan University – sequence: 2 givenname: Hong surname: Zhang fullname: Zhang, Hong organization: West China Hospital of Sichuan University – sequence: 3 givenname: Yan‐Ling surname: Wu fullname: Wu, Yan‐Ling organization: Sichuan University – sequence: 4 givenname: Yu‐Jin surname: Chen fullname: Chen, Yu‐Jin organization: Sichuan University – sequence: 5 givenname: Yan‐Zhao surname: Liu fullname: Liu, Yan‐Zhao organization: Sichuan University – sequence: 6 givenname: Shan‐Yong surname: Chen fullname: Chen, Shan‐Yong organization: Sichuan University – sequence: 7 givenname: Yan‐Zhi surname: Guo fullname: Guo, Yan‐Zhi organization: Sichuan University – sequence: 8 givenname: Xiao‐Qi surname: Yu fullname: Yu, Xiao‐Qi organization: Xihua University – sequence: 9 givenname: Kun orcidid: 0000-0002-8788-1036 surname: Li fullname: Li, Kun email: kli@scu.edu.cn organization: Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38781580$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFK0cUiQuXLOM4H_ZxtW0p0hZQgXM0cSa7rpJ4sZOi3nrk2EN_YX8JTrcUqRLiZMt6Hs_MOwdsr7c9Mfaaw5wDJO-x7nCeQJJCKhP5jM14lvA4BZXtsRkokcUqT-U-O_D-AgBUDvkLti9kIXkmYcZ-naHemJ7urm9WhK43_TpcF94bP1AdneNgbI9tdETerPvINtFXc3d7fb6xNXbBi9BHSxw2tPWmD-b2dNL1YC5x8r84W1HUWBcttB5deItO2tE68pp6TdEnvDTr-xov2fMGW0-vHs5D9v3k-NvyNF59_vBxuVjFWhRCxlVGYUKFICpAUJzXRVY0mIpEJwUhVpCQULzJqE5TTaS0AsGrIkepsZBaHLJ3u3-3zv4YyQ9lZ0IzbYs92dGXAnIQMk1VEdC3T9ALO7qQxkTJXELoSATqzQM1Vh3V5daZDt1V-SfjAMx3gHbWe0fNI8KhnJZYTkssH5cYhPSJoM1wH9Lg0LT_1tRO-2lauvpPkXJxdLb46_4GNnK2uQ |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216402 crossref_primary_10_1002_asia_202401647 crossref_primary_10_1039_D5CC00515A crossref_primary_10_1016_j_jhazmat_2024_136059 crossref_primary_10_1021_acsmaterialslett_4c01214 crossref_primary_10_3390_bios14100501 crossref_primary_10_1039_D4TB01867B crossref_primary_10_1016_j_snb_2024_136485 crossref_primary_10_1039_D4TB02480J crossref_primary_10_1039_D4TB01835D crossref_primary_10_1016_j_scib_2025_01_037 |
Cites_doi | 10.1002/anie.201704793 10.1002/anie.201603328 10.1021/acs.analchem.6b03717 10.1038/s41467-019-13993-7 10.1039/D1SC02763H 10.1002/anie.202009796 10.1186/s12951-023-01864-9 10.1021/acscentsci.3c00261 10.1038/s41557-019-0371-1 10.1016/j.cclet.2022.02.020 10.1038/s41592-020-0909-6 10.1038/s41467-023-36913-2 10.1016/j.aca.2019.09.053 10.1002/anie.202010169 10.1039/c2cc34159j 10.1002/chem.201503426 10.1002/anie.202013265 10.1021/acscentsci.2c00387 10.1007/s12307-017-0196-7 10.1021/acs.bioconjchem.6b00037 10.1038/s44222-022-00017-1 10.1002/anie.201808670 10.1002/anie.202114766 10.1039/D2CC05782D 10.1039/D0CC05126H 10.1002/anie.202101278 10.1016/j.chembiol.2016.05.019 10.1038/nrc1738 10.1039/D1CS00525A 10.1002/adma.201907365 10.1021/acs.bioconjchem.7b00776 10.1021/acs.analchem.6b04385 10.1186/s12943-016-0503-9 10.1002/anie.202117330 10.1038/nchem.2002 10.1016/j.chembiol.2006.09.013 10.1038/s42004-020-0326-x 10.1007/s10895-015-1519-z 10.1021/jacs.8b11369 10.1021/acscentsci.0c01189 10.1038/s41551-020-00616-6 10.1016/j.cclet.2021.06.038 10.1021/jacsau.3c00613 10.1039/C4TB01763C 10.1002/chem.201802875 10.1021/ja4056068 10.1021/acs.jctc.7b00675 10.1002/jcc.22885 10.1002/anie.202000165 10.1126/science.adg2114 10.1091/mbc.E20-06-0383 10.1016/j.cell.2020.01.021 10.1038/s41586-020-2242-8 10.1039/C5CC02496J 10.1039/D1SC06889J 10.1002/anie.202202961 10.1021/jacs.1c02112 10.1021/acs.analchem.9b01662 10.1021/acs.jcim.0c01203 10.1021/jacsau.1c00553 10.1038/s41570-021-00277-2 10.1021/bc5003289 10.1021/jacs.7b05833 10.1021/cbmi.3c00071 10.1021/jacs.1c06786 10.1038/s41551-020-0528-7 10.1038/nchembio.2007.26 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202404828 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 38781580 10_1002_adma_202404828 ADMA202404828 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Science and Technology Plan Projects of Tibet Autonomous Region funderid: XZ202201ZD0001G – fundername: National Natural Science Foundation of China funderid: U21A20308; 22077088 – fundername: National Natural Science Foundation of China grantid: U21A20308 – fundername: National Natural Science Foundation of China grantid: 22077088 – fundername: Science and Technology Plan Projects of Tibet Autonomous Region grantid: XZ202201ZD0001G |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3738-b5e1529a03b0a0911d757fa432c27eaab02e391f5ed44cee9c9031b76a8ca78c3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 15:11:57 EDT 2025 Mon Aug 04 23:10:33 EDT 2025 Wed Feb 19 02:07:27 EST 2025 Tue Jul 01 00:54:50 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Wed Jan 22 17:17:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | fluorescent probe xanthene dyes fluorescence navigation signal‐to‐background ratio machine learning |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-b5e1529a03b0a0911d757fa432c27eaab02e391f5ed44cee9c9031b76a8ca78c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8788-1036 |
PMID | 38781580 |
PQID | 3086803733 |
PQPubID | 2045203 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3060384497 proquest_journals_3086803733 pubmed_primary_38781580 crossref_primary_10_1002_adma_202404828 crossref_citationtrail_10_1002_adma_202404828 wiley_primary_10_1002_adma_202404828_ADMA202404828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 1, 2024 2024-08-00 2024-Aug 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 1, 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023 2013 2007 2006; 9 135 3 13 2019; 91 2017 2019 2015 2020 2015 2012 2022 2018 2017 2016 2018 2016 2016 2019 2020 2023 2014 2015; 1092 3 56 51 48 61 57 56 55 24 22 27 141 17 14 6 25 2018; 29 2021; 5 2020; 581 2022; 51 2023; 381 2020; 180 2017; 89 2020; 59 2014; 25 2023; 1 2020; 12 2020; 11 2023; 2 2023; 3 2021; 143 2020; 32 2021 2022; 60 2 2021 2017; 61 13 2016; 15 2012; 33 2020; 4 2021; 32 2020; 3 2023 2017; 21 139 2022; 61 2021 2021; 5 60 2022; 8 2017; 10 2005; 5 2022; 13 2022; 58 2020 2022 2020; 6 61 32 2022; 33 2021 2021; 60 12 2016; 23 2016; 88 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_35_13 e_1_2_8_35_12 e_1_2_8_5_1 e_1_2_8_35_11 e_1_2_8_35_10 e_1_2_8_7_1 e_1_2_8_35_17 e_1_2_8_35_16 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_35_15 e_1_2_8_7_2 e_1_2_8_35_14 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_35_18 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_15_2 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 Ke G. (e_1_2_8_35_1) 2017 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_21_4 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_21_3 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_35_6 e_1_2_8_18_1 e_1_2_8_35_5 e_1_2_8_39_1 e_1_2_8_35_8 e_1_2_8_35_7 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_14_1 e_1_2_8_35_4 e_1_2_8_16_1 e_1_2_8_35_3 e_1_2_8_37_1 e_1_2_8_35_9 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 13 start-page: 4474 year: 2022 publication-title: Chem. Sci. – volume: 12 start-page: 165 year: 2020 publication-title: Nat. Chem. – volume: 2 start-page: 126 year: 2023 publication-title: Chem Biomed Imaging – volume: 88 year: 2016 publication-title: Anal. Chem. – volume: 58 year: 2022 publication-title: Chem. Commun. – volume: 6 61 32 start-page: 2217 year: 2020 2022 2020 publication-title: ACS Cent. Sci. Angew. Chem., Int. Ed. Adv. Mater. – volume: 25 start-page: 1838 year: 2014 publication-title: Bioconjugate Chem. – volume: 10 start-page: 49 year: 2017 publication-title: Cancer Microenviron. – volume: 5 start-page: 406 year: 2021 publication-title: Nat. Rev. Chem. – volume: 89 start-page: 552 year: 2017 publication-title: Anal. Chem. – volume: 180 start-page: 688 year: 2020 publication-title: Cell – volume: 581 start-page: 178 year: 2020 publication-title: Nature – volume: 5 start-page: 886 year: 2005 publication-title: Nat. Rev. Cancer – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 61 13 start-page: 1053 4972 year: 2021 2017 publication-title: J. Chem. Inf. Model. J. Chem. Theory Comput. – volume: 59 start-page: 9059 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 32 start-page: 3890 year: 2021 publication-title: Chin. Chem. Lett. – volume: 33 start-page: 4233 year: 2022 publication-title: Chin. Chem. Lett. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 4 start-page: 298 year: 2020 publication-title: Nat. Biomed. Eng. – volume: 5 60 start-page: 264 2125 year: 2021 2021 publication-title: Nat. Biomed. Eng. Angew. Chem., Int. Ed. – volume: 21 139 start-page: 107 year: 2023 2017 publication-title: J. Nanobiotechnol. J. Am. Chem. Soc. – volume: 9 135 3 13 start-page: 1059 668 1217 year: 2023 2013 2007 2006 publication-title: ACS Cent. Sci. J. Am. Chem. Soc. Nat. Chem. Biol. Chem. Biol. – volume: 32 start-page: 131 year: 2020 publication-title: Mol. Biol. Cell – volume: 29 start-page: 241 year: 2018 publication-title: Bioconjugate Chem. – volume: 8 start-page: 837 year: 2022 publication-title: ACS Cent. Sci. – volume: 143 start-page: 5674 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 7032 year: 2019 publication-title: Anal. Chem. – volume: 15 start-page: 17 year: 2016 publication-title: Mol Cancer – volume: 60 2 start-page: 246 year: 2021 2022 publication-title: Angew. Chem., Int. Ed. JACS Au – volume: 381 start-page: 965 year: 2023 publication-title: Science – volume: 3 start-page: 82 year: 2020 publication-title: Commun Chem – volume: 3 start-page: 3462 year: 2023 publication-title: JACS Au – volume: 1 start-page: 161 year: 2023 publication-title: Nat Rev Bioeng – volume: 51 start-page: 566 year: 2022 publication-title: Chem. Soc. Rev. – volume: 23 start-page: 793 year: 2016 publication-title: Cell Chem. Biol. – volume: 1092 3 56 51 48 61 57 56 55 24 22 27 141 17 14 6 25 start-page: 3149 117 919 9608 8781 9620 1696 973 6527 815 1306 681 231 year: 2017 2019 2015 2020 2015 2012 2022 2018 2017 2016 2018 2016 2016 2019 2020 2023 2014 2015 end-page: 3157 publication-title: Anal. Chim. Acta J. Mater. Chem. B Chem. Commun. Chem. Commun. Chem. Commun. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Chemistry Chemistry Bioconjugate Chem. J. Am. Chem. Soc. Nat. Methods Nat. Commun. Nat. Chem. J Fluoresc – volume: 60 12 year: 2021 2021 publication-title: Angew. Chem., Int. Ed. Chem. Sci. – volume: 11 start-page: 1 year: 2020 publication-title: Nat. Commun. – ident: e_1_2_8_35_9 doi: 10.1002/anie.201704793 – ident: e_1_2_8_35_10 doi: 10.1002/anie.201603328 – ident: e_1_2_8_41_1 doi: 10.1021/acs.analchem.6b03717 – ident: e_1_2_8_34_1 doi: 10.1038/s41467-019-13993-7 – ident: e_1_2_8_15_2 doi: 10.1039/D1SC02763H – ident: e_1_2_8_10_1 doi: 10.1002/anie.202009796 – ident: e_1_2_8_28_1 doi: 10.1186/s12951-023-01864-9 – ident: e_1_2_8_21_1 doi: 10.1021/acscentsci.3c00261 – ident: e_1_2_8_26_1 doi: 10.1038/s41557-019-0371-1 – ident: e_1_2_8_6_1 doi: 10.1016/j.cclet.2022.02.020 – ident: e_1_2_8_35_15 doi: 10.1038/s41592-020-0909-6 – ident: e_1_2_8_35_16 doi: 10.1038/s41467-023-36913-2 – ident: e_1_2_8_35_2 doi: 10.1016/j.aca.2019.09.053 – ident: e_1_2_8_27_1 doi: 10.1002/anie.202010169 – ident: e_1_2_8_35_6 doi: 10.1039/c2cc34159j – ident: e_1_2_8_35_12 doi: 10.1002/chem.201503426 – ident: e_1_2_8_12_2 doi: 10.1002/anie.202013265 – ident: e_1_2_8_13_1 doi: 10.1021/acscentsci.2c00387 – ident: e_1_2_8_22_1 doi: 10.1007/s12307-017-0196-7 – ident: e_1_2_8_35_13 doi: 10.1021/acs.bioconjchem.6b00037 – ident: e_1_2_8_8_1 doi: 10.1038/s44222-022-00017-1 – ident: e_1_2_8_35_8 doi: 10.1002/anie.201808670 – ident: e_1_2_8_37_1 doi: 10.1002/anie.202114766 – ident: e_1_2_8_11_1 doi: 10.1039/D2CC05782D – ident: e_1_2_8_35_4 doi: 10.1039/D0CC05126H – ident: e_1_2_8_15_1 doi: 10.1002/anie.202101278 – ident: e_1_2_8_23_1 doi: 10.1016/j.chembiol.2016.05.019 – ident: e_1_2_8_18_1 doi: 10.1038/nrc1738 – ident: e_1_2_8_4_1 doi: 10.1039/D1CS00525A – ident: e_1_2_8_7_3 doi: 10.1002/adma.201907365 – start-page: 3149 volume-title: NIPS'17: Proc. 31st Int. Conf. Neural Information Processing Systems year: 2017 ident: e_1_2_8_35_1 – ident: e_1_2_8_38_1 doi: 10.1021/acs.bioconjchem.7b00776 – ident: e_1_2_8_14_1 doi: 10.1021/acs.analchem.6b04385 – ident: e_1_2_8_36_1 doi: 10.1186/s12943-016-0503-9 – ident: e_1_2_8_7_2 doi: 10.1002/anie.202117330 – ident: e_1_2_8_35_17 doi: 10.1038/nchem.2002 – ident: e_1_2_8_21_4 doi: 10.1016/j.chembiol.2006.09.013 – ident: e_1_2_8_25_1 doi: 10.1038/s42004-020-0326-x – ident: e_1_2_8_35_18 doi: 10.1007/s10895-015-1519-z – ident: e_1_2_8_35_14 doi: 10.1021/jacs.8b11369 – ident: e_1_2_8_7_1 doi: 10.1021/acscentsci.0c01189 – ident: e_1_2_8_12_1 doi: 10.1038/s41551-020-00616-6 – ident: e_1_2_8_5_1 doi: 10.1016/j.cclet.2021.06.038 – ident: e_1_2_8_2_1 doi: 10.1021/jacsau.3c00613 – ident: e_1_2_8_35_3 doi: 10.1039/C4TB01763C – ident: e_1_2_8_35_11 doi: 10.1002/chem.201802875 – ident: e_1_2_8_21_2 doi: 10.1021/ja4056068 – ident: e_1_2_8_29_2 doi: 10.1021/acs.jctc.7b00675 – ident: e_1_2_8_39_1 doi: 10.1002/jcc.22885 – ident: e_1_2_8_9_1 doi: 10.1002/anie.202000165 – ident: e_1_2_8_31_1 doi: 10.1126/science.adg2114 – ident: e_1_2_8_20_1 doi: 10.1091/mbc.E20-06-0383 – ident: e_1_2_8_30_1 doi: 10.1016/j.cell.2020.01.021 – ident: e_1_2_8_33_1 doi: 10.1038/s41586-020-2242-8 – ident: e_1_2_8_35_5 doi: 10.1039/C5CC02496J – ident: e_1_2_8_3_1 doi: 10.1039/D1SC06889J – ident: e_1_2_8_35_7 doi: 10.1002/anie.202202961 – ident: e_1_2_8_16_1 doi: 10.1021/jacs.1c02112 – ident: e_1_2_8_19_1 doi: 10.1021/acs.analchem.9b01662 – ident: e_1_2_8_29_1 doi: 10.1021/acs.jcim.0c01203 – ident: e_1_2_8_10_2 doi: 10.1021/jacsau.1c00553 – ident: e_1_2_8_17_1 doi: 10.1038/s41570-021-00277-2 – ident: e_1_2_8_24_1 doi: 10.1021/bc5003289 – ident: e_1_2_8_28_2 doi: 10.1021/jacs.7b05833 – ident: e_1_2_8_40_1 doi: 10.1021/cbmi.3c00071 – ident: e_1_2_8_32_1 doi: 10.1021/jacs.1c06786 – ident: e_1_2_8_1_1 doi: 10.1038/s41551-020-0528-7 – ident: e_1_2_8_21_3 doi: 10.1038/nchembio.2007.26 |
SSID | ssj0009606 |
Score | 2.528843 |
Snippet | High‐performance fluorescent probes stand as indispensable tools in fluorescence‐guided imaging, and are crucial for precise delineation of focal tissue while... High-performance fluorescent probes stand as indispensable tools in fluorescence-guided imaging, and are crucial for precise delineation of focal tissue while... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2404828 |
SubjectTerms | Carcinoma, Hepatocellular - diagnostic imaging Cathepsins - metabolism Chemical synthesis Dyes fluorescence navigation Fluorescent Dyes - chemistry Fluorescent indicators fluorescent probe Humans Hydrogen-Ion Concentration Liver Neoplasms - diagnostic imaging Machine Learning Optical Imaging - methods Prediction models Rhodamine Rhodamines - chemistry signal‐to‐background ratio Silicon - chemistry xanthene dyes |
Title | Machine‐Learning‐Assisted Rational Design of Si─Rhodamine as Cathepsin‐pH‐Activated Probe for Accurate Fluorescence Navigation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202404828 https://www.ncbi.nlm.nih.gov/pubmed/38781580 https://www.proquest.com/docview/3086803733 https://www.proquest.com/docview/3060384497 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTuXQ0tJHKFRGqtRTIBs7G_u4AlarSovQtkjcovFjW1SarNhNDz1x7LGH_kJ-CWMnG9hWFVJ7cxSP4sc8PjvjzwBv-0I6IXgac62TWGgqqSwlZ2hyCnCKIor1-x3jk_7oTLw_z87vneJv-CG6DTdvGcFfewNHPT-4Iw1FG3iDKCIJWjWQE_YJWx4VTe74ozw8D2R7PIsVNWvJ2pikB6viq1HpD6i5ilxD6Bk-AVw2usk4-bJfL_S--f4bn-P_9GoTHre4lA0aRXoKa658Bhv32Aq34Mc4JF66m-ufLSvrJyrS_HpNsWzSbiuyo5AUwqop-3Bx8-t68rmy-JXkGM5ZOHA4m1-UJDkbeXET7lcj-VN_MIkRhmYDY2rPYMGGl3V1FfimjGMn-C3QgVTlczgbHn88HMXtRQ6x8cRJsc4cwQSFCdcJEkDp2TzLp0gqYtLcIeokdVz1ppmzQlDUVkaRr9F5H6XBXBr-AtbLqnSvgClj9VRT1O1ZLaTmCg06mwoUgr7CdQTxciIL07Kc-8s2LouGnzkt_AgX3QhH8K6rP2v4Pf5ac2epF0Vr5_OC04pQJtRJHsFe95os1P92wdJVta_TT7gUQuURvGz0qfsUl7nsZTKJIA1a8UAbisHReNA9bf-L0Gt45MtNDuMOrC-uardLuGqh3wTbuQWW5B7Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUA7AgXchUMBISJzSZmNnYx9XLKsFuiu0tBK3yHa8bUVJVt0NB049cuyhv7C_hBnnURaEkOCWh0dx7BnPxBl_BnjZF9IJweOQGxOFwuCRSmIcDG2KDk6hR8lpvmMy7Y_3xbtPSZtNSGthaj5EN-FGluHHazJwmpDeuaSG6tyDg9AlCfxsuArXaFtvwucPZ5cEKQrQPW6PJ6HCirXcxijeWZdf90u_BZvrsat3PqPbYNpq1zknn7erldm2334hOv7Xe92BW01oyga1Lt2FK664Bzd_Ahbeh-8Tn3vpLk7PGjDrAR5iF5Oy5GzWzCyyoc8LYeWcfTy6OD-dHZa5_oJyTC-ZX3O4WB4VKLkYk7j1W6yh_Adam8QwjGYDayuCWLDRcVWeeOSUdWyqv3oiSFk8gP3Rm73X47DZyyG0xE4KTeIwUlA64ibSGKP08jRJ5xq1xMap09pEseOqN09cLgQ6bmUVDjcm7WtpdSot34SNoizcI2DK5mZu0PH2ciOk4Upb7fJYaCHwKdwEELY9mdkGdE77bRxnNaI5zqiFs66FA3jVlV_UiI8_ltxqFSNrTH2ZcfwolBG-JA_gRXcbjZT-vOjClRWV6UdcCqHSAB7WCtU9istU9hIZBRB7tfhLHbLBcDLozh7_i9BzuD7em-xmu2-n75_ADbpepzRuwcbqpHJPMcxamWfekH4AZqwi7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyExCmtN3YS-7hiWS2PXVULlXqL_ApUlGTV3XDg1CNHDvzC_hLGTjbtghAS3JzEI79mPJ8d-xuAZxkXjnOWxExrGnONKZkmOBmaHB2cRI9i_X7HdJZN9vnrg_Tg3C3-lh-i33DzlhHma2_gC1vunpGGKht4g9AjcVw1XIRLPKPSB28Yzc8IpDw-D2x7LI0l1mtN20iT3U35Tbf0G9bchK7B94yvg1rXuj1y8mmnWekd8_UXQsf_adYNuNYBUzJsNekmXHDVLbh6jq7wNnybhpOX7vTke0fL-gGTOMBeVSyZd_uKZBROhZC6JO8OT3-czD_WVn1GOaKWJNw4XCwPK5RcTLy4CQHWUH7P30wiCKLJ0JjGU1iQ8VFTHwfCKePITH0JfCB1dQf2xy_fv5jEXSSH2HjmpFinDnGCVJRpqhChDGye5qVCHTFJ7pTSNHFMDsrUWc7RbUsjcbLReaaEUbkw7C5sVXXl7gORxupSo9sdWM2FZlIZ5WzCFedYCtMRxOuBLExHc-6jbRwVLUFzUvgeLvoejuB5n3_REnz8Mef2Wi-KztCXBcMloaDYSBbB0_4zmqj_76IqVzc-T0aZ4FzmEdxr9akviolcDFJBI0iCVvylDsVwNB32Tw_-RegJXN4bjYu3r2ZvHsIV_7o9z7gNW6vjxj1CjLXSj4MZ_QTrviGb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-Learning-Assisted+Rational+Design+of+Si%E2%94%80Rhodamine+as+Cathepsin-pH-Activated+Probe+for+Accurate+Fluorescence+Navigation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xiang%2C+Fei-Fan&rft.au=Zhang%2C+Hong&rft.au=Wu%2C+Yan-Ling&rft.au=Chen%2C+Yu-Jin&rft.date=2024-08-01&rft.eissn=1521-4095&rft.volume=36&rft.issue=31&rft.spage=e2404828&rft_id=info:doi/10.1002%2Fadma.202404828&rft_id=info%3Apmid%2F38781580&rft.externalDocID=38781580 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |