Patterning of Wafer‐Scale MXene Films for High‐Performance Image Sensor Arrays
As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in l...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 17; pp. e2201298 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high‐performance MXene image sensor array fabricated by a wafer‐scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin‐coating, photolithography, and dry‐etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large‐area patterning methods reported previously. As a result, a high‐density integrated array of 1024‐pixel Ti3C2Tx/Si photodetectors with a detectivity of 7.73 × 1014 Jones and a light–dark current ratio (Ilight/Idark) of 6.22 × 106, which is the ultrahigh value among all reported MXene‐based photodetectors, is fabricated. This patterning technique paves a way for large‐scale high‐performance MXetronics compatible with mainstream semiconductor processes.
MXenes are promising for future electronics and optoelectronics; however, previously reported patterning methods lack efficiency, resolution, and compatibility with mainstream semiconductor processing. Here, a wafer‐scale combination patterning method with a resolution up to the micrometer scale is developed, resulting in an integrated array of 1024‐pixel Ti3C2Tx/Si photodetectors with a record‐high detectivity of 7.73 × 1014 Jones. |
---|---|
AbstractList | As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high‐performance MXene image sensor array fabricated by a wafer‐scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin‐coating, photolithography, and dry‐etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large‐area patterning methods reported previously. As a result, a high‐density integrated array of 1024‐pixel Ti3C2Tx/Si photodetectors with a detectivity of 7.73 × 1014 Jones and a light–dark current ratio (Ilight/Idark) of 6.22 × 106, which is the ultrahigh value among all reported MXene‐based photodetectors, is fabricated. This patterning technique paves a way for large‐scale high‐performance MXetronics compatible with mainstream semiconductor processes. As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high‐performance MXene image sensor array fabricated by a wafer‐scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin‐coating, photolithography, and dry‐etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large‐area patterning methods reported previously. As a result, a high‐density integrated array of 1024‐pixel Ti 3 C 2 T x /Si photodetectors with a detectivity of 7.73 × 10 14 Jones and a light–dark current ratio ( I light / I dark ) of 6.22 × 10 6 , which is the ultrahigh value among all reported MXene‐based photodetectors, is fabricated. This patterning technique paves a way for large‐scale high‐performance MXetronics compatible with mainstream semiconductor processes. As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high-performance MXene image sensor array fabricated by a wafer-scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin-coating, photolithography, and dry-etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large-area patterning methods reported previously. As a result, a high-density integrated array of 1024-pixel Ti C T /Si photodetectors with a detectivity of 7.73 × 10 Jones and a light-dark current ratio (I /I ) of 6.22 × 10 , which is the ultrahigh value among all reported MXene-based photodetectors, is fabricated. This patterning technique paves a way for large-scale high-performance MXetronics compatible with mainstream semiconductor processes. As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high-performance MXene image sensor array fabricated by a wafer-scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin-coating, photolithography, and dry-etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large-area patterning methods reported previously. As a result, a high-density integrated array of 1024-pixel Ti3 C2 Tx /Si photodetectors with a detectivity of 7.73 × 1014 Jones and a light-dark current ratio (Ilight /Idark ) of 6.22 × 106 , which is the ultrahigh value among all reported MXene-based photodetectors, is fabricated. This patterning technique paves a way for large-scale high-performance MXetronics compatible with mainstream semiconductor processes.As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high-performance MXene image sensor array fabricated by a wafer-scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin-coating, photolithography, and dry-etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large-area patterning methods reported previously. As a result, a high-density integrated array of 1024-pixel Ti3 C2 Tx /Si photodetectors with a detectivity of 7.73 × 1014 Jones and a light-dark current ratio (Ilight /Idark ) of 6.22 × 106 , which is the ultrahigh value among all reported MXene-based photodetectors, is fabricated. This patterning technique paves a way for large-scale high-performance MXetronics compatible with mainstream semiconductor processes. As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high‐performance MXene image sensor array fabricated by a wafer‐scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin‐coating, photolithography, and dry‐etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large‐area patterning methods reported previously. As a result, a high‐density integrated array of 1024‐pixel Ti3C2Tx/Si photodetectors with a detectivity of 7.73 × 1014 Jones and a light–dark current ratio (Ilight/Idark) of 6.22 × 106, which is the ultrahigh value among all reported MXene‐based photodetectors, is fabricated. This patterning technique paves a way for large‐scale high‐performance MXetronics compatible with mainstream semiconductor processes. MXenes are promising for future electronics and optoelectronics; however, previously reported patterning methods lack efficiency, resolution, and compatibility with mainstream semiconductor processing. Here, a wafer‐scale combination patterning method with a resolution up to the micrometer scale is developed, resulting in an integrated array of 1024‐pixel Ti3C2Tx/Si photodetectors with a record‐high detectivity of 7.73 × 1014 Jones. |
Author | Wang, Xiao‐Mu Li, Qing‐Wen Cui, Cong Yao, Jian Feng, Shun Su, Xin Zhu, Hong‐Lei Li, Bo Liu, Chi Sun, Dong‐Ming Zhao, Yi‐Ming Wang, Xiao‐Hui Zhu, Qian‐Bing Zhang, Hong‐Wang Wang, Zuo‐Hua Sun, Yun Cheng, Hui‐Ming Qiu, Song |
Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0002-4360-8345 surname: Li fullname: Li, Bo organization: University of Science and Technology of China – sequence: 2 givenname: Qian‐Bing surname: Zhu fullname: Zhu, Qian‐Bing organization: University of Science and Technology of China – sequence: 3 givenname: Cong surname: Cui fullname: Cui, Cong organization: University of Science and Technology of China – sequence: 4 givenname: Chi orcidid: 0000-0002-8778-3831 surname: Liu fullname: Liu, Chi email: chiliu@imr.ac.cn organization: University of Science and Technology of China – sequence: 5 givenname: Zuo‐Hua surname: Wang fullname: Wang, Zuo‐Hua organization: Yanshan University – sequence: 6 givenname: Shun surname: Feng fullname: Feng, Shun organization: ShanghaiTech University – sequence: 7 givenname: Yun surname: Sun fullname: Sun, Yun organization: Chinese Academy of Sciences – sequence: 8 givenname: Hong‐Lei surname: Zhu fullname: Zhu, Hong‐Lei organization: University of Science and Technology of China – sequence: 9 givenname: Xin surname: Su fullname: Su, Xin organization: Nanjing University – sequence: 10 givenname: Yi‐Ming surname: Zhao fullname: Zhao, Yi‐Ming organization: University of Science and Technology of China – sequence: 11 givenname: Hong‐Wang surname: Zhang fullname: Zhang, Hong‐Wang organization: Yanshan University – sequence: 12 givenname: Jian surname: Yao fullname: Yao, Jian organization: Chinese Academy of Sciences – sequence: 13 givenname: Song surname: Qiu fullname: Qiu, Song organization: Chinese Academy of Sciences – sequence: 14 givenname: Qing‐Wen surname: Li fullname: Li, Qing‐Wen organization: Chinese Academy of Sciences – sequence: 15 givenname: Xiao‐Mu surname: Wang fullname: Wang, Xiao‐Mu email: xiaomu.wang@nju.edu.cn organization: Nanjing University – sequence: 16 givenname: Xiao‐Hui surname: Wang fullname: Wang, Xiao‐Hui email: wang@imr.ac.cn organization: University of Science and Technology of China – sequence: 17 givenname: Hui‐Ming surname: Cheng fullname: Cheng, Hui‐Ming organization: Chinese Academy of Sciences – sequence: 18 givenname: Dong‐Ming orcidid: 0000-0003-1552-7940 surname: Sun fullname: Sun, Dong‐Ming email: dmsun@imr.ac.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35226775$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LHTEUhoNY9GrddlkG3HQzt5l8zCTLi61VUCra0u7CmczJNTKTsclcyt31J_Q39pc0l6sVhOLqEM7zvBzyHpDdMAYk5E1F5xWl7D10A8wZZYxWTKsdMqskq0pBtdwlM6q5LHUt1D45SOmOUqprWu-RfS4Zq5tGzsj1FUwTxuDDshhd8Q0cxj-_ft9Y6LG4_I4Bi1PfD6lwYyzO_PI2L68w5tcAwWJxPsASixsMKe8XMcI6vSavHPQJjx7mIfl6-vHLyVl58fnT-cniorS84aoE5bhjTlsulQUO1qkOOw3CMsRKtUKgUEKzmlotGtlaaF3VALC2FsA7yQ_Ju23ufRx_rDBNZvDJYt9DwHGVDKv5JoALltHjZ-jduIohX5cpKYVWVNFMvX2gVu2AnbmPfoC4No-_lQGxBWwcU4rojPUTTH4MUwTfm4qaTSlmU4r5V0rW5s-0x-T_Cnor_PQ9rl-gzeLD5eLJ_Qvtm5_m |
CitedBy_id | crossref_primary_10_1002_aelm_202200620 crossref_primary_10_1002_cnl2_169 crossref_primary_10_1016_j_diamond_2023_110442 crossref_primary_10_1007_s11082_024_07119_7 crossref_primary_10_1002_smll_202304483 crossref_primary_10_1016_j_xcrp_2023_101582 crossref_primary_10_1016_j_cej_2023_141402 crossref_primary_10_1016_j_matt_2023_01_019 crossref_primary_10_1109_LED_2023_3236602 crossref_primary_10_1002_advs_202401252 crossref_primary_10_1039_D4NA00983E crossref_primary_10_1039_D3MH01362F crossref_primary_10_1002_adma_202307393 crossref_primary_10_1016_j_mser_2024_100894 crossref_primary_10_1039_D4SC03428G crossref_primary_10_1002_adma_202400279 crossref_primary_10_1038_s44160_024_00730_2 crossref_primary_10_1002_adom_202300393 crossref_primary_10_1021_acsphotonics_4c01573 crossref_primary_10_1016_j_jpowsour_2025_236538 crossref_primary_10_1021_acsami_2c16425 crossref_primary_10_1007_s13206_024_00157_z crossref_primary_10_26599_JAC_2024_9221008 crossref_primary_10_1016_j_cej_2024_150729 crossref_primary_10_1002_cplu_202200423 crossref_primary_10_1007_s12274_024_6605_6 crossref_primary_10_1002_advs_202206860 crossref_primary_10_1021_acsami_4c21347 crossref_primary_10_1002_smll_202206126 crossref_primary_10_1039_D2TA07917H crossref_primary_10_1007_s12274_022_5272_8 crossref_primary_10_1016_j_cej_2024_154097 crossref_primary_10_1021_acsnano_2c12684 crossref_primary_10_1002_admt_202301232 crossref_primary_10_1002_advs_202409002 crossref_primary_10_1002_admi_202201270 crossref_primary_10_1103_PhysRevLett_133_174001 crossref_primary_10_1016_j_mattod_2022_10_022 crossref_primary_10_1039_D2NA00281G crossref_primary_10_1002_adom_202200623 crossref_primary_10_1002_adom_202303194 crossref_primary_10_1016_j_cej_2023_144185 crossref_primary_10_15541_jim20230323 crossref_primary_10_1002_aelm_202300115 |
Cites_doi | 10.1002/advs.202002209 10.1021/acsphotonics.7b01439 10.1039/C6EE01717G 10.1109/LED.2014.2364171 10.1002/aenm.201900180 10.1038/s41467-021-24397-x 10.1021/acsnano.6b08415 10.1021/acs.jpcc.0c01032 10.1039/D0MH00394H 10.1002/adma.201903271 10.1038/s41467-020-16671-1 10.1038/ncomms7972 10.1038/s41467-020-15092-4 10.1039/b108685e 10.1126/science.aba7977 10.1021/jacs.6b10834 10.1002/aelm.202000955 10.1039/c3ee43526a 10.1002/adma.201908486 10.1021/acs.chemmater.6b04830 10.1039/D0MH00537A 10.1002/adma.201102306 10.1002/adma.201504657 10.1002/adma.201706656 10.1039/C7TA04735E 10.1088/1361-6463/abae36 10.1039/C6CS00896H 10.1039/C8TA04737E 10.1002/aelm.201700165 10.1016/j.apsusc.2020.145813 10.1002/adma.201807658 10.1021/acs.nanolett.7b00722 10.1002/smll.202100439 10.1021/acsnano.9b03454 10.1038/s41467-017-01136-9 10.1002/admt.201800256 10.1038/s41467-019-12814-1 10.1002/adom.201801521 10.1002/adfm.202003998 10.1002/adma.202107370 10.1002/adma.202101059 10.1021/acsnano.9b01941 10.1007/s12274-020-2757-1 10.1002/adfm.201801972 10.1002/admi.202000424 10.1002/adma.201907633 10.1109/LED.2016.2645946 10.1002/aenm.201601372 10.1002/smll.201502336 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202201298 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35226775 10_1002_adma_202201298 ADMA202201298 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Strategic Priority Research Program of Chinese Academy of Sciences funderid: XDB30000000 – fundername: National Natural Science Foundation of China funderid: 62074150; 61704175 – fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences funderid: ZDBS‐LY‐JSC027 – fundername: Liaoning Revitalization Talents Program funderid: XLYC1807109 – fundername: Project Young Merit Scholars funderid: SKLA‐2019‐03 – fundername: Shandong Natural Science Foundation of China funderid: ZR2019ZD49 – fundername: Chinese Academy of Sciences funderid: SYNL2020 – fundername: Project Young Merit Scholars grantid: SKLA-2019-03 – fundername: National Natural Science Foundation of China grantid: 62074150 – fundername: National Natural Science Foundation of China grantid: 61704175 – fundername: Strategic Priority Research Program of Chinese Academy of Sciences grantid: XDB30000000 – fundername: Liaoning Revitalization Talents Program grantid: XLYC1807109 – fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences grantid: ZDBS-LY-JSC027 – fundername: Shandong Natural Science Foundation of China grantid: ZR2019ZD49 – fundername: Chinese Academy of Sciences grantid: SYNL2020 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3738-a8f3f2f9c358ca3acf8ded9a4c2ee18b44e4849260c9475bcabf17aa2b64a3d53 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:09:02 EDT 2025 Fri Jul 25 04:29:18 EDT 2025 Wed Feb 19 02:27:01 EST 2025 Tue Jul 01 02:33:14 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 Wed Jan 22 16:26:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | MXene photodetectors image sensor arrays MXenes wafer-scale patterning technology |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-a8f3f2f9c358ca3acf8ded9a4c2ee18b44e4849260c9475bcabf17aa2b64a3d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8778-3831 0000-0003-1552-7940 0000-0002-4360-8345 |
PMID | 35226775 |
PQID | 2655498080 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2634849342 proquest_journals_2655498080 pubmed_primary_35226775 crossref_citationtrail_10_1002_adma_202201298 crossref_primary_10_1002_adma_202201298 wiley_primary_10_1002_adma_202201298_ADMA202201298 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2021; 7 2019; 9 2017; 8 2018; 28 2015; 6 2017; 3 2019; 31 2019; 10 2019; 13 2002; 12 2017; 46 2020; 369 2020; 13 2017; 29 2020; 11 2020; 124 2020; 32 2016; 38 2016; 12 2020; 7 2018; 6 2016; 6 2018; 5 2021; 12 2018; 4 2021; 33 2020; 53 2020; 30 2017; 17 2021 2017; 11 2020; 513 2014; 35 2018; 30 2011; 23 2016; 138 2016; 28 2014; 7 2016; 9 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 Sarycheva A. (e_1_2_9_3_1) 2018; 4 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 13 start-page: 8804 year: 2019 publication-title: ACS Nano – volume: 7 start-page: 867 year: 2014 publication-title: Energy Environ. Sci. – volume: 11 start-page: 3752 year: 2017 publication-title: ACS Nano – year: 2021 publication-title: Adv. Mater. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 year: 2018 publication-title: Science – volume: 7 start-page: 1901 year: 2020 publication-title: Mater. Horiz. – volume: 12 start-page: 4094 year: 2021 publication-title: Nat. Commun. – volume: 369 start-page: 446 year: 2020 publication-title: Science – volume: 10 start-page: 4873 year: 2019 publication-title: Nat. Commun. – volume: 28 start-page: 3333 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 124 start-page: 4764 year: 2020 publication-title: J. Phys. Chem. C – volume: 23 start-page: 4248 year: 2011 publication-title: Adv. Mater. – volume: 6 start-page: 6972 year: 2015 publication-title: Nat. Commun. – volume: 11 start-page: 1302 year: 2020 publication-title: Nat. Commun. – volume: 5 start-page: 1115 year: 2018 publication-title: ACS Photonics – volume: 12 start-page: 455 year: 2002 publication-title: J. Mater. Chem. – volume: 38 start-page: 179 year: 2016 publication-title: IEEE Electron Device Lett. – volume: 513 year: 2020 publication-title: Appl. Surf. Sci. – volume: 11 start-page: 2825 year: 2020 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 46 start-page: 5204 year: 2017 publication-title: Chem. Soc. Rev. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1632 year: 2017 publication-title: Chem. Mater. – volume: 4 year: 2018 publication-title: Adv. Mater. Technol. – volume: 35 start-page: 1224 year: 2014 publication-title: IEEE Electron Device Lett. – year: 2021 publication-title: Small – volume: 12 start-page: 595 year: 2016 publication-title: Small – volume: 9 start-page: 2847 year: 2016 publication-title: Energy Environ. Sci. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 start-page: 1207 year: 2017 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 13 start-page: 9139 year: 2019 publication-title: ACS Nano – volume: 7 year: 2020 publication-title: Adv. Mater. Interfaces – volume: 13 start-page: 1127 year: 2020 publication-title: Nano Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 3563 year: 2017 publication-title: Nano Lett. – volume: 7 start-page: 1828 year: 2020 publication-title: Mater. Horiz. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 53 year: 2020 publication-title: J. Phys. D: Appl. Phys. – ident: e_1_2_9_10_1 doi: 10.1002/advs.202002209 – ident: e_1_2_9_18_1 doi: 10.1021/acsphotonics.7b01439 – ident: e_1_2_9_21_1 doi: 10.1039/C6EE01717G – ident: e_1_2_9_48_1 doi: 10.1109/LED.2014.2364171 – ident: e_1_2_9_5_1 doi: 10.1002/aenm.201900180 – ident: e_1_2_9_45_1 doi: 10.1038/s41467-021-24397-x – ident: e_1_2_9_12_1 doi: 10.1021/acsnano.6b08415 – ident: e_1_2_9_37_1 doi: 10.1021/acs.jpcc.0c01032 – ident: e_1_2_9_41_1 doi: 10.1039/D0MH00394H – ident: e_1_2_9_39_1 doi: 10.1002/adma.201903271 – ident: e_1_2_9_4_1 doi: 10.1038/s41467-020-16671-1 – ident: e_1_2_9_17_1 doi: 10.1038/ncomms7972 – ident: e_1_2_9_6_1 doi: 10.1038/s41467-020-15092-4 – ident: e_1_2_9_49_1 doi: 10.1039/b108685e – ident: e_1_2_9_2_1 doi: 10.1126/science.aba7977 – ident: e_1_2_9_13_1 doi: 10.1021/jacs.6b10834 – ident: e_1_2_9_43_1 doi: 10.1002/aelm.202000955 – ident: e_1_2_9_20_1 doi: 10.1039/c3ee43526a – ident: e_1_2_9_26_1 doi: 10.1002/adma.201908486 – ident: e_1_2_9_15_1 doi: 10.1021/acs.chemmater.6b04830 – ident: e_1_2_9_36_1 doi: 10.1039/D0MH00537A – ident: e_1_2_9_1_1 doi: 10.1002/adma.201102306 – ident: e_1_2_9_24_1 doi: 10.1002/adma.201504657 – ident: e_1_2_9_11_1 doi: 10.1002/adma.201706656 – ident: e_1_2_9_27_1 doi: 10.1039/C7TA04735E – ident: e_1_2_9_42_1 doi: 10.1088/1361-6463/abae36 – ident: e_1_2_9_46_1 doi: 10.1039/C6CS00896H – ident: e_1_2_9_23_1 doi: 10.1039/C8TA04737E – ident: e_1_2_9_32_1 doi: 10.1002/aelm.201700165 – ident: e_1_2_9_40_1 doi: 10.1016/j.apsusc.2020.145813 – ident: e_1_2_9_33_1 doi: 10.1002/adma.201807658 – ident: e_1_2_9_16_1 doi: 10.1021/acs.nanolett.7b00722 – ident: e_1_2_9_38_1 doi: 10.1002/smll.202100439 – ident: e_1_2_9_9_1 doi: 10.1021/acsnano.9b03454 – ident: e_1_2_9_8_1 doi: 10.1038/s41467-017-01136-9 – ident: e_1_2_9_19_1 doi: 10.1002/admt.201800256 – ident: e_1_2_9_50_1 doi: 10.1038/s41467-019-12814-1 – ident: e_1_2_9_35_1 doi: 10.1002/adom.201801521 – ident: e_1_2_9_7_1 doi: 10.1002/adfm.202003998 – ident: e_1_2_9_29_1 doi: 10.1002/adma.202107370 – volume: 4 year: 2018 ident: e_1_2_9_3_1 publication-title: Science – ident: e_1_2_9_44_1 doi: 10.1002/adma.202101059 – ident: e_1_2_9_34_1 doi: 10.1021/acsnano.9b01941 – ident: e_1_2_9_30_1 doi: 10.1007/s12274-020-2757-1 – ident: e_1_2_9_25_1 doi: 10.1002/adfm.201801972 – ident: e_1_2_9_28_1 doi: 10.1002/admi.202000424 – ident: e_1_2_9_14_1 doi: 10.1002/adma.201907633 – ident: e_1_2_9_47_1 doi: 10.1109/LED.2016.2645946 – ident: e_1_2_9_22_1 doi: 10.1002/aenm.201601372 – ident: e_1_2_9_31_1 doi: 10.1002/smll.201502336 |
SSID | ssj0009606 |
Score | 2.624145 |
Snippet | As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2201298 |
SubjectTerms | Compatibility Dark current image sensor arrays Materials science Metal carbides MXene photodetectors MXenes Optoelectronics Photolithography Photometers Sensor arrays Transition metals wafer‐scale patterning technology |
Title | Patterning of Wafer‐Scale MXene Films for High‐Performance Image Sensor Arrays |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201298 https://www.ncbi.nlm.nih.gov/pubmed/35226775 https://www.proquest.com/docview/2655498080 https://www.proquest.com/docview/2634849342 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcP4pM-eL9Up0QQfOpW06SXx6GOKUyGOtxbSdMExF1klwd98iP4Gf0k5qRb5xQR9K0lCW2Sc07-TZNfAI65CXoslNTVVAqXcYyDNPLcjAXGYjQLAmlpn9dBvcWu2rz9aRd_zocoJtzQM2y8RgcX6bAyg4aKzHKDKMWpFNztiwu2UBXdzPhRKM8tbM_nbhywaEpt9Ghlvvj8qPRNas4rVzv01FZBTF86X3HyWB6P0rJ8-cJz_E-t1mBloktJNTekdVhQvQ1Y_kQr3ISbpmVx4kQK6WtyL7QavL--3ZpeVqTRNkGT1B463SExOpjg-hGT2JztSyCXXRO7yK35bjbp1cFAPA-3oFW7uDuru5MjGVyJCCRXRNrXVMfS55EUvpA6ylQWCyapUqdRyphiETIIPRmzkKdSpPo0FIKmARN-xv1tWOz1e2oXCOOK6SDzwhRh6dqLTZ11bOwji7UwNuOAO-2SRE545XhsRifJScs0wbZKirZy4KTI_5STOn7MWZr2cDLx2GFCAyOsYqRsOnBUJBtfwx8ooqf6Y8zjY-18Rh3YyS2jeJQVsmHIHaC2f395h6R63qgWd3t_KbQPS3idLyMqweJoMFYHRiGN0kPrBR-pRwbI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEEBHLAfgwL6E1UhInALBsbMcK6AqSxFiEdwix7ElBLSoywFOfALfyJfgcZqUghASHBPbSmzPjCeT8TPAFjdGj4WSuppK4TKOdpBGnpuxwEiMZkEgLe3zLKhds-NbXmQT4l6YnA9RBtxQM6y9RgXHgPRunxoqMgsOohRjKdEwjOKx3ojPP7joE6TQQbe4PZ-7ccCigtvo0d3B9oPr0jdnc9B3tYtPdQrS4rXznJP7nW4n3ZEvX4iO_-rXNEz2XFNSyWVpBoZUYxYmPgEL5-Di3OI4MZZCmprcCK1a769vl2aiFanfGrtJqncPj21iXGGCKSSm8Ly_NYEcPRrzRS7Np7Mpr7Ra4rk9D9fVw6v9mts7lcGVSEFyRaR9TXUsfR5J4Qupo0xlsWCSKrUXpYwpFiGG0JMxC3kqRar3QiFoGjDhZ9xfgJFGs6GWgDCumA4yL0yRl6692PRZx0ZEslgLIzYOuMWcJLKHLMeTMx6SHLZMExyrpBwrB7bL-k85rOPHmqvFFCc9pW0nNDC-VYygTQc2y2KjbvgPRTRUs4t1fOydz6gDi7lolI-yvmwYcgeoneBf3iGpHNQr5dXyXxptwFjtqn6anB6dnazAON7Ps4pWYaTT6qo14zB10nWrEh8Ytgrk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTtwwFIaPKEioLLi1QLgUV0JiFQiO7cTLEcMI2oJGXNTZRY5jSwiYQXNZwIpH4Bl5EnycmQwDqiq1y8S2EtvnHP9x7M8AO9wFPZZoGlqqVcg4xkGaRmHBhLMYy4TQnvZ5Jo6v2I8Wb73ZxV_yIaoJN_QMH6_Rwe8Luz-GhqrCc4MoxamU9BPMMBFJPLyhfj4GSKE-97S9mIdSsHSEbYzo_mT5yWHpg9aclK5-7GksgBq9dbnk5GZv0M_39OM7oOP_VGsR5ofClNRKS1qCKdNehrk3uMIvcN70ME6cSSEdS34ra7ovT88XrpsNOW25qEka17d3PeKEMMEFJC6xOd6YQE7uXPAiF-7D2aXXul310PsKV42jy8PjcHgmQ6iRgRSq1MaWWqljnmoVK23TwhRSMU2NOUhzxgxLEUIYackSnmuV24NEKZoLpuKCxysw3e60zRoQxg2zooiSHGnpNpKuzlY6AymkVc5oAghHXZLpIbAcz824zUrUMs2wrbKqrQLYrfLfl6iOP-bcHPVwNnTZXkaFU1YSMZsBfK-SnbPhHxTVNp0B5omxdjGjAayWllE9yivZJOEBUN-_f3mHrFY_rVVX6_9SaBtmm_VG9uvk7OcGfMbb5ZKiTZjudwdmy6mlfv7NO8Qr6TwJkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterning+of+Wafer%E2%80%90Scale+MXene+Films+for+High%E2%80%90Performance+Image+Sensor+Arrays&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Bo&rft.au=Qian%E2%80%90Bing+Zhu&rft.au=Cui%2C+Cong&rft.au=Liu%2C+Chi&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=17&rft_id=info:doi/10.1002%2Fadma.202201298&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |