Patterning of Wafer‐Scale MXene Films for High‐Performance Image Sensor Arrays

As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in l...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 17; pp. e2201298 - n/a
Main Authors Li, Bo, Zhu, Qian‐Bing, Cui, Cong, Liu, Chi, Wang, Zuo‐Hua, Feng, Shun, Sun, Yun, Zhu, Hong‐Lei, Su, Xin, Zhao, Yi‐Ming, Zhang, Hong‐Wang, Yao, Jian, Qiu, Song, Li, Qing‐Wen, Wang, Xiao‐Mu, Wang, Xiao‐Hui, Cheng, Hui‐Ming, Sun, Dong‐Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high‐performance MXene image sensor array fabricated by a wafer‐scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin‐coating, photolithography, and dry‐etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large‐area patterning methods reported previously. As a result, a high‐density integrated array of 1024‐pixel Ti3C2Tx/Si photodetectors with a detectivity of 7.73 × 1014 Jones and a light–dark current ratio (Ilight/Idark) of 6.22 × 106, which is the ultrahigh value among all reported MXene‐based photodetectors, is fabricated. This patterning technique paves a way for large‐scale high‐performance MXetronics compatible with mainstream semiconductor processes. MXenes are promising for future electronics and optoelectronics; however, previously reported patterning methods lack efficiency, resolution, and compatibility with mainstream semiconductor processing. Here, a wafer‐scale combination patterning method with a resolution up to the micrometer scale is developed, resulting in an integrated array of 1024‐pixel Ti3C2Tx/Si photodetectors with a record‐high detectivity of 7.73 × 1014 Jones.
AbstractList As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high‐performance MXene image sensor array fabricated by a wafer‐scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin‐coating, photolithography, and dry‐etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large‐area patterning methods reported previously. As a result, a high‐density integrated array of 1024‐pixel Ti3C2Tx/Si photodetectors with a detectivity of 7.73 × 1014 Jones and a light–dark current ratio (Ilight/Idark) of 6.22 × 106, which is the ultrahigh value among all reported MXene‐based photodetectors, is fabricated. This patterning technique paves a way for large‐scale high‐performance MXetronics compatible with mainstream semiconductor processes.
As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high‐performance MXene image sensor array fabricated by a wafer‐scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin‐coating, photolithography, and dry‐etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large‐area patterning methods reported previously. As a result, a high‐density integrated array of 1024‐pixel Ti 3 C 2 T x /Si photodetectors with a detectivity of 7.73 × 10 14 Jones and a light–dark current ratio ( I light / I dark ) of 6.22 × 10 6 , which is the ultrahigh value among all reported MXene‐based photodetectors, is fabricated. This patterning technique paves a way for large‐scale high‐performance MXetronics compatible with mainstream semiconductor processes.
As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high-performance MXene image sensor array fabricated by a wafer-scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin-coating, photolithography, and dry-etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large-area patterning methods reported previously. As a result, a high-density integrated array of 1024-pixel Ti C T /Si photodetectors with a detectivity of 7.73 × 10 Jones and a light-dark current ratio (I /I ) of 6.22 × 10 , which is the ultrahigh value among all reported MXene-based photodetectors, is fabricated. This patterning technique paves a way for large-scale high-performance MXetronics compatible with mainstream semiconductor processes.
As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high-performance MXene image sensor array fabricated by a wafer-scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin-coating, photolithography, and dry-etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large-area patterning methods reported previously. As a result, a high-density integrated array of 1024-pixel Ti3 C2 Tx /Si photodetectors with a detectivity of 7.73 × 1014 Jones and a light-dark current ratio (Ilight /Idark ) of 6.22 × 106 , which is the ultrahigh value among all reported MXene-based photodetectors, is fabricated. This patterning technique paves a way for large-scale high-performance MXetronics compatible with mainstream semiconductor processes.As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high-performance MXene image sensor array fabricated by a wafer-scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin-coating, photolithography, and dry-etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large-area patterning methods reported previously. As a result, a high-density integrated array of 1024-pixel Ti3 C2 Tx /Si photodetectors with a detectivity of 7.73 × 1014 Jones and a light-dark current ratio (Ilight /Idark ) of 6.22 × 106 , which is the ultrahigh value among all reported MXene-based photodetectors, is fabricated. This patterning technique paves a way for large-scale high-performance MXetronics compatible with mainstream semiconductor processes.
As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high‐performance MXene image sensor array fabricated by a wafer‐scale combination patterning method of an MXene film is reported. This method combines MXene centrifugation, spin‐coating, photolithography, and dry‐etching and is highly compatible with mainstream semiconductor processing, with a resolution up to 2 µm, which is at least 100 times higher than other large‐area patterning methods reported previously. As a result, a high‐density integrated array of 1024‐pixel Ti3C2Tx/Si photodetectors with a detectivity of 7.73 × 1014 Jones and a light–dark current ratio (Ilight/Idark) of 6.22 × 106, which is the ultrahigh value among all reported MXene‐based photodetectors, is fabricated. This patterning technique paves a way for large‐scale high‐performance MXetronics compatible with mainstream semiconductor processes. MXenes are promising for future electronics and optoelectronics; however, previously reported patterning methods lack efficiency, resolution, and compatibility with mainstream semiconductor processing. Here, a wafer‐scale combination patterning method with a resolution up to the micrometer scale is developed, resulting in an integrated array of 1024‐pixel Ti3C2Tx/Si photodetectors with a record‐high detectivity of 7.73 × 1014 Jones.
Author Wang, Xiao‐Mu
Li, Qing‐Wen
Cui, Cong
Yao, Jian
Feng, Shun
Su, Xin
Zhu, Hong‐Lei
Li, Bo
Liu, Chi
Sun, Dong‐Ming
Zhao, Yi‐Ming
Wang, Xiao‐Hui
Zhu, Qian‐Bing
Zhang, Hong‐Wang
Wang, Zuo‐Hua
Sun, Yun
Cheng, Hui‐Ming
Qiu, Song
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-4360-8345
  surname: Li
  fullname: Li, Bo
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Qian‐Bing
  surname: Zhu
  fullname: Zhu, Qian‐Bing
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Cong
  surname: Cui
  fullname: Cui, Cong
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Chi
  orcidid: 0000-0002-8778-3831
  surname: Liu
  fullname: Liu, Chi
  email: chiliu@imr.ac.cn
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Zuo‐Hua
  surname: Wang
  fullname: Wang, Zuo‐Hua
  organization: Yanshan University
– sequence: 6
  givenname: Shun
  surname: Feng
  fullname: Feng, Shun
  organization: ShanghaiTech University
– sequence: 7
  givenname: Yun
  surname: Sun
  fullname: Sun, Yun
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Hong‐Lei
  surname: Zhu
  fullname: Zhu, Hong‐Lei
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Xin
  surname: Su
  fullname: Su, Xin
  organization: Nanjing University
– sequence: 10
  givenname: Yi‐Ming
  surname: Zhao
  fullname: Zhao, Yi‐Ming
  organization: University of Science and Technology of China
– sequence: 11
  givenname: Hong‐Wang
  surname: Zhang
  fullname: Zhang, Hong‐Wang
  organization: Yanshan University
– sequence: 12
  givenname: Jian
  surname: Yao
  fullname: Yao, Jian
  organization: Chinese Academy of Sciences
– sequence: 13
  givenname: Song
  surname: Qiu
  fullname: Qiu, Song
  organization: Chinese Academy of Sciences
– sequence: 14
  givenname: Qing‐Wen
  surname: Li
  fullname: Li, Qing‐Wen
  organization: Chinese Academy of Sciences
– sequence: 15
  givenname: Xiao‐Mu
  surname: Wang
  fullname: Wang, Xiao‐Mu
  email: xiaomu.wang@nju.edu.cn
  organization: Nanjing University
– sequence: 16
  givenname: Xiao‐Hui
  surname: Wang
  fullname: Wang, Xiao‐Hui
  email: wang@imr.ac.cn
  organization: University of Science and Technology of China
– sequence: 17
  givenname: Hui‐Ming
  surname: Cheng
  fullname: Cheng, Hui‐Ming
  organization: Chinese Academy of Sciences
– sequence: 18
  givenname: Dong‐Ming
  orcidid: 0000-0003-1552-7940
  surname: Sun
  fullname: Sun, Dong‐Ming
  email: dmsun@imr.ac.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35226775$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LHTEUhoNY9GrddlkG3HQzt5l8zCTLi61VUCra0u7CmczJNTKTsclcyt31J_Q39pc0l6sVhOLqEM7zvBzyHpDdMAYk5E1F5xWl7D10A8wZZYxWTKsdMqskq0pBtdwlM6q5LHUt1D45SOmOUqprWu-RfS4Zq5tGzsj1FUwTxuDDshhd8Q0cxj-_ft9Y6LG4_I4Bi1PfD6lwYyzO_PI2L68w5tcAwWJxPsASixsMKe8XMcI6vSavHPQJjx7mIfl6-vHLyVl58fnT-cniorS84aoE5bhjTlsulQUO1qkOOw3CMsRKtUKgUEKzmlotGtlaaF3VALC2FsA7yQ_Ju23ufRx_rDBNZvDJYt9DwHGVDKv5JoALltHjZ-jduIohX5cpKYVWVNFMvX2gVu2AnbmPfoC4No-_lQGxBWwcU4rojPUTTH4MUwTfm4qaTSlmU4r5V0rW5s-0x-T_Cnor_PQ9rl-gzeLD5eLJ_Qvtm5_m
CitedBy_id crossref_primary_10_1002_aelm_202200620
crossref_primary_10_1002_cnl2_169
crossref_primary_10_1016_j_diamond_2023_110442
crossref_primary_10_1007_s11082_024_07119_7
crossref_primary_10_1002_smll_202304483
crossref_primary_10_1016_j_xcrp_2023_101582
crossref_primary_10_1016_j_cej_2023_141402
crossref_primary_10_1016_j_matt_2023_01_019
crossref_primary_10_1109_LED_2023_3236602
crossref_primary_10_1002_advs_202401252
crossref_primary_10_1039_D4NA00983E
crossref_primary_10_1039_D3MH01362F
crossref_primary_10_1002_adma_202307393
crossref_primary_10_1016_j_mser_2024_100894
crossref_primary_10_1039_D4SC03428G
crossref_primary_10_1002_adma_202400279
crossref_primary_10_1038_s44160_024_00730_2
crossref_primary_10_1002_adom_202300393
crossref_primary_10_1021_acsphotonics_4c01573
crossref_primary_10_1016_j_jpowsour_2025_236538
crossref_primary_10_1021_acsami_2c16425
crossref_primary_10_1007_s13206_024_00157_z
crossref_primary_10_26599_JAC_2024_9221008
crossref_primary_10_1016_j_cej_2024_150729
crossref_primary_10_1002_cplu_202200423
crossref_primary_10_1007_s12274_024_6605_6
crossref_primary_10_1002_advs_202206860
crossref_primary_10_1021_acsami_4c21347
crossref_primary_10_1002_smll_202206126
crossref_primary_10_1039_D2TA07917H
crossref_primary_10_1007_s12274_022_5272_8
crossref_primary_10_1016_j_cej_2024_154097
crossref_primary_10_1021_acsnano_2c12684
crossref_primary_10_1002_admt_202301232
crossref_primary_10_1002_advs_202409002
crossref_primary_10_1002_admi_202201270
crossref_primary_10_1103_PhysRevLett_133_174001
crossref_primary_10_1016_j_mattod_2022_10_022
crossref_primary_10_1039_D2NA00281G
crossref_primary_10_1002_adom_202200623
crossref_primary_10_1002_adom_202303194
crossref_primary_10_1016_j_cej_2023_144185
crossref_primary_10_15541_jim20230323
crossref_primary_10_1002_aelm_202300115
Cites_doi 10.1002/advs.202002209
10.1021/acsphotonics.7b01439
10.1039/C6EE01717G
10.1109/LED.2014.2364171
10.1002/aenm.201900180
10.1038/s41467-021-24397-x
10.1021/acsnano.6b08415
10.1021/acs.jpcc.0c01032
10.1039/D0MH00394H
10.1002/adma.201903271
10.1038/s41467-020-16671-1
10.1038/ncomms7972
10.1038/s41467-020-15092-4
10.1039/b108685e
10.1126/science.aba7977
10.1021/jacs.6b10834
10.1002/aelm.202000955
10.1039/c3ee43526a
10.1002/adma.201908486
10.1021/acs.chemmater.6b04830
10.1039/D0MH00537A
10.1002/adma.201102306
10.1002/adma.201504657
10.1002/adma.201706656
10.1039/C7TA04735E
10.1088/1361-6463/abae36
10.1039/C6CS00896H
10.1039/C8TA04737E
10.1002/aelm.201700165
10.1016/j.apsusc.2020.145813
10.1002/adma.201807658
10.1021/acs.nanolett.7b00722
10.1002/smll.202100439
10.1021/acsnano.9b03454
10.1038/s41467-017-01136-9
10.1002/admt.201800256
10.1038/s41467-019-12814-1
10.1002/adom.201801521
10.1002/adfm.202003998
10.1002/adma.202107370
10.1002/adma.202101059
10.1021/acsnano.9b01941
10.1007/s12274-020-2757-1
10.1002/adfm.201801972
10.1002/admi.202000424
10.1002/adma.201907633
10.1109/LED.2016.2645946
10.1002/aenm.201601372
10.1002/smll.201502336
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202201298
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35226775
10_1002_adma_202201298
ADMA202201298
Genre article
Journal Article
GrantInformation_xml – fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  funderid: XDB30000000
– fundername: National Natural Science Foundation of China
  funderid: 62074150; 61704175
– fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences
  funderid: ZDBS‐LY‐JSC027
– fundername: Liaoning Revitalization Talents Program
  funderid: XLYC1807109
– fundername: Project Young Merit Scholars
  funderid: SKLA‐2019‐03
– fundername: Shandong Natural Science Foundation of China
  funderid: ZR2019ZD49
– fundername: Chinese Academy of Sciences
  funderid: SYNL2020
– fundername: Project Young Merit Scholars
  grantid: SKLA-2019-03
– fundername: National Natural Science Foundation of China
  grantid: 62074150
– fundername: National Natural Science Foundation of China
  grantid: 61704175
– fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  grantid: XDB30000000
– fundername: Liaoning Revitalization Talents Program
  grantid: XLYC1807109
– fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences
  grantid: ZDBS-LY-JSC027
– fundername: Shandong Natural Science Foundation of China
  grantid: ZR2019ZD49
– fundername: Chinese Academy of Sciences
  grantid: SYNL2020
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3738-a8f3f2f9c358ca3acf8ded9a4c2ee18b44e4849260c9475bcabf17aa2b64a3d53
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:09:02 EDT 2025
Fri Jul 25 04:29:18 EDT 2025
Wed Feb 19 02:27:01 EST 2025
Tue Jul 01 02:33:14 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
Wed Jan 22 16:26:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords MXene photodetectors
image sensor arrays
MXenes
wafer-scale patterning technology
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-a8f3f2f9c358ca3acf8ded9a4c2ee18b44e4849260c9475bcabf17aa2b64a3d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8778-3831
0000-0003-1552-7940
0000-0002-4360-8345
PMID 35226775
PQID 2655498080
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2634849342
proquest_journals_2655498080
pubmed_primary_35226775
crossref_citationtrail_10_1002_adma_202201298
crossref_primary_10_1002_adma_202201298
wiley_primary_10_1002_adma_202201298_ADMA202201298
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2021; 7
2019; 9
2017; 8
2018; 28
2015; 6
2017; 3
2019; 31
2019; 10
2019; 13
2002; 12
2017; 46
2020; 369
2020; 13
2017; 29
2020; 11
2020; 124
2020; 32
2016; 38
2016; 12
2020; 7
2018; 6
2016; 6
2018; 5
2021; 12
2018; 4
2021; 33
2020; 53
2020; 30
2017; 17
2021
2017; 11
2020; 513
2014; 35
2018; 30
2011; 23
2016; 138
2016; 28
2014; 7
2016; 9
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Sarycheva A. (e_1_2_9_3_1) 2018; 4
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 13
  start-page: 8804
  year: 2019
  publication-title: ACS Nano
– volume: 7
  start-page: 867
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 3752
  year: 2017
  publication-title: ACS Nano
– year: 2021
  publication-title: Adv. Mater.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2018
  publication-title: Science
– volume: 7
  start-page: 1901
  year: 2020
  publication-title: Mater. Horiz.
– volume: 12
  start-page: 4094
  year: 2021
  publication-title: Nat. Commun.
– volume: 369
  start-page: 446
  year: 2020
  publication-title: Science
– volume: 10
  start-page: 4873
  year: 2019
  publication-title: Nat. Commun.
– volume: 28
  start-page: 3333
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 124
  start-page: 4764
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 23
  start-page: 4248
  year: 2011
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6972
  year: 2015
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1302
  year: 2020
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1115
  year: 2018
  publication-title: ACS Photonics
– volume: 12
  start-page: 455
  year: 2002
  publication-title: J. Mater. Chem.
– volume: 38
  start-page: 179
  year: 2016
  publication-title: IEEE Electron Device Lett.
– volume: 513
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 2825
  year: 2020
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 46
  start-page: 5204
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1632
  year: 2017
  publication-title: Chem. Mater.
– volume: 4
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 35
  start-page: 1224
  year: 2014
  publication-title: IEEE Electron Device Lett.
– year: 2021
  publication-title: Small
– volume: 12
  start-page: 595
  year: 2016
  publication-title: Small
– volume: 9
  start-page: 2847
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1207
  year: 2017
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 9139
  year: 2019
  publication-title: ACS Nano
– volume: 7
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 13
  start-page: 1127
  year: 2020
  publication-title: Nano Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 3563
  year: 2017
  publication-title: Nano Lett.
– volume: 7
  start-page: 1828
  year: 2020
  publication-title: Mater. Horiz.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 53
  year: 2020
  publication-title: J. Phys. D: Appl. Phys.
– ident: e_1_2_9_10_1
  doi: 10.1002/advs.202002209
– ident: e_1_2_9_18_1
  doi: 10.1021/acsphotonics.7b01439
– ident: e_1_2_9_21_1
  doi: 10.1039/C6EE01717G
– ident: e_1_2_9_48_1
  doi: 10.1109/LED.2014.2364171
– ident: e_1_2_9_5_1
  doi: 10.1002/aenm.201900180
– ident: e_1_2_9_45_1
  doi: 10.1038/s41467-021-24397-x
– ident: e_1_2_9_12_1
  doi: 10.1021/acsnano.6b08415
– ident: e_1_2_9_37_1
  doi: 10.1021/acs.jpcc.0c01032
– ident: e_1_2_9_41_1
  doi: 10.1039/D0MH00394H
– ident: e_1_2_9_39_1
  doi: 10.1002/adma.201903271
– ident: e_1_2_9_4_1
  doi: 10.1038/s41467-020-16671-1
– ident: e_1_2_9_17_1
  doi: 10.1038/ncomms7972
– ident: e_1_2_9_6_1
  doi: 10.1038/s41467-020-15092-4
– ident: e_1_2_9_49_1
  doi: 10.1039/b108685e
– ident: e_1_2_9_2_1
  doi: 10.1126/science.aba7977
– ident: e_1_2_9_13_1
  doi: 10.1021/jacs.6b10834
– ident: e_1_2_9_43_1
  doi: 10.1002/aelm.202000955
– ident: e_1_2_9_20_1
  doi: 10.1039/c3ee43526a
– ident: e_1_2_9_26_1
  doi: 10.1002/adma.201908486
– ident: e_1_2_9_15_1
  doi: 10.1021/acs.chemmater.6b04830
– ident: e_1_2_9_36_1
  doi: 10.1039/D0MH00537A
– ident: e_1_2_9_1_1
  doi: 10.1002/adma.201102306
– ident: e_1_2_9_24_1
  doi: 10.1002/adma.201504657
– ident: e_1_2_9_11_1
  doi: 10.1002/adma.201706656
– ident: e_1_2_9_27_1
  doi: 10.1039/C7TA04735E
– ident: e_1_2_9_42_1
  doi: 10.1088/1361-6463/abae36
– ident: e_1_2_9_46_1
  doi: 10.1039/C6CS00896H
– ident: e_1_2_9_23_1
  doi: 10.1039/C8TA04737E
– ident: e_1_2_9_32_1
  doi: 10.1002/aelm.201700165
– ident: e_1_2_9_40_1
  doi: 10.1016/j.apsusc.2020.145813
– ident: e_1_2_9_33_1
  doi: 10.1002/adma.201807658
– ident: e_1_2_9_16_1
  doi: 10.1021/acs.nanolett.7b00722
– ident: e_1_2_9_38_1
  doi: 10.1002/smll.202100439
– ident: e_1_2_9_9_1
  doi: 10.1021/acsnano.9b03454
– ident: e_1_2_9_8_1
  doi: 10.1038/s41467-017-01136-9
– ident: e_1_2_9_19_1
  doi: 10.1002/admt.201800256
– ident: e_1_2_9_50_1
  doi: 10.1038/s41467-019-12814-1
– ident: e_1_2_9_35_1
  doi: 10.1002/adom.201801521
– ident: e_1_2_9_7_1
  doi: 10.1002/adfm.202003998
– ident: e_1_2_9_29_1
  doi: 10.1002/adma.202107370
– volume: 4
  year: 2018
  ident: e_1_2_9_3_1
  publication-title: Science
– ident: e_1_2_9_44_1
  doi: 10.1002/adma.202101059
– ident: e_1_2_9_34_1
  doi: 10.1021/acsnano.9b01941
– ident: e_1_2_9_30_1
  doi: 10.1007/s12274-020-2757-1
– ident: e_1_2_9_25_1
  doi: 10.1002/adfm.201801972
– ident: e_1_2_9_28_1
  doi: 10.1002/admi.202000424
– ident: e_1_2_9_14_1
  doi: 10.1002/adma.201907633
– ident: e_1_2_9_47_1
  doi: 10.1109/LED.2016.2645946
– ident: e_1_2_9_22_1
  doi: 10.1002/aenm.201601372
– ident: e_1_2_9_31_1
  doi: 10.1002/smll.201502336
SSID ssj0009606
Score 2.624145
Snippet As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2201298
SubjectTerms Compatibility
Dark current
image sensor arrays
Materials science
Metal carbides
MXene photodetectors
MXenes
Optoelectronics
Photolithography
Photometers
Sensor arrays
Transition metals
wafer‐scale patterning technology
Title Patterning of Wafer‐Scale MXene Films for High‐Performance Image Sensor Arrays
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201298
https://www.ncbi.nlm.nih.gov/pubmed/35226775
https://www.proquest.com/docview/2655498080
https://www.proquest.com/docview/2634849342
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcP4pM-eL9Up0QQfOpW06SXx6GOKUyGOtxbSdMExF1klwd98iP4Gf0k5qRb5xQR9K0lCW2Sc07-TZNfAI65CXoslNTVVAqXcYyDNPLcjAXGYjQLAmlpn9dBvcWu2rz9aRd_zocoJtzQM2y8RgcX6bAyg4aKzHKDKMWpFNztiwu2UBXdzPhRKM8tbM_nbhywaEpt9Ghlvvj8qPRNas4rVzv01FZBTF86X3HyWB6P0rJ8-cJz_E-t1mBloktJNTekdVhQvQ1Y_kQr3ISbpmVx4kQK6WtyL7QavL--3ZpeVqTRNkGT1B463SExOpjg-hGT2JztSyCXXRO7yK35bjbp1cFAPA-3oFW7uDuru5MjGVyJCCRXRNrXVMfS55EUvpA6ylQWCyapUqdRyphiETIIPRmzkKdSpPo0FIKmARN-xv1tWOz1e2oXCOOK6SDzwhRh6dqLTZ11bOwji7UwNuOAO-2SRE545XhsRifJScs0wbZKirZy4KTI_5STOn7MWZr2cDLx2GFCAyOsYqRsOnBUJBtfwx8ooqf6Y8zjY-18Rh3YyS2jeJQVsmHIHaC2f395h6R63qgWd3t_KbQPS3idLyMqweJoMFYHRiGN0kPrBR-pRwbI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEEBHLAfgwL6E1UhInALBsbMcK6AqSxFiEdwix7ElBLSoywFOfALfyJfgcZqUghASHBPbSmzPjCeT8TPAFjdGj4WSuppK4TKOdpBGnpuxwEiMZkEgLe3zLKhds-NbXmQT4l6YnA9RBtxQM6y9RgXHgPRunxoqMgsOohRjKdEwjOKx3ojPP7joE6TQQbe4PZ-7ccCigtvo0d3B9oPr0jdnc9B3tYtPdQrS4rXznJP7nW4n3ZEvX4iO_-rXNEz2XFNSyWVpBoZUYxYmPgEL5-Di3OI4MZZCmprcCK1a769vl2aiFanfGrtJqncPj21iXGGCKSSm8Ly_NYEcPRrzRS7Np7Mpr7Ra4rk9D9fVw6v9mts7lcGVSEFyRaR9TXUsfR5J4Qupo0xlsWCSKrUXpYwpFiGG0JMxC3kqRar3QiFoGjDhZ9xfgJFGs6GWgDCumA4yL0yRl6692PRZx0ZEslgLIzYOuMWcJLKHLMeTMx6SHLZMExyrpBwrB7bL-k85rOPHmqvFFCc9pW0nNDC-VYygTQc2y2KjbvgPRTRUs4t1fOydz6gDi7lolI-yvmwYcgeoneBf3iGpHNQr5dXyXxptwFjtqn6anB6dnazAON7Ps4pWYaTT6qo14zB10nWrEh8Ytgrk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTtwwFIaPKEioLLi1QLgUV0JiFQiO7cTLEcMI2oJGXNTZRY5jSwiYQXNZwIpH4Bl5EnycmQwDqiq1y8S2EtvnHP9x7M8AO9wFPZZoGlqqVcg4xkGaRmHBhLMYy4TQnvZ5Jo6v2I8Wb73ZxV_yIaoJN_QMH6_Rwe8Luz-GhqrCc4MoxamU9BPMMBFJPLyhfj4GSKE-97S9mIdSsHSEbYzo_mT5yWHpg9aclK5-7GksgBq9dbnk5GZv0M_39OM7oOP_VGsR5ofClNRKS1qCKdNehrk3uMIvcN70ME6cSSEdS34ra7ovT88XrpsNOW25qEka17d3PeKEMMEFJC6xOd6YQE7uXPAiF-7D2aXXul310PsKV42jy8PjcHgmQ6iRgRSq1MaWWqljnmoVK23TwhRSMU2NOUhzxgxLEUIYackSnmuV24NEKZoLpuKCxysw3e60zRoQxg2zooiSHGnpNpKuzlY6AymkVc5oAghHXZLpIbAcz824zUrUMs2wrbKqrQLYrfLfl6iOP-bcHPVwNnTZXkaFU1YSMZsBfK-SnbPhHxTVNp0B5omxdjGjAayWllE9yivZJOEBUN-_f3mHrFY_rVVX6_9SaBtmm_VG9uvk7OcGfMbb5ZKiTZjudwdmy6mlfv7NO8Qr6TwJkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterning+of+Wafer%E2%80%90Scale+MXene+Films+for+High%E2%80%90Performance+Image+Sensor+Arrays&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Bo&rft.au=Qian%E2%80%90Bing+Zhu&rft.au=Cui%2C+Cong&rft.au=Liu%2C+Chi&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=17&rft_id=info:doi/10.1002%2Fadma.202201298&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon