Organic‐Inorganic Phenolic/POSS Hybrids Provide Highly Ordered Mesoporous Structures Templated by High Thermal Stability of PS‐b‐P4VP Diblock Copolymer

Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐b‐4‐vinyl pyridine) (PS‐b‐P4VP), and a phenolic resin with a double‐decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ‐30 with 30 wt.% DDSQ). Strong intermolecular hydrogen b...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 29; no. 30; pp. e202300538 - n/a
Main Authors Chou, Ting‐Chih, Chen, Wei‐Cheng, Mohamed, Mohamed Gamal, Huang, Yen‐Chi, Kuo, Shiao‐Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 26.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐b‐4‐vinyl pyridine) (PS‐b‐P4VP), and a phenolic resin with a double‐decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ‐30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ‐30/PS‐b‐P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen‐bonded pyridine groups. After thermal polymerization at 180 °C, the self‐assembled structures of these PDDSQ/PS‐b‐P4VP blends were revealed by data from small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM), where the d‐spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS‐b‐P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS‐b‐P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application. Mesoporous PDDSQ hybrids were prepared by using PS‐b‐P4VP as a template by mediated the hydrogen bonding interaction through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block. The highly ordered structures reveal the high surface area and high pore volume that could be used in supercapacitor application.
AbstractList Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene-b-4-vinyl pyridine) (PS-b-P4VP), and a phenolic resin with a double-decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ-30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ-30/PS-b-P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen-bonded pyridine groups. After thermal polymerization at 180 °C, the self-assembled structures of these PDDSQ/PS-b-P4VP blends were revealed by data from small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), where the d-spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS-b-P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS-b-P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application.
Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐b‐4‐vinyl pyridine) (PS‐b‐P4VP), and a phenolic resin with a double‐decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ‐30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ‐30/PS‐b‐P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen‐bonded pyridine groups. After thermal polymerization at 180 °C, the self‐assembled structures of these PDDSQ/PS‐b‐P4VP blends were revealed by data from small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM), where the d‐spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS‐b‐P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS‐b‐P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application. Mesoporous PDDSQ hybrids were prepared by using PS‐b‐P4VP as a template by mediated the hydrogen bonding interaction through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block. The highly ordered structures reveal the high surface area and high pore volume that could be used in supercapacitor application.
Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene-b-4-vinyl pyridine) (PS-b-P4VP), and a phenolic resin with a double-decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ-30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ-30/PS-b-P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen-bonded pyridine groups. After thermal polymerization at 180 °C, the self-assembled structures of these PDDSQ/PS-b-P4VP blends were revealed by data from small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), where the d-spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS-b-P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS-b-P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application.Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene-b-4-vinyl pyridine) (PS-b-P4VP), and a phenolic resin with a double-decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ-30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ-30/PS-b-P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen-bonded pyridine groups. After thermal polymerization at 180 °C, the self-assembled structures of these PDDSQ/PS-b-P4VP blends were revealed by data from small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), where the d-spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS-b-P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS-b-P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application.
Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐ b ‐4‐vinyl pyridine) (PS‐ b ‐P4VP), and a phenolic resin with a double‐decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ‐30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ‐30/PS‐ b ‐P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen‐bonded pyridine groups. After thermal polymerization at 180 °C, the self‐assembled structures of these PDDSQ/PS‐ b ‐P4VP blends were revealed by data from small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM), where the d ‐spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS‐ b ‐P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS‐ b ‐P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application.
Author Chou, Ting‐Chih
Chen, Wei‐Cheng
Kuo, Shiao‐Wei
Mohamed, Mohamed Gamal
Huang, Yen‐Chi
Author_xml – sequence: 1
  givenname: Ting‐Chih
  surname: Chou
  fullname: Chou, Ting‐Chih
  organization: National Sun Yat-Sen University
– sequence: 2
  givenname: Wei‐Cheng
  surname: Chen
  fullname: Chen, Wei‐Cheng
  organization: National Sun Yat-Sen University
– sequence: 3
  givenname: Mohamed Gamal
  surname: Mohamed
  fullname: Mohamed, Mohamed Gamal
  organization: Assiut University
– sequence: 4
  givenname: Yen‐Chi
  surname: Huang
  fullname: Huang, Yen‐Chi
  organization: National Sun Yat-Sen University
– sequence: 5
  givenname: Shiao‐Wei
  orcidid: 0000-0002-4306-7171
  surname: Kuo
  fullname: Kuo, Shiao‐Wei
  email: kuosw@faculty.nsysu.edu.tw
  organization: Kaohsiung Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36932999$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URKeFLUtkiQ2bTH3JzUs0LZ1KrSbSDGwj2znpuDjxYCeg7PoIvAAvx5PgYUqRKiEWli2d7zvH9n-CjnrXA0KvKZlTQtiZ3kI3Z4RxQjJePkMzmjGa8CLPjtCMiLRI8oyLY3QSwh0hROScv0DHPBecCSFm6MfK38re6J_33696dzjjagu9s0afVav1Gi8n5U0TcOXdV9MAXprbrZ3wyjfgocE3ENzOeTcGvB78qIfRQ8Ab6HZWDrGupt8G3mzBd9JGSCpjzTBh1-JqHQeruKr0U4XPjbJOf8aL2NBOHfiX6HkrbYBXD_sp-vjhYrNYJtery6vF--tE84KXSZk1WhaMUtbqNNdlLosGGMRSmadKpy2AaqXQGVO0kE1LMxAMgKdK8ZI2GT9F7w59d959GSEMdWeCBmtlD_FhNSsJF3nOxR59-wS9c6Pv4-0iRQVjWV6UkXrzQI2qg6beedNJP9V_Pj4C8wOgvQvBQ_uIUFLvk633ydaPyUYhfSJoM8jBuH7w0th_a-KgfTMWpv8MqRfLi5u_7i_QQbzA
CitedBy_id crossref_primary_10_1021_acsaem_4c01796
crossref_primary_10_1039_D4TA03682D
crossref_primary_10_1021_acsapm_4c00655
crossref_primary_10_3390_polym15153312
crossref_primary_10_1016_j_mtchem_2023_101773
crossref_primary_10_1016_j_polymer_2023_126382
crossref_primary_10_1039_D3SM00595J
crossref_primary_10_1021_acs_iecr_3c00969
crossref_primary_10_1021_acs_macromol_4c02072
crossref_primary_10_1016_j_polymer_2025_128098
crossref_primary_10_1016_j_eurpolymj_2024_112954
crossref_primary_10_1016_j_giant_2025_100355
Cites_doi 10.1021/ma902770r
10.1039/D2SM00635A
10.1021/acs.macromol.8b02207
10.1126/science.279.5350.548
10.1021/ja067379v
10.1021/acs.nanolett.2c00902
10.1007/s10965-021-02885-4
10.1039/D0PY00234H
10.1002/cctc.201900626
10.1016/j.carbon.2010.03.035
10.1021/acs.macromol.0c01748
10.1016/S0032-3861(01)00489-X
10.1039/C2CS35426H
10.1016/j.solidstatesciences.2010.03.008
10.1002/adfm.200600604
10.1021/acs.macromol.8b00751
10.1002/chem.201901724
10.1021/acsanm.8b02039
10.1021/acsami.2c05911
10.1021/acs.macromol.9b01754
10.1021/acs.macromol.9b00042
10.1021/acs.macromol.2c01585
10.1016/j.jtice.2023.104750
10.3390/polym15010182
10.1039/C9TA07770G
10.1021/acsnano.7b07017
10.1002/adma.202005888
10.1021/ja060242k
10.3390/polym12051193
10.1002/adma.201906653
10.1016/S0032-3861(02)00214-8
10.1039/D0CS00500B
10.1039/B713310C
10.1021/acs.macromol.9b00069
10.1039/D2NR01655A
10.1021/ma2010734
10.1021/acsnano.9b00940
10.1039/c2jm33614f
10.1021/acscentsci.2c01405
10.1002/9783527804276
10.1002/admi.202100141
10.3390/ma6115077
10.1002/pi.6264
10.1002/marc.201800279
10.1021/acsaem.2c00151
10.3390/polym12092151
10.1016/j.giant.2020.100043
10.3390/polym15051095
10.1002/marc.202100302
10.3390/ijms24032501
10.1002/pol.20210430
10.1103/PhysRevLett.125.117801
10.1021/acs.macromol.7b01085
10.1002/chem.201702360
10.1039/b908183f
10.1021/acs.macromol.2c02592
10.3390/molecules27196238
10.1002/macp.201300332
10.1016/j.polymer.2022.125541
10.1021/acsami.1c01682
10.1016/j.eurpolymj.2023.111980
10.1021/acs.macromol.8b02356
10.1016/j.nantod.2020.100936
10.1016/j.compscitech.2019.107951
10.1039/C8SC04250K
10.1002/adma.200401110
10.1039/D0CS00021C
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202300538
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 36932999
10_1002_chem_202300538
CHEM202300538
Genre article
Journal Article
GrantInformation_xml – fundername: the Ministry of Science and Technology, Taiwan
  funderid: NSTC 111-2222-E-110-004 and 109-2221-E-110-067-MY3
– fundername: the Ministry of Science and Technology, Taiwan
  grantid: NSTC 111-2222-E-110-004 and 109-2221-E-110-067-MY3
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3738-85dca72112fc46c86a7de2e738864bc4feebfa9c52b17adf15e92ee34bb381d53
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 22:33:28 EDT 2025
Fri Jul 25 12:08:52 EDT 2025
Thu Apr 03 07:08:38 EDT 2025
Tue Jul 01 00:43:48 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Wed Jan 22 16:22:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords supramolecular interaction
block copolymers
mesoporous materials supercapacitors
self-assembled structures
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-85dca72112fc46c86a7de2e738864bc4feebfa9c52b17adf15e92ee34bb381d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4306-7171
PMID 36932999
PQID 2819225678
PQPubID 986340
PageCount 8
ParticipantIDs proquest_miscellaneous_2803966395
proquest_journals_2819225678
pubmed_primary_36932999
crossref_primary_10_1002_chem_202300538
crossref_citationtrail_10_1002_chem_202300538
wiley_primary_10_1002_chem_202300538_CHEM202300538
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 26, 2023
PublicationDateYYYYMMDD 2023-05-26
PublicationDate_xml – month: 05
  year: 2023
  text: May 26, 2023
  day: 26
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 52
2022; 71
2019; 11
2019; 10
2019; 13
2023; 9
2023; 189
2023; 264
2011; 13
1998; 279
2020; 12
2020; 11
2020; 125
2022; 22
2013; 6
2022; 27
2001; 42
2022; 29
2023; 24
2021; 33
2018; 1
2002; 43
2019; 25
2020; 49
2009; 19
2006; 128
2012; 22
2007; 17
2019; 7
2021; 8
2021; 5
2007; 129
2021; 42
2023; 56
2023; 15
2008; 18
2013; 42
2017; 23
2006; 18
2020; 35
2020; 188
2020; 221
2020; 32
2021; 50
2017; 50
2021; 16
2010; 43
2021; 59
2021; 54
2010; 48
2019; 40
2023
2022; 5
2013; 214
2022; 14
2018
2011; 44
2018; 51
2022; 55
2018; 12
2022; 18
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Li J. G. (e_1_2_8_35_1) 2020; 221
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 29
  start-page: 69
  year: 2022
  publication-title: J. Polym. Res.
– volume: 14
  start-page: 27466
  year: 2022
  end-page: 27475
  publication-title: ACS Appl. Mater. Interfaces
– volume: 221
  year: 2020
  publication-title: Macromol. Chem. Phys.
– volume: 23
  start-page: 13734
  year: 2017
  end-page: 13741
  publication-title: Chem. Eur. J.
– volume: 9
  start-page: 289
  year: 2023
  end-page: 299
  publication-title: ACS Cent. Sci.
– volume: 1
  start-page: 7139
  year: 2018
  end-page: 7148
  publication-title: ACS Appl. Nano Mater.
– volume: 12
  start-page: 2151
  year: 2020
  publication-title: Polymer
– volume: 13
  start-page: 784
  year: 2011
  end-page: 792
  publication-title: Solid State Sci.
– volume: 15
  start-page: 1095
  year: 2023
  publication-title: Polymer
– volume: 279
  start-page: 548
  year: 1998
  end-page: 552
  publication-title: Science
– volume: 42
  start-page: 9481
  year: 2001
  end-page: 9486
  publication-title: Polymer
– volume: 11
  start-page: 3882
  year: 2019
  end-page: 3291
  publication-title: ChemCatChem
– year: 2023
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 18
  start-page: 201
  year: 2006
  end-page: 205
  publication-title: Adv. Mater.
– year: 2018
– volume: 16
  start-page: 14507
  year: 2021
  end-page: 14517
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  year: 2021
  publication-title: Macromol. Rapid Commun.
– volume: 5
  start-page: 3706
  year: 2022
  end-page: 3714
  publication-title: ACS Appl. Energ. Mater.
– volume: 10
  start-page: 1746
  year: 2019
  end-page: 1753
  publication-title: Chem. Sci.
– volume: 7
  start-page: 23476
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 25
  start-page: 10456
  year: 2019
  end-page: 10463
  publication-title: Chem. Eur. J.
– volume: 19
  start-page: 6536
  year: 2009
  end-page: 6541
  publication-title: J. Mater. Chem.
– volume: 22
  start-page: 18583
  year: 2012
  end-page: 18595
  publication-title: J. Mater. Chem.
– volume: 51
  start-page: 9602
  year: 2018
  end-page: 9612
  publication-title: Macromolecules
– volume: 15
  start-page: 182
  year: 2023
  publication-title: Polymer
– volume: 44
  start-page: 9295
  year: 2011
  end-page: 9309
  publication-title: Macromolecules
– volume: 13
  start-page: 6638
  year: 2019
  end-page: 6646
  publication-title: ACS Nano
– volume: 59
  start-page: 1874
  year: 2021
  end-page: 1898
  publication-title: J. Polym. Sci.
– volume: 52
  start-page: 8285
  year: 2019
  end-page: 8294
  publication-title: Macromolecules
– volume: 5
  year: 2021
  publication-title: Giant
– volume: 17
  start-page: 183
  year: 2007
  end-page: 190
  publication-title: Adv. Funct. Mater.
– volume: 50
  start-page: 6333
  year: 2021
  end-page: 6348
  publication-title: Chem. Soc. Rev.
– volume: 214
  start-page: 2115
  year: 2013
  end-page: 2123
  publication-title: Macromol. Chem. Phys.
– volume: 71
  start-page: 393
  year: 2022
  end-page: 410
  publication-title: Polym. Int.
– volume: 50
  start-page: 5739
  year: 2017
  end-page: 5747
  publication-title: Macromolecules
– volume: 52
  start-page: 3165
  year: 2019
  end-page: 3175
  publication-title: Macromolecules
– volume: 51
  start-page: 6451
  year: 2018
  end-page: 6459
  publication-title: Macromolecules
– volume: 52
  start-page: 2007
  year: 2019
  end-page: 2014
  publication-title: Macromolecules
– volume: 18
  start-page: 5535
  year: 2022
  end-page: 5561
  publication-title: Soft Matter
– volume: 12
  start-page: 485
  year: 2018
  end-page: 493
  publication-title: ACS Nano
– volume: 125
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 52
  start-page: 2833
  year: 2019
  end-page: 2842
  publication-title: Macromolecules
– volume: 11
  start-page: 2934
  year: 2020
  end-page: 2954
  publication-title: Polym. Chem.
– volume: 55
  start-page: 8918
  year: 2022
  end-page: 8930
  publication-title: Macromolecules
– volume: 128
  start-page: 5316
  year: 2006
  end-page: 5317
  publication-title: J. Am. Chem.
– volume: 27
  start-page: 6238
  year: 2022
  publication-title: Molecules
– volume: 49
  start-page: 4681
  year: 2020
  end-page: 4736
  publication-title: Chem. Soc. Rev.
– volume: 8
  year: 2021
  publication-title: Adv. Mater. Interfaces
– volume: 264
  year: 2023
  publication-title: Polymer
– volume: 22
  start-page: 3177
  year: 2022
  end-page: 3179
  publication-title: Nano Lett.
– volume: 56
  start-page: 1562
  year: 2023
  end-page: 1571
  publication-title: Macromolecules
– volume: 6
  start-page: 5077
  year: 2013
  end-page: 5093
  publication-title: Materials
– volume: 188
  year: 2020
  publication-title: Compos. Sci. Technol.
– volume: 42
  start-page: 4054
  year: 2013
  end-page: 4070
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 11298
  year: 2022
  end-page: 11304
  publication-title: Nanoscale
– volume: 40
  year: 2019
  publication-title: Macromol. Rapid Commun.
– volume: 43
  start-page: 2960
  year: 2010
  end-page: 2969
  publication-title: Macromolecules
– volume: 129
  start-page: 1690
  year: 2007
  end-page: 1697
  publication-title: J. Am. Chem.
– volume: 18
  start-page: 91
  year: 2008
  end-page: 97
  publication-title: J. Mater. Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1193
  year: 2020
  publication-title: Polymer
– volume: 24
  start-page: 2501
  year: 2023
  publication-title: Int. J. Mol. Sci.
– volume: 54
  start-page: 1030
  year: 2021
  end-page: 1042
  publication-title: Macromolecules
– volume: 48
  start-page: 2660
  year: 2010
  end-page: 2664
  publication-title: Carbon
– volume: 35
  year: 2020
  publication-title: Nano Today
– volume: 43
  start-page: 3943
  year: 2002
  end-page: 3949
  publication-title: Polymer
– volume: 189
  year: 2023
  publication-title: Eur. Polym. J.
– ident: e_1_2_8_34_1
  doi: 10.1021/ma902770r
– ident: e_1_2_8_57_1
  doi: 10.1039/D2SM00635A
– ident: e_1_2_8_53_1
  doi: 10.1021/acs.macromol.8b02207
– ident: e_1_2_8_23_1
  doi: 10.1126/science.279.5350.548
– ident: e_1_2_8_33_1
  doi: 10.1021/ja067379v
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.nanolett.2c00902
– ident: e_1_2_8_58_1
  doi: 10.1007/s10965-021-02885-4
– ident: e_1_2_8_8_1
  doi: 10.1039/D0PY00234H
– ident: e_1_2_8_47_1
  doi: 10.1002/cctc.201900626
– ident: e_1_2_8_32_1
  doi: 10.1016/j.carbon.2010.03.035
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.macromol.0c01748
– ident: e_1_2_8_27_1
  doi: 10.1016/S0032-3861(01)00489-X
– ident: e_1_2_8_25_1
  doi: 10.1039/C2CS35426H
– ident: e_1_2_8_39_1
  doi: 10.1016/j.solidstatesciences.2010.03.008
– ident: e_1_2_8_46_1
  doi: 10.1002/adfm.200600604
– ident: e_1_2_8_59_1
  doi: 10.1021/acs.macromol.8b00751
– ident: e_1_2_8_44_1
  doi: 10.1002/chem.201901724
– ident: e_1_2_8_49_1
  doi: 10.1021/acsanm.8b02039
– ident: e_1_2_8_7_1
  doi: 10.1021/acsami.2c05911
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.macromol.9b01754
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.macromol.9b00042
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.macromol.2c01585
– ident: e_1_2_8_68_1
  doi: 10.1016/j.jtice.2023.104750
– ident: e_1_2_8_62_1
  doi: 10.3390/polym15010182
– ident: e_1_2_8_2_1
  doi: 10.1039/C9TA07770G
– ident: e_1_2_8_6_1
  doi: 10.1021/acsnano.7b07017
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.202005888
– ident: e_1_2_8_28_1
  doi: 10.1021/ja060242k
– ident: e_1_2_8_36_1
  doi: 10.3390/polym12051193
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.201906653
– ident: e_1_2_8_60_1
  doi: 10.1016/S0032-3861(02)00214-8
– ident: e_1_2_8_5_1
  doi: 10.1039/D0CS00500B
– ident: e_1_2_8_38_1
  doi: 10.1039/B713310C
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.macromol.9b00069
– ident: e_1_2_8_50_1
  doi: 10.1039/D2NR01655A
– ident: e_1_2_8_40_1
  doi: 10.1021/ma2010734
– ident: e_1_2_8_15_1
  doi: 10.1021/acsnano.9b00940
– ident: e_1_2_8_43_1
  doi: 10.1039/c2jm33614f
– ident: e_1_2_8_4_1
  doi: 10.1021/acscentsci.2c01405
– ident: e_1_2_8_29_1
  doi: 10.1002/9783527804276
– ident: e_1_2_8_48_1
  doi: 10.1002/admi.202100141
– ident: e_1_2_8_31_1
  doi: 10.3390/ma6115077
– ident: e_1_2_8_12_1
  doi: 10.1002/pi.6264
– ident: e_1_2_8_14_1
  doi: 10.1002/marc.201800279
– ident: e_1_2_8_64_1
  doi: 10.1021/acsaem.2c00151
– ident: e_1_2_8_54_1
  doi: 10.3390/polym12092151
– ident: e_1_2_8_19_1
  doi: 10.1016/j.giant.2020.100043
– ident: e_1_2_8_67_1
  doi: 10.3390/polym15051095
– ident: e_1_2_8_55_1
  doi: 10.1002/marc.202100302
– ident: e_1_2_8_61_1
  doi: 10.3390/ijms24032501
– ident: e_1_2_8_3_1
  doi: 10.1002/pol.20210430
– ident: e_1_2_8_18_1
  doi: 10.1103/PhysRevLett.125.117801
– ident: e_1_2_8_52_1
  doi: 10.1021/acs.macromol.7b01085
– ident: e_1_2_8_42_1
  doi: 10.1002/chem.201702360
– ident: e_1_2_8_30_1
  doi: 10.1039/b908183f
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.macromol.2c02592
– volume: 221
  year: 2020
  ident: e_1_2_8_35_1
  publication-title: Macromol. Chem. Phys.
– ident: e_1_2_8_65_1
  doi: 10.3390/molecules27196238
– ident: e_1_2_8_41_1
  doi: 10.1002/macp.201300332
– ident: e_1_2_8_63_1
  doi: 10.1016/j.polymer.2022.125541
– ident: e_1_2_8_13_1
  doi: 10.1021/acsami.1c01682
– ident: e_1_2_8_66_1
  doi: 10.1016/j.eurpolymj.2023.111980
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.macromol.8b02356
– ident: e_1_2_8_1_1
  doi: 10.1016/j.nantod.2020.100936
– ident: e_1_2_8_16_1
  doi: 10.1016/j.compscitech.2019.107951
– ident: e_1_2_8_17_1
  doi: 10.1039/C8SC04250K
– ident: e_1_2_8_45_1
  doi: 10.1002/adma.200401110
– ident: e_1_2_8_24_1
  doi: 10.1039/D0CS00021C
SSID ssj0009633
Score 2.4830847
Snippet Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐b‐4‐vinyl pyridine) (PS‐b‐P4VP), and a phenolic resin with a...
Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐ b ‐4‐vinyl pyridine) (PS‐ b ‐P4VP), and a phenolic resin with a...
Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene-b-4-vinyl pyridine) (PS-b-P4VP), and a phenolic resin with a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300538
SubjectTerms Block copolymers
Bonding strength
Chemistry
Fourier transforms
Hybrids
Hydrogen bonding
Infrared analysis
Infrared spectroscopy
mesoporous materials supercapacitors
Mixtures
Phenolic compounds
Phenolic resins
Phenols
Polyhedral oligomeric silsesquioxane
Polymerization
Polystyrene resins
Pyridines
self-assembled structures
Self-assembly
Styrene
supramolecular interaction
Thermal stability
Transmission electron microscopy
Title Organic‐Inorganic Phenolic/POSS Hybrids Provide Highly Ordered Mesoporous Structures Templated by High Thermal Stability of PS‐b‐P4VP Diblock Copolymer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202300538
https://www.ncbi.nlm.nih.gov/pubmed/36932999
https://www.proquest.com/docview/2819225678
https://www.proquest.com/docview/2803966395
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hXuDCT_kLlMpISJzc3TqOkxyrhWpBKo3YFvUW2Y6tom6zVdM9hBOP0Bfg5XgSZuJNyoIQEhwiJbKt-Gdsf2PPfAPwSue5l6goc1slmssk09yMjeJKa1el-djYig70Dz6o6bF8f5Kc_OTFH_ghhgM3mhndek0TXJtmdEMaim0iT3JBfOsxefuSwRahoo83_FEoXSGWvEw5cbD2rI1jMVovvr4r_QY115Frt_Xs3wPdVzpYnJztLK_Mjv3yC5_j_7TqPtxd4VK2FwTpAdxy9SbcnvTh4B7Ct-C1ab9_vX5Xh1hQlhWnriZi4VFxOJuxaUvuXw0rgncfIxuSecsOL7uAoOzANQtE-4tlw2Yda-0SVX125M4v5gh4K2bargRDycXdYo6ZAod4yxaeFTP8scGnkJ8K9uazwU34jE0oxEN77i4fwfH-26PJlK9iO3BLXEo8SyqrSfsU3kplM6XTygmHSZmSxkrvnPE6t4kwu6mu_G7icuFcLI1BjFEl8WPYqBe1ewpsrL0kKOJjZekW0iAI9Mobk2aoqwkRAe_HtrQr4nOKvzEvA2WzKKnTy6HTI3g95L8IlB9_zLnVi0q5mvpNSTeTuEgiCIjg5ZCMg0U3Mbp22MslhQRDPTPOkwieBBEbfhUrhNQI2yMQnaD8pQ4lUWcMX8_-pdBzuEPvZBMh1BZsoAi4Fwi1rsx2N51-AJWAJE0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZQL_5RAW4yExCndreM4ybHaUm2h20bsFnGLbMcWqNts1e0ewolH4AX6cjwJM_Em1YIQEhxySGIrjj22v7E93wfwWmWZE-goh6aMVSjiVIW6r2UolbJlkvW1KWlBf3Qsh6fi3ae4PU1IsTCeH6JbcKOe0YzX1MFpQbp3wxqKP0Wh5JwI16P0NtwhWW-iz9__cMMghfbl1eRFEhILa8vb2Oe91fyr89JvYHMVuzaTz8F90G2x_ZmTs53Fld4xX39hdPyv_3oA95bQlO15W3oIt2z1CNYHrSLcY7j2gZvmx7fvh5WXgzIs_2wr4hbu5SfjMRvWFAE2Z7kP8GN0jGRas5PLRhOUjex8hoB_tpizcUNcu0Bvn03s-cUUMW_JdN3kYGi8OGFMMZGnEa_ZzLF8jB_WeOXiY872v2ich8_YgFQe6nN7-QROD95OBsNwKe8QGqJTCtO4NIocUO6MkCaVKiktt_gqlUIb4azVTmUm5no3UaXbjW3GrY2E1ggzyjh6CmvVrLLPgPWVE4RGXCQNbURqxIFOOq2TFN01zgMI28YtzJL7nCQ4poVnbeYFVXrRVXoAb7r0F571448pN1tbKZa9f17Q5iSOk4gDAnjVvcbGos0YVVms5YJUwdDVjLI4gA1vY92nIomoGpF7ALyxlL-UoSD2jO7u-b9kegnrw8noqDg6PH7_Au7SczoiweUmrKE52C1EXld6u-lbPwHCvyhp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkaAX_qGBAkZC4pRu6jje5Ih2WW2BthHbot4i27EF6ja76nYP4cQj8AK8HE_CTLxJWRBCgkMOSWwlsWfsb2LP9wG8UFnmBAbKoSkTFYokVaGOtAylUrbsZ5E2Jf3Q3z-Q42Px5iQ5-SmL3_NDdD_cyDOa8ZocfF663iVpKH4TZZJz4luP06twTcgoI_GG4ftLAik0Ly8mL_ohkbC2tI0R763XX5-WfsOa69C1mXtGt0C1b-23nJzuLC_0jvn8C6Hj_3zWbbi5AqbslbekO3DFVnfhxqDVg7sH33zapvn-5ete5cWgDMs_2oqYhXv54WTCxjXlfy1Y7tP7GG0imdbs8LxRBGX7djFDuD9bLtikoa1dYqzPjuzZfIqIt2S6bmowNF2cLqZYyJOI12zmWD7BB2s8cvEhZ8NPGmfhUzYgjYf6zJ7fh-PR66PBOFyJO4SGyJTCNCmNovCTOyOkSaXql5ZbvJVKoY1w1mqnMpNwvdtXpdtNbMatjYXWCDLKJH4AG9WsslvAIuUEYREXS0PLkBpRoJNO636KwRrnAYRt3xZmxXxOAhzTwnM284IavegaPYCXXfm55_z4Y8nt1lSKle8vClqaxFESUUAAz7vb2Fm0FKMqi61ckCYYBppxlgTw0JtY96hYIqZG3B4AbwzlL-9QEHdGd_boXyo9g-v5cFS82zt4-xg26TLtj-ByGzbQGuwThF0X-mnjWT8ALNwnGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic-Inorganic+Phenolic%2FPOSS+Hybrids+Provide+Highly+Ordered+Mesoporous+Structures+Templated+by+High+Thermal+Stability+of+PS-b-P4VP+Diblock+Copolymer&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chou%2C+Ting-Chih&rft.au=Chen%2C+Wei-Cheng&rft.au=Mohamed%2C+Mohamed+Gamal&rft.au=Huang%2C+Yen-Chi&rft.date=2023-05-26&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=29&rft.issue=30&rft.spage=e202300538&rft_id=info:doi/10.1002%2Fchem.202300538&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon