Organic‐Inorganic Phenolic/POSS Hybrids Provide Highly Ordered Mesoporous Structures Templated by High Thermal Stability of PS‐b‐P4VP Diblock Copolymer
Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐b‐4‐vinyl pyridine) (PS‐b‐P4VP), and a phenolic resin with a double‐decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ‐30 with 30 wt.% DDSQ). Strong intermolecular hydrogen b...
Saved in:
Published in | Chemistry : a European journal Vol. 29; no. 30; pp. e202300538 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
26.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐b‐4‐vinyl pyridine) (PS‐b‐P4VP), and a phenolic resin with a double‐decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ‐30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ‐30/PS‐b‐P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen‐bonded pyridine groups. After thermal polymerization at 180 °C, the self‐assembled structures of these PDDSQ/PS‐b‐P4VP blends were revealed by data from small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM), where the d‐spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS‐b‐P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS‐b‐P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application.
Mesoporous PDDSQ hybrids were prepared by using PS‐b‐P4VP as a template by mediated the hydrogen bonding interaction through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block. The highly ordered structures reveal the high surface area and high pore volume that could be used in supercapacitor application. |
---|---|
AbstractList | Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene-b-4-vinyl pyridine) (PS-b-P4VP), and a phenolic resin with a double-decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ-30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ-30/PS-b-P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen-bonded pyridine groups. After thermal polymerization at 180 °C, the self-assembled structures of these PDDSQ/PS-b-P4VP blends were revealed by data from small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), where the d-spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS-b-P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS-b-P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application. Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐b‐4‐vinyl pyridine) (PS‐b‐P4VP), and a phenolic resin with a double‐decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ‐30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ‐30/PS‐b‐P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen‐bonded pyridine groups. After thermal polymerization at 180 °C, the self‐assembled structures of these PDDSQ/PS‐b‐P4VP blends were revealed by data from small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM), where the d‐spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS‐b‐P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS‐b‐P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application. Mesoporous PDDSQ hybrids were prepared by using PS‐b‐P4VP as a template by mediated the hydrogen bonding interaction through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block. The highly ordered structures reveal the high surface area and high pore volume that could be used in supercapacitor application. Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene-b-4-vinyl pyridine) (PS-b-P4VP), and a phenolic resin with a double-decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ-30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ-30/PS-b-P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen-bonded pyridine groups. After thermal polymerization at 180 °C, the self-assembled structures of these PDDSQ/PS-b-P4VP blends were revealed by data from small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), where the d-spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS-b-P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS-b-P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application.Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene-b-4-vinyl pyridine) (PS-b-P4VP), and a phenolic resin with a double-decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ-30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ-30/PS-b-P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen-bonded pyridine groups. After thermal polymerization at 180 °C, the self-assembled structures of these PDDSQ/PS-b-P4VP blends were revealed by data from small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), where the d-spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS-b-P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS-b-P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application. Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐ b ‐4‐vinyl pyridine) (PS‐ b ‐P4VP), and a phenolic resin with a double‐decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ‐30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ‐30/PS‐ b ‐P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen‐bonded pyridine groups. After thermal polymerization at 180 °C, the self‐assembled structures of these PDDSQ/PS‐ b ‐P4VP blends were revealed by data from small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM), where the d ‐spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS‐ b ‐P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS‐ b ‐P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application. |
Author | Chou, Ting‐Chih Chen, Wei‐Cheng Kuo, Shiao‐Wei Mohamed, Mohamed Gamal Huang, Yen‐Chi |
Author_xml | – sequence: 1 givenname: Ting‐Chih surname: Chou fullname: Chou, Ting‐Chih organization: National Sun Yat-Sen University – sequence: 2 givenname: Wei‐Cheng surname: Chen fullname: Chen, Wei‐Cheng organization: National Sun Yat-Sen University – sequence: 3 givenname: Mohamed Gamal surname: Mohamed fullname: Mohamed, Mohamed Gamal organization: Assiut University – sequence: 4 givenname: Yen‐Chi surname: Huang fullname: Huang, Yen‐Chi organization: National Sun Yat-Sen University – sequence: 5 givenname: Shiao‐Wei orcidid: 0000-0002-4306-7171 surname: Kuo fullname: Kuo, Shiao‐Wei email: kuosw@faculty.nsysu.edu.tw organization: Kaohsiung Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36932999$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URKeFLUtkiQ2bTH3JzUs0LZ1KrSbSDGwj2znpuDjxYCeg7PoIvAAvx5PgYUqRKiEWli2d7zvH9n-CjnrXA0KvKZlTQtiZ3kI3Z4RxQjJePkMzmjGa8CLPjtCMiLRI8oyLY3QSwh0hROScv0DHPBecCSFm6MfK38re6J_33696dzjjagu9s0afVav1Gi8n5U0TcOXdV9MAXprbrZ3wyjfgocE3ENzOeTcGvB78qIfRQ8Ab6HZWDrGupt8G3mzBd9JGSCpjzTBh1-JqHQeruKr0U4XPjbJOf8aL2NBOHfiX6HkrbYBXD_sp-vjhYrNYJtery6vF--tE84KXSZk1WhaMUtbqNNdlLosGGMRSmadKpy2AaqXQGVO0kE1LMxAMgKdK8ZI2GT9F7w59d959GSEMdWeCBmtlD_FhNSsJF3nOxR59-wS9c6Pv4-0iRQVjWV6UkXrzQI2qg6beedNJP9V_Pj4C8wOgvQvBQ_uIUFLvk633ydaPyUYhfSJoM8jBuH7w0th_a-KgfTMWpv8MqRfLi5u_7i_QQbzA |
CitedBy_id | crossref_primary_10_1021_acsaem_4c01796 crossref_primary_10_1039_D4TA03682D crossref_primary_10_1021_acsapm_4c00655 crossref_primary_10_3390_polym15153312 crossref_primary_10_1016_j_mtchem_2023_101773 crossref_primary_10_1016_j_polymer_2023_126382 crossref_primary_10_1039_D3SM00595J crossref_primary_10_1021_acs_iecr_3c00969 crossref_primary_10_1021_acs_macromol_4c02072 crossref_primary_10_1016_j_polymer_2025_128098 crossref_primary_10_1016_j_eurpolymj_2024_112954 crossref_primary_10_1016_j_giant_2025_100355 |
Cites_doi | 10.1021/ma902770r 10.1039/D2SM00635A 10.1021/acs.macromol.8b02207 10.1126/science.279.5350.548 10.1021/ja067379v 10.1021/acs.nanolett.2c00902 10.1007/s10965-021-02885-4 10.1039/D0PY00234H 10.1002/cctc.201900626 10.1016/j.carbon.2010.03.035 10.1021/acs.macromol.0c01748 10.1016/S0032-3861(01)00489-X 10.1039/C2CS35426H 10.1016/j.solidstatesciences.2010.03.008 10.1002/adfm.200600604 10.1021/acs.macromol.8b00751 10.1002/chem.201901724 10.1021/acsanm.8b02039 10.1021/acsami.2c05911 10.1021/acs.macromol.9b01754 10.1021/acs.macromol.9b00042 10.1021/acs.macromol.2c01585 10.1016/j.jtice.2023.104750 10.3390/polym15010182 10.1039/C9TA07770G 10.1021/acsnano.7b07017 10.1002/adma.202005888 10.1021/ja060242k 10.3390/polym12051193 10.1002/adma.201906653 10.1016/S0032-3861(02)00214-8 10.1039/D0CS00500B 10.1039/B713310C 10.1021/acs.macromol.9b00069 10.1039/D2NR01655A 10.1021/ma2010734 10.1021/acsnano.9b00940 10.1039/c2jm33614f 10.1021/acscentsci.2c01405 10.1002/9783527804276 10.1002/admi.202100141 10.3390/ma6115077 10.1002/pi.6264 10.1002/marc.201800279 10.1021/acsaem.2c00151 10.3390/polym12092151 10.1016/j.giant.2020.100043 10.3390/polym15051095 10.1002/marc.202100302 10.3390/ijms24032501 10.1002/pol.20210430 10.1103/PhysRevLett.125.117801 10.1021/acs.macromol.7b01085 10.1002/chem.201702360 10.1039/b908183f 10.1021/acs.macromol.2c02592 10.3390/molecules27196238 10.1002/macp.201300332 10.1016/j.polymer.2022.125541 10.1021/acsami.1c01682 10.1016/j.eurpolymj.2023.111980 10.1021/acs.macromol.8b02356 10.1016/j.nantod.2020.100936 10.1016/j.compscitech.2019.107951 10.1039/C8SC04250K 10.1002/adma.200401110 10.1039/D0CS00021C |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202300538 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 36932999 10_1002_chem_202300538 CHEM202300538 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: the Ministry of Science and Technology, Taiwan funderid: NSTC 111-2222-E-110-004 and 109-2221-E-110-067-MY3 – fundername: the Ministry of Science and Technology, Taiwan grantid: NSTC 111-2222-E-110-004 and 109-2221-E-110-067-MY3 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3738-85dca72112fc46c86a7de2e738864bc4feebfa9c52b17adf15e92ee34bb381d53 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Jul 10 22:33:28 EDT 2025 Fri Jul 25 12:08:52 EDT 2025 Thu Apr 03 07:08:38 EDT 2025 Tue Jul 01 00:43:48 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Wed Jan 22 16:22:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | supramolecular interaction block copolymers mesoporous materials supercapacitors self-assembled structures |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-85dca72112fc46c86a7de2e738864bc4feebfa9c52b17adf15e92ee34bb381d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4306-7171 |
PMID | 36932999 |
PQID | 2819225678 |
PQPubID | 986340 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2803966395 proquest_journals_2819225678 pubmed_primary_36932999 crossref_primary_10_1002_chem_202300538 crossref_citationtrail_10_1002_chem_202300538 wiley_primary_10_1002_chem_202300538_CHEM202300538 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 26, 2023 |
PublicationDateYYYYMMDD | 2023-05-26 |
PublicationDate_xml | – month: 05 year: 2023 text: May 26, 2023 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 52 2022; 71 2019; 11 2019; 10 2019; 13 2023; 9 2023; 189 2023; 264 2011; 13 1998; 279 2020; 12 2020; 11 2020; 125 2022; 22 2013; 6 2022; 27 2001; 42 2022; 29 2023; 24 2021; 33 2018; 1 2002; 43 2019; 25 2020; 49 2009; 19 2006; 128 2012; 22 2007; 17 2019; 7 2021; 8 2021; 5 2007; 129 2021; 42 2023; 56 2023; 15 2008; 18 2013; 42 2017; 23 2006; 18 2020; 35 2020; 188 2020; 221 2020; 32 2021; 50 2017; 50 2021; 16 2010; 43 2021; 59 2021; 54 2010; 48 2019; 40 2023 2022; 5 2013; 214 2022; 14 2018 2011; 44 2018; 51 2022; 55 2018; 12 2022; 18 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Li J. G. (e_1_2_8_35_1) 2020; 221 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 29 start-page: 69 year: 2022 publication-title: J. Polym. Res. – volume: 14 start-page: 27466 year: 2022 end-page: 27475 publication-title: ACS Appl. Mater. Interfaces – volume: 221 year: 2020 publication-title: Macromol. Chem. Phys. – volume: 23 start-page: 13734 year: 2017 end-page: 13741 publication-title: Chem. Eur. J. – volume: 9 start-page: 289 year: 2023 end-page: 299 publication-title: ACS Cent. Sci. – volume: 1 start-page: 7139 year: 2018 end-page: 7148 publication-title: ACS Appl. Nano Mater. – volume: 12 start-page: 2151 year: 2020 publication-title: Polymer – volume: 13 start-page: 784 year: 2011 end-page: 792 publication-title: Solid State Sci. – volume: 15 start-page: 1095 year: 2023 publication-title: Polymer – volume: 279 start-page: 548 year: 1998 end-page: 552 publication-title: Science – volume: 42 start-page: 9481 year: 2001 end-page: 9486 publication-title: Polymer – volume: 11 start-page: 3882 year: 2019 end-page: 3291 publication-title: ChemCatChem – year: 2023 publication-title: J. Taiwan Inst. Chem. Eng. – volume: 18 start-page: 201 year: 2006 end-page: 205 publication-title: Adv. Mater. – year: 2018 – volume: 16 start-page: 14507 year: 2021 end-page: 14517 publication-title: ACS Appl. Mater. Interfaces – volume: 42 year: 2021 publication-title: Macromol. Rapid Commun. – volume: 5 start-page: 3706 year: 2022 end-page: 3714 publication-title: ACS Appl. Energ. Mater. – volume: 10 start-page: 1746 year: 2019 end-page: 1753 publication-title: Chem. Sci. – volume: 7 start-page: 23476 year: 2019 publication-title: J. Mater. Chem. A – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 25 start-page: 10456 year: 2019 end-page: 10463 publication-title: Chem. Eur. J. – volume: 19 start-page: 6536 year: 2009 end-page: 6541 publication-title: J. Mater. Chem. – volume: 22 start-page: 18583 year: 2012 end-page: 18595 publication-title: J. Mater. Chem. – volume: 51 start-page: 9602 year: 2018 end-page: 9612 publication-title: Macromolecules – volume: 15 start-page: 182 year: 2023 publication-title: Polymer – volume: 44 start-page: 9295 year: 2011 end-page: 9309 publication-title: Macromolecules – volume: 13 start-page: 6638 year: 2019 end-page: 6646 publication-title: ACS Nano – volume: 59 start-page: 1874 year: 2021 end-page: 1898 publication-title: J. Polym. Sci. – volume: 52 start-page: 8285 year: 2019 end-page: 8294 publication-title: Macromolecules – volume: 5 year: 2021 publication-title: Giant – volume: 17 start-page: 183 year: 2007 end-page: 190 publication-title: Adv. Funct. Mater. – volume: 50 start-page: 6333 year: 2021 end-page: 6348 publication-title: Chem. Soc. Rev. – volume: 214 start-page: 2115 year: 2013 end-page: 2123 publication-title: Macromol. Chem. Phys. – volume: 71 start-page: 393 year: 2022 end-page: 410 publication-title: Polym. Int. – volume: 50 start-page: 5739 year: 2017 end-page: 5747 publication-title: Macromolecules – volume: 52 start-page: 3165 year: 2019 end-page: 3175 publication-title: Macromolecules – volume: 51 start-page: 6451 year: 2018 end-page: 6459 publication-title: Macromolecules – volume: 52 start-page: 2007 year: 2019 end-page: 2014 publication-title: Macromolecules – volume: 18 start-page: 5535 year: 2022 end-page: 5561 publication-title: Soft Matter – volume: 12 start-page: 485 year: 2018 end-page: 493 publication-title: ACS Nano – volume: 125 year: 2020 publication-title: Phys. Rev. Lett. – volume: 52 start-page: 2833 year: 2019 end-page: 2842 publication-title: Macromolecules – volume: 11 start-page: 2934 year: 2020 end-page: 2954 publication-title: Polym. Chem. – volume: 55 start-page: 8918 year: 2022 end-page: 8930 publication-title: Macromolecules – volume: 128 start-page: 5316 year: 2006 end-page: 5317 publication-title: J. Am. Chem. – volume: 27 start-page: 6238 year: 2022 publication-title: Molecules – volume: 49 start-page: 4681 year: 2020 end-page: 4736 publication-title: Chem. Soc. Rev. – volume: 8 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 264 year: 2023 publication-title: Polymer – volume: 22 start-page: 3177 year: 2022 end-page: 3179 publication-title: Nano Lett. – volume: 56 start-page: 1562 year: 2023 end-page: 1571 publication-title: Macromolecules – volume: 6 start-page: 5077 year: 2013 end-page: 5093 publication-title: Materials – volume: 188 year: 2020 publication-title: Compos. Sci. Technol. – volume: 42 start-page: 4054 year: 2013 end-page: 4070 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 11298 year: 2022 end-page: 11304 publication-title: Nanoscale – volume: 40 year: 2019 publication-title: Macromol. Rapid Commun. – volume: 43 start-page: 2960 year: 2010 end-page: 2969 publication-title: Macromolecules – volume: 129 start-page: 1690 year: 2007 end-page: 1697 publication-title: J. Am. Chem. – volume: 18 start-page: 91 year: 2008 end-page: 97 publication-title: J. Mater. Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 12 start-page: 1193 year: 2020 publication-title: Polymer – volume: 24 start-page: 2501 year: 2023 publication-title: Int. J. Mol. Sci. – volume: 54 start-page: 1030 year: 2021 end-page: 1042 publication-title: Macromolecules – volume: 48 start-page: 2660 year: 2010 end-page: 2664 publication-title: Carbon – volume: 35 year: 2020 publication-title: Nano Today – volume: 43 start-page: 3943 year: 2002 end-page: 3949 publication-title: Polymer – volume: 189 year: 2023 publication-title: Eur. Polym. J. – ident: e_1_2_8_34_1 doi: 10.1021/ma902770r – ident: e_1_2_8_57_1 doi: 10.1039/D2SM00635A – ident: e_1_2_8_53_1 doi: 10.1021/acs.macromol.8b02207 – ident: e_1_2_8_23_1 doi: 10.1126/science.279.5350.548 – ident: e_1_2_8_33_1 doi: 10.1021/ja067379v – ident: e_1_2_8_26_1 doi: 10.1021/acs.nanolett.2c00902 – ident: e_1_2_8_58_1 doi: 10.1007/s10965-021-02885-4 – ident: e_1_2_8_8_1 doi: 10.1039/D0PY00234H – ident: e_1_2_8_47_1 doi: 10.1002/cctc.201900626 – ident: e_1_2_8_32_1 doi: 10.1016/j.carbon.2010.03.035 – ident: e_1_2_8_37_1 doi: 10.1021/acs.macromol.0c01748 – ident: e_1_2_8_27_1 doi: 10.1016/S0032-3861(01)00489-X – ident: e_1_2_8_25_1 doi: 10.1039/C2CS35426H – ident: e_1_2_8_39_1 doi: 10.1016/j.solidstatesciences.2010.03.008 – ident: e_1_2_8_46_1 doi: 10.1002/adfm.200600604 – ident: e_1_2_8_59_1 doi: 10.1021/acs.macromol.8b00751 – ident: e_1_2_8_44_1 doi: 10.1002/chem.201901724 – ident: e_1_2_8_49_1 doi: 10.1021/acsanm.8b02039 – ident: e_1_2_8_7_1 doi: 10.1021/acsami.2c05911 – ident: e_1_2_8_20_1 doi: 10.1021/acs.macromol.9b01754 – ident: e_1_2_8_22_1 doi: 10.1021/acs.macromol.9b00042 – ident: e_1_2_8_56_1 doi: 10.1021/acs.macromol.2c01585 – ident: e_1_2_8_68_1 doi: 10.1016/j.jtice.2023.104750 – ident: e_1_2_8_62_1 doi: 10.3390/polym15010182 – ident: e_1_2_8_2_1 doi: 10.1039/C9TA07770G – ident: e_1_2_8_6_1 doi: 10.1021/acsnano.7b07017 – ident: e_1_2_8_9_1 doi: 10.1002/adma.202005888 – ident: e_1_2_8_28_1 doi: 10.1021/ja060242k – ident: e_1_2_8_36_1 doi: 10.3390/polym12051193 – ident: e_1_2_8_51_1 doi: 10.1002/adma.201906653 – ident: e_1_2_8_60_1 doi: 10.1016/S0032-3861(02)00214-8 – ident: e_1_2_8_5_1 doi: 10.1039/D0CS00500B – ident: e_1_2_8_38_1 doi: 10.1039/B713310C – ident: e_1_2_8_21_1 doi: 10.1021/acs.macromol.9b00069 – ident: e_1_2_8_50_1 doi: 10.1039/D2NR01655A – ident: e_1_2_8_40_1 doi: 10.1021/ma2010734 – ident: e_1_2_8_15_1 doi: 10.1021/acsnano.9b00940 – ident: e_1_2_8_43_1 doi: 10.1039/c2jm33614f – ident: e_1_2_8_4_1 doi: 10.1021/acscentsci.2c01405 – ident: e_1_2_8_29_1 doi: 10.1002/9783527804276 – ident: e_1_2_8_48_1 doi: 10.1002/admi.202100141 – ident: e_1_2_8_31_1 doi: 10.3390/ma6115077 – ident: e_1_2_8_12_1 doi: 10.1002/pi.6264 – ident: e_1_2_8_14_1 doi: 10.1002/marc.201800279 – ident: e_1_2_8_64_1 doi: 10.1021/acsaem.2c00151 – ident: e_1_2_8_54_1 doi: 10.3390/polym12092151 – ident: e_1_2_8_19_1 doi: 10.1016/j.giant.2020.100043 – ident: e_1_2_8_67_1 doi: 10.3390/polym15051095 – ident: e_1_2_8_55_1 doi: 10.1002/marc.202100302 – ident: e_1_2_8_61_1 doi: 10.3390/ijms24032501 – ident: e_1_2_8_3_1 doi: 10.1002/pol.20210430 – ident: e_1_2_8_18_1 doi: 10.1103/PhysRevLett.125.117801 – ident: e_1_2_8_52_1 doi: 10.1021/acs.macromol.7b01085 – ident: e_1_2_8_42_1 doi: 10.1002/chem.201702360 – ident: e_1_2_8_30_1 doi: 10.1039/b908183f – ident: e_1_2_8_10_1 doi: 10.1021/acs.macromol.2c02592 – volume: 221 year: 2020 ident: e_1_2_8_35_1 publication-title: Macromol. Chem. Phys. – ident: e_1_2_8_65_1 doi: 10.3390/molecules27196238 – ident: e_1_2_8_41_1 doi: 10.1002/macp.201300332 – ident: e_1_2_8_63_1 doi: 10.1016/j.polymer.2022.125541 – ident: e_1_2_8_13_1 doi: 10.1021/acsami.1c01682 – ident: e_1_2_8_66_1 doi: 10.1016/j.eurpolymj.2023.111980 – ident: e_1_2_8_11_1 doi: 10.1021/acs.macromol.8b02356 – ident: e_1_2_8_1_1 doi: 10.1016/j.nantod.2020.100936 – ident: e_1_2_8_16_1 doi: 10.1016/j.compscitech.2019.107951 – ident: e_1_2_8_17_1 doi: 10.1039/C8SC04250K – ident: e_1_2_8_45_1 doi: 10.1002/adma.200401110 – ident: e_1_2_8_24_1 doi: 10.1039/D0CS00021C |
SSID | ssj0009633 |
Score | 2.4830847 |
Snippet | Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐b‐4‐vinyl pyridine) (PS‐b‐P4VP), and a phenolic resin with a... Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene‐ b ‐4‐vinyl pyridine) (PS‐ b ‐P4VP), and a phenolic resin with a... Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene-b-4-vinyl pyridine) (PS-b-P4VP), and a phenolic resin with a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300538 |
SubjectTerms | Block copolymers Bonding strength Chemistry Fourier transforms Hybrids Hydrogen bonding Infrared analysis Infrared spectroscopy mesoporous materials supercapacitors Mixtures Phenolic compounds Phenolic resins Phenols Polyhedral oligomeric silsesquioxane Polymerization Polystyrene resins Pyridines self-assembled structures Self-assembly Styrene supramolecular interaction Thermal stability Transmission electron microscopy |
Title | Organic‐Inorganic Phenolic/POSS Hybrids Provide Highly Ordered Mesoporous Structures Templated by High Thermal Stability of PS‐b‐P4VP Diblock Copolymer |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202300538 https://www.ncbi.nlm.nih.gov/pubmed/36932999 https://www.proquest.com/docview/2819225678 https://www.proquest.com/docview/2803966395 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hXuDCT_kLlMpISJzc3TqOkxyrhWpBKo3YFvUW2Y6tom6zVdM9hBOP0Bfg5XgSZuJNyoIQEhwiJbKt-Gdsf2PPfAPwSue5l6goc1slmssk09yMjeJKa1el-djYig70Dz6o6bF8f5Kc_OTFH_ghhgM3mhndek0TXJtmdEMaim0iT3JBfOsxefuSwRahoo83_FEoXSGWvEw5cbD2rI1jMVovvr4r_QY115Frt_Xs3wPdVzpYnJztLK_Mjv3yC5_j_7TqPtxd4VK2FwTpAdxy9SbcnvTh4B7Ct-C1ab9_vX5Xh1hQlhWnriZi4VFxOJuxaUvuXw0rgncfIxuSecsOL7uAoOzANQtE-4tlw2Yda-0SVX125M4v5gh4K2bargRDycXdYo6ZAod4yxaeFTP8scGnkJ8K9uazwU34jE0oxEN77i4fwfH-26PJlK9iO3BLXEo8SyqrSfsU3kplM6XTygmHSZmSxkrvnPE6t4kwu6mu_G7icuFcLI1BjFEl8WPYqBe1ewpsrL0kKOJjZekW0iAI9Mobk2aoqwkRAe_HtrQr4nOKvzEvA2WzKKnTy6HTI3g95L8IlB9_zLnVi0q5mvpNSTeTuEgiCIjg5ZCMg0U3Mbp22MslhQRDPTPOkwieBBEbfhUrhNQI2yMQnaD8pQ4lUWcMX8_-pdBzuEPvZBMh1BZsoAi4Fwi1rsx2N51-AJWAJE0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZQL_5RAW4yExCndreM4ybHaUm2h20bsFnGLbMcWqNts1e0ewolH4AX6cjwJM_Em1YIQEhxySGIrjj22v7E93wfwWmWZE-goh6aMVSjiVIW6r2UolbJlkvW1KWlBf3Qsh6fi3ae4PU1IsTCeH6JbcKOe0YzX1MFpQbp3wxqKP0Wh5JwI16P0NtwhWW-iz9__cMMghfbl1eRFEhILa8vb2Oe91fyr89JvYHMVuzaTz8F90G2x_ZmTs53Fld4xX39hdPyv_3oA95bQlO15W3oIt2z1CNYHrSLcY7j2gZvmx7fvh5WXgzIs_2wr4hbu5SfjMRvWFAE2Z7kP8GN0jGRas5PLRhOUjex8hoB_tpizcUNcu0Bvn03s-cUUMW_JdN3kYGi8OGFMMZGnEa_ZzLF8jB_WeOXiY872v2ich8_YgFQe6nN7-QROD95OBsNwKe8QGqJTCtO4NIocUO6MkCaVKiktt_gqlUIb4azVTmUm5no3UaXbjW3GrY2E1ggzyjh6CmvVrLLPgPWVE4RGXCQNbURqxIFOOq2TFN01zgMI28YtzJL7nCQ4poVnbeYFVXrRVXoAb7r0F571448pN1tbKZa9f17Q5iSOk4gDAnjVvcbGos0YVVms5YJUwdDVjLI4gA1vY92nIomoGpF7ALyxlL-UoSD2jO7u-b9kegnrw8noqDg6PH7_Au7SczoiweUmrKE52C1EXld6u-lbPwHCvyhp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkaAX_qGBAkZC4pRu6jje5Ih2WW2BthHbot4i27EF6ja76nYP4cQj8AK8HE_CTLxJWRBCgkMOSWwlsWfsb2LP9wG8UFnmBAbKoSkTFYokVaGOtAylUrbsZ5E2Jf3Q3z-Q42Px5iQ5-SmL3_NDdD_cyDOa8ZocfF663iVpKH4TZZJz4luP06twTcgoI_GG4ftLAik0Ly8mL_ohkbC2tI0R763XX5-WfsOa69C1mXtGt0C1b-23nJzuLC_0jvn8C6Hj_3zWbbi5AqbslbekO3DFVnfhxqDVg7sH33zapvn-5ete5cWgDMs_2oqYhXv54WTCxjXlfy1Y7tP7GG0imdbs8LxRBGX7djFDuD9bLtikoa1dYqzPjuzZfIqIt2S6bmowNF2cLqZYyJOI12zmWD7BB2s8cvEhZ8NPGmfhUzYgjYf6zJ7fh-PR66PBOFyJO4SGyJTCNCmNovCTOyOkSaXql5ZbvJVKoY1w1mqnMpNwvdtXpdtNbMatjYXWCDLKJH4AG9WsslvAIuUEYREXS0PLkBpRoJNO636KwRrnAYRt3xZmxXxOAhzTwnM284IavegaPYCXXfm55_z4Y8nt1lSKle8vClqaxFESUUAAz7vb2Fm0FKMqi61ckCYYBppxlgTw0JtY96hYIqZG3B4AbwzlL-9QEHdGd_boXyo9g-v5cFS82zt4-xg26TLtj-ByGzbQGuwThF0X-mnjWT8ALNwnGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic-Inorganic+Phenolic%2FPOSS+Hybrids+Provide+Highly+Ordered+Mesoporous+Structures+Templated+by+High+Thermal+Stability+of+PS-b-P4VP+Diblock+Copolymer&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chou%2C+Ting-Chih&rft.au=Chen%2C+Wei-Cheng&rft.au=Mohamed%2C+Mohamed+Gamal&rft.au=Huang%2C+Yen-Chi&rft.date=2023-05-26&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=29&rft.issue=30&rft.spage=e202300538&rft_id=info:doi/10.1002%2Fchem.202300538&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |