A Rational Biphasic Tailoring Strategy Enabling High‐Performance Layered Cathodes for Sodium‐Ion Batteries
Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With th...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 19; pp. e202117728 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.05.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3–P2/O3/P3–P2/P3–P2/Z/O3′–Z/O3′ based on the Ni2+/Ni3.5+, Fe3+/Fe4+ and Mn3.8+/Mn4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g−1 with the energy density approaching 514 Wh kg−1.
A rational biphasic tailoring strategy to prepare layered composite cathodes with the desired phase ratio is proposed. Benefiting from the reversible phase transition within transition metal slabs and the decreased structure strain at the phase boundary of the intergrowth structure during Na extraction and insertion, the Com‐NaNMFT composite material demonstrates excellent electrochemical performance. |
---|---|
AbstractList | Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3–P2/O3/P3–P2/P3–P2/Z/O3′–Z/O3′ based on the Ni2+/Ni3.5+, Fe3+/Fe4+ and Mn3.8+/Mn4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g−1 with the energy density approaching 514 Wh kg−1.
A rational biphasic tailoring strategy to prepare layered composite cathodes with the desired phase ratio is proposed. Benefiting from the reversible phase transition within transition metal slabs and the decreased structure strain at the phase boundary of the intergrowth structure during Na extraction and insertion, the Com‐NaNMFT composite material demonstrates excellent electrochemical performance. Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na + kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3–P2/O3/P3–P2/P3–P2/Z/O3′–Z/O3′ based on the Ni 2+ /Ni 3.5+ , Fe 3+ /Fe 4+ and Mn 3.8+ /Mn 4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g −1 with the energy density approaching 514 Wh kg −1 . Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na-ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3-P2/O3/P3-P2/P3-P2/Z/O3'-Z/O3' based on the Ni /Ni , Fe /Fe and Mn /Mn redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g with the energy density approaching 514 Wh kg . Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3–P2/O3/P3–P2/P3–P2/Z/O3′–Z/O3′ based on the Ni2+/Ni3.5+, Fe3+/Fe4+ and Mn3.8+/Mn4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g−1 with the energy density approaching 514 Wh kg−1. Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na-ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3-P2/O3/P3-P2/P3-P2/Z/O3'-Z/O3' based on the Ni2+ /Ni3.5+ , Fe3+ /Fe4+ and Mn3.8+ /Mn4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g-1 with the energy density approaching 514 Wh kg-1 .Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na-ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3-P2/O3/P3-P2/P3-P2/Z/O3'-Z/O3' based on the Ni2+ /Ni3.5+ , Fe3+ /Fe4+ and Mn3.8+ /Mn4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g-1 with the energy density approaching 514 Wh kg-1 . |
Author | Yin, Ya‐Xia Yu, Lianzheng Hua, Weibo Liu, Mengting Han, Xiaogang Fan, Xin‐Yu Guo, Yu‐Guo Wang, Peng‐Fei Ji, Fang‐Di Guo, Yu‐Jie Cheng, Zhiwei Feng, Yi‐Hu |
Author_xml | – sequence: 1 givenname: Zhiwei surname: Cheng fullname: Cheng, Zhiwei organization: Xi'an Jiaotong University – sequence: 2 givenname: Xin‐Yu surname: Fan fullname: Fan, Xin‐Yu organization: Xi'an Jiaotong University – sequence: 3 givenname: Lianzheng surname: Yu fullname: Yu, Lianzheng organization: Xi'an Jiaotong University – sequence: 4 givenname: Weibo surname: Hua fullname: Hua, Weibo email: weibo.hua@xjtu.edu.cn organization: Xi'an Jiaotong University – sequence: 5 givenname: Yu‐Jie surname: Guo fullname: Guo, Yu‐Jie organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Yi‐Hu surname: Feng fullname: Feng, Yi‐Hu organization: Xi'an Jiaotong University – sequence: 7 givenname: Fang‐Di surname: Ji fullname: Ji, Fang‐Di organization: Xi'an Jiaotong University – sequence: 8 givenname: Mengting surname: Liu fullname: Liu, Mengting organization: Xi'an Jiaotong University – sequence: 9 givenname: Ya‐Xia surname: Yin fullname: Yin, Ya‐Xia organization: University of Chinese Academy of Sciences – sequence: 10 givenname: Xiaogang surname: Han fullname: Han, Xiaogang organization: Xi'an Jiaotong University – sequence: 11 givenname: Yu‐Guo surname: Guo fullname: Guo, Yu‐Guo organization: University of Chinese Academy of Sciences – sequence: 12 givenname: Peng‐Fei orcidid: 0000-0001-9882-5059 surname: Wang fullname: Wang, Peng‐Fei email: pfwang@xjtu.edu.cn organization: Xi'an Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35233902$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URH9gyxJZYsMmg-0bx8lyOhroSCNAtKwtJ7mZcZXYg50IzY5H6DP2SfAwLUiVEKtrXZ_vLs53Tk6cd0jIa85mnDHx3jiLM8EE50qJ8hk541LwDJSCk_TOATJVSn5KzmO8TXxZsuIFOQUpAComzoib069mtN6Znl7a3dZE29AbY3sfrNvQ6zGYETd7unSm7g-bK7vZ3v-8-4Kh82EwrkG6NnsM2NKFGbe-xUjTD732rZ2GRK68o5dmHDFYjC_J8870EV89zAvy7cPyZnGVrT9_XC3m66wBBWWmciEq1lXcQN3mLUAtSy5NA1LmNRYFIhhWCVCV7KDLUbaiMVgzNAwaWTO4IO-Od3fBf58wjnqwscG-Nw79FLUokoJcQV4m9O0T9NZPIfk4UBKqosxLlag3D9RUD9jqXbCDCXv9aDIB-RFogo8xYKcbO_42mxTaXnOmD4XpQ2H6T2EpNnsSe7z8z0B1DPywPe7_Q-v5p9Xyb_YXQTup3w |
CitedBy_id | crossref_primary_10_1021_acsami_3c02028 crossref_primary_10_1002_aenm_202301975 crossref_primary_10_1002_idm2_12213 crossref_primary_10_1002_tcr_202200122 crossref_primary_10_1002_ange_202400868 crossref_primary_10_1021_acsaem_3c02365 crossref_primary_10_1002_adfm_202414130 crossref_primary_10_1002_smll_202303929 crossref_primary_10_1021_acsami_2c23236 crossref_primary_10_1016_j_jpowsour_2025_236718 crossref_primary_10_1039_D3EE02934D crossref_primary_10_1002_anie_202403585 crossref_primary_10_1021_acsnano_4c04847 crossref_primary_10_1016_j_cej_2025_160147 crossref_primary_10_1002_ange_202410080 crossref_primary_10_1002_cnl2_48 crossref_primary_10_1021_acsnano_4c16523 crossref_primary_10_7498_aps_72_20230045 crossref_primary_10_1016_j_jechem_2022_09_016 crossref_primary_10_1007_s12274_022_4708_5 crossref_primary_10_1007_s43979_024_00081_z crossref_primary_10_1021_acs_energyfuels_4c02631 crossref_primary_10_1038_s41467_025_57663_3 crossref_primary_10_1007_s12274_023_6133_9 crossref_primary_10_1016_j_jiec_2024_02_044 crossref_primary_10_1016_j_mtener_2024_101551 crossref_primary_10_1002_ange_202403585 crossref_primary_10_1007_s11581_023_04963_7 crossref_primary_10_1016_j_jpowsour_2024_234962 crossref_primary_10_1002_smll_202407615 crossref_primary_10_1021_acsnano_3c07625 crossref_primary_10_1039_D4SE01012D crossref_primary_10_1002_cey2_565 crossref_primary_10_1016_j_est_2025_115808 crossref_primary_10_1039_D3SC06878A crossref_primary_10_1002_anie_202400868 crossref_primary_10_1039_D4CC06113F crossref_primary_10_1016_j_ensm_2024_103518 crossref_primary_10_1002_adma_202402008 crossref_primary_10_1002_aenm_202300149 crossref_primary_10_1021_acsami_3c02907 crossref_primary_10_1002_adfm_202206154 crossref_primary_10_1002_advs_202401514 crossref_primary_10_1002_elt2_18 crossref_primary_10_1021_acs_chemmater_3c02115 crossref_primary_10_1039_D4TA03372H crossref_primary_10_1016_j_jcis_2023_10_129 crossref_primary_10_1039_D3QI01083J crossref_primary_10_1002_inf2_12636 crossref_primary_10_1002_bte2_20240052 crossref_primary_10_1002_celc_202400662 crossref_primary_10_1021_acs_energyfuels_4c02769 crossref_primary_10_1016_j_est_2024_114279 crossref_primary_10_1007_s12598_023_02351_8 crossref_primary_10_1016_j_cej_2025_160126 crossref_primary_10_1021_acsnano_4c09918 crossref_primary_10_1002_inf2_12475 crossref_primary_10_1002_smm2_1211 crossref_primary_10_1002_batt_202200473 crossref_primary_10_1039_D4TA00060A crossref_primary_10_1007_s40843_022_2441_6 crossref_primary_10_1002_batt_202300347 crossref_primary_10_1002_cssc_202400768 crossref_primary_10_1063_5_0121824 crossref_primary_10_1039_D3TA04094A crossref_primary_10_1002_adfm_202402398 crossref_primary_10_1002_adma_202415610 crossref_primary_10_1007_s12598_023_02523_6 crossref_primary_10_1002_smll_202310756 crossref_primary_10_1002_aenm_202203216 crossref_primary_10_1016_j_jpowsour_2022_232292 crossref_primary_10_1021_acsami_2c12098 crossref_primary_10_1002_anie_202410080 crossref_primary_10_1016_j_ensm_2024_103935 crossref_primary_10_1021_acsami_2c14159 crossref_primary_10_1016_j_ensm_2024_103617 crossref_primary_10_1021_acsami_4c04855 crossref_primary_10_1039_D4RA04790G crossref_primary_10_1002_adfm_202501688 |
Cites_doi | 10.1021/acsami.0c13850 10.1039/D1CS00442E 10.1016/j.jpowsour.2020.227957 10.1039/D0EE02997A 10.1016/j.nanoen.2018.10.072 10.1002/anie.202016334 10.1002/ange.202003972 10.1002/adma.202008194 10.1021/acsenergylett.0c02181 10.1038/s41578-021-00324-w 10.1039/C3CC49856E 10.1126/sciadv.aar6018 10.1039/C7TA09607K 10.1126/science.aay9972 10.1021/acs.chemmater.1c00569 10.1021/jacs.9b13572 10.1016/j.ensm.2020.04.012 10.1002/aenm.202001201 10.1002/adma.201700210 10.1021/cr500192f 10.1002/smll.202100146 10.1002/ange.202104167 10.1002/ange.202016334 10.1002/anie.202003972 10.1016/j.cej.2020.125725 10.1021/ic300357d 10.1002/aenm.201400458 10.1103/PhysRevB.84.054112 10.1002/anie.202104167 10.1002/aenm.201501555 10.1021/acsenergylett.0c00597 10.1039/C7EE02995K 10.1038/nmat3309 10.1103/PhysRevLett.54.1051 10.1002/smll.202007236 10.1002/anie.201912171 10.1021/jp074464w 10.1002/adfm.202003364 10.1039/C8EE02991A 10.1002/smll.202007103 10.1021/cm403855t 10.1038/s41467-020-17290-6 10.1149/1.1407247 10.1016/j.nanoen.2021.106504 10.1149/1.1838571 10.1038/s41563-020-0688-6 10.1021/acsami.0c11375 10.1038/s41563-020-00870-8 10.1002/aenm.202001609 10.1002/ange.201912171 10.1002/aenm.201601306 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202117728 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 35233902 10_1002_anie_202117728 ANIE202117728 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: State Key Laboratory of Electrical Insulation and Power Equipment funderid: EIPE21304 – fundername: Young Talent Support Plan and Siyuan Scholar of Xi'an Jiaotong University funderid: DQ6J011 – fundername: Hangzhou Yangming New Energy Equipment Technology Co., Ltd funderid: 20210580 – fundername: National Natural Science Foundation of China funderid: 52102302; 22108218 – fundername: Hangzhou Yangming New Energy Equipment Technology Co., Ltd grantid: 20210580 – fundername: National Natural Science Foundation of China grantid: 22108218 – fundername: State Key Laboratory of Electrical Insulation and Power Equipment grantid: EIPE21304 – fundername: National Natural Science Foundation of China grantid: 52102302 – fundername: Young Talent Support Plan and Siyuan Scholar of Xi'an Jiaotong University grantid: DQ6J011 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3738-742290f91a3bd4d33b5815ac3554be66ee3a0923795f3f4e5d2caeb0ea03c5b03 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:09:34 EDT 2025 Sun Jul 13 04:37:25 EDT 2025 Thu Apr 03 07:08:25 EDT 2025 Tue Jul 01 01:18:18 EDT 2025 Thu Apr 24 23:07:45 EDT 2025 Wed Jan 22 16:24:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Electrochemistry Layered Oxides Intergrowth Structure Sodium-Ion Batteries Cathodes |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-742290f91a3bd4d33b5815ac3554be66ee3a0923795f3f4e5d2caeb0ea03c5b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9882-5059 |
PMID | 35233902 |
PQID | 2653968487 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2635247348 proquest_journals_2653968487 pubmed_primary_35233902 crossref_citationtrail_10_1002_anie_202117728 crossref_primary_10_1002_anie_202117728 wiley_primary_10_1002_anie_202117728_ANIE202117728 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2, 2022 |
PublicationDateYYYYMMDD | 2022-05-02 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2, 2022 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 6 2021; 20 2020; 142 2019; 55 2019; 12 2011; 84 2020 2020; 59 132 2014; 26 2017; 29 2020; 12 2020; 11 2020; 10 2021; 50 2012; 11 2014; 114 2001; 148 2021; 90 2020; 19 2012; 51 2021; 14 2018; 6 2016; 6 2020; 5 2014; 4 2021; 11 2021; 33 2018; 4 2020; 30 2021; 17 2007; 111 2020; 370 2021 2021; 60 133 2020; 455 2020; 399 2018; 11 2014; 50 1998; 145 1985; 54 2020; 29 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_45_3 e_1_2_7_26_1 e_1_2_7_47_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_52_2 e_1_2_7_25_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_33_1 e_1_2_7_56_2 e_1_2_7_21_1 e_1_2_7_35_2 e_1_2_7_58_1 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_48_1 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_51_1 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_20_1 e_1_2_7_36_2 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 11 start-page: 512 year: 2012 end-page: 517 publication-title: Nat. Mater. – volume: 370 start-page: 708 year: 2020 end-page: 711 publication-title: Science – volume: 59 132 start-page: 14511 14619 year: 2020 2020 end-page: 14516 14624 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 6211 year: 2012 end-page: 6220 publication-title: Inorg. Chem. – volume: 50 start-page: 3677 year: 2014 end-page: 3680 publication-title: Chem. Commun. – volume: 455 year: 2020 publication-title: J. Power Sources – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 5271 year: 2018 end-page: 5275 publication-title: J. Mater. Chem. A – volume: 11 start-page: 3544 year: 2020 publication-title: Nat. Commun. – volume: 14 start-page: 158 year: 2021 end-page: 179 publication-title: Energy Environ. Sci. – volume: 12 start-page: 41477 year: 2020 end-page: 41484 publication-title: ACS Appl. Mater. Interfaces – volume: 142 start-page: 5742 year: 2020 end-page: 5750 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 3544 year: 2020 end-page: 3547 publication-title: ACS Energy Lett. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 20 start-page: 353 year: 2021 end-page: 361 publication-title: Nat. Mater. – volume: 59 132 start-page: 264 270 year: 2020 2020 end-page: 269 275 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 year: 2021 publication-title: Small – volume: 90 year: 2021 publication-title: Nano Energy – volume: 55 start-page: 143 year: 2019 end-page: 150 publication-title: Nano Energy – volume: 12 start-page: 51397 year: 2020 end-page: 51408 publication-title: ACS Appl. Mater. Interfaces – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 50 start-page: 13189 year: 2021 end-page: 13235 publication-title: Chem. Soc. Rev. – volume: 399 year: 2020 publication-title: Chem. Eng. J. – volume: 19 start-page: 1088 year: 2020 end-page: 1095 publication-title: Nat. Mater. – volume: 12 start-page: 2223 year: 2019 end-page: 2232 publication-title: Energy Environ. Sci. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 145 start-page: 1882 year: 1998 end-page: 1888 publication-title: J. Electrochem. Soc. – volume: 29 start-page: 182 year: 2020 end-page: 189 publication-title: Energy Storage Mater. – volume: 111 start-page: 14925 year: 2007 end-page: 14931 publication-title: J. Phys. Chem. C – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 33 start-page: 4445 year: 2021 end-page: 4455 publication-title: Chem. Mater. – volume: 26 start-page: 1260 year: 2014 end-page: 1269 publication-title: Chem. Mater. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 54 start-page: 1051 year: 1985 end-page: 1054 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 1278 year: 2020 end-page: 1280 publication-title: ACS Energy Lett. – volume: 114 start-page: 11636 year: 2014 end-page: 11682 publication-title: Chem. Rev. – volume: 6 start-page: 1020 year: 2021 end-page: 1035 publication-title: Nat. Rev. Mater. – volume: 148 start-page: A1225 year: 2001 end-page: A1229 publication-title: J. Electrochem. Soc. – volume: 60 133 start-page: 21310 21480 year: 2021 2021 end-page: 21318 21488 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 8258 8339 year: 2021 2021 end-page: 8267 8348 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 1470 year: 2018 end-page: 1479 publication-title: Energy Environ. Sci. – ident: e_1_2_7_56_2 doi: 10.1021/acsami.0c13850 – ident: e_1_2_7_51_1 – ident: e_1_2_7_24_2 doi: 10.1039/D1CS00442E – ident: e_1_2_7_31_2 doi: 10.1016/j.jpowsour.2020.227957 – ident: e_1_2_7_48_1 – ident: e_1_2_7_19_2 doi: 10.1039/D0EE02997A – ident: e_1_2_7_35_2 doi: 10.1016/j.nanoen.2018.10.072 – ident: e_1_2_7_6_2 doi: 10.1002/anie.202016334 – ident: e_1_2_7_11_3 doi: 10.1002/ange.202003972 – ident: e_1_2_7_54_2 doi: 10.1002/adma.202008194 – ident: e_1_2_7_42_2 doi: 10.1021/acsenergylett.0c02181 – ident: e_1_2_7_43_2 doi: 10.1038/s41578-021-00324-w – ident: e_1_2_7_17_1 – ident: e_1_2_7_33_1 – ident: e_1_2_7_20_1 doi: 10.1039/C3CC49856E – ident: e_1_2_7_4_1 – ident: e_1_2_7_40_1 doi: 10.1126/sciadv.aar6018 – ident: e_1_2_7_52_2 doi: 10.1039/C7TA09607K – ident: e_1_2_7_8_2 doi: 10.1126/science.aay9972 – ident: e_1_2_7_28_2 doi: 10.1021/acs.chemmater.1c00569 – ident: e_1_2_7_10_1 – ident: e_1_2_7_12_2 doi: 10.1021/jacs.9b13572 – ident: e_1_2_7_30_2 doi: 10.1016/j.ensm.2020.04.012 – ident: e_1_2_7_9_2 doi: 10.1002/aenm.202001201 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201700210 – ident: e_1_2_7_41_1 – ident: e_1_2_7_2_2 doi: 10.1021/cr500192f – ident: e_1_2_7_21_1 – ident: e_1_2_7_39_2 doi: 10.1002/smll.202100146 – ident: e_1_2_7_45_3 doi: 10.1002/ange.202104167 – ident: e_1_2_7_6_3 doi: 10.1002/ange.202016334 – ident: e_1_2_7_11_2 doi: 10.1002/anie.202003972 – ident: e_1_2_7_57_1 doi: 10.1016/j.cej.2020.125725 – ident: e_1_2_7_22_2 doi: 10.1021/ic300357d – ident: e_1_2_7_59_2 doi: 10.1002/aenm.201400458 – ident: e_1_2_7_60_2 doi: 10.1103/PhysRevB.84.054112 – ident: e_1_2_7_45_2 doi: 10.1002/anie.202104167 – ident: e_1_2_7_37_2 doi: 10.1002/aenm.201501555 – ident: e_1_2_7_13_2 doi: 10.1021/acsenergylett.0c00597 – ident: e_1_2_7_14_1 – ident: e_1_2_7_29_2 doi: 10.1039/C7EE02995K – ident: e_1_2_7_55_2 doi: 10.1038/nmat3309 – ident: e_1_2_7_61_2 doi: 10.1103/PhysRevLett.54.1051 – ident: e_1_2_7_38_2 doi: 10.1002/smll.202007236 – ident: e_1_2_7_5_2 doi: 10.1002/anie.201912171 – ident: e_1_2_7_46_2 doi: 10.1021/jp074464w – ident: e_1_2_7_1_1 – ident: e_1_2_7_49_2 doi: 10.1002/adfm.202003364 – ident: e_1_2_7_7_1 – ident: e_1_2_7_50_2 doi: 10.1039/C8EE02991A – ident: e_1_2_7_34_2 doi: 10.1002/smll.202007103 – ident: e_1_2_7_44_1 – ident: e_1_2_7_27_2 doi: 10.1021/cm403855t – ident: e_1_2_7_16_2 doi: 10.1038/s41467-020-17290-6 – ident: e_1_2_7_18_2 doi: 10.1149/1.1407247 – ident: e_1_2_7_58_1 – ident: e_1_2_7_36_2 doi: 10.1016/j.nanoen.2021.106504 – ident: e_1_2_7_47_2 doi: 10.1149/1.1838571 – ident: e_1_2_7_15_2 doi: 10.1038/s41563-020-0688-6 – ident: e_1_2_7_32_2 doi: 10.1021/acsami.0c11375 – ident: e_1_2_7_3_2 doi: 10.1038/s41563-020-00870-8 – ident: e_1_2_7_23_2 doi: 10.1002/aenm.202001609 – ident: e_1_2_7_5_3 doi: 10.1002/ange.201912171 – ident: e_1_2_7_26_1 – ident: e_1_2_7_53_2 doi: 10.1002/aenm.201601306 |
SSID | ssj0028806 |
Score | 2.6391296 |
Snippet | Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These... Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na-ion batteries. These... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202117728 |
SubjectTerms | Batteries Cathodes Electrochemical analysis Electrochemistry Flux density Intergrowth Structure Iron Layered Oxides Manganese Phase diagrams Phase transitions Rechargeable batteries Redox properties Sodium Sodium-Ion Batteries Structural strain |
Title | A Rational Biphasic Tailoring Strategy Enabling High‐Performance Layered Cathodes for Sodium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202117728 https://www.ncbi.nlm.nih.gov/pubmed/35233902 https://www.proquest.com/docview/2653968487 https://www.proquest.com/docview/2635247348 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL1CbGDTltJHWkBGqtSVwfFjMllO0SCoAFUUJHaR7TjqiDZBnZkFXfUT-Ea-pPeOk9BpVVVqN5ESXyuOXzm27zkX4I3Ls8pmpuQ6V5prbzS3QafcDtMqTTPl04y4w6dng6NL_f7KXP3E4o_6EP2GG42MxXxNA9y66f6DaCgxsHF9J-nUURLblxy2CBWd9_pREjtnpBcpxSkKfafaKOT-cvblv9JvUHMZuS5-PYePwXaFjh4n13vzmdvz337Rc_yfr3oCj1pcykaxI23ASqifwtpBFw5uE-oRO283Dtm7yc0ni83LLuwkevCxVuX2lo2JjEVPyIPk_vvdhwdmAjuxtxQalBHtsCnDlGEK-9iUk_kXtDxuahblPnH1_gwuD8cXB0e8DdbAPYkjcVxiy1xUeWqVK3WplDPD1FhPeMaFwSAEZQWiySw3lap0MKX0NjgRrFDeOKGew2rd1OElMO9dmTuPxogvTBqG3pc4jXiPF-GESYB3jVX4VsmcAmp8LqIGsyyoFou-FhN429vfRA2PP1pudW1ftGN5WkhS7x0McWWXwG6fjLVPRyu2Ds2cbBDIalIKSuBF7DP9qzBFqVzIBOSi5f9ShmJ0djzu7179S6bXsC6JpUF-mXILVmdf52EbsdPM7SzGxw-v8hGm |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZQL0AIlpRRXQuLk1vHPJjkuZatdul1VZStxi2zHUVeFpGp3D-XEI_CMPAmedZJqQQgJLpESjxXHYzsz9nzfALwxWVLqRBVUZkJSaZWk2smY6jQu4zgRNk4QO3wy6Q3P5YdPqo0mRCxM4IfoNtxwZizXa5zguCF9cMcaihBs7-BxPHbk6X14gGm9kT7__VnHIMX98AwAIyEo5qFveRsZP1itv_pf-s3YXLVdlz-fo8dg2maHmJPL_cXc7NuvvzA6_td3PYFHjWlK-mEsbcA9V23C-mGbEe4pVH1y1uwdknezqwvtNUymehaC-EhDdHtLBojHwicYRPLj2_fTO3ACGetbzA5KEHlYF-6G-BLysS5miy9eclRXJDB-egf-GZwfDaaHQ9rka6AW-ZGo97J5xsos1sIUshDCqDRW2qJJY1yv55zQzBuUSaZKUUqnCm61M8xpJqwyTDyHtaqu3Asg1poiM9YLexNDxS61tvAribX-wgxTEdBWW7ltyMwxp8bnPNAw8xx7Me96MYK3nfxVoPH4o-ROq_y8mc43OUcC317qnbsI9rpi3_t4uqIrVy9QxtuyEsmCItgKg6Z7lS8RImM8Ar5U_V_akPcno0F3t_0vlV7D-nB6Ms7Ho8nxS3jIEbSBYZp8B9bm1wv3yptSc7O7nCw_AcM-FcI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaCX8i6BAkZC4uTW8SOP49LuqgtlVZVW6i3yK2LVkqza3UM58RP4jfwSPJtHWRBCgkukxGPF8djOjD3fNwCvTZ6WOlWOylxIKq2SVHsZU53FZRynwsYpYoc_TJL9E_nuVJ3-hOJv-CH6DTecGcv1Gif4zJU716ShiMAO_h3HU0ee3YRbMmE5Jm_YO-oJpHgYnQ2-SAiKaeg72kbGd1brr_6WfrM1V03X5b9ndBd01-om5ORsezE32_bLL4SO__NZ92CjNUzJoBlJ9-GGrx7And0uH9xDqAbkqN05JG-ns0866Jcc62kTwkdamtsrMkQ0Fj7BEJLvX78dXkMTyIG-wtygBHGHtfOXJJSQj7WbLj4HyXFdkYbvM7jvj-BkNDze3adttgZqkR2JBh-b56zMYy2Mk04Io7JYaYsGjfFJ4r3QLJiTaa5KUUqvHLfaG-Y1E1YZJh7DWlVX_gkQa43LjQ3CwcBQsc-sdWEdsTZcmGEqAtopq7AtlTlm1DgvGhJmXmAvFn0vRvCml581JB5_lNzqdF-0k_my4Ejfm2TBtYvgVV8ceh_PVnTl6wXKBEtWIlVQBJvNmOlfFUqEyBmPgC81_5c2FIPJeNjfPf2XSi_h9uHeqDgYT94_g3WOiA2M0eRbsDa_WPjnwY6amxfLqfIDbnIUcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rational+Biphasic+Tailoring+Strategy+Enabling+High%E2%80%90Performance+Layered+Cathodes+for+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cheng%2C+Zhiwei&rft.au=Fan%2C+Xin%E2%80%90Yu&rft.au=Yu%2C+Lianzheng&rft.au=Hua%2C+Weibo&rft.date=2022-05-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202117728&rft.externalDBID=10.1002%252Fanie.202117728&rft.externalDocID=ANIE202117728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |