A Rational Biphasic Tailoring Strategy Enabling High‐Performance Layered Cathodes for Sodium‐Ion Batteries

Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With th...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 19; pp. e202117728 - n/a
Main Authors Cheng, Zhiwei, Fan, Xin‐Yu, Yu, Lianzheng, Hua, Weibo, Guo, Yu‐Jie, Feng, Yi‐Hu, Ji, Fang‐Di, Liu, Mengting, Yin, Ya‐Xia, Han, Xiaogang, Guo, Yu‐Guo, Wang, Peng‐Fei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.05.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3–P2/O3/P3–P2/P3–P2/Z/O3′–Z/O3′ based on the Ni2+/Ni3.5+, Fe3+/Fe4+ and Mn3.8+/Mn4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g−1 with the energy density approaching 514 Wh kg−1. A rational biphasic tailoring strategy to prepare layered composite cathodes with the desired phase ratio is proposed. Benefiting from the reversible phase transition within transition metal slabs and the decreased structure strain at the phase boundary of the intergrowth structure during Na extraction and insertion, the Com‐NaNMFT composite material demonstrates excellent electrochemical performance.
AbstractList Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3–P2/O3/P3–P2/P3–P2/Z/O3′–Z/O3′ based on the Ni2+/Ni3.5+, Fe3+/Fe4+ and Mn3.8+/Mn4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g−1 with the energy density approaching 514 Wh kg−1. A rational biphasic tailoring strategy to prepare layered composite cathodes with the desired phase ratio is proposed. Benefiting from the reversible phase transition within transition metal slabs and the decreased structure strain at the phase boundary of the intergrowth structure during Na extraction and insertion, the Com‐NaNMFT composite material demonstrates excellent electrochemical performance.
Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na + kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3–P2/O3/P3–P2/P3–P2/Z/O3′–Z/O3′ based on the Ni 2+ /Ni 3.5+ , Fe 3+ /Fe 4+ and Mn 3.8+ /Mn 4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g −1 with the energy density approaching 514 Wh kg −1 .
Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na-ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3-P2/O3/P3-P2/P3-P2/Z/O3'-Z/O3' based on the Ni /Ni , Fe /Fe and Mn /Mn redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g with the energy density approaching 514 Wh kg .
Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3–P2/O3/P3–P2/P3–P2/Z/O3′–Z/O3′ based on the Ni2+/Ni3.5+, Fe3+/Fe4+ and Mn3.8+/Mn4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g−1 with the energy density approaching 514 Wh kg−1.
Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na-ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3-P2/O3/P3-P2/P3-P2/Z/O3'-Z/O3' based on the Ni2+ /Ni3.5+ , Fe3+ /Fe4+ and Mn3.8+ /Mn4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g-1 with the energy density approaching 514 Wh kg-1 .Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na-ion batteries. These abundant components lead to complicated structural chemistry, closely affecting the stacking preference, phase transition and Na+ kinetics. With this perspective, we explore the thermodynamically stable phase diagram of various P2/O3 composites based on a rational biphasic tailoring strategy. Then a specific P2/O3 composite is investigated and compared with its monophasic counterparts. A highly reversible structural evolution of P2/O3-P2/O3/P3-P2/P3-P2/Z/O3'-Z/O3' based on the Ni2+ /Ni3.5+ , Fe3+ /Fe4+ and Mn3.8+ /Mn4+ redox couples upon sequential Na extraction/insertion is revealed. The reduced structural strain at the phase boundary alleviates the phase transition and decreases the lattice mismatch during cycling, endowing the biphasic electrode a large reversible capacity of 144 mAh g-1 with the energy density approaching 514 Wh kg-1 .
Author Yin, Ya‐Xia
Yu, Lianzheng
Hua, Weibo
Liu, Mengting
Han, Xiaogang
Fan, Xin‐Yu
Guo, Yu‐Guo
Wang, Peng‐Fei
Ji, Fang‐Di
Guo, Yu‐Jie
Cheng, Zhiwei
Feng, Yi‐Hu
Author_xml – sequence: 1
  givenname: Zhiwei
  surname: Cheng
  fullname: Cheng, Zhiwei
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Xin‐Yu
  surname: Fan
  fullname: Fan, Xin‐Yu
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Lianzheng
  surname: Yu
  fullname: Yu, Lianzheng
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Weibo
  surname: Hua
  fullname: Hua, Weibo
  email: weibo.hua@xjtu.edu.cn
  organization: Xi'an Jiaotong University
– sequence: 5
  givenname: Yu‐Jie
  surname: Guo
  fullname: Guo, Yu‐Jie
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Yi‐Hu
  surname: Feng
  fullname: Feng, Yi‐Hu
  organization: Xi'an Jiaotong University
– sequence: 7
  givenname: Fang‐Di
  surname: Ji
  fullname: Ji, Fang‐Di
  organization: Xi'an Jiaotong University
– sequence: 8
  givenname: Mengting
  surname: Liu
  fullname: Liu, Mengting
  organization: Xi'an Jiaotong University
– sequence: 9
  givenname: Ya‐Xia
  surname: Yin
  fullname: Yin, Ya‐Xia
  organization: University of Chinese Academy of Sciences
– sequence: 10
  givenname: Xiaogang
  surname: Han
  fullname: Han, Xiaogang
  organization: Xi'an Jiaotong University
– sequence: 11
  givenname: Yu‐Guo
  surname: Guo
  fullname: Guo, Yu‐Guo
  organization: University of Chinese Academy of Sciences
– sequence: 12
  givenname: Peng‐Fei
  orcidid: 0000-0001-9882-5059
  surname: Wang
  fullname: Wang, Peng‐Fei
  email: pfwang@xjtu.edu.cn
  organization: Xi'an Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35233902$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URH9gyxJZYsMmg-0bx8lyOhroSCNAtKwtJ7mZcZXYg50IzY5H6DP2SfAwLUiVEKtrXZ_vLs53Tk6cd0jIa85mnDHx3jiLM8EE50qJ8hk541LwDJSCk_TOATJVSn5KzmO8TXxZsuIFOQUpAComzoib069mtN6Znl7a3dZE29AbY3sfrNvQ6zGYETd7unSm7g-bK7vZ3v-8-4Kh82EwrkG6NnsM2NKFGbe-xUjTD732rZ2GRK68o5dmHDFYjC_J8870EV89zAvy7cPyZnGVrT9_XC3m66wBBWWmciEq1lXcQN3mLUAtSy5NA1LmNRYFIhhWCVCV7KDLUbaiMVgzNAwaWTO4IO-Od3fBf58wjnqwscG-Nw79FLUokoJcQV4m9O0T9NZPIfk4UBKqosxLlag3D9RUD9jqXbCDCXv9aDIB-RFogo8xYKcbO_42mxTaXnOmD4XpQ2H6T2EpNnsSe7z8z0B1DPywPe7_Q-v5p9Xyb_YXQTup3w
CitedBy_id crossref_primary_10_1021_acsami_3c02028
crossref_primary_10_1002_aenm_202301975
crossref_primary_10_1002_idm2_12213
crossref_primary_10_1002_tcr_202200122
crossref_primary_10_1002_ange_202400868
crossref_primary_10_1021_acsaem_3c02365
crossref_primary_10_1002_adfm_202414130
crossref_primary_10_1002_smll_202303929
crossref_primary_10_1021_acsami_2c23236
crossref_primary_10_1016_j_jpowsour_2025_236718
crossref_primary_10_1039_D3EE02934D
crossref_primary_10_1002_anie_202403585
crossref_primary_10_1021_acsnano_4c04847
crossref_primary_10_1016_j_cej_2025_160147
crossref_primary_10_1002_ange_202410080
crossref_primary_10_1002_cnl2_48
crossref_primary_10_1021_acsnano_4c16523
crossref_primary_10_7498_aps_72_20230045
crossref_primary_10_1016_j_jechem_2022_09_016
crossref_primary_10_1007_s12274_022_4708_5
crossref_primary_10_1007_s43979_024_00081_z
crossref_primary_10_1021_acs_energyfuels_4c02631
crossref_primary_10_1038_s41467_025_57663_3
crossref_primary_10_1007_s12274_023_6133_9
crossref_primary_10_1016_j_jiec_2024_02_044
crossref_primary_10_1016_j_mtener_2024_101551
crossref_primary_10_1002_ange_202403585
crossref_primary_10_1007_s11581_023_04963_7
crossref_primary_10_1016_j_jpowsour_2024_234962
crossref_primary_10_1002_smll_202407615
crossref_primary_10_1021_acsnano_3c07625
crossref_primary_10_1039_D4SE01012D
crossref_primary_10_1002_cey2_565
crossref_primary_10_1016_j_est_2025_115808
crossref_primary_10_1039_D3SC06878A
crossref_primary_10_1002_anie_202400868
crossref_primary_10_1039_D4CC06113F
crossref_primary_10_1016_j_ensm_2024_103518
crossref_primary_10_1002_adma_202402008
crossref_primary_10_1002_aenm_202300149
crossref_primary_10_1021_acsami_3c02907
crossref_primary_10_1002_adfm_202206154
crossref_primary_10_1002_advs_202401514
crossref_primary_10_1002_elt2_18
crossref_primary_10_1021_acs_chemmater_3c02115
crossref_primary_10_1039_D4TA03372H
crossref_primary_10_1016_j_jcis_2023_10_129
crossref_primary_10_1039_D3QI01083J
crossref_primary_10_1002_inf2_12636
crossref_primary_10_1002_bte2_20240052
crossref_primary_10_1002_celc_202400662
crossref_primary_10_1021_acs_energyfuels_4c02769
crossref_primary_10_1016_j_est_2024_114279
crossref_primary_10_1007_s12598_023_02351_8
crossref_primary_10_1016_j_cej_2025_160126
crossref_primary_10_1021_acsnano_4c09918
crossref_primary_10_1002_inf2_12475
crossref_primary_10_1002_smm2_1211
crossref_primary_10_1002_batt_202200473
crossref_primary_10_1039_D4TA00060A
crossref_primary_10_1007_s40843_022_2441_6
crossref_primary_10_1002_batt_202300347
crossref_primary_10_1002_cssc_202400768
crossref_primary_10_1063_5_0121824
crossref_primary_10_1039_D3TA04094A
crossref_primary_10_1002_adfm_202402398
crossref_primary_10_1002_adma_202415610
crossref_primary_10_1007_s12598_023_02523_6
crossref_primary_10_1002_smll_202310756
crossref_primary_10_1002_aenm_202203216
crossref_primary_10_1016_j_jpowsour_2022_232292
crossref_primary_10_1021_acsami_2c12098
crossref_primary_10_1002_anie_202410080
crossref_primary_10_1016_j_ensm_2024_103935
crossref_primary_10_1021_acsami_2c14159
crossref_primary_10_1016_j_ensm_2024_103617
crossref_primary_10_1021_acsami_4c04855
crossref_primary_10_1039_D4RA04790G
crossref_primary_10_1002_adfm_202501688
Cites_doi 10.1021/acsami.0c13850
10.1039/D1CS00442E
10.1016/j.jpowsour.2020.227957
10.1039/D0EE02997A
10.1016/j.nanoen.2018.10.072
10.1002/anie.202016334
10.1002/ange.202003972
10.1002/adma.202008194
10.1021/acsenergylett.0c02181
10.1038/s41578-021-00324-w
10.1039/C3CC49856E
10.1126/sciadv.aar6018
10.1039/C7TA09607K
10.1126/science.aay9972
10.1021/acs.chemmater.1c00569
10.1021/jacs.9b13572
10.1016/j.ensm.2020.04.012
10.1002/aenm.202001201
10.1002/adma.201700210
10.1021/cr500192f
10.1002/smll.202100146
10.1002/ange.202104167
10.1002/ange.202016334
10.1002/anie.202003972
10.1016/j.cej.2020.125725
10.1021/ic300357d
10.1002/aenm.201400458
10.1103/PhysRevB.84.054112
10.1002/anie.202104167
10.1002/aenm.201501555
10.1021/acsenergylett.0c00597
10.1039/C7EE02995K
10.1038/nmat3309
10.1103/PhysRevLett.54.1051
10.1002/smll.202007236
10.1002/anie.201912171
10.1021/jp074464w
10.1002/adfm.202003364
10.1039/C8EE02991A
10.1002/smll.202007103
10.1021/cm403855t
10.1038/s41467-020-17290-6
10.1149/1.1407247
10.1016/j.nanoen.2021.106504
10.1149/1.1838571
10.1038/s41563-020-0688-6
10.1021/acsami.0c11375
10.1038/s41563-020-00870-8
10.1002/aenm.202001609
10.1002/ange.201912171
10.1002/aenm.201601306
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202117728
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 35233902
10_1002_anie_202117728
ANIE202117728
Genre article
Journal Article
GrantInformation_xml – fundername: State Key Laboratory of Electrical Insulation and Power Equipment
  funderid: EIPE21304
– fundername: Young Talent Support Plan and Siyuan Scholar of Xi'an Jiaotong University
  funderid: DQ6J011
– fundername: Hangzhou Yangming New Energy Equipment Technology Co., Ltd
  funderid: 20210580
– fundername: National Natural Science Foundation of China
  funderid: 52102302; 22108218
– fundername: Hangzhou Yangming New Energy Equipment Technology Co., Ltd
  grantid: 20210580
– fundername: National Natural Science Foundation of China
  grantid: 22108218
– fundername: State Key Laboratory of Electrical Insulation and Power Equipment
  grantid: EIPE21304
– fundername: National Natural Science Foundation of China
  grantid: 52102302
– fundername: Young Talent Support Plan and Siyuan Scholar of Xi'an Jiaotong University
  grantid: DQ6J011
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3738-742290f91a3bd4d33b5815ac3554be66ee3a0923795f3f4e5d2caeb0ea03c5b03
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:09:34 EDT 2025
Sun Jul 13 04:37:25 EDT 2025
Thu Apr 03 07:08:25 EDT 2025
Tue Jul 01 01:18:18 EDT 2025
Thu Apr 24 23:07:45 EDT 2025
Wed Jan 22 16:24:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Electrochemistry
Layered Oxides
Intergrowth Structure
Sodium-Ion Batteries
Cathodes
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-742290f91a3bd4d33b5815ac3554be66ee3a0923795f3f4e5d2caeb0ea03c5b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9882-5059
PMID 35233902
PQID 2653968487
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2635247348
proquest_journals_2653968487
pubmed_primary_35233902
crossref_citationtrail_10_1002_anie_202117728
crossref_primary_10_1002_anie_202117728
wiley_primary_10_1002_anie_202117728_ANIE202117728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2, 2022
PublicationDateYYYYMMDD 2022-05-02
PublicationDate_xml – month: 05
  year: 2022
  text: May 2, 2022
  day: 02
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 6
2021; 20
2020; 142
2019; 55
2019; 12
2011; 84
2020 2020; 59 132
2014; 26
2017; 29
2020; 12
2020; 11
2020; 10
2021; 50
2012; 11
2014; 114
2001; 148
2021; 90
2020; 19
2012; 51
2021; 14
2018; 6
2016; 6
2020; 5
2014; 4
2021; 11
2021; 33
2018; 4
2020; 30
2021; 17
2007; 111
2020; 370
2021 2021; 60 133
2020; 455
2020; 399
2018; 11
2014; 50
1998; 145
1985; 54
2020; 29
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_2
e_1_2_7_45_3
e_1_2_7_26_1
e_1_2_7_47_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_52_2
e_1_2_7_25_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_33_1
e_1_2_7_56_2
e_1_2_7_21_1
e_1_2_7_35_2
e_1_2_7_58_1
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_2
e_1_2_7_48_1
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_51_1
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_57_1
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_20_1
e_1_2_7_36_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 512
  year: 2012
  end-page: 517
  publication-title: Nat. Mater.
– volume: 370
  start-page: 708
  year: 2020
  end-page: 711
  publication-title: Science
– volume: 59 132
  start-page: 14511 14619
  year: 2020 2020
  end-page: 14516 14624
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 6211
  year: 2012
  end-page: 6220
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 3677
  year: 2014
  end-page: 3680
  publication-title: Chem. Commun.
– volume: 455
  year: 2020
  publication-title: J. Power Sources
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 5271
  year: 2018
  end-page: 5275
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 3544
  year: 2020
  publication-title: Nat. Commun.
– volume: 14
  start-page: 158
  year: 2021
  end-page: 179
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 41477
  year: 2020
  end-page: 41484
  publication-title: ACS Appl. Mater. Interfaces
– volume: 142
  start-page: 5742
  year: 2020
  end-page: 5750
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 3544
  year: 2020
  end-page: 3547
  publication-title: ACS Energy Lett.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 20
  start-page: 353
  year: 2021
  end-page: 361
  publication-title: Nat. Mater.
– volume: 59 132
  start-page: 264 270
  year: 2020 2020
  end-page: 269 275
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 55
  start-page: 143
  year: 2019
  end-page: 150
  publication-title: Nano Energy
– volume: 12
  start-page: 51397
  year: 2020
  end-page: 51408
  publication-title: ACS Appl. Mater. Interfaces
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 50
  start-page: 13189
  year: 2021
  end-page: 13235
  publication-title: Chem. Soc. Rev.
– volume: 399
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 19
  start-page: 1088
  year: 2020
  end-page: 1095
  publication-title: Nat. Mater.
– volume: 12
  start-page: 2223
  year: 2019
  end-page: 2232
  publication-title: Energy Environ. Sci.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 145
  start-page: 1882
  year: 1998
  end-page: 1888
  publication-title: J. Electrochem. Soc.
– volume: 29
  start-page: 182
  year: 2020
  end-page: 189
  publication-title: Energy Storage Mater.
– volume: 111
  start-page: 14925
  year: 2007
  end-page: 14931
  publication-title: J. Phys. Chem. C
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 33
  start-page: 4445
  year: 2021
  end-page: 4455
  publication-title: Chem. Mater.
– volume: 26
  start-page: 1260
  year: 2014
  end-page: 1269
  publication-title: Chem. Mater.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 54
  start-page: 1051
  year: 1985
  end-page: 1054
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 1278
  year: 2020
  end-page: 1280
  publication-title: ACS Energy Lett.
– volume: 114
  start-page: 11636
  year: 2014
  end-page: 11682
  publication-title: Chem. Rev.
– volume: 6
  start-page: 1020
  year: 2021
  end-page: 1035
  publication-title: Nat. Rev. Mater.
– volume: 148
  start-page: A1225
  year: 2001
  end-page: A1229
  publication-title: J. Electrochem. Soc.
– volume: 60 133
  start-page: 21310 21480
  year: 2021 2021
  end-page: 21318 21488
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 8258 8339
  year: 2021 2021
  end-page: 8267 8348
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1470
  year: 2018
  end-page: 1479
  publication-title: Energy Environ. Sci.
– ident: e_1_2_7_56_2
  doi: 10.1021/acsami.0c13850
– ident: e_1_2_7_51_1
– ident: e_1_2_7_24_2
  doi: 10.1039/D1CS00442E
– ident: e_1_2_7_31_2
  doi: 10.1016/j.jpowsour.2020.227957
– ident: e_1_2_7_48_1
– ident: e_1_2_7_19_2
  doi: 10.1039/D0EE02997A
– ident: e_1_2_7_35_2
  doi: 10.1016/j.nanoen.2018.10.072
– ident: e_1_2_7_6_2
  doi: 10.1002/anie.202016334
– ident: e_1_2_7_11_3
  doi: 10.1002/ange.202003972
– ident: e_1_2_7_54_2
  doi: 10.1002/adma.202008194
– ident: e_1_2_7_42_2
  doi: 10.1021/acsenergylett.0c02181
– ident: e_1_2_7_43_2
  doi: 10.1038/s41578-021-00324-w
– ident: e_1_2_7_17_1
– ident: e_1_2_7_33_1
– ident: e_1_2_7_20_1
  doi: 10.1039/C3CC49856E
– ident: e_1_2_7_4_1
– ident: e_1_2_7_40_1
  doi: 10.1126/sciadv.aar6018
– ident: e_1_2_7_52_2
  doi: 10.1039/C7TA09607K
– ident: e_1_2_7_8_2
  doi: 10.1126/science.aay9972
– ident: e_1_2_7_28_2
  doi: 10.1021/acs.chemmater.1c00569
– ident: e_1_2_7_10_1
– ident: e_1_2_7_12_2
  doi: 10.1021/jacs.9b13572
– ident: e_1_2_7_30_2
  doi: 10.1016/j.ensm.2020.04.012
– ident: e_1_2_7_9_2
  doi: 10.1002/aenm.202001201
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201700210
– ident: e_1_2_7_41_1
– ident: e_1_2_7_2_2
  doi: 10.1021/cr500192f
– ident: e_1_2_7_21_1
– ident: e_1_2_7_39_2
  doi: 10.1002/smll.202100146
– ident: e_1_2_7_45_3
  doi: 10.1002/ange.202104167
– ident: e_1_2_7_6_3
  doi: 10.1002/ange.202016334
– ident: e_1_2_7_11_2
  doi: 10.1002/anie.202003972
– ident: e_1_2_7_57_1
  doi: 10.1016/j.cej.2020.125725
– ident: e_1_2_7_22_2
  doi: 10.1021/ic300357d
– ident: e_1_2_7_59_2
  doi: 10.1002/aenm.201400458
– ident: e_1_2_7_60_2
  doi: 10.1103/PhysRevB.84.054112
– ident: e_1_2_7_45_2
  doi: 10.1002/anie.202104167
– ident: e_1_2_7_37_2
  doi: 10.1002/aenm.201501555
– ident: e_1_2_7_13_2
  doi: 10.1021/acsenergylett.0c00597
– ident: e_1_2_7_14_1
– ident: e_1_2_7_29_2
  doi: 10.1039/C7EE02995K
– ident: e_1_2_7_55_2
  doi: 10.1038/nmat3309
– ident: e_1_2_7_61_2
  doi: 10.1103/PhysRevLett.54.1051
– ident: e_1_2_7_38_2
  doi: 10.1002/smll.202007236
– ident: e_1_2_7_5_2
  doi: 10.1002/anie.201912171
– ident: e_1_2_7_46_2
  doi: 10.1021/jp074464w
– ident: e_1_2_7_1_1
– ident: e_1_2_7_49_2
  doi: 10.1002/adfm.202003364
– ident: e_1_2_7_7_1
– ident: e_1_2_7_50_2
  doi: 10.1039/C8EE02991A
– ident: e_1_2_7_34_2
  doi: 10.1002/smll.202007103
– ident: e_1_2_7_44_1
– ident: e_1_2_7_27_2
  doi: 10.1021/cm403855t
– ident: e_1_2_7_16_2
  doi: 10.1038/s41467-020-17290-6
– ident: e_1_2_7_18_2
  doi: 10.1149/1.1407247
– ident: e_1_2_7_58_1
– ident: e_1_2_7_36_2
  doi: 10.1016/j.nanoen.2021.106504
– ident: e_1_2_7_47_2
  doi: 10.1149/1.1838571
– ident: e_1_2_7_15_2
  doi: 10.1038/s41563-020-0688-6
– ident: e_1_2_7_32_2
  doi: 10.1021/acsami.0c11375
– ident: e_1_2_7_3_2
  doi: 10.1038/s41563-020-00870-8
– ident: e_1_2_7_23_2
  doi: 10.1002/aenm.202001609
– ident: e_1_2_7_5_3
  doi: 10.1002/ange.201912171
– ident: e_1_2_7_26_1
– ident: e_1_2_7_53_2
  doi: 10.1002/aenm.201601306
SSID ssj0028806
Score 2.6391296
Snippet Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na‐ion batteries. These...
Layered oxide cathodes usually exhibit high compositional diversity, thus providing controllable electrochemical performance for Na-ion batteries. These...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202117728
SubjectTerms Batteries
Cathodes
Electrochemical analysis
Electrochemistry
Flux density
Intergrowth Structure
Iron
Layered Oxides
Manganese
Phase diagrams
Phase transitions
Rechargeable batteries
Redox properties
Sodium
Sodium-Ion Batteries
Structural strain
Title A Rational Biphasic Tailoring Strategy Enabling High‐Performance Layered Cathodes for Sodium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202117728
https://www.ncbi.nlm.nih.gov/pubmed/35233902
https://www.proquest.com/docview/2653968487
https://www.proquest.com/docview/2635247348
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL1CbGDTltJHWkBGqtSVwfFjMllO0SCoAFUUJHaR7TjqiDZBnZkFXfUT-Ea-pPeOk9BpVVVqN5ESXyuOXzm27zkX4I3Ls8pmpuQ6V5prbzS3QafcDtMqTTPl04y4w6dng6NL_f7KXP3E4o_6EP2GG42MxXxNA9y66f6DaCgxsHF9J-nUURLblxy2CBWd9_pREjtnpBcpxSkKfafaKOT-cvblv9JvUHMZuS5-PYePwXaFjh4n13vzmdvz337Rc_yfr3oCj1pcykaxI23ASqifwtpBFw5uE-oRO283Dtm7yc0ni83LLuwkevCxVuX2lo2JjEVPyIPk_vvdhwdmAjuxtxQalBHtsCnDlGEK-9iUk_kXtDxuahblPnH1_gwuD8cXB0e8DdbAPYkjcVxiy1xUeWqVK3WplDPD1FhPeMaFwSAEZQWiySw3lap0MKX0NjgRrFDeOKGew2rd1OElMO9dmTuPxogvTBqG3pc4jXiPF-GESYB3jVX4VsmcAmp8LqIGsyyoFou-FhN429vfRA2PP1pudW1ftGN5WkhS7x0McWWXwG6fjLVPRyu2Ds2cbBDIalIKSuBF7DP9qzBFqVzIBOSi5f9ShmJ0djzu7179S6bXsC6JpUF-mXILVmdf52EbsdPM7SzGxw-v8hGm
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZQL0AIlpRRXQuLk1vHPJjkuZatdul1VZStxi2zHUVeFpGp3D-XEI_CMPAmedZJqQQgJLpESjxXHYzsz9nzfALwxWVLqRBVUZkJSaZWk2smY6jQu4zgRNk4QO3wy6Q3P5YdPqo0mRCxM4IfoNtxwZizXa5zguCF9cMcaihBs7-BxPHbk6X14gGm9kT7__VnHIMX98AwAIyEo5qFveRsZP1itv_pf-s3YXLVdlz-fo8dg2maHmJPL_cXc7NuvvzA6_td3PYFHjWlK-mEsbcA9V23C-mGbEe4pVH1y1uwdknezqwvtNUymehaC-EhDdHtLBojHwicYRPLj2_fTO3ACGetbzA5KEHlYF-6G-BLysS5miy9eclRXJDB-egf-GZwfDaaHQ9rka6AW-ZGo97J5xsos1sIUshDCqDRW2qJJY1yv55zQzBuUSaZKUUqnCm61M8xpJqwyTDyHtaqu3Asg1poiM9YLexNDxS61tvAribX-wgxTEdBWW7ltyMwxp8bnPNAw8xx7Me96MYK3nfxVoPH4o-ROq_y8mc43OUcC317qnbsI9rpi3_t4uqIrVy9QxtuyEsmCItgKg6Z7lS8RImM8Ar5U_V_akPcno0F3t_0vlV7D-nB6Ms7Ho8nxS3jIEbSBYZp8B9bm1wv3yptSc7O7nCw_AcM-FcI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaCX8i6BAkZC4uTW8SOP49LuqgtlVZVW6i3yK2LVkqza3UM58RP4jfwSPJtHWRBCgkukxGPF8djOjD3fNwCvTZ6WOlWOylxIKq2SVHsZU53FZRynwsYpYoc_TJL9E_nuVJ3-hOJv-CH6DTecGcv1Gif4zJU716ShiMAO_h3HU0ee3YRbMmE5Jm_YO-oJpHgYnQ2-SAiKaeg72kbGd1brr_6WfrM1V03X5b9ndBd01-om5ORsezE32_bLL4SO__NZ92CjNUzJoBlJ9-GGrx7And0uH9xDqAbkqN05JG-ns0866Jcc62kTwkdamtsrMkQ0Fj7BEJLvX78dXkMTyIG-wtygBHGHtfOXJJSQj7WbLj4HyXFdkYbvM7jvj-BkNDze3adttgZqkR2JBh-b56zMYy2Mk04Io7JYaYsGjfFJ4r3QLJiTaa5KUUqvHLfaG-Y1E1YZJh7DWlVX_gkQa43LjQ3CwcBQsc-sdWEdsTZcmGEqAtopq7AtlTlm1DgvGhJmXmAvFn0vRvCml581JB5_lNzqdF-0k_my4Ejfm2TBtYvgVV8ceh_PVnTl6wXKBEtWIlVQBJvNmOlfFUqEyBmPgC81_5c2FIPJeNjfPf2XSi_h9uHeqDgYT94_g3WOiA2M0eRbsDa_WPjnwY6amxfLqfIDbnIUcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rational+Biphasic+Tailoring+Strategy+Enabling+High%E2%80%90Performance+Layered+Cathodes+for+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cheng%2C+Zhiwei&rft.au=Fan%2C+Xin%E2%80%90Yu&rft.au=Yu%2C+Lianzheng&rft.au=Hua%2C+Weibo&rft.date=2022-05-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202117728&rft.externalDBID=10.1002%252Fanie.202117728&rft.externalDocID=ANIE202117728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon