Piezo‐Photocatalysis over Metal–Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect
The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activi...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 51; pp. e2106308 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal–organic frameworks (MOFs), i.e., UiO‐66‐NH2(Zr) and UiO‐66‐NH2(Hf), are adopted for piezo‐photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf‐oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO‐66‐NH2(Hf) exhibits ≈2.2 times of activity compared with that of UiO‐66‐NH2(Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo‐photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO‐66‐NH2(Hf).
Two isostructural metal–organic frameworks (MOFs) with distinctly different piezoelectric responses are used in piezo‐photocatalysis. Remarkably, the H2 production efficiency of Hf‐MOF is 2.2 times that of Zr‐MOF under simultaneous light and ultrasonic irradiation. The role of the piezoelectric effect can be distinguished owing to their similar pore features and mass transfer behaviors. |
---|---|
AbstractList | The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal–organic frameworks (MOFs), i.e., UiO‐66‐NH
2
(Zr) and UiO‐66‐NH
2
(Hf), are adopted for piezo‐photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf‐oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO‐66‐NH
2
(Hf) exhibits ≈2.2 times of activity compared with that of UiO‐66‐NH
2
(Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H
2
production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo‐photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO‐66‐NH
2
(Hf). The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal–organic frameworks (MOFs), i.e., UiO‐66‐NH2(Zr) and UiO‐66‐NH2(Hf), are adopted for piezo‐photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf‐oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO‐66‐NH2(Hf) exhibits ≈2.2 times of activity compared with that of UiO‐66‐NH2(Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo‐photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO‐66‐NH2(Hf). The built-in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal-organic frameworks (MOFs), i.e., UiO-66-NH2 (Zr) and UiO-66-NH2 (Hf), are adopted for piezo-photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf-oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO-66-NH2 (Hf) exhibits ≈2.2 times of activity compared with that of UiO-66-NH2 (Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo-photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO-66-NH2 (Hf).The built-in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal-organic frameworks (MOFs), i.e., UiO-66-NH2 (Zr) and UiO-66-NH2 (Hf), are adopted for piezo-photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf-oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO-66-NH2 (Hf) exhibits ≈2.2 times of activity compared with that of UiO-66-NH2 (Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo-photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO-66-NH2 (Hf). The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal–organic frameworks (MOFs), i.e., UiO‐66‐NH2(Zr) and UiO‐66‐NH2(Hf), are adopted for piezo‐photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf‐oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO‐66‐NH2(Hf) exhibits ≈2.2 times of activity compared with that of UiO‐66‐NH2(Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo‐photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO‐66‐NH2(Hf). Two isostructural metal–organic frameworks (MOFs) with distinctly different piezoelectric responses are used in piezo‐photocatalysis. Remarkably, the H2 production efficiency of Hf‐MOF is 2.2 times that of Zr‐MOF under simultaneous light and ultrasonic irradiation. The role of the piezoelectric effect can be distinguished owing to their similar pore features and mass transfer behaviors. The built-in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal-organic frameworks (MOFs), i.e., UiO-66-NH (Zr) and UiO-66-NH (Hf), are adopted for piezo-photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf-oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO-66-NH (Hf) exhibits ≈2.2 times of activity compared with that of UiO-66-NH (Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo-photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO-66-NH (Hf). |
Author | Jiang, Hai‐Long Xie, Chenfan Hang, Xiaoshuai Zhang, Chenxi Lei, Da He, Chuanxin |
Author_xml | – sequence: 1 givenname: Chenxi surname: Zhang fullname: Zhang, Chenxi organization: Hanshan Normal University – sequence: 2 givenname: Da surname: Lei fullname: Lei, Da organization: Chinese Academy of Sciences – sequence: 3 givenname: Chenfan surname: Xie fullname: Xie, Chenfan organization: University of Science and Technology of China – sequence: 4 givenname: Xiaoshuai surname: Hang fullname: Hang, Xiaoshuai organization: Ministry of Ecology and Environment – sequence: 5 givenname: Chuanxin orcidid: 0000-0002-2254-360X surname: He fullname: He, Chuanxin email: hecx@szu.edu.cn organization: Shenzhen University – sequence: 6 givenname: Hai‐Long orcidid: 0000-0002-2975-7977 surname: Jiang fullname: Jiang, Hai‐Long email: jianglab@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34642997$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctO3DAUhq0KVAbabZdVpG7YZOprYnc34tZKIGbRri07OaGmSQy2BxRWPEKlviFPgukArZCqruyj833H1vm30cboR0DoHcFzgjH9aNrBzCmmBFcMy1doRgQlJcdKbKAZVkyUquJyC23HeI4xVhWuXqMtxitOlapn6HLp4Mbf3f5cfvfJNyaZfoouFv4KQnECuby7_XUazszomuIwmAGuffgRPxXL4Aef3HhW_GWmDC2a5K5cmgo7Fb-HQw9NCrlz0HX59gZtdqaP8Pbx3EHfDg--7n0uj0-PvuwtjsuG1UyWom2tFa2sMUgJtGql6XIhiRSiNZZyYbmioKyt6pa33DBMJDDRSAuWYsF20O567kXwlyuISQ8uNtD3ZgS_ipoKSWqFhcIZ_fACPferMObfaVoRSlXFGM3U-0dqZQdo9UVwgwmTflpmBuZroAk-xgDdM0KwfkhLP6Sln9PKAn8hNC6Z5PyYgnH9vzW11q5dD9N_HtGL_ZPFH_cey2esWw |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_165813 crossref_primary_10_1002_adfm_202209365 crossref_primary_10_1002_aenm_202300086 crossref_primary_10_1002_ange_202213927 crossref_primary_10_1016_j_apsusc_2023_156794 crossref_primary_10_1016_j_apsusc_2024_160893 crossref_primary_10_1016_j_cej_2022_139300 crossref_primary_10_1016_j_jallcom_2022_167434 crossref_primary_10_1016_j_ceramint_2022_02_130 crossref_primary_10_1063_5_0218539 crossref_primary_10_1016_j_ccr_2024_216234 crossref_primary_10_1016_j_apcatb_2022_121330 crossref_primary_10_1016_j_optmat_2024_116088 crossref_primary_10_1002_ange_202319882 crossref_primary_10_1002_zaac_202200031 crossref_primary_10_1021_acs_inorgchem_4c03520 crossref_primary_10_1063_5_0202991 crossref_primary_10_1021_acsami_4c03256 crossref_primary_10_1021_acscatal_4c02243 crossref_primary_10_1039_D4TA07509A crossref_primary_10_1002_advs_202401667 crossref_primary_10_1002_adma_202409633 crossref_primary_10_1016_j_ijhydene_2024_05_162 crossref_primary_10_1016_j_ceramint_2022_08_302 crossref_primary_10_1002_apj_70013 crossref_primary_10_1016_j_ultsonch_2023_106584 crossref_primary_10_1016_j_apcatb_2024_123868 crossref_primary_10_1021_acssuschemeng_4c10017 crossref_primary_10_1016_j_desal_2024_117932 crossref_primary_10_1039_D2EN01033J crossref_primary_10_3390_molecules29235698 crossref_primary_10_1016_j_nanoen_2022_107573 crossref_primary_10_1016_j_mtchem_2024_102337 crossref_primary_10_1016_j_surfin_2025_105921 crossref_primary_10_1016_j_nanoen_2023_108173 crossref_primary_10_1002_admt_202200390 crossref_primary_10_1016_j_nantod_2025_102666 crossref_primary_10_1016_j_scriptamat_2023_115509 crossref_primary_10_1002_anie_202409708 crossref_primary_10_1016_j_apcatb_2023_123335 crossref_primary_10_1002_adfm_202418427 crossref_primary_10_1002_pc_29214 crossref_primary_10_1002_adfm_202300818 crossref_primary_10_1016_j_seppur_2024_128801 crossref_primary_10_2139_ssrn_4102521 crossref_primary_10_26599_NRE_2024_9120137 crossref_primary_10_1016_j_surfin_2023_103656 crossref_primary_10_1039_D4TA00619D crossref_primary_10_1016_j_enrev_2023_100064 crossref_primary_10_12677_MS_2024_142020 crossref_primary_10_1002_adfm_202309974 crossref_primary_10_1039_D4QI01449A crossref_primary_10_1016_j_jcis_2025_01_211 crossref_primary_10_1016_j_enchem_2023_100115 crossref_primary_10_1016_j_nanoen_2023_108508 crossref_primary_10_1016_j_seppur_2023_125069 crossref_primary_10_1039_D3DT00993A crossref_primary_10_1016_j_apcatb_2022_121664 crossref_primary_10_1016_j_jece_2024_114277 crossref_primary_10_1016_j_jcis_2024_03_199 crossref_primary_10_1016_j_chemosphere_2024_143008 crossref_primary_10_1016_j_apcata_2024_119847 crossref_primary_10_1021_acscatal_2c05365 crossref_primary_10_1021_acs_inorgchem_3c01286 crossref_primary_10_1016_j_jallcom_2024_174218 crossref_primary_10_1016_j_jcis_2025_01_184 crossref_primary_10_1021_acs_nanolett_1c04574 crossref_primary_10_1016_j_cej_2024_151062 crossref_primary_10_1016_j_jcat_2023_115282 crossref_primary_10_1039_D3CP04866G crossref_primary_10_3390_catal12090987 crossref_primary_10_1016_j_surfin_2025_105981 crossref_primary_10_1016_j_apcatb_2022_121897 crossref_primary_10_1016_j_nanoen_2023_109206 crossref_primary_10_1016_j_nanoen_2023_108234 crossref_primary_10_1002_anie_202210700 crossref_primary_10_1021_acsanm_2c02072 crossref_primary_10_1002_adfm_202207655 crossref_primary_10_1002_adma_202301784 crossref_primary_10_1002_adma_202411118 crossref_primary_10_1007_s12274_023_6159_z crossref_primary_10_1016_j_apmate_2025_100265 crossref_primary_10_1016_j_apmate_2024_100201 crossref_primary_10_1039_D4CS01322K crossref_primary_10_1039_D3DT02328A crossref_primary_10_1021_acs_cgd_1c01380 crossref_primary_10_1002_smsc_202400132 crossref_primary_10_1021_acs_inorgchem_3c00760 crossref_primary_10_1016_j_apsusc_2024_161163 crossref_primary_10_1016_j_carbpol_2025_123508 crossref_primary_10_1039_D2TC05338A crossref_primary_10_1016_j_nanoen_2024_109677 crossref_primary_10_1038_s41545_024_00382_x crossref_primary_10_1039_D3CC01196H crossref_primary_10_1007_s12274_023_5957_7 crossref_primary_10_1016_j_checat_2024_100901 crossref_primary_10_1016_j_nanoen_2022_108093 crossref_primary_10_1002_cjoc_202200571 crossref_primary_10_1016_j_cej_2022_137981 crossref_primary_10_1021_acs_langmuir_4c02315 crossref_primary_10_1039_D1CE01567B crossref_primary_10_3390_molecules29245834 crossref_primary_10_1021_acsmaterialslett_4c00773 crossref_primary_10_1002_advs_202413105 crossref_primary_10_1021_acs_inorgchem_4c03786 crossref_primary_10_1016_j_cej_2024_149885 crossref_primary_10_1002_adfm_202500501 crossref_primary_10_1039_D2PY00682K crossref_primary_10_1016_j_optmat_2023_114758 crossref_primary_10_1039_D4CS00869C crossref_primary_10_1016_j_ultsonch_2022_106223 crossref_primary_10_1016_j_cej_2023_147738 crossref_primary_10_1039_D4TB01311E crossref_primary_10_1002_adfm_202210265 crossref_primary_10_1021_acsami_2c09290 crossref_primary_10_1016_j_apcatb_2024_124932 crossref_primary_10_1016_j_cej_2025_161704 crossref_primary_10_1002_adfm_202416556 crossref_primary_10_1002_anie_202217565 crossref_primary_10_1016_j_ceramint_2023_11_279 crossref_primary_10_1002_advs_202303448 crossref_primary_10_1016_j_nanoen_2024_109657 crossref_primary_10_1002_ange_202210700 crossref_primary_10_1016_j_ccr_2022_214692 crossref_primary_10_1016_j_chemosphere_2024_144019 crossref_primary_10_1021_acs_chemmater_2c02089 crossref_primary_10_1016_j_cej_2023_141866 crossref_primary_10_1016_j_jcis_2025_02_190 crossref_primary_10_3390_ma16145122 crossref_primary_10_1002_ange_202217565 crossref_primary_10_1016_j_cej_2024_152368 crossref_primary_10_1016_j_nanoen_2022_107983 crossref_primary_10_1039_D3TB02620E crossref_primary_10_1002_adma_202305257 crossref_primary_10_1016_j_cej_2023_148012 crossref_primary_10_1016_j_nanoen_2023_108433 crossref_primary_10_1039_D2QI00985D crossref_primary_10_1016_j_bioactmat_2024_08_042 crossref_primary_10_1016_j_seppur_2025_131794 crossref_primary_10_1016_j_cej_2022_136561 crossref_primary_10_1016_j_jallcom_2022_168130 crossref_primary_10_1016_j_jcis_2024_10_108 crossref_primary_10_1002_smll_202304818 crossref_primary_10_1002_ange_202306964 crossref_primary_10_1016_j_cej_2024_156715 crossref_primary_10_1016_j_jcis_2024_07_187 crossref_primary_10_1016_j_cej_2023_146062 crossref_primary_10_1039_D3DT02077K crossref_primary_10_1016_j_cherd_2023_08_040 crossref_primary_10_1002_adma_202300027 crossref_primary_10_1016_j_jece_2024_113603 crossref_primary_10_1016_j_cej_2023_147828 crossref_primary_10_1016_j_apsusc_2023_157461 crossref_primary_10_1016_j_jcis_2024_04_064 crossref_primary_10_1021_acsanm_4c06034 crossref_primary_10_1016_j_ultsonch_2024_106912 crossref_primary_10_1016_j_cej_2022_135128 crossref_primary_10_1002_smll_202207266 crossref_primary_10_1007_s12274_023_5610_5 crossref_primary_10_1016_j_apcatb_2023_123177 crossref_primary_10_1039_D3TA01535A crossref_primary_10_1021_acs_inorgchem_3c00300 crossref_primary_10_1016_j_mtchem_2023_101486 crossref_primary_10_1016_j_nanoen_2023_108342 crossref_primary_10_1016_j_seppur_2023_123968 crossref_primary_10_3390_nano14201641 crossref_primary_10_1016_j_cej_2024_150600 crossref_primary_10_1016_j_jcis_2024_03_145 crossref_primary_10_1016_j_jcis_2024_02_220 crossref_primary_10_1016_j_seppur_2024_129293 crossref_primary_10_1039_D3MA00620D crossref_primary_10_1002_aenm_202401873 crossref_primary_10_1002_adfm_202400612 crossref_primary_10_1016_j_ceramint_2024_10_059 crossref_primary_10_1016_j_nantod_2023_101814 crossref_primary_10_1016_j_cej_2025_160935 crossref_primary_10_1016_j_cej_2024_158555 crossref_primary_10_1002_anie_202319882 crossref_primary_10_1016_j_biomaterials_2024_122532 crossref_primary_10_1002_ange_202409708 crossref_primary_10_1002_adma_202407718 crossref_primary_10_1016_j_seppur_2022_120861 crossref_primary_10_1016_j_xcrp_2023_101545 crossref_primary_10_1016_j_cej_2024_148853 crossref_primary_10_1039_D1RA09063A crossref_primary_10_1016_j_cej_2024_148854 crossref_primary_10_1039_D1MH01973B crossref_primary_10_1016_j_apsusc_2024_160694 crossref_primary_10_1016_j_eng_2024_11_009 crossref_primary_10_1021_acssuschemeng_4c02771 crossref_primary_10_1007_s11164_022_04753_2 crossref_primary_10_1039_D2TA04528A crossref_primary_10_1021_acsami_2c20685 crossref_primary_10_1021_acs_nanolett_4c06083 crossref_primary_10_1016_j_nanoen_2023_108515 crossref_primary_10_1002_anie_202306964 crossref_primary_10_1016_j_nanoen_2023_108993 crossref_primary_10_1039_D2MA01022D crossref_primary_10_1016_j_nanoen_2024_109720 crossref_primary_10_1002_adfm_202502787 crossref_primary_10_1002_adfm_202407309 crossref_primary_10_1002_adma_202202508 crossref_primary_10_1016_j_envres_2022_114189 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1016_j_cej_2024_155145 crossref_primary_10_1016_j_cej_2024_158657 crossref_primary_10_1002_aenm_202203720 crossref_primary_10_1021_acsami_4c01283 crossref_primary_10_3390_nano14070559 crossref_primary_10_1002_aenm_202303215 crossref_primary_10_1016_j_bioactmat_2024_01_003 crossref_primary_10_1021_acscatal_3c02565 crossref_primary_10_1039_D4EE01379D crossref_primary_10_3390_polym14204311 crossref_primary_10_1039_D3BM01944F crossref_primary_10_1016_j_ceramint_2023_12_232 crossref_primary_10_1016_j_jcis_2023_11_090 crossref_primary_10_1039_D2TA06212G crossref_primary_10_1002_smll_202401650 crossref_primary_10_1021_acsnano_3c02044 crossref_primary_10_1021_acssuschemeng_3c06462 crossref_primary_10_1002_cnl2_107 crossref_primary_10_1002_aoc_7170 crossref_primary_10_1016_j_mtsust_2024_100973 crossref_primary_10_1073_pnas_2317435121 crossref_primary_10_1016_j_scitotenv_2023_161767 crossref_primary_10_1021_acsnano_3c01856 crossref_primary_10_1021_acsomega_2c00223 crossref_primary_10_1038_s41467_024_47022_z crossref_primary_10_1038_s41467_024_46432_3 crossref_primary_10_1016_j_jece_2024_113909 crossref_primary_10_2139_ssrn_4196759 crossref_primary_10_1002_anie_202213927 crossref_primary_10_1002_adfm_202203224 crossref_primary_10_1016_j_matdes_2023_112377 crossref_primary_10_1016_j_desal_2022_116226 crossref_primary_10_1016_j_nanoen_2023_108784 |
Cites_doi | 10.1021/jp053593e 10.1002/adfm.202005158 10.1002/chem.200903526 10.1002/anie.201901361 10.1039/D0CS00920B 10.1002/eom2.12007 10.1016/j.nanoen.2019.05.067 10.1021/jacs.0c09000 10.1002/anie.201907074 10.1016/j.enchem.2019.100006 10.1002/adma.201908350 10.1002/anie.202104219 10.1021/acscatal.0c05354 10.1002/anie.201914424 10.1002/adma.202101751 10.1002/anie.201806862 10.1021/acs.jpcc.8b08442 10.1021/acs.chemrev.9b00201 10.1002/adma.201601133 10.1021/acs.accounts.6b00577 10.1002/adfm.201908168 10.1021/acsnano.8b00110 10.1039/C4CS90059F 10.1002/adfm.202102315 10.1126/science.1230444 10.1016/j.ultsonch.2019.104819 10.1002/anie.202000929 10.1016/j.apcatb.2021.120371 10.1021/ja508626n 10.1002/adma.202100317 10.1016/j.nanoen.2017.12.034 10.1039/C4CC09407G 10.1126/science.253.5026.1397 10.1039/C3CS60425J 10.1002/anie.202011614 10.1016/j.nanoen.2018.08.069 10.1002/anie.201603990 10.1002/adma.201800154 10.1039/C8CS00256H 10.1002/aenm.201901801 10.1002/adma.201707377 10.1002/adma.201806482 10.1039/C7NR04245K 10.1002/adma.201703663 10.1016/j.nanoen.2019.01.095 10.1016/j.apcatb.2021.120268 10.1021/acs.jpcc.8b00471 10.1002/anie.202106929 10.1002/anie.202009518 10.1016/j.nanoen.2019.05.058 10.1016/j.ccr.2019.02.033 10.1021/acscatal.8b01105 10.1002/adma.201702891 10.1021/acs.est.8b00946 10.1016/j.jhazmat.2020.122514 10.1002/adma.202007479 10.1002/aenm.202000214 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202106308 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34642997 10_1002_adma_202106308 ADMA202106308 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Chinese Academy of Sciences funderid: DNL201911 – fundername: National Natural Science Foundation of China funderid: 21725101; 22161142001; 21521001 – fundername: National Natural Science Foundation of China grantid: 22161142001 – fundername: National Natural Science Foundation of China grantid: 21521001 – fundername: Chinese Academy of Sciences grantid: DNL201911 – fundername: National Natural Science Foundation of China grantid: 21725101 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3738-5ddbb5d870e88e26d8af87081855dab245b492e9bb67d4d4a3018e35c8beb2053 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 17:43:22 EDT 2025 Fri Jul 25 07:36:30 EDT 2025 Mon Jul 21 05:58:18 EDT 2025 Tue Jul 01 02:33:08 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Wed Jan 22 16:27:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | piezoelectric effect photocatalysis piezo-photocatalysis metal-organic frameworks |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-5ddbb5d870e88e26d8af87081855dab245b492e9bb67d4d4a3018e35c8beb2053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2254-360X 0000-0002-2975-7977 |
PMID | 34642997 |
PQID | 2612296332 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2581790590 proquest_journals_2612296332 pubmed_primary_34642997 crossref_primary_10_1002_adma_202106308 crossref_citationtrail_10_1002_adma_202106308 wiley_primary_10_1002_adma_202106308_ADMA202106308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018 2018 2021 2018; 8 30 60 122 1991 2018 2020 2021; 253 45 394 11 2019; 9 2019; 62 2021; 33 2018 2021 2021 2020; 12 296 60 59 2020; 30 2018 2019 2020; 30 62 30 2019 2021 2021; 1 33 31 2019; 58 2014 2005; 136 109 2020; 59 2019 2019 2020; 31 58 32 2010 2015 2016 2018; 16 51 55 57 2014 2020; 43 120 2019 2021; 58 60 2020; 10 2018 2018 2020; 52 53 61 2021; 50 2020 2021; 59 33 2013 2014 2016 2017 2018 2018 2019 2019 2020; 341 43 28 50 47 30 1 388 142 2017; 9 2019; 123 2018 2021; 30 297 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_7_2 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_11_9 e_1_2_7_19_1 e_1_2_7_11_8 e_1_2_7_11_7 e_1_2_7_17_1 e_1_2_7_11_6 e_1_2_7_1_2 e_1_2_7_11_5 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_11_4 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_9_3 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_14_4 e_1_2_7_14_3 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_22_4 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 58 60 year: 2019 2021 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 16 51 55 57 start-page: 2056 9389 year: 2010 2015 2016 2018 publication-title: Chem. ‐ Eur. J. Chem. Commun. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 8 30 60 122 start-page: 5890 3305 year: 2018 2018 2021 2018 publication-title: ACS Catal. Adv. Mater. Angew. Chem., Int. Ed. J. Phys. Chem. C – volume: 59 start-page: 6007 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 59 33 year: 2020 2021 publication-title: Angew. Chem., Int. Ed. Adv. Mater. – volume: 1 33 31 year: 2019 2021 2021 publication-title: EcoMat Adv. Mater. Adv. Funct. Mater. – volume: 253 45 394 11 start-page: 1397 44 4739 year: 1991 2018 2020 2021 publication-title: Science Nano Energy J. Hazard. Mater. ACS Catal. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 58 start-page: 695 year: 2019 publication-title: Nano Energy – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 62 start-page: 376 year: 2019 publication-title: Nano Energy – volume: 12 296 60 59 start-page: 5333 6500 year: 2018 2021 2021 2020 publication-title: ACS Nano Appl. Catal., B Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 43 120 start-page: 7787 919 year: 2014 2020 publication-title: Chem. Soc. Rev. Chem. Rev. – volume: 31 58 32 year: 2019 2019 2020 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. – volume: 30 297 year: 2018 2021 publication-title: Adv. Mater. Appl. Catal., B – volume: 30 62 30 start-page: 513 year: 2018 2019 2020 publication-title: Adv. Mater. Nano Energy Adv. Funct. Mater. – volume: 52 53 61 start-page: 7842 513 year: 2018 2018 2020 publication-title: Environ. Sci. Technol. Nano Energy Ultrason. Sonochem. – volume: 50 start-page: 4629 year: 2021 publication-title: Chem. Soc. Rev. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 136 109 year: 2014 2005 publication-title: J. Am. Chem. Soc. J. Phys. Chem. A – volume: 341 43 28 50 47 30 1 388 142 start-page: 5415 8819 805 8134 79 year: 2013 2014 2016 2017 2018 2018 2019 2019 2020 publication-title: Science Chem. Soc. Rev. Adv. Mater. Acc. Chem. Res. Chem. Soc. Rev. Adv. Mater. EnergyChem Coord. Chem. Rev. J. Am. Chem. Soc. – volume: 123 start-page: 3122 year: 2019 publication-title: J. Phys. Chem. C – ident: e_1_2_7_20_2 doi: 10.1021/jp053593e – ident: e_1_2_7_8_3 doi: 10.1002/adfm.202005158 – ident: e_1_2_7_14_1 doi: 10.1002/chem.200903526 – ident: e_1_2_7_7_1 doi: 10.1002/anie.201901361 – ident: e_1_2_7_13_1 doi: 10.1039/D0CS00920B – ident: e_1_2_7_6_1 doi: 10.1002/eom2.12007 – ident: e_1_2_7_8_2 doi: 10.1016/j.nanoen.2019.05.067 – ident: e_1_2_7_11_9 doi: 10.1021/jacs.0c09000 – ident: e_1_2_7_3_2 doi: 10.1002/anie.201907074 – ident: e_1_2_7_11_7 doi: 10.1016/j.enchem.2019.100006 – ident: e_1_2_7_3_3 doi: 10.1002/adma.201908350 – ident: e_1_2_7_4_3 doi: 10.1002/anie.202104219 – ident: e_1_2_7_22_4 doi: 10.1021/acscatal.0c05354 – ident: e_1_2_7_15_1 doi: 10.1002/anie.201914424 – ident: e_1_2_7_16_1 doi: 10.1002/adma.202101751 – ident: e_1_2_7_14_4 doi: 10.1002/anie.201806862 – ident: e_1_2_7_12_1 doi: 10.1021/acs.jpcc.8b08442 – ident: e_1_2_7_1_2 doi: 10.1021/acs.chemrev.9b00201 – ident: e_1_2_7_11_3 doi: 10.1002/adma.201601133 – ident: e_1_2_7_11_4 doi: 10.1021/acs.accounts.6b00577 – ident: e_1_2_7_18_1 doi: 10.1002/adfm.201908168 – ident: e_1_2_7_5_1 doi: 10.1021/acsnano.8b00110 – ident: e_1_2_7_11_2 doi: 10.1039/C4CS90059F – ident: e_1_2_7_6_3 doi: 10.1002/adfm.202102315 – ident: e_1_2_7_11_1 doi: 10.1126/science.1230444 – ident: e_1_2_7_9_3 doi: 10.1016/j.ultsonch.2019.104819 – ident: e_1_2_7_5_4 doi: 10.1002/anie.202000929 – ident: e_1_2_7_5_2 doi: 10.1016/j.apcatb.2021.120371 – ident: e_1_2_7_20_1 doi: 10.1021/ja508626n – ident: e_1_2_7_2_2 doi: 10.1002/adma.202100317 – ident: e_1_2_7_22_2 doi: 10.1016/j.nanoen.2017.12.034 – ident: e_1_2_7_14_2 doi: 10.1039/C4CC09407G – ident: e_1_2_7_22_1 doi: 10.1126/science.253.5026.1397 – ident: e_1_2_7_1_1 doi: 10.1039/C3CS60425J – ident: e_1_2_7_2_1 doi: 10.1002/anie.202011614 – ident: e_1_2_7_9_2 doi: 10.1016/j.nanoen.2018.08.069 – ident: e_1_2_7_14_3 doi: 10.1002/anie.201603990 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201800154 – ident: e_1_2_7_11_5 doi: 10.1039/C8CS00256H – ident: e_1_2_7_23_1 doi: 10.1002/aenm.201901801 – ident: e_1_2_7_21_1 doi: 10.1002/adma.201707377 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201806482 – ident: e_1_2_7_19_1 doi: 10.1039/C7NR04245K – ident: e_1_2_7_11_6 doi: 10.1002/adma.201703663 – ident: e_1_2_7_17_1 doi: 10.1016/j.nanoen.2019.01.095 – ident: e_1_2_7_21_2 doi: 10.1016/j.apcatb.2021.120268 – ident: e_1_2_7_4_4 doi: 10.1021/acs.jpcc.8b00471 – ident: e_1_2_7_5_3 doi: 10.1002/anie.202106929 – ident: e_1_2_7_7_2 doi: 10.1002/anie.202009518 – ident: e_1_2_7_24_1 doi: 10.1016/j.nanoen.2019.05.058 – ident: e_1_2_7_11_8 doi: 10.1016/j.ccr.2019.02.033 – ident: e_1_2_7_4_1 doi: 10.1021/acscatal.8b01105 – ident: e_1_2_7_4_2 doi: 10.1002/adma.201702891 – ident: e_1_2_7_9_1 doi: 10.1021/acs.est.8b00946 – ident: e_1_2_7_22_3 doi: 10.1016/j.jhazmat.2020.122514 – ident: e_1_2_7_6_2 doi: 10.1002/adma.202007479 – ident: e_1_2_7_10_1 doi: 10.1002/aenm.202000214 |
SSID | ssj0009606 |
Score | 2.6984751 |
Snippet | The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge... The built-in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2106308 |
SubjectTerms | Catalytic activity Electric fields Hydrogen production Irradiation Mass transfer Materials science Metal-organic frameworks Photocatalysis piezoelectric effect Piezoelectricity piezo‐photocatalysis Zirconium |
Title | Piezo‐Photocatalysis over Metal–Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202106308 https://www.ncbi.nlm.nih.gov/pubmed/34642997 https://www.proquest.com/docview/2612296332 https://www.proquest.com/docview/2581790590 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9CnODAYHxlY5ORJnEKFMd2Em4VW1UhdaoQSNwif5UhUAJre4ATf8Ik_kP-Ep7tJm2H0CR2i2U7dmy_L-e93wP4dsi4TZm2sU65QQPF6lhZfGolCQoII9MQ4d37Kbrn7OSCX8xE8Qd8iObCzVGG59eOwKUaHkxBQ6XxuEFosojER_s6hy2nFZ1O8aOceu7B9hIe54JlNWpjix7Md5-XSq9UzXnN1YuezgeQ9aSDx8n1_nik9vXDX3iO__NVq7Ay0UtJOxykNViw5UdYnkErXIe7_pV9qJ4f__R_VaPK3_s4OBPinEBJz2Lx-fEpxHZq0qmdvoZHpB9c_spLMtMTxyFtHXJXEHVP_MtDUh6sCaDKG3De-XF23I0nGRti7RCSYm6MUtwgD7BZZqkwmRxgwSkF3EhFGVcspzZXSqSGGSaRvWQ24TpTaOEjP9iExbIq7TaQ3FmuA2qpThmTgkubmFxlItcDtGAPRQRxvWOFnsCZu6waN0UAYqaFW8qiWcoI9pr2twHI482WO_UBKCYEPSwc0hpFZpXQCHabaiRF939FlrYaYxueebyzvBXBVjg4zVAJE07ypxFQv_3_mEPR_t5rN6VP7-n0GZbcc3C92YHF0e-x_YIK1Eh99UTyArgwFC4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEIBHFT2UHvqClrS0GAmpp8CuYztJb6vS1UJZtEIgcYvix9KqKGnL7qGc-AmV-g_5JZ2xN4EtqpDgFid2np7xjDP-BmCjK6RLhXGxSaVFB8WZWDvc6iQJDhC2TMMK7-G-GhyJ3WPZRBPSWpjAh2gn3EgyvL4mAacJ6a0ramhpPTgIfRaV0HLfh5TWm_D52wdXBCky0D1uL5FxrkTWcBs7fGu-_fy4dMPYnLdd_eDTfwq6ue0Qc_JtczrRm-b8H6LjvZ7rGTyZmaasF_rSc3jgqhfw-BqwcAl-jL668_ry4vfoSz2p_dQPEU0YxYGyocPi5cWfsLzTsH4T93X2gY1C1F91wq61xOuwngnpK5j-xfzJQ14ePBK4ystw1P90-HEQz5I2xIYgSbG0VmtpUQ24LHNc2awcY4HsAmlLzYXUIucu11qlVlhRoobJXCJNptHJR5XwEhaqunIrwHJyXsfccZMKUSpZusTmOlO5GaMT21URxM0nK8yMaE6JNU6LwGLmBb3Kon2VEbxv638PLI__1lxtekAxk-mzgmBrHPVVwiNYbw-jNNIvlrJy9RTryMwjz_JOBK9Cz2kvlQhFg38aAfff_5Z7KHrbw15ben2XRmvwaHA43Cv2dvY_v4FF2h8icVZhYfJz6t6iPTXR77zE_AXwWhhK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKqH2QIG2NOXlSpV6CiyO7SS9rVhWvBatKpC4RX4tVK0SKLuHcuInVOIf8ks6tjdhlwpVKrc4tmPH8bycmW8APm0zblOmbaxTbtBAsTpWFq9aSYICwsg0RHj3jsXeKTs442cTUfwBH6I5cHOU4fm1I_BLM9h6AA2VxuMGockiEhft-4KJVu6SN3S-PgBIOf3co-0lPM4Fy2rYxhbdmu4_LZb-0jWnVVcve7qvQdazDi4n3zdHQ7Wpbx4BOj7ntRZgfqyYknbYSYswY8sleDUBV_gGrvrf7E11f_u7f1ENK3_w4_BMiPMCJT2LxfvbuxDcqUm39vq6_kL6weevPCcTPXEc0tYheQVRv4h_eMjKgzUBVfktnHZ3T3b24nHKhlg7iKSYG6MUN8gEbJZZKkwmB1hwWgE3UlHGFcupzZUSqWGGSeQvmU24zhSa-MgQ3sFsWZX2PZDcma4DaqlOGZOCS5uYXGUi1wM0YbdFBHH9xQo9xjN3aTV-FAGJmRZuKYtmKSP43LS_DEgeT7ZcrTdAMabo68JBrVHkVgmN4GNTjbTofrDI0lYjbMMzD3iWtyJYDhunGSphwon-NALqP_8_5lC0O712U_rwP502YK7f6RZH-8eHK_DS3Q5uOKswO_w5smuoTA3VuqeXP5P-Fvk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezo-Photocatalysis+over+Metal-Organic+Frameworks%3A+Promoting+Photocatalytic+Activity+by+Piezoelectric+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Chenxi&rft.au=Lei%2C+Da&rft.au=Xie%2C+Chenfan&rft.au=Hang%2C+Xiaoshuai&rft.date=2021-12-01&rft.eissn=1521-4095&rft.volume=33&rft.issue=51&rft.spage=e2106308&rft_id=info:doi/10.1002%2Fadma.202106308&rft_id=info%3Apmid%2F34642997&rft.externalDocID=34642997 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |