Piezo‐Photocatalysis over Metal–Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect

The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 51; pp. e2106308 - n/a
Main Authors Zhang, Chenxi, Lei, Da, Xie, Chenfan, Hang, Xiaoshuai, He, Chuanxin, Jiang, Hai‐Long
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal–organic frameworks (MOFs), i.e., UiO‐66‐NH2(Zr) and UiO‐66‐NH2(Hf), are adopted for piezo‐photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf‐oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO‐66‐NH2(Hf) exhibits ≈2.2 times of activity compared with that of UiO‐66‐NH2(Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo‐photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO‐66‐NH2(Hf). Two isostructural metal–organic frameworks (MOFs) with distinctly different piezoelectric responses are used in piezo‐photocatalysis. Remarkably, the H2 production efficiency of Hf‐MOF is 2.2 times that of Zr‐MOF under simultaneous light and ultrasonic irradiation. The role of the piezoelectric effect can be distinguished owing to their similar pore features and mass transfer behaviors.
AbstractList The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal–organic frameworks (MOFs), i.e., UiO‐66‐NH 2 (Zr) and UiO‐66‐NH 2 (Hf), are adopted for piezo‐photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf‐oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO‐66‐NH 2 (Hf) exhibits ≈2.2 times of activity compared with that of UiO‐66‐NH 2 (Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H 2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo‐photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO‐66‐NH 2 (Hf).
The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal–organic frameworks (MOFs), i.e., UiO‐66‐NH2(Zr) and UiO‐66‐NH2(Hf), are adopted for piezo‐photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf‐oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO‐66‐NH2(Hf) exhibits ≈2.2 times of activity compared with that of UiO‐66‐NH2(Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo‐photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO‐66‐NH2(Hf).
The built-in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal-organic frameworks (MOFs), i.e., UiO-66-NH2 (Zr) and UiO-66-NH2 (Hf), are adopted for piezo-photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf-oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO-66-NH2 (Hf) exhibits ≈2.2 times of activity compared with that of UiO-66-NH2 (Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo-photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO-66-NH2 (Hf).The built-in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal-organic frameworks (MOFs), i.e., UiO-66-NH2 (Zr) and UiO-66-NH2 (Hf), are adopted for piezo-photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf-oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO-66-NH2 (Hf) exhibits ≈2.2 times of activity compared with that of UiO-66-NH2 (Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo-photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO-66-NH2 (Hf).
The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal–organic frameworks (MOFs), i.e., UiO‐66‐NH2(Zr) and UiO‐66‐NH2(Hf), are adopted for piezo‐photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf‐oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO‐66‐NH2(Hf) exhibits ≈2.2 times of activity compared with that of UiO‐66‐NH2(Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo‐photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO‐66‐NH2(Hf). Two isostructural metal–organic frameworks (MOFs) with distinctly different piezoelectric responses are used in piezo‐photocatalysis. Remarkably, the H2 production efficiency of Hf‐MOF is 2.2 times that of Zr‐MOF under simultaneous light and ultrasonic irradiation. The role of the piezoelectric effect can be distinguished owing to their similar pore features and mass transfer behaviors.
The built-in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal-organic frameworks (MOFs), i.e., UiO-66-NH (Zr) and UiO-66-NH (Hf), are adopted for piezo-photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf-oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO-66-NH (Hf) exhibits ≈2.2 times of activity compared with that of UiO-66-NH (Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo-photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO-66-NH (Hf).
Author Jiang, Hai‐Long
Xie, Chenfan
Hang, Xiaoshuai
Zhang, Chenxi
Lei, Da
He, Chuanxin
Author_xml – sequence: 1
  givenname: Chenxi
  surname: Zhang
  fullname: Zhang, Chenxi
  organization: Hanshan Normal University
– sequence: 2
  givenname: Da
  surname: Lei
  fullname: Lei, Da
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Chenfan
  surname: Xie
  fullname: Xie, Chenfan
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Xiaoshuai
  surname: Hang
  fullname: Hang, Xiaoshuai
  organization: Ministry of Ecology and Environment
– sequence: 5
  givenname: Chuanxin
  orcidid: 0000-0002-2254-360X
  surname: He
  fullname: He, Chuanxin
  email: hecx@szu.edu.cn
  organization: Shenzhen University
– sequence: 6
  givenname: Hai‐Long
  orcidid: 0000-0002-2975-7977
  surname: Jiang
  fullname: Jiang, Hai‐Long
  email: jianglab@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34642997$$D View this record in MEDLINE/PubMed
BookMark eNqFkctO3DAUhq0KVAbabZdVpG7YZOprYnc34tZKIGbRri07OaGmSQy2BxRWPEKlviFPgukArZCqruyj833H1vm30cboR0DoHcFzgjH9aNrBzCmmBFcMy1doRgQlJcdKbKAZVkyUquJyC23HeI4xVhWuXqMtxitOlapn6HLp4Mbf3f5cfvfJNyaZfoouFv4KQnECuby7_XUazszomuIwmAGuffgRPxXL4Aef3HhW_GWmDC2a5K5cmgo7Fb-HQw9NCrlz0HX59gZtdqaP8Pbx3EHfDg--7n0uj0-PvuwtjsuG1UyWom2tFa2sMUgJtGql6XIhiRSiNZZyYbmioKyt6pa33DBMJDDRSAuWYsF20O567kXwlyuISQ8uNtD3ZgS_ipoKSWqFhcIZ_fACPferMObfaVoRSlXFGM3U-0dqZQdo9UVwgwmTflpmBuZroAk-xgDdM0KwfkhLP6Sln9PKAn8hNC6Z5PyYgnH9vzW11q5dD9N_HtGL_ZPFH_cey2esWw
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_165813
crossref_primary_10_1002_adfm_202209365
crossref_primary_10_1002_aenm_202300086
crossref_primary_10_1002_ange_202213927
crossref_primary_10_1016_j_apsusc_2023_156794
crossref_primary_10_1016_j_apsusc_2024_160893
crossref_primary_10_1016_j_cej_2022_139300
crossref_primary_10_1016_j_jallcom_2022_167434
crossref_primary_10_1016_j_ceramint_2022_02_130
crossref_primary_10_1063_5_0218539
crossref_primary_10_1016_j_ccr_2024_216234
crossref_primary_10_1016_j_apcatb_2022_121330
crossref_primary_10_1016_j_optmat_2024_116088
crossref_primary_10_1002_ange_202319882
crossref_primary_10_1002_zaac_202200031
crossref_primary_10_1021_acs_inorgchem_4c03520
crossref_primary_10_1063_5_0202991
crossref_primary_10_1021_acsami_4c03256
crossref_primary_10_1021_acscatal_4c02243
crossref_primary_10_1039_D4TA07509A
crossref_primary_10_1002_advs_202401667
crossref_primary_10_1002_adma_202409633
crossref_primary_10_1016_j_ijhydene_2024_05_162
crossref_primary_10_1016_j_ceramint_2022_08_302
crossref_primary_10_1002_apj_70013
crossref_primary_10_1016_j_ultsonch_2023_106584
crossref_primary_10_1016_j_apcatb_2024_123868
crossref_primary_10_1021_acssuschemeng_4c10017
crossref_primary_10_1016_j_desal_2024_117932
crossref_primary_10_1039_D2EN01033J
crossref_primary_10_3390_molecules29235698
crossref_primary_10_1016_j_nanoen_2022_107573
crossref_primary_10_1016_j_mtchem_2024_102337
crossref_primary_10_1016_j_surfin_2025_105921
crossref_primary_10_1016_j_nanoen_2023_108173
crossref_primary_10_1002_admt_202200390
crossref_primary_10_1016_j_nantod_2025_102666
crossref_primary_10_1016_j_scriptamat_2023_115509
crossref_primary_10_1002_anie_202409708
crossref_primary_10_1016_j_apcatb_2023_123335
crossref_primary_10_1002_adfm_202418427
crossref_primary_10_1002_pc_29214
crossref_primary_10_1002_adfm_202300818
crossref_primary_10_1016_j_seppur_2024_128801
crossref_primary_10_2139_ssrn_4102521
crossref_primary_10_26599_NRE_2024_9120137
crossref_primary_10_1016_j_surfin_2023_103656
crossref_primary_10_1039_D4TA00619D
crossref_primary_10_1016_j_enrev_2023_100064
crossref_primary_10_12677_MS_2024_142020
crossref_primary_10_1002_adfm_202309974
crossref_primary_10_1039_D4QI01449A
crossref_primary_10_1016_j_jcis_2025_01_211
crossref_primary_10_1016_j_enchem_2023_100115
crossref_primary_10_1016_j_nanoen_2023_108508
crossref_primary_10_1016_j_seppur_2023_125069
crossref_primary_10_1039_D3DT00993A
crossref_primary_10_1016_j_apcatb_2022_121664
crossref_primary_10_1016_j_jece_2024_114277
crossref_primary_10_1016_j_jcis_2024_03_199
crossref_primary_10_1016_j_chemosphere_2024_143008
crossref_primary_10_1016_j_apcata_2024_119847
crossref_primary_10_1021_acscatal_2c05365
crossref_primary_10_1021_acs_inorgchem_3c01286
crossref_primary_10_1016_j_jallcom_2024_174218
crossref_primary_10_1016_j_jcis_2025_01_184
crossref_primary_10_1021_acs_nanolett_1c04574
crossref_primary_10_1016_j_cej_2024_151062
crossref_primary_10_1016_j_jcat_2023_115282
crossref_primary_10_1039_D3CP04866G
crossref_primary_10_3390_catal12090987
crossref_primary_10_1016_j_surfin_2025_105981
crossref_primary_10_1016_j_apcatb_2022_121897
crossref_primary_10_1016_j_nanoen_2023_109206
crossref_primary_10_1016_j_nanoen_2023_108234
crossref_primary_10_1002_anie_202210700
crossref_primary_10_1021_acsanm_2c02072
crossref_primary_10_1002_adfm_202207655
crossref_primary_10_1002_adma_202301784
crossref_primary_10_1002_adma_202411118
crossref_primary_10_1007_s12274_023_6159_z
crossref_primary_10_1016_j_apmate_2025_100265
crossref_primary_10_1016_j_apmate_2024_100201
crossref_primary_10_1039_D4CS01322K
crossref_primary_10_1039_D3DT02328A
crossref_primary_10_1021_acs_cgd_1c01380
crossref_primary_10_1002_smsc_202400132
crossref_primary_10_1021_acs_inorgchem_3c00760
crossref_primary_10_1016_j_apsusc_2024_161163
crossref_primary_10_1016_j_carbpol_2025_123508
crossref_primary_10_1039_D2TC05338A
crossref_primary_10_1016_j_nanoen_2024_109677
crossref_primary_10_1038_s41545_024_00382_x
crossref_primary_10_1039_D3CC01196H
crossref_primary_10_1007_s12274_023_5957_7
crossref_primary_10_1016_j_checat_2024_100901
crossref_primary_10_1016_j_nanoen_2022_108093
crossref_primary_10_1002_cjoc_202200571
crossref_primary_10_1016_j_cej_2022_137981
crossref_primary_10_1021_acs_langmuir_4c02315
crossref_primary_10_1039_D1CE01567B
crossref_primary_10_3390_molecules29245834
crossref_primary_10_1021_acsmaterialslett_4c00773
crossref_primary_10_1002_advs_202413105
crossref_primary_10_1021_acs_inorgchem_4c03786
crossref_primary_10_1016_j_cej_2024_149885
crossref_primary_10_1002_adfm_202500501
crossref_primary_10_1039_D2PY00682K
crossref_primary_10_1016_j_optmat_2023_114758
crossref_primary_10_1039_D4CS00869C
crossref_primary_10_1016_j_ultsonch_2022_106223
crossref_primary_10_1016_j_cej_2023_147738
crossref_primary_10_1039_D4TB01311E
crossref_primary_10_1002_adfm_202210265
crossref_primary_10_1021_acsami_2c09290
crossref_primary_10_1016_j_apcatb_2024_124932
crossref_primary_10_1016_j_cej_2025_161704
crossref_primary_10_1002_adfm_202416556
crossref_primary_10_1002_anie_202217565
crossref_primary_10_1016_j_ceramint_2023_11_279
crossref_primary_10_1002_advs_202303448
crossref_primary_10_1016_j_nanoen_2024_109657
crossref_primary_10_1002_ange_202210700
crossref_primary_10_1016_j_ccr_2022_214692
crossref_primary_10_1016_j_chemosphere_2024_144019
crossref_primary_10_1021_acs_chemmater_2c02089
crossref_primary_10_1016_j_cej_2023_141866
crossref_primary_10_1016_j_jcis_2025_02_190
crossref_primary_10_3390_ma16145122
crossref_primary_10_1002_ange_202217565
crossref_primary_10_1016_j_cej_2024_152368
crossref_primary_10_1016_j_nanoen_2022_107983
crossref_primary_10_1039_D3TB02620E
crossref_primary_10_1002_adma_202305257
crossref_primary_10_1016_j_cej_2023_148012
crossref_primary_10_1016_j_nanoen_2023_108433
crossref_primary_10_1039_D2QI00985D
crossref_primary_10_1016_j_bioactmat_2024_08_042
crossref_primary_10_1016_j_seppur_2025_131794
crossref_primary_10_1016_j_cej_2022_136561
crossref_primary_10_1016_j_jallcom_2022_168130
crossref_primary_10_1016_j_jcis_2024_10_108
crossref_primary_10_1002_smll_202304818
crossref_primary_10_1002_ange_202306964
crossref_primary_10_1016_j_cej_2024_156715
crossref_primary_10_1016_j_jcis_2024_07_187
crossref_primary_10_1016_j_cej_2023_146062
crossref_primary_10_1039_D3DT02077K
crossref_primary_10_1016_j_cherd_2023_08_040
crossref_primary_10_1002_adma_202300027
crossref_primary_10_1016_j_jece_2024_113603
crossref_primary_10_1016_j_cej_2023_147828
crossref_primary_10_1016_j_apsusc_2023_157461
crossref_primary_10_1016_j_jcis_2024_04_064
crossref_primary_10_1021_acsanm_4c06034
crossref_primary_10_1016_j_ultsonch_2024_106912
crossref_primary_10_1016_j_cej_2022_135128
crossref_primary_10_1002_smll_202207266
crossref_primary_10_1007_s12274_023_5610_5
crossref_primary_10_1016_j_apcatb_2023_123177
crossref_primary_10_1039_D3TA01535A
crossref_primary_10_1021_acs_inorgchem_3c00300
crossref_primary_10_1016_j_mtchem_2023_101486
crossref_primary_10_1016_j_nanoen_2023_108342
crossref_primary_10_1016_j_seppur_2023_123968
crossref_primary_10_3390_nano14201641
crossref_primary_10_1016_j_cej_2024_150600
crossref_primary_10_1016_j_jcis_2024_03_145
crossref_primary_10_1016_j_jcis_2024_02_220
crossref_primary_10_1016_j_seppur_2024_129293
crossref_primary_10_1039_D3MA00620D
crossref_primary_10_1002_aenm_202401873
crossref_primary_10_1002_adfm_202400612
crossref_primary_10_1016_j_ceramint_2024_10_059
crossref_primary_10_1016_j_nantod_2023_101814
crossref_primary_10_1016_j_cej_2025_160935
crossref_primary_10_1016_j_cej_2024_158555
crossref_primary_10_1002_anie_202319882
crossref_primary_10_1016_j_biomaterials_2024_122532
crossref_primary_10_1002_ange_202409708
crossref_primary_10_1002_adma_202407718
crossref_primary_10_1016_j_seppur_2022_120861
crossref_primary_10_1016_j_xcrp_2023_101545
crossref_primary_10_1016_j_cej_2024_148853
crossref_primary_10_1039_D1RA09063A
crossref_primary_10_1016_j_cej_2024_148854
crossref_primary_10_1039_D1MH01973B
crossref_primary_10_1016_j_apsusc_2024_160694
crossref_primary_10_1016_j_eng_2024_11_009
crossref_primary_10_1021_acssuschemeng_4c02771
crossref_primary_10_1007_s11164_022_04753_2
crossref_primary_10_1039_D2TA04528A
crossref_primary_10_1021_acsami_2c20685
crossref_primary_10_1021_acs_nanolett_4c06083
crossref_primary_10_1016_j_nanoen_2023_108515
crossref_primary_10_1002_anie_202306964
crossref_primary_10_1016_j_nanoen_2023_108993
crossref_primary_10_1039_D2MA01022D
crossref_primary_10_1016_j_nanoen_2024_109720
crossref_primary_10_1002_adfm_202502787
crossref_primary_10_1002_adfm_202407309
crossref_primary_10_1002_adma_202202508
crossref_primary_10_1016_j_envres_2022_114189
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1016_j_cej_2024_155145
crossref_primary_10_1016_j_cej_2024_158657
crossref_primary_10_1002_aenm_202203720
crossref_primary_10_1021_acsami_4c01283
crossref_primary_10_3390_nano14070559
crossref_primary_10_1002_aenm_202303215
crossref_primary_10_1016_j_bioactmat_2024_01_003
crossref_primary_10_1021_acscatal_3c02565
crossref_primary_10_1039_D4EE01379D
crossref_primary_10_3390_polym14204311
crossref_primary_10_1039_D3BM01944F
crossref_primary_10_1016_j_ceramint_2023_12_232
crossref_primary_10_1016_j_jcis_2023_11_090
crossref_primary_10_1039_D2TA06212G
crossref_primary_10_1002_smll_202401650
crossref_primary_10_1021_acsnano_3c02044
crossref_primary_10_1021_acssuschemeng_3c06462
crossref_primary_10_1002_cnl2_107
crossref_primary_10_1002_aoc_7170
crossref_primary_10_1016_j_mtsust_2024_100973
crossref_primary_10_1073_pnas_2317435121
crossref_primary_10_1016_j_scitotenv_2023_161767
crossref_primary_10_1021_acsnano_3c01856
crossref_primary_10_1021_acsomega_2c00223
crossref_primary_10_1038_s41467_024_47022_z
crossref_primary_10_1038_s41467_024_46432_3
crossref_primary_10_1016_j_jece_2024_113909
crossref_primary_10_2139_ssrn_4196759
crossref_primary_10_1002_anie_202213927
crossref_primary_10_1002_adfm_202203224
crossref_primary_10_1016_j_matdes_2023_112377
crossref_primary_10_1016_j_desal_2022_116226
crossref_primary_10_1016_j_nanoen_2023_108784
Cites_doi 10.1021/jp053593e
10.1002/adfm.202005158
10.1002/chem.200903526
10.1002/anie.201901361
10.1039/D0CS00920B
10.1002/eom2.12007
10.1016/j.nanoen.2019.05.067
10.1021/jacs.0c09000
10.1002/anie.201907074
10.1016/j.enchem.2019.100006
10.1002/adma.201908350
10.1002/anie.202104219
10.1021/acscatal.0c05354
10.1002/anie.201914424
10.1002/adma.202101751
10.1002/anie.201806862
10.1021/acs.jpcc.8b08442
10.1021/acs.chemrev.9b00201
10.1002/adma.201601133
10.1021/acs.accounts.6b00577
10.1002/adfm.201908168
10.1021/acsnano.8b00110
10.1039/C4CS90059F
10.1002/adfm.202102315
10.1126/science.1230444
10.1016/j.ultsonch.2019.104819
10.1002/anie.202000929
10.1016/j.apcatb.2021.120371
10.1021/ja508626n
10.1002/adma.202100317
10.1016/j.nanoen.2017.12.034
10.1039/C4CC09407G
10.1126/science.253.5026.1397
10.1039/C3CS60425J
10.1002/anie.202011614
10.1016/j.nanoen.2018.08.069
10.1002/anie.201603990
10.1002/adma.201800154
10.1039/C8CS00256H
10.1002/aenm.201901801
10.1002/adma.201707377
10.1002/adma.201806482
10.1039/C7NR04245K
10.1002/adma.201703663
10.1016/j.nanoen.2019.01.095
10.1016/j.apcatb.2021.120268
10.1021/acs.jpcc.8b00471
10.1002/anie.202106929
10.1002/anie.202009518
10.1016/j.nanoen.2019.05.058
10.1016/j.ccr.2019.02.033
10.1021/acscatal.8b01105
10.1002/adma.201702891
10.1021/acs.est.8b00946
10.1016/j.jhazmat.2020.122514
10.1002/adma.202007479
10.1002/aenm.202000214
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202106308
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34642997
10_1002_adma_202106308
ADMA202106308
Genre article
Journal Article
GrantInformation_xml – fundername: Chinese Academy of Sciences
  funderid: DNL201911
– fundername: National Natural Science Foundation of China
  funderid: 21725101; 22161142001; 21521001
– fundername: National Natural Science Foundation of China
  grantid: 22161142001
– fundername: National Natural Science Foundation of China
  grantid: 21521001
– fundername: Chinese Academy of Sciences
  grantid: DNL201911
– fundername: National Natural Science Foundation of China
  grantid: 21725101
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3738-5ddbb5d870e88e26d8af87081855dab245b492e9bb67d4d4a3018e35c8beb2053
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 17:43:22 EDT 2025
Fri Jul 25 07:36:30 EDT 2025
Mon Jul 21 05:58:18 EDT 2025
Tue Jul 01 02:33:08 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Wed Jan 22 16:27:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords piezoelectric effect
photocatalysis
piezo-photocatalysis
metal-organic frameworks
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-5ddbb5d870e88e26d8af87081855dab245b492e9bb67d4d4a3018e35c8beb2053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2254-360X
0000-0002-2975-7977
PMID 34642997
PQID 2612296332
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2581790590
proquest_journals_2612296332
pubmed_primary_34642997
crossref_primary_10_1002_adma_202106308
crossref_citationtrail_10_1002_adma_202106308
wiley_primary_10_1002_adma_202106308_ADMA202106308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018 2018 2021 2018; 8 30 60 122
1991 2018 2020 2021; 253 45 394 11
2019; 9
2019; 62
2021; 33
2018 2021 2021 2020; 12 296 60 59
2020; 30
2018 2019 2020; 30 62 30
2019 2021 2021; 1 33 31
2019; 58
2014 2005; 136 109
2020; 59
2019 2019 2020; 31 58 32
2010 2015 2016 2018; 16 51 55 57
2014 2020; 43 120
2019 2021; 58 60
2020; 10
2018 2018 2020; 52 53 61
2021; 50
2020 2021; 59 33
2013 2014 2016 2017 2018 2018 2019 2019 2020; 341 43 28 50 47 30 1 388 142
2017; 9
2019; 123
2018 2021; 30 297
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_7_2
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_11_9
e_1_2_7_19_1
e_1_2_7_11_8
e_1_2_7_11_7
e_1_2_7_17_1
e_1_2_7_11_6
e_1_2_7_1_2
e_1_2_7_11_5
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_11_4
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_9_3
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_14_4
e_1_2_7_14_3
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_22_4
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 58 60
  year: 2019 2021
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 16 51 55 57
  start-page: 2056 9389
  year: 2010 2015 2016 2018
  publication-title: Chem. ‐ Eur. J. Chem. Commun. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 8 30 60 122
  start-page: 5890 3305
  year: 2018 2018 2021 2018
  publication-title: ACS Catal. Adv. Mater. Angew. Chem., Int. Ed. J. Phys. Chem. C
– volume: 59
  start-page: 6007
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 59 33
  year: 2020 2021
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 1 33 31
  year: 2019 2021 2021
  publication-title: EcoMat Adv. Mater. Adv. Funct. Mater.
– volume: 253 45 394 11
  start-page: 1397 44 4739
  year: 1991 2018 2020 2021
  publication-title: Science Nano Energy J. Hazard. Mater. ACS Catal.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 58
  start-page: 695
  year: 2019
  publication-title: Nano Energy
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 62
  start-page: 376
  year: 2019
  publication-title: Nano Energy
– volume: 12 296 60 59
  start-page: 5333 6500
  year: 2018 2021 2021 2020
  publication-title: ACS Nano Appl. Catal., B Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 43 120
  start-page: 7787 919
  year: 2014 2020
  publication-title: Chem. Soc. Rev. Chem. Rev.
– volume: 31 58 32
  year: 2019 2019 2020
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 30 297
  year: 2018 2021
  publication-title: Adv. Mater. Appl. Catal., B
– volume: 30 62 30
  start-page: 513
  year: 2018 2019 2020
  publication-title: Adv. Mater. Nano Energy Adv. Funct. Mater.
– volume: 52 53 61
  start-page: 7842 513
  year: 2018 2018 2020
  publication-title: Environ. Sci. Technol. Nano Energy Ultrason. Sonochem.
– volume: 50
  start-page: 4629
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 136 109
  year: 2014 2005
  publication-title: J. Am. Chem. Soc. J. Phys. Chem. A
– volume: 341 43 28 50 47 30 1 388 142
  start-page: 5415 8819 805 8134 79
  year: 2013 2014 2016 2017 2018 2018 2019 2019 2020
  publication-title: Science Chem. Soc. Rev. Adv. Mater. Acc. Chem. Res. Chem. Soc. Rev. Adv. Mater. EnergyChem Coord. Chem. Rev. J. Am. Chem. Soc.
– volume: 123
  start-page: 3122
  year: 2019
  publication-title: J. Phys. Chem. C
– ident: e_1_2_7_20_2
  doi: 10.1021/jp053593e
– ident: e_1_2_7_8_3
  doi: 10.1002/adfm.202005158
– ident: e_1_2_7_14_1
  doi: 10.1002/chem.200903526
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201901361
– ident: e_1_2_7_13_1
  doi: 10.1039/D0CS00920B
– ident: e_1_2_7_6_1
  doi: 10.1002/eom2.12007
– ident: e_1_2_7_8_2
  doi: 10.1016/j.nanoen.2019.05.067
– ident: e_1_2_7_11_9
  doi: 10.1021/jacs.0c09000
– ident: e_1_2_7_3_2
  doi: 10.1002/anie.201907074
– ident: e_1_2_7_11_7
  doi: 10.1016/j.enchem.2019.100006
– ident: e_1_2_7_3_3
  doi: 10.1002/adma.201908350
– ident: e_1_2_7_4_3
  doi: 10.1002/anie.202104219
– ident: e_1_2_7_22_4
  doi: 10.1021/acscatal.0c05354
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.201914424
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.202101751
– ident: e_1_2_7_14_4
  doi: 10.1002/anie.201806862
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.jpcc.8b08442
– ident: e_1_2_7_1_2
  doi: 10.1021/acs.chemrev.9b00201
– ident: e_1_2_7_11_3
  doi: 10.1002/adma.201601133
– ident: e_1_2_7_11_4
  doi: 10.1021/acs.accounts.6b00577
– ident: e_1_2_7_18_1
  doi: 10.1002/adfm.201908168
– ident: e_1_2_7_5_1
  doi: 10.1021/acsnano.8b00110
– ident: e_1_2_7_11_2
  doi: 10.1039/C4CS90059F
– ident: e_1_2_7_6_3
  doi: 10.1002/adfm.202102315
– ident: e_1_2_7_11_1
  doi: 10.1126/science.1230444
– ident: e_1_2_7_9_3
  doi: 10.1016/j.ultsonch.2019.104819
– ident: e_1_2_7_5_4
  doi: 10.1002/anie.202000929
– ident: e_1_2_7_5_2
  doi: 10.1016/j.apcatb.2021.120371
– ident: e_1_2_7_20_1
  doi: 10.1021/ja508626n
– ident: e_1_2_7_2_2
  doi: 10.1002/adma.202100317
– ident: e_1_2_7_22_2
  doi: 10.1016/j.nanoen.2017.12.034
– ident: e_1_2_7_14_2
  doi: 10.1039/C4CC09407G
– ident: e_1_2_7_22_1
  doi: 10.1126/science.253.5026.1397
– ident: e_1_2_7_1_1
  doi: 10.1039/C3CS60425J
– ident: e_1_2_7_2_1
  doi: 10.1002/anie.202011614
– ident: e_1_2_7_9_2
  doi: 10.1016/j.nanoen.2018.08.069
– ident: e_1_2_7_14_3
  doi: 10.1002/anie.201603990
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201800154
– ident: e_1_2_7_11_5
  doi: 10.1039/C8CS00256H
– ident: e_1_2_7_23_1
  doi: 10.1002/aenm.201901801
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.201707377
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201806482
– ident: e_1_2_7_19_1
  doi: 10.1039/C7NR04245K
– ident: e_1_2_7_11_6
  doi: 10.1002/adma.201703663
– ident: e_1_2_7_17_1
  doi: 10.1016/j.nanoen.2019.01.095
– ident: e_1_2_7_21_2
  doi: 10.1016/j.apcatb.2021.120268
– ident: e_1_2_7_4_4
  doi: 10.1021/acs.jpcc.8b00471
– ident: e_1_2_7_5_3
  doi: 10.1002/anie.202106929
– ident: e_1_2_7_7_2
  doi: 10.1002/anie.202009518
– ident: e_1_2_7_24_1
  doi: 10.1016/j.nanoen.2019.05.058
– ident: e_1_2_7_11_8
  doi: 10.1016/j.ccr.2019.02.033
– ident: e_1_2_7_4_1
  doi: 10.1021/acscatal.8b01105
– ident: e_1_2_7_4_2
  doi: 10.1002/adma.201702891
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.est.8b00946
– ident: e_1_2_7_22_3
  doi: 10.1016/j.jhazmat.2020.122514
– ident: e_1_2_7_6_2
  doi: 10.1002/adma.202007479
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.202000214
SSID ssj0009606
Score 2.6984751
Snippet The built‐in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge...
The built-in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2106308
SubjectTerms Catalytic activity
Electric fields
Hydrogen production
Irradiation
Mass transfer
Materials science
Metal-organic frameworks
Photocatalysis
piezoelectric effect
Piezoelectricity
piezo‐photocatalysis
Zirconium
Title Piezo‐Photocatalysis over Metal–Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202106308
https://www.ncbi.nlm.nih.gov/pubmed/34642997
https://www.proquest.com/docview/2612296332
https://www.proquest.com/docview/2581790590
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9CnODAYHxlY5ORJnEKFMd2Em4VW1UhdaoQSNwif5UhUAJre4ATf8Ik_kP-Ep7tJm2H0CR2i2U7dmy_L-e93wP4dsi4TZm2sU65QQPF6lhZfGolCQoII9MQ4d37Kbrn7OSCX8xE8Qd8iObCzVGG59eOwKUaHkxBQ6XxuEFosojER_s6hy2nFZ1O8aOceu7B9hIe54JlNWpjix7Md5-XSq9UzXnN1YuezgeQ9aSDx8n1_nik9vXDX3iO__NVq7Ay0UtJOxykNViw5UdYnkErXIe7_pV9qJ4f__R_VaPK3_s4OBPinEBJz2Lx-fEpxHZq0qmdvoZHpB9c_spLMtMTxyFtHXJXEHVP_MtDUh6sCaDKG3De-XF23I0nGRti7RCSYm6MUtwgD7BZZqkwmRxgwSkF3EhFGVcspzZXSqSGGSaRvWQ24TpTaOEjP9iExbIq7TaQ3FmuA2qpThmTgkubmFxlItcDtGAPRQRxvWOFnsCZu6waN0UAYqaFW8qiWcoI9pr2twHI482WO_UBKCYEPSwc0hpFZpXQCHabaiRF939FlrYaYxueebyzvBXBVjg4zVAJE07ypxFQv_3_mEPR_t5rN6VP7-n0GZbcc3C92YHF0e-x_YIK1Eh99UTyArgwFC4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEIBHFT2UHvqClrS0GAmpp8CuYztJb6vS1UJZtEIgcYvix9KqKGnL7qGc-AmV-g_5JZ2xN4EtqpDgFid2np7xjDP-BmCjK6RLhXGxSaVFB8WZWDvc6iQJDhC2TMMK7-G-GhyJ3WPZRBPSWpjAh2gn3EgyvL4mAacJ6a0ramhpPTgIfRaV0HLfh5TWm_D52wdXBCky0D1uL5FxrkTWcBs7fGu-_fy4dMPYnLdd_eDTfwq6ue0Qc_JtczrRm-b8H6LjvZ7rGTyZmaasF_rSc3jgqhfw-BqwcAl-jL668_ry4vfoSz2p_dQPEU0YxYGyocPi5cWfsLzTsH4T93X2gY1C1F91wq61xOuwngnpK5j-xfzJQ14ePBK4ystw1P90-HEQz5I2xIYgSbG0VmtpUQ24LHNc2awcY4HsAmlLzYXUIucu11qlVlhRoobJXCJNptHJR5XwEhaqunIrwHJyXsfccZMKUSpZusTmOlO5GaMT21URxM0nK8yMaE6JNU6LwGLmBb3Kon2VEbxv638PLI__1lxtekAxk-mzgmBrHPVVwiNYbw-jNNIvlrJy9RTryMwjz_JOBK9Cz2kvlQhFg38aAfff_5Z7KHrbw15ben2XRmvwaHA43Cv2dvY_v4FF2h8icVZhYfJz6t6iPTXR77zE_AXwWhhK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKqH2QIG2NOXlSpV6CiyO7SS9rVhWvBatKpC4RX4tVK0SKLuHcuInVOIf8ks6tjdhlwpVKrc4tmPH8bycmW8APm0zblOmbaxTbtBAsTpWFq9aSYICwsg0RHj3jsXeKTs442cTUfwBH6I5cHOU4fm1I_BLM9h6AA2VxuMGockiEhft-4KJVu6SN3S-PgBIOf3co-0lPM4Fy2rYxhbdmu4_LZb-0jWnVVcve7qvQdazDi4n3zdHQ7Wpbx4BOj7ntRZgfqyYknbYSYswY8sleDUBV_gGrvrf7E11f_u7f1ENK3_w4_BMiPMCJT2LxfvbuxDcqUm39vq6_kL6weevPCcTPXEc0tYheQVRv4h_eMjKgzUBVfktnHZ3T3b24nHKhlg7iKSYG6MUN8gEbJZZKkwmB1hwWgE3UlHGFcupzZUSqWGGSeQvmU24zhSa-MgQ3sFsWZX2PZDcma4DaqlOGZOCS5uYXGUi1wM0YbdFBHH9xQo9xjN3aTV-FAGJmRZuKYtmKSP43LS_DEgeT7ZcrTdAMabo68JBrVHkVgmN4GNTjbTofrDI0lYjbMMzD3iWtyJYDhunGSphwon-NALqP_8_5lC0O712U_rwP502YK7f6RZH-8eHK_DS3Q5uOKswO_w5smuoTA3VuqeXP5P-Fvk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezo-Photocatalysis+over+Metal-Organic+Frameworks%3A+Promoting+Photocatalytic+Activity+by+Piezoelectric+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Chenxi&rft.au=Lei%2C+Da&rft.au=Xie%2C+Chenfan&rft.au=Hang%2C+Xiaoshuai&rft.date=2021-12-01&rft.eissn=1521-4095&rft.volume=33&rft.issue=51&rft.spage=e2106308&rft_id=info:doi/10.1002%2Fadma.202106308&rft_id=info%3Apmid%2F34642997&rft.externalDocID=34642997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon