An Unfused‐Core‐Based Nonfullerene Acceptor Enables High‐Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures

Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring core. In this work, a new nonfullerene acceptor of DF‐PCIC is synthesized with an unfused‐ring core containing two cyclopentadithiophene (CPD...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 6
Main Authors Li, Shuixing, Zhan, Lingling, Liu, Feng, Ren, Jie, Shi, Minmin, Li, Chang‐Zhi, Russell, Thomas P., Chen, Hongzheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 08.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring core. In this work, a new nonfullerene acceptor of DF‐PCIC is synthesized with an unfused‐ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5‐difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF‐PCIC. After proper optimizations, the OSCs with DF‐PCIC as the acceptor and the polymer PBDB‐T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused‐ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB‐T:DF‐PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene‐free OSCs, which might be due to the unique unfused‐ring core of DF‐PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future. A new nonfullerene acceptor (DF‐PCIC) is designed and synthesized by utilizing noncovalent interactions. Organic solar cells (OSCs) with DF‐PCIC as the acceptor exhibit the best efficiency of 10.14% with a high fill factor of 0.72. More importantly, excellent morphological stability is achieved for DF‐PCIC‐based devices, which is meaningful for the future practical applications of OSCs.
AbstractList Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring core. In this work, a new nonfullerene acceptor of DF‐PCIC is synthesized with an unfused‐ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5‐difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF‐PCIC. After proper optimizations, the OSCs with DF‐PCIC as the acceptor and the polymer PBDB‐T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused‐ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB‐T:DF‐PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene‐free OSCs, which might be due to the unique unfused‐ring core of DF‐PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future. A new nonfullerene acceptor (DF‐PCIC) is designed and synthesized by utilizing noncovalent interactions. Organic solar cells (OSCs) with DF‐PCIC as the acceptor exhibit the best efficiency of 10.14% with a high fill factor of 0.72. More importantly, excellent morphological stability is achieved for DF‐PCIC‐based devices, which is meaningful for the future practical applications of OSCs.
Most nonfullerene acceptors developed so far for high-performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused-ring core. In this work, a new nonfullerene acceptor of DF-PCIC is synthesized with an unfused-ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5-difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF-PCIC. After proper optimizations, the OSCs with DF-PCIC as the acceptor and the polymer PBDB-T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused-ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB-T:DF-PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene-free OSCs, which might be due to the unique unfused-ring core of DF-PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future.Most nonfullerene acceptors developed so far for high-performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused-ring core. In this work, a new nonfullerene acceptor of DF-PCIC is synthesized with an unfused-ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5-difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF-PCIC. After proper optimizations, the OSCs with DF-PCIC as the acceptor and the polymer PBDB-T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused-ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB-T:DF-PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene-free OSCs, which might be due to the unique unfused-ring core of DF-PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future.
Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring core. In this work, a new nonfullerene acceptor of DF‐PCIC is synthesized with an unfused‐ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5‐difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF‐PCIC. After proper optimizations, the OSCs with DF‐PCIC as the acceptor and the polymer PBDB‐T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused‐ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB‐T:DF‐PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene‐free OSCs, which might be due to the unique unfused‐ring core of DF‐PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future.
Most nonfullerene acceptors developed so far for high-performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused-ring core. In this work, a new nonfullerene acceptor of DF-PCIC is synthesized with an unfused-ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5-difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF-PCIC. After proper optimizations, the OSCs with DF-PCIC as the acceptor and the polymer PBDB-T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused-ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB-T:DF-PCIC blended films, and the relevant devices can keep [asymp]70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene-free OSCs, which might be due to the unique unfused-ring core of DF-PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future.
Author Ren, Jie
Shi, Minmin
Liu, Feng
Chen, Hongzheng
Zhan, Lingling
Li, Chang‐Zhi
Li, Shuixing
Russell, Thomas P.
Author_xml – sequence: 1
  givenname: Shuixing
  surname: Li
  fullname: Li, Shuixing
  organization: Zhejiang University
– sequence: 2
  givenname: Lingling
  surname: Zhan
  fullname: Zhan, Lingling
  organization: Zhejiang University
– sequence: 3
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  email: fengliu82@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Jie
  surname: Ren
  fullname: Ren, Jie
  organization: Zhejiang University
– sequence: 5
  givenname: Minmin
  surname: Shi
  fullname: Shi, Minmin
  email: minminshi@zju.edu.cn
  organization: Zhejiang University
– sequence: 6
  givenname: Chang‐Zhi
  surname: Li
  fullname: Li, Chang‐Zhi
  organization: Zhejiang University
– sequence: 7
  givenname: Thomas P.
  surname: Russell
  fullname: Russell, Thomas P.
  organization: University of Massachusetts
– sequence: 8
  givenname: Hongzheng
  orcidid: 0000-0002-5922-9550
  surname: Chen
  fullname: Chen, Hongzheng
  email: hzchen@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29271518$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vFCEYh4mpsdvq1aMh8eJlV2D-wXFcV2vS2kPbM2EY2KVhYAQmdW9-BK9-PT-JjNtq0sR4evOS5_nlDb8TcOS8UwC8xGiFESJvRT-IFUG4QRVB9AlY4IrgZYlYdQQWiBXVktUlPQYnMd4ihFiN6mfgmDDS4ArTBfjROnjj9BRV__Pb97UPKo93Iq_ws8_v1qqgnIKtlGpMPsCNE51VEZ6Z7S6jG62NNMrJPbwMW-GMhFfeigDXytoI70zawc1XmRflErzwYdx567dGCguvkuiMNWkPRfqdB6_VMKog0hRUfA6eamGjenE_T8HNh831-mx5fvnx07o9X8qiKeiyqnsiJKGSECE062hflqzQlOJOVH2HWClQJ5lmuqRF3fdVQzvUdw3DuCg6XRen4M0hdwz-y6Ri4oOJ88HCKT9FjlnDWJ3zZvT1I_TWT8Hl6zLFGM4NNDP16p6aukH1fAxmEGHPHz49A-UBkMHHGJTm0iSRjHcpCGM5Rnzuls_d8j_dZm31SHtI_qfADsKdsWr_H5q37y_av-4vVO-7Nw
CitedBy_id crossref_primary_10_1039_C8TA04718A
crossref_primary_10_1021_acsami_8b01147
crossref_primary_10_1002_ejoc_202401337
crossref_primary_10_1002_advs_201903259
crossref_primary_10_1002_smll_202101133
crossref_primary_10_1038_s41563_020_00872_6
crossref_primary_10_1002_solr_202000275
crossref_primary_10_1007_s10118_022_2825_y
crossref_primary_10_1038_s41467_019_10351_5
crossref_primary_10_1039_D3TC01742G
crossref_primary_10_1002_solr_202300453
crossref_primary_10_1021_jacs_0c04084
crossref_primary_10_1039_D0TC02061C
crossref_primary_10_1016_j_jphotochem_2024_115983
crossref_primary_10_1016_j_comptc_2024_114549
crossref_primary_10_1016_j_dyepig_2022_110680
crossref_primary_10_1021_jacs_4c00090
crossref_primary_10_1021_acsami_8b04541
crossref_primary_10_1021_acsenergylett_1c01154
crossref_primary_10_1002_adma_202005348
crossref_primary_10_1016_j_synthmet_2018_03_011
crossref_primary_10_1039_D4TC05217J
crossref_primary_10_1039_D0TA03058A
crossref_primary_10_1039_D2TA09500A
crossref_primary_10_3389_fmats_2024_1383816
crossref_primary_10_1016_j_comptc_2024_114538
crossref_primary_10_1016_j_orgel_2020_105662
crossref_primary_10_1021_acsapm_0c00791
crossref_primary_10_1002_smll_202103537
crossref_primary_10_1039_D4TA00933A
crossref_primary_10_1016_j_dyepig_2022_110459
crossref_primary_10_1021_acsenergylett_8b00563
crossref_primary_10_1039_C8TC01780H
crossref_primary_10_1021_acsami_2c03723
crossref_primary_10_1021_acsmaterialslett_3c01020
crossref_primary_10_1002_adom_201801719
crossref_primary_10_1039_C9TC02700A
crossref_primary_10_1021_acs_chemmater_8b04265
crossref_primary_10_1039_D4TC01176G
crossref_primary_10_1002_pol_20210947
crossref_primary_10_1002_adma_202110569
crossref_primary_10_1021_acs_jpcb_5c00283
crossref_primary_10_1039_D3NJ00845B
crossref_primary_10_1021_acsenergylett_0c00537
crossref_primary_10_1039_D0TC05691J
crossref_primary_10_1039_C9TC05013B
crossref_primary_10_1002_solr_202100094
crossref_primary_10_1016_j_cej_2022_136509
crossref_primary_10_1039_C9QM00005D
crossref_primary_10_1073_pnas_1919769117
crossref_primary_10_1002_ange_202416751
crossref_primary_10_1002_anie_202214931
crossref_primary_10_1021_acsami_0c14774
crossref_primary_10_1039_D1TA03643B
crossref_primary_10_1021_acsapm_2c00519
crossref_primary_10_1021_acsami_1c15278
crossref_primary_10_1039_C8QM00609A
crossref_primary_10_1002_solr_202300531
crossref_primary_10_1016_j_dyepig_2022_110760
crossref_primary_10_1002_marc_202200530
crossref_primary_10_1016_j_molstruc_2025_141977
crossref_primary_10_1021_acs_jpcc_2c07730
crossref_primary_10_1021_acsami_0c12100
crossref_primary_10_1002_adma_201906129
crossref_primary_10_1002_adma_202107330
crossref_primary_10_1039_C8TA02534G
crossref_primary_10_1002_adfm_201904956
crossref_primary_10_1039_D0MH01585G
crossref_primary_10_1039_D2TC05164H
crossref_primary_10_1002_anie_201915030
crossref_primary_10_1002_adma_202205844
crossref_primary_10_1002_solr_202300784
crossref_primary_10_1002_solr_201900077
crossref_primary_10_1021_acsaem_3c03171
crossref_primary_10_1039_D2PY00139J
crossref_primary_10_1021_acsaem_2c00475
crossref_primary_10_1021_acsami_3c18325
crossref_primary_10_1021_acs_chemmater_8b02276
crossref_primary_10_1039_D0QM00025F
crossref_primary_10_1039_C8TA11197A
crossref_primary_10_1016_j_nanoen_2019_04_053
crossref_primary_10_1002_solr_202000246
crossref_primary_10_1002_aenm_202203402
crossref_primary_10_1021_acs_jpcc_1c07050
crossref_primary_10_1016_j_cej_2022_137621
crossref_primary_10_1016_j_cej_2022_139926
crossref_primary_10_1039_D3TA07542G
crossref_primary_10_1002_cjoc_202300542
crossref_primary_10_1002_advs_201801180
crossref_primary_10_1002_adma_202305006
crossref_primary_10_1002_solr_202300997
crossref_primary_10_1016_j_cclet_2019_01_010
crossref_primary_10_1002_adma_202001160
crossref_primary_10_54097_fv544g56
crossref_primary_10_1002_anie_202010856
crossref_primary_10_1002_adma_201802888
crossref_primary_10_1021_acsenergylett_8b00825
crossref_primary_10_1002_aenm_201900999
crossref_primary_10_1002_solr_202000421
crossref_primary_10_1039_C8TA03753A
crossref_primary_10_1002_anie_202318756
crossref_primary_10_1039_D2TA02604J
crossref_primary_10_1039_C9TA01888C
crossref_primary_10_1002_ange_201915030
crossref_primary_10_1038_s41467_021_23389_1
crossref_primary_10_1039_D0EE02251A
crossref_primary_10_1002_anie_202416751
crossref_primary_10_1039_D1TA10707K
crossref_primary_10_1021_acs_chemmater_8b04087
crossref_primary_10_1002_anie_202101867
crossref_primary_10_1021_acsaem_0c02719
crossref_primary_10_1039_D2NJ06130A
crossref_primary_10_1002_cssc_202100746
crossref_primary_10_1021_acs_accounts_3c00813
crossref_primary_10_1002_aenm_201900887
crossref_primary_10_1002_solr_202000537
crossref_primary_10_1246_bcsj_20200322
crossref_primary_10_1002_advs_201800434
crossref_primary_10_1039_D1TC01746B
crossref_primary_10_1039_D4EE03394A
crossref_primary_10_1016_j_dyepig_2022_110178
crossref_primary_10_1002_aenm_202003570
crossref_primary_10_1021_acsami_2c04530
crossref_primary_10_1002_smll_201801793
crossref_primary_10_1002_smtd_202200828
crossref_primary_10_1134_S1070363222110202
crossref_primary_10_1039_D1QM01622A
crossref_primary_10_1039_D2ME00068G
crossref_primary_10_1021_acsami_3c09076
crossref_primary_10_1007_s40820_024_01442_0
crossref_primary_10_1039_D0TA00677G
crossref_primary_10_1007_s10118_019_2309_x
crossref_primary_10_1002_adma_202007231
crossref_primary_10_1360_TB_2024_0449
crossref_primary_10_1002_solr_201800250
crossref_primary_10_1039_C8QM00238J
crossref_primary_10_1002_aenm_202003441
crossref_primary_10_1016_j_cplett_2019_04_024
crossref_primary_10_1021_acsami_8b16131
crossref_primary_10_1021_acsenergylett_8b01808
crossref_primary_10_1021_acsapm_1c01406
crossref_primary_10_1039_D0TA12288B
crossref_primary_10_1039_C9TA11285E
crossref_primary_10_1002_bkcs_12888
crossref_primary_10_1093_nsr_nwz200
crossref_primary_10_1016_j_dyepig_2023_111737
crossref_primary_10_1021_acsaem_2c01945
crossref_primary_10_1039_C8TA09370A
crossref_primary_10_1002_ente_202100912
crossref_primary_10_1002_cjoc_202400960
crossref_primary_10_1016_j_mtnano_2018_04_005
crossref_primary_10_1039_D2IM00037G
crossref_primary_10_1016_j_solener_2020_07_100
crossref_primary_10_1016_j_mseb_2023_116456
crossref_primary_10_1039_D4EE02296C
crossref_primary_10_1080_15421406_2019_1645458
crossref_primary_10_1002_smll_201907681
crossref_primary_10_1021_jacs_8b12126
crossref_primary_10_1002_cjoc_202300006
crossref_primary_10_1007_s40843_023_2867_6
crossref_primary_10_1007_s10118_022_2750_0
crossref_primary_10_1039_D1TC00579K
crossref_primary_10_1002_ange_202214931
crossref_primary_10_3390_molecules28083625
crossref_primary_10_1002_aenm_202002572
crossref_primary_10_1142_S2737416523500035
crossref_primary_10_1002_aenm_202003408
crossref_primary_10_1002_ange_202407355
crossref_primary_10_1038_s41467_019_11001_6
crossref_primary_10_1002_cjoc_202000457
crossref_primary_10_1016_j_dyepig_2020_108970
crossref_primary_10_1002_aenm_201803012
crossref_primary_10_1039_D2RA07957G
crossref_primary_10_1021_acsomega_0c02766
crossref_primary_10_1021_acsami_2c01190
crossref_primary_10_1002_adma_201907604
crossref_primary_10_1021_acsaem_4c00735
crossref_primary_10_1002_admt_202000174
crossref_primary_10_1002_smtd_202300036
crossref_primary_10_1021_acs_chemmater_2c02146
crossref_primary_10_1021_acs_chemmater_0c00097
crossref_primary_10_1016_j_cej_2021_132298
crossref_primary_10_1002_ange_202219245
crossref_primary_10_1038_s41467_019_08508_3
crossref_primary_10_1002_solr_202101034
crossref_primary_10_1002_cssc_202100689
crossref_primary_10_1007_s11082_020_02482_7
crossref_primary_10_1039_D1TA04030H
crossref_primary_10_1002_adma_202203379
crossref_primary_10_1002_adma_202401370
crossref_primary_10_1021_polymscitech_4c00054
crossref_primary_10_1002_anie_202403753
crossref_primary_10_1246_bcsj_20200231
crossref_primary_10_1007_s11426_018_9320_3
crossref_primary_10_1002_adfm_202311736
crossref_primary_10_1002_ange_202106753
crossref_primary_10_1039_D3NJ05123D
crossref_primary_10_1007_s00894_021_04922_x
crossref_primary_10_3389_femat_2022_851294
crossref_primary_10_1021_accountsmr_2c00052
crossref_primary_10_1002_adma_201808279
crossref_primary_10_1021_acs_macromol_2c02184
crossref_primary_10_1039_C8QM00318A
crossref_primary_10_1002_advs_202001986
crossref_primary_10_1021_acsami_0c17049
crossref_primary_10_1007_s11426_018_9315_2
crossref_primary_10_1002_smll_201802349
crossref_primary_10_1039_D3TC02039H
crossref_primary_10_1002_smtd_201900531
crossref_primary_10_1002_aenm_201801601
crossref_primary_10_1002_pola_29293
crossref_primary_10_1016_j_orgel_2021_106132
crossref_primary_10_1016_j_orgel_2021_106133
crossref_primary_10_1016_j_orgel_2021_106131
crossref_primary_10_1002_adma_201800613
crossref_primary_10_1021_acsami_0c00837
crossref_primary_10_1039_D0CS00084A
crossref_primary_10_1039_D5CP00267B
crossref_primary_10_1002_solr_202000812
crossref_primary_10_1002_solr_202200172
crossref_primary_10_1002_cjoc_202200683
crossref_primary_10_1016_j_cej_2022_137375
crossref_primary_10_1039_C9TA02544H
crossref_primary_10_1016_j_nanoen_2020_104861
crossref_primary_10_1021_acsaem_1c00369
crossref_primary_10_1002_adfm_202109410
crossref_primary_10_1016_j_chemphys_2021_111162
crossref_primary_10_1039_D4CS00132J
crossref_primary_10_1021_acsomega_8b02053
crossref_primary_10_1002_aenm_201801618
crossref_primary_10_1002_smll_202202411
crossref_primary_10_1016_j_orgel_2021_106340
crossref_primary_10_1021_jacs_8b02695
crossref_primary_10_1016_j_nanoen_2020_104609
crossref_primary_10_1002_smll_202201209
crossref_primary_10_1016_j_dyepig_2023_111478
crossref_primary_10_1016_j_solmat_2018_10_003
crossref_primary_10_1002_anie_202318143
crossref_primary_10_1021_acs_chemmater_0c00459
crossref_primary_10_1039_C8TA11441B
crossref_primary_10_1039_D1TA02075G
crossref_primary_10_1002_agt2_488
crossref_primary_10_1002_adma_202002973
crossref_primary_10_1039_D1QM00026H
crossref_primary_10_1016_j_mtener_2021_100938
crossref_primary_10_1016_j_nanoen_2020_104718
crossref_primary_10_1021_acs_inorgchem_4c04160
crossref_primary_10_1039_D1NR00470K
crossref_primary_10_1002_adfm_202418659
crossref_primary_10_1039_D4TC01785D
crossref_primary_10_1016_j_jechem_2022_03_030
crossref_primary_10_1002_chem_202403972
crossref_primary_10_1039_D1QM00027F
crossref_primary_10_1021_acs_energyfuels_2c00462
crossref_primary_10_1016_j_mtener_2021_100802
crossref_primary_10_1039_C9TC00162J
crossref_primary_10_1002_adfm_202108861
crossref_primary_10_1007_s12274_019_2288_9
crossref_primary_10_1002_adma_202206269
crossref_primary_10_1016_j_cclet_2019_12_003
crossref_primary_10_1021_acsami_9b04554
crossref_primary_10_1002_cssc_202102563
crossref_primary_10_1002_agt2_388
crossref_primary_10_1039_C9QM00505F
crossref_primary_10_1002_adma_201807577
crossref_primary_10_1039_C9TC02013F
crossref_primary_10_1039_D4EE02027H
crossref_primary_10_1021_acs_chemmater_3c01216
crossref_primary_10_1039_D2TC01077A
crossref_primary_10_1002_adfm_202007931
crossref_primary_10_1002_advs_201800755
crossref_primary_10_1039_D2TA09936E
crossref_primary_10_1002_ange_202010856
crossref_primary_10_1002_anie_202308496
crossref_primary_10_1016_j_dyepig_2021_109801
crossref_primary_10_1039_D2TA09188G
crossref_primary_10_1002_slct_202302799
crossref_primary_10_3390_polym15061508
crossref_primary_10_1002_marc_202200085
crossref_primary_10_1016_j_cej_2021_131473
crossref_primary_10_1021_acsaem_3c02429
crossref_primary_10_1002_aenm_202102591
crossref_primary_10_1016_j_arabjc_2022_104374
crossref_primary_10_1039_D2NJ04513C
crossref_primary_10_1002_agt2_281
crossref_primary_10_1039_D2TC02289C
crossref_primary_10_1039_D0QM00515K
crossref_primary_10_1016_j_cej_2023_144472
crossref_primary_10_1002_cssc_202200034
crossref_primary_10_1021_acsami_4c18536
crossref_primary_10_1021_acsami_1c16950
crossref_primary_10_1016_j_synthmet_2024_117716
crossref_primary_10_1002_ange_202318756
crossref_primary_10_1021_acsami_9b03499
crossref_primary_10_1039_D0QM00514B
crossref_primary_10_1016_j_nanoen_2020_104800
crossref_primary_10_1021_acsami_8b10347
crossref_primary_10_1088_2516_1075_ad1e3a
crossref_primary_10_1039_D0CC05528J
crossref_primary_10_1016_j_dyepig_2020_108319
crossref_primary_10_1021_acs_chemmater_8b00287
crossref_primary_10_3390_molecules24091760
crossref_primary_10_1002_anie_202407355
crossref_primary_10_1039_C9TA00164F
crossref_primary_10_1021_acsami_9b18076
crossref_primary_10_1002_adma_201906175
crossref_primary_10_1002_adfm_201803128
crossref_primary_10_1002_anie_202106753
crossref_primary_10_1039_C8NJ03941K
crossref_primary_10_1021_acsami_1c09597
crossref_primary_10_1039_C9TA07542A
crossref_primary_10_1007_s11426_020_9868_8
crossref_primary_10_1002_aenm_202000851
crossref_primary_10_1021_acsami_0c13993
crossref_primary_10_1039_D2RA08091E
crossref_primary_10_1039_C9EE03710A
crossref_primary_10_1007_s10118_019_2171_x
crossref_primary_10_1039_D1TC05550J
crossref_primary_10_1002_adfm_201909535
crossref_primary_10_1002_aenm_202304063
crossref_primary_10_1002_ange_202318143
crossref_primary_10_1021_acsami_9b09256
crossref_primary_10_1016_j_cclet_2018_09_014
crossref_primary_10_1002_solr_201900317
crossref_primary_10_1016_j_solener_2020_01_032
crossref_primary_10_1002_adma_201803166
crossref_primary_10_1007_s10854_018_9961_8
crossref_primary_10_1039_D1TA09392D
crossref_primary_10_1039_C8RA09292C
crossref_primary_10_1021_acsami_9b18095
crossref_primary_10_1021_acs_inorgchem_0c03691
crossref_primary_10_1007_s10118_022_2769_2
crossref_primary_10_1021_acsomega_8b01925
crossref_primary_10_1039_C9TA02243K
crossref_primary_10_1039_D0TA03683H
crossref_primary_10_3389_fchem_2018_00198
crossref_primary_10_1039_C9TA08328F
crossref_primary_10_1021_acsami_4c05136
crossref_primary_10_1021_acsami_4c06589
crossref_primary_10_1002_ange_202308496
crossref_primary_10_1016_j_solener_2021_10_048
crossref_primary_10_1021_acsomega_3c05665
crossref_primary_10_1016_j_cej_2021_129768
crossref_primary_10_1021_acsami_9b14981
crossref_primary_10_1002_solr_202100806
crossref_primary_10_1002_adma_202002217
crossref_primary_10_1007_s11426_021_1180_6
crossref_primary_10_1002_adfm_202108614
crossref_primary_10_1021_acs_accounts_4c00592
crossref_primary_10_1016_j_jphotochem_2023_115292
crossref_primary_10_1016_j_solmat_2021_111046
crossref_primary_10_1002_aenm_201801214
crossref_primary_10_1039_C9TA03177D
crossref_primary_10_1039_D0CC07086F
crossref_primary_10_1002_cssc_202101067
crossref_primary_10_1016_j_cplett_2022_140026
crossref_primary_10_1016_j_synthmet_2025_117864
crossref_primary_10_1038_s41598_024_74852_0
crossref_primary_10_1002_anie_202219245
crossref_primary_10_1039_D1EE02977K
crossref_primary_10_1016_j_dyepig_2025_112667
crossref_primary_10_1016_j_saa_2021_120493
crossref_primary_10_1021_acs_chemmater_9b02355
crossref_primary_10_1002_pol_20210938
crossref_primary_10_1016_j_cej_2022_135384
crossref_primary_10_1039_C8QO00788H
crossref_primary_10_1002_marc_202200139
crossref_primary_10_1021_acsaem_2c01179
crossref_primary_10_1016_j_orgel_2018_09_016
crossref_primary_10_1039_C8TA05440A
crossref_primary_10_1039_D2TA07390K
crossref_primary_10_1007_s11426_021_9991_0
crossref_primary_10_1002_aenm_201902065
crossref_primary_10_1016_j_orgel_2018_09_015
crossref_primary_10_1021_acsaem_3c02238
crossref_primary_10_1002_marc_202100828
crossref_primary_10_1039_C9TA06311K
crossref_primary_10_1021_acsami_0c01850
crossref_primary_10_1021_acsami_1c22520
crossref_primary_10_1039_C9TC05358A
crossref_primary_10_1039_D4EE04879B
crossref_primary_10_1016_j_mtener_2024_101591
crossref_primary_10_1021_acsaem_0c02083
crossref_primary_10_1016_j_solener_2020_03_023
crossref_primary_10_1002_adma_201807842
crossref_primary_10_1021_acsami_1c06299
crossref_primary_10_1002_solr_202400356
crossref_primary_10_1016_j_synthmet_2023_117481
crossref_primary_10_1021_acsaem_3c03231
crossref_primary_10_1021_acsami_1c11412
crossref_primary_10_1016_j_mtener_2019_07_005
crossref_primary_10_1021_jacs_0c09800
crossref_primary_10_1002_aenm_202201076
crossref_primary_10_1002_ange_202403753
crossref_primary_10_3390_molecules30020344
crossref_primary_10_1016_j_nanoen_2023_108661
crossref_primary_10_1039_C9TC04680A
crossref_primary_10_1039_D4TA02180K
crossref_primary_10_1088_2399_7532_abf337
crossref_primary_10_1039_D0TA07960J
crossref_primary_10_1002_aenm_202100342
crossref_primary_10_1002_solr_202200156
crossref_primary_10_1039_D2TA04501J
crossref_primary_10_1002_smll_201900134
crossref_primary_10_1016_j_jphotochem_2023_115091
crossref_primary_10_1021_acsenergylett_0c00857
crossref_primary_10_1021_acs_macromol_1c01301
crossref_primary_10_1002_solr_201900012
crossref_primary_10_1021_acs_jpclett_4c00153
crossref_primary_10_1039_D4NJ02631D
crossref_primary_10_1039_D0MA00133C
crossref_primary_10_1039_D1NJ04136C
crossref_primary_10_1002_aenm_201800204
crossref_primary_10_1016_j_mattod_2019_10_023
crossref_primary_10_1002_ange_202101867
crossref_primary_10_1021_acsaem_3c02261
Cites_doi 10.1038/ncomms13740
10.1021/jacs.7b02677
10.1002/adma.201603940
10.1039/C6TA07368A
10.1039/C6TA04232E
10.1021/jacs.6b09110
10.1039/C5CS00593K
10.1039/C4EE01529K
10.1002/adma.201700144
10.1038/nenergy.2015.27
10.1038/ncomms11585
10.1126/science.1141711
10.1021/acs.accounts.5b00199
10.1002/adma.201606054
10.1038/ncomms13651
10.1002/adma.201600281
10.1002/adma.201600512
10.1038/nmat1928
10.1021/ja309289u
10.1021/jacs.6b00853
10.1038/nenergy.2016.89
10.1038/ncomms6293
10.1002/adma.201004554
10.1021/ja108861q
10.1021/jacs.7b00566
10.1039/C6EE02598F
10.1021/ma301900h
10.1021/ja506785w
10.1039/c2ee22296e
10.1021/ja0683537
10.1021/jacs.6b02004
10.1002/adma.201700254
10.1002/adma.200600160
10.1038/ncomms13094
10.1002/adma.201606396
10.1021/jacs.6b08523
10.1039/C7TC01310H
10.1039/C6CP07465K
10.1002/adma.201604155
10.1038/ncomms7013
10.1002/anie.201610944
10.1039/C5EE03481G
10.1002/adma.201603518
10.1002/smll.201701120
10.1002/adma.201602776
10.1021/ja5110602
10.1038/nmat4797
10.1002/adma.201605115
10.1002/adma.201404317
10.1021/jacs.6b12755
10.1002/adma.201604241
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201705208
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29271518
10_1002_adma_201705208
ADMA201705208
Genre article
Journal Article
GrantInformation_xml – fundername: Zhejiang Province Science and Technology Plan
  funderid: 2018C01047
– fundername: 973 Program
  funderid: 2014CB643503
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2016FZA4007
– fundername: National Natural Science Foundation of China
  funderid: 21734008; 21474088; 51473142; 51561145001; 51620105006; 61721005
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3738-56d2ac28c22aaf9b8d4493f881ba5db094a0bc9f9f4836dd578b0db791133bf63
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 02:21:46 EDT 2025
Mon Jul 14 09:12:00 EDT 2025
Mon Jul 21 05:41:45 EDT 2025
Tue Jul 01 00:44:38 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Wed Jan 22 17:06:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords organic solar cells
morphological stability
unfused-core acceptors
noncovalent interactions
nonfullerene acceptors
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-56d2ac28c22aaf9b8d4493f881ba5db094a0bc9f9f4836dd578b0db791133bf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5922-9550
PMID 29271518
PQID 1999120876
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_1979968816
proquest_journals_1999120876
pubmed_primary_29271518
crossref_citationtrail_10_1002_adma_201705208
crossref_primary_10_1002_adma_201705208
wiley_primary_10_1002_adma_201705208_ADMA201705208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 8, 2018
PublicationDateYYYYMMDD 2018-02-08
PublicationDate_xml – month: 02
  year: 2018
  text: February 8, 2018
  day: 08
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2007; 129
2015; 6
2006; 18
2017; 29
2014; 136
2011; 133
2017; 139
2016; 4
2015; 48
2016; 7
2014; 5
2016; 1
2015; 27
2007; 317
2015; 137
2017; 16
2017; 33
2017; 13
2017; 56
2007; 6
2013; 135
2017; 19
2016; 138
2011; 23
2016; 28
2014; 7
2012; 45
2012; 5
2016; 9
2016; 45
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
Zhang S. (e_1_2_4_47_1) 2017; 33
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 6
  start-page: 497
  year: 2007
  publication-title: Nat. Mater.
– volume: 29
  start-page: 1603940
  year: 2017
  publication-title: Adv. Mater.
– volume: 138
  start-page: 4955
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 3472
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 14983
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 1701120
  year: 2017
  publication-title: Small
– volume: 29
  start-page: 1606396
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4852
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 28
  start-page: 4734
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  start-page: 13094
  year: 2016
  publication-title: Nat. Commun.
– volume: 9
  start-page: 604
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 15523
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1605115
  year: 2017
  publication-title: Adv. Mater.
– volume: 18
  start-page: 2884
  year: 2006
  publication-title: Adv. Mater.
– volume: 138
  start-page: 2973
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 8208
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 56
  start-page: 3045
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 6013
  year: 2015
  publication-title: Nat. Commun.
– volume: 16
  start-page: 363
  year: 2017
  publication-title: Nat. Mater.
– volume: 9
  start-page: 3783
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 45
  start-page: 2544
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 5293
  year: 2014
  publication-title: Nat. Commun.
– volume: 1
  start-page: 15027
  year: 2016
  publication-title: Nat. Energy
– volume: 28
  start-page: 9423
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1604155
  year: 2017
  publication-title: Adv. Mater.
– volume: 48
  start-page: 2803
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 10659
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 136
  start-page: 12576
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 1336
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 7148
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1170
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 13740
  year: 2016
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1606054
  year: 2017
  publication-title: Adv. Mater.
– volume: 133
  start-page: 2605
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 1806
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 9611
  year: 2012
  publication-title: Macromolecules
– volume: 23
  start-page: 2367
  year: 2011
  publication-title: Adv. Mater.
– volume: 19
  start-page: 3440
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 137
  start-page: 898
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1700254
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 3040
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 11585
  year: 2016
  publication-title: Nat. Commun.
– volume: 138
  start-page: 15011
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 5980
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1700144
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 13651
  year: 2016
  publication-title: Nat. Commun.
– volume: 33
  start-page: 2327
  year: 2017
  publication-title: Acta Phys.‐Chim. Sin.
– volume: 317
  start-page: 222
  year: 2007
  publication-title: Science
– volume: 1
  start-page: 16089
  year: 2016
  publication-title: Nat. Energy
– volume: 29
  start-page: 1604241
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 9729
  year: 2016
  publication-title: Adv. Mater.
– volume: 139
  start-page: 3356
  year: 2017
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_4_49_1
  doi: 10.1038/ncomms13740
– ident: e_1_2_4_3_1
  doi: 10.1021/jacs.7b02677
– volume: 33
  start-page: 2327
  year: 2017
  ident: e_1_2_4_47_1
  publication-title: Acta Phys.‐Chim. Sin.
– ident: e_1_2_4_34_1
  doi: 10.1002/adma.201603940
– ident: e_1_2_4_9_1
  doi: 10.1039/C6TA07368A
– ident: e_1_2_4_14_1
  doi: 10.1039/C6TA04232E
– ident: e_1_2_4_21_1
  doi: 10.1021/jacs.6b09110
– ident: e_1_2_4_33_1
  doi: 10.1039/C5CS00593K
– ident: e_1_2_4_45_1
  doi: 10.1039/C4EE01529K
– ident: e_1_2_4_2_1
  doi: 10.1002/adma.201700144
– ident: e_1_2_4_5_1
  doi: 10.1038/nenergy.2015.27
– ident: e_1_2_4_36_1
  doi: 10.1038/ncomms11585
– ident: e_1_2_4_42_1
  doi: 10.1126/science.1141711
– ident: e_1_2_4_6_1
  doi: 10.1021/acs.accounts.5b00199
– ident: e_1_2_4_22_1
  doi: 10.1002/adma.201606054
– ident: e_1_2_4_30_1
  doi: 10.1038/ncomms13651
– ident: e_1_2_4_29_1
  doi: 10.1002/adma.201600281
– ident: e_1_2_4_50_1
  doi: 10.1002/adma.201600512
– ident: e_1_2_4_41_1
  doi: 10.1038/nmat1928
– ident: e_1_2_4_44_1
  doi: 10.1021/ja309289u
– ident: e_1_2_4_25_1
  doi: 10.1021/jacs.6b00853
– ident: e_1_2_4_15_1
  doi: 10.1038/nenergy.2016.89
– ident: e_1_2_4_4_1
  doi: 10.1038/ncomms6293
– ident: e_1_2_4_51_1
  doi: 10.1002/adma.201004554
– ident: e_1_2_4_37_1
  doi: 10.1021/ja108861q
– ident: e_1_2_4_27_1
  doi: 10.1021/jacs.7b00566
– ident: e_1_2_4_19_1
  doi: 10.1039/C6EE02598F
– ident: e_1_2_4_46_1
  doi: 10.1021/ma301900h
– ident: e_1_2_4_39_1
  doi: 10.1021/ja506785w
– ident: e_1_2_4_52_1
  doi: 10.1039/c2ee22296e
– ident: e_1_2_4_38_1
  doi: 10.1021/ja0683537
– ident: e_1_2_4_11_1
  doi: 10.1021/jacs.6b02004
– ident: e_1_2_4_23_1
  doi: 10.1002/adma.201700254
– ident: e_1_2_4_40_1
  doi: 10.1002/adma.200600160
– ident: e_1_2_4_43_1
  doi: 10.1038/ncomms13094
– ident: e_1_2_4_32_1
  doi: 10.1002/adma.201606396
– ident: e_1_2_4_26_1
  doi: 10.1021/jacs.6b08523
– ident: e_1_2_4_24_1
  doi: 10.1039/C7TC01310H
– ident: e_1_2_4_7_1
  doi: 10.1039/C6CP07465K
– ident: e_1_2_4_20_1
  doi: 10.1002/adma.201604155
– ident: e_1_2_4_48_1
  doi: 10.1038/ncomms7013
– ident: e_1_2_4_28_1
  doi: 10.1002/anie.201610944
– ident: e_1_2_4_13_1
  doi: 10.1039/C5EE03481G
– ident: e_1_2_4_16_1
  doi: 10.1002/adma.201603518
– ident: e_1_2_4_8_1
  doi: 10.1002/smll.201701120
– ident: e_1_2_4_1_1
  doi: 10.1002/adma.201602776
– ident: e_1_2_4_35_1
  doi: 10.1021/ja5110602
– ident: e_1_2_4_12_1
  doi: 10.1038/nmat4797
– ident: e_1_2_4_17_1
  doi: 10.1002/adma.201605115
– ident: e_1_2_4_10_1
  doi: 10.1002/adma.201404317
– ident: e_1_2_4_18_1
  doi: 10.1021/jacs.6b12755
– ident: e_1_2_4_31_1
  doi: 10.1002/adma.201604241
SSID ssj0009606
Score 2.6706743
Snippet Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring...
Most nonfullerene acceptors developed so far for high-performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused-ring...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Efficiency
Energy conversion efficiency
Heat treatment
Materials science
morphological stability
Morphology
noncovalent interactions
nonfullerene acceptors
organic solar cells
Photovoltaic cells
Solar cells
unfused‐core acceptors
Title An Unfused‐Core‐Based Nonfullerene Acceptor Enables High‐Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705208
https://www.ncbi.nlm.nih.gov/pubmed/29271518
https://www.proquest.com/docview/1999120876
https://www.proquest.com/docview/1979968816
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQJzi0BfrYliIjIfVkSJzH2sewXYQqwYGyErfIz0tXCdpkpban_gSu_L3-EmacTWBbVZXaUxJlnNjOjOezM_OZkCOdCh9Jk7Hcq4ilLldMeyOZlxbcUeLRh2C0xWV-Pks_3WQ3T7L4O36IYcENLSOM12jgSjcnj6ShygbeIKSD4SHbFwO2EBVdPfJHITwPZHtJxmSeip61MeIn68XXvdJvUHMduQbXc_acqL7SXcTJl-Nlq4_N91_4HP-nVS_IsxUupUWnSDtkw1W7ZPsJW-EeuS8qOqv8snH254-7Sb1wcDgFL2jpZV3hOn7YaYUWBkNl6gWdhryshmIsCYhOA1sFpnrSLgPU0M84saYTN583FFeE6fRr-JNQtfSiBg3oR2YKmDhE8X6jqg3Po9cOAH9HCN28JLOz6fXknK12dmAGmZRYlluuDBeGc6W81MKmqUy8AAytMqthyqkibaSXPhVJbi0MKzqyegwjc5JonyevyGZVV-4NobHiIvaJUULkqRWxigGzCq-tcDoD8DQirP-ypVnRnuPuG_OyI2zmJXZ5OXT5iHwY5G87wo8_Su73ilKuDL8pkdUh5sjzNyKHw20wWew9Vbl6iTJjmGVCY0Hmdadgw6u45GMAYfBwHtTkL3Uoi48XxXD19l8KvSNbcC5CJLrYJ5vtYuneA9Bq9UEwpgfjWSOD
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lj9MwEICtZTkAB96PwgJGAnHKbuI86hw4lLarLrvtAVppb1k_L1QJalLBcuIncOVn8Ff4CfwSZpzHUhBCQtoDp6jp1HHssWfGHX8m5KmMuPVTFXuJFb4XmUR40qrUs6kGcxRatCGYbTFLJovo1XF8vEW-tnthaj5Et-CGI8PN1zjAcUF674waKrQDByEPhvm8yas8NKfvIWorXxyMoIufMbY_ng8nXnOwgKcQ5OPFiWZCMa4YE8KmkusoSkPLwYUTsZYQ8QhfqtSmNuJhojVotfS17MPEEIbSJiGUe4FcxGPEEdc_en1GrMKAwOH9wthLk4i3nEif7W3Wd9MO_ubcbvrKztjtXyPf2maqc1ze7q4ruas-_kKQ_K_a8Tq52rjedFCPlRtky-Q3yZWfgIy3yJdBThe5XZdGf__0eVisDFxegqHXdFbk-EbuMBk6UJgNVKzo2G09Kymmy4Do2AE5cDcrrTe5KvoG1w7o0CyXJcVFbzr-4P4sySs6LUDJW-NDwe13icqnVFSuPDo3ENPUzOvyNlmcS9vcIdt5kZt7hAaC8cCGSnCeRJoHIgC3nFupuZEx-Ic94rWqlKmG7I4HjCyzmknNMuzirOviHnneyb-rmSZ_lNxpNTNr5rYyQ3BFwBBl2CNPuq9hVsLWE7kp1ijTh0AaXhZk7tYa3T2KpawPfiYUzpxe_qUO2WA0HXSf7v_Ljx6TS5P59Cg7OpgdPiCX4T53ifd8h2xXq7V5CH5lJR-5kUzJyXmr_A8ibIIK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKkRAceD8WChgJxClt4jzWOXAI-1BL6QpBV-ot-HlhlVSbrKCc-Alc-Rf8Ff4Cv4QZ51EWhJCQeuAUJZk4jj32fOPMfCbksYy49VMVe4kVvheZRHjSqtSzqQZzFFq0IRhtMUt259GLo_hog3ztcmEafoh-wQ1HhpuvcYAfa7tzShoqtOMNQjoY5vM2rHLfnLwHp616tjeGHn7C2HRyONr12n0FPIU8Pl6caCYU44oxIWwquY6iNLQcEJyItQSHR_hSpTa1EQ8TrUGppa_lEOaFMJQ2CaHcc-R8lPgpbhYxfn1KWIX-gGP3C2MvTSLe0UT6bGe9vutm8Ddsuw6Vna2bXiHfulZqQlzeba9qua0-_kIg-T8141VyuQXeNGtGyjWyYYrr5NJPdIw3yJesoPPCriqjv3_6PCqXBg7PwcxrOisL_FHhtpKhmcJYoHJJJy7xrKIYLAOiE0fHgbmstElxVfQNrhzQkVksKopL3nTywf0qKWp6UIKKd6aHAuh3YconVNSuPHpowKNpGK-rm2R-Jm1zi2wWZWHuEBoIxgMbKsF5EmkeiABAObdScyNjQIcD4nWalKuW1x23F1nkDSM1y7GL876LB-RpL3_cMJr8UXKrU8y8ndmqHGkrAoZEhgPyqL8NcxK2nihMuUKZIbjR8LEgc7tR6P5VLGVDQJlQOHNq-Zc65Nn4IOvP7v7LQw_JhVfjaf5yb7Z_j1yEy9xF3fMtslkvV-Y-gMpaPnDjmJK3Z63xPwALd4C5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Unfused-Core-Based+Nonfullerene+Acceptor+Enables+High-Efficiency+Organic+Solar+Cells+with+Excellent+Morphological+Stability+at+High+Temperatures&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Shuixing&rft.au=Zhan%2C+Lingling&rft.au=Liu%2C+Feng&rft.au=Ren%2C+Jie&rft.date=2018-02-08&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=6&rft_id=info:doi/10.1002%2Fadma.201705208&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon