An Unfused‐Core‐Based Nonfullerene Acceptor Enables High‐Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures
Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring core. In this work, a new nonfullerene acceptor of DF‐PCIC is synthesized with an unfused‐ring core containing two cyclopentadithiophene (CPD...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 6 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
08.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring core. In this work, a new nonfullerene acceptor of DF‐PCIC is synthesized with an unfused‐ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5‐difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF‐PCIC. After proper optimizations, the OSCs with DF‐PCIC as the acceptor and the polymer PBDB‐T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused‐ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB‐T:DF‐PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene‐free OSCs, which might be due to the unique unfused‐ring core of DF‐PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future.
A new nonfullerene acceptor (DF‐PCIC) is designed and synthesized by utilizing noncovalent interactions. Organic solar cells (OSCs) with DF‐PCIC as the acceptor exhibit the best efficiency of 10.14% with a high fill factor of 0.72. More importantly, excellent morphological stability is achieved for DF‐PCIC‐based devices, which is meaningful for the future practical applications of OSCs. |
---|---|
AbstractList | Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring core. In this work, a new nonfullerene acceptor of DF‐PCIC is synthesized with an unfused‐ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5‐difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF‐PCIC. After proper optimizations, the OSCs with DF‐PCIC as the acceptor and the polymer PBDB‐T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused‐ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB‐T:DF‐PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene‐free OSCs, which might be due to the unique unfused‐ring core of DF‐PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future.
A new nonfullerene acceptor (DF‐PCIC) is designed and synthesized by utilizing noncovalent interactions. Organic solar cells (OSCs) with DF‐PCIC as the acceptor exhibit the best efficiency of 10.14% with a high fill factor of 0.72. More importantly, excellent morphological stability is achieved for DF‐PCIC‐based devices, which is meaningful for the future practical applications of OSCs. Most nonfullerene acceptors developed so far for high-performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused-ring core. In this work, a new nonfullerene acceptor of DF-PCIC is synthesized with an unfused-ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5-difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF-PCIC. After proper optimizations, the OSCs with DF-PCIC as the acceptor and the polymer PBDB-T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused-ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB-T:DF-PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene-free OSCs, which might be due to the unique unfused-ring core of DF-PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future.Most nonfullerene acceptors developed so far for high-performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused-ring core. In this work, a new nonfullerene acceptor of DF-PCIC is synthesized with an unfused-ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5-difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF-PCIC. After proper optimizations, the OSCs with DF-PCIC as the acceptor and the polymer PBDB-T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused-ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB-T:DF-PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene-free OSCs, which might be due to the unique unfused-ring core of DF-PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future. Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring core. In this work, a new nonfullerene acceptor of DF‐PCIC is synthesized with an unfused‐ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5‐difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF‐PCIC. After proper optimizations, the OSCs with DF‐PCIC as the acceptor and the polymer PBDB‐T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused‐ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB‐T:DF‐PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene‐free OSCs, which might be due to the unique unfused‐ring core of DF‐PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future. Most nonfullerene acceptors developed so far for high-performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused-ring core. In this work, a new nonfullerene acceptor of DF-PCIC is synthesized with an unfused-ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5-difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF-PCIC. After proper optimizations, the OSCs with DF-PCIC as the acceptor and the polymer PBDB-T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused-ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB-T:DF-PCIC blended films, and the relevant devices can keep [asymp]70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene-free OSCs, which might be due to the unique unfused-ring core of DF-PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future. |
Author | Ren, Jie Shi, Minmin Liu, Feng Chen, Hongzheng Zhan, Lingling Li, Chang‐Zhi Li, Shuixing Russell, Thomas P. |
Author_xml | – sequence: 1 givenname: Shuixing surname: Li fullname: Li, Shuixing organization: Zhejiang University – sequence: 2 givenname: Lingling surname: Zhan fullname: Zhan, Lingling organization: Zhejiang University – sequence: 3 givenname: Feng surname: Liu fullname: Liu, Feng email: fengliu82@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 4 givenname: Jie surname: Ren fullname: Ren, Jie organization: Zhejiang University – sequence: 5 givenname: Minmin surname: Shi fullname: Shi, Minmin email: minminshi@zju.edu.cn organization: Zhejiang University – sequence: 6 givenname: Chang‐Zhi surname: Li fullname: Li, Chang‐Zhi organization: Zhejiang University – sequence: 7 givenname: Thomas P. surname: Russell fullname: Russell, Thomas P. organization: University of Massachusetts – sequence: 8 givenname: Hongzheng orcidid: 0000-0002-5922-9550 surname: Chen fullname: Chen, Hongzheng email: hzchen@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29271518$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vFCEYh4mpsdvq1aMh8eJlV2D-wXFcV2vS2kPbM2EY2KVhYAQmdW9-BK9-PT-JjNtq0sR4evOS5_nlDb8TcOS8UwC8xGiFESJvRT-IFUG4QRVB9AlY4IrgZYlYdQQWiBXVktUlPQYnMd4ihFiN6mfgmDDS4ArTBfjROnjj9BRV__Pb97UPKo93Iq_ws8_v1qqgnIKtlGpMPsCNE51VEZ6Z7S6jG62NNMrJPbwMW-GMhFfeigDXytoI70zawc1XmRflErzwYdx567dGCguvkuiMNWkPRfqdB6_VMKog0hRUfA6eamGjenE_T8HNh831-mx5fvnx07o9X8qiKeiyqnsiJKGSECE062hflqzQlOJOVH2HWClQJ5lmuqRF3fdVQzvUdw3DuCg6XRen4M0hdwz-y6Ri4oOJ88HCKT9FjlnDWJ3zZvT1I_TWT8Hl6zLFGM4NNDP16p6aukH1fAxmEGHPHz49A-UBkMHHGJTm0iSRjHcpCGM5Rnzuls_d8j_dZm31SHtI_qfADsKdsWr_H5q37y_av-4vVO-7Nw |
CitedBy_id | crossref_primary_10_1039_C8TA04718A crossref_primary_10_1021_acsami_8b01147 crossref_primary_10_1002_ejoc_202401337 crossref_primary_10_1002_advs_201903259 crossref_primary_10_1002_smll_202101133 crossref_primary_10_1038_s41563_020_00872_6 crossref_primary_10_1002_solr_202000275 crossref_primary_10_1007_s10118_022_2825_y crossref_primary_10_1038_s41467_019_10351_5 crossref_primary_10_1039_D3TC01742G crossref_primary_10_1002_solr_202300453 crossref_primary_10_1021_jacs_0c04084 crossref_primary_10_1039_D0TC02061C crossref_primary_10_1016_j_jphotochem_2024_115983 crossref_primary_10_1016_j_comptc_2024_114549 crossref_primary_10_1016_j_dyepig_2022_110680 crossref_primary_10_1021_jacs_4c00090 crossref_primary_10_1021_acsami_8b04541 crossref_primary_10_1021_acsenergylett_1c01154 crossref_primary_10_1002_adma_202005348 crossref_primary_10_1016_j_synthmet_2018_03_011 crossref_primary_10_1039_D4TC05217J crossref_primary_10_1039_D0TA03058A crossref_primary_10_1039_D2TA09500A crossref_primary_10_3389_fmats_2024_1383816 crossref_primary_10_1016_j_comptc_2024_114538 crossref_primary_10_1016_j_orgel_2020_105662 crossref_primary_10_1021_acsapm_0c00791 crossref_primary_10_1002_smll_202103537 crossref_primary_10_1039_D4TA00933A crossref_primary_10_1016_j_dyepig_2022_110459 crossref_primary_10_1021_acsenergylett_8b00563 crossref_primary_10_1039_C8TC01780H crossref_primary_10_1021_acsami_2c03723 crossref_primary_10_1021_acsmaterialslett_3c01020 crossref_primary_10_1002_adom_201801719 crossref_primary_10_1039_C9TC02700A crossref_primary_10_1021_acs_chemmater_8b04265 crossref_primary_10_1039_D4TC01176G crossref_primary_10_1002_pol_20210947 crossref_primary_10_1002_adma_202110569 crossref_primary_10_1021_acs_jpcb_5c00283 crossref_primary_10_1039_D3NJ00845B crossref_primary_10_1021_acsenergylett_0c00537 crossref_primary_10_1039_D0TC05691J crossref_primary_10_1039_C9TC05013B crossref_primary_10_1002_solr_202100094 crossref_primary_10_1016_j_cej_2022_136509 crossref_primary_10_1039_C9QM00005D crossref_primary_10_1073_pnas_1919769117 crossref_primary_10_1002_ange_202416751 crossref_primary_10_1002_anie_202214931 crossref_primary_10_1021_acsami_0c14774 crossref_primary_10_1039_D1TA03643B crossref_primary_10_1021_acsapm_2c00519 crossref_primary_10_1021_acsami_1c15278 crossref_primary_10_1039_C8QM00609A crossref_primary_10_1002_solr_202300531 crossref_primary_10_1016_j_dyepig_2022_110760 crossref_primary_10_1002_marc_202200530 crossref_primary_10_1016_j_molstruc_2025_141977 crossref_primary_10_1021_acs_jpcc_2c07730 crossref_primary_10_1021_acsami_0c12100 crossref_primary_10_1002_adma_201906129 crossref_primary_10_1002_adma_202107330 crossref_primary_10_1039_C8TA02534G crossref_primary_10_1002_adfm_201904956 crossref_primary_10_1039_D0MH01585G crossref_primary_10_1039_D2TC05164H crossref_primary_10_1002_anie_201915030 crossref_primary_10_1002_adma_202205844 crossref_primary_10_1002_solr_202300784 crossref_primary_10_1002_solr_201900077 crossref_primary_10_1021_acsaem_3c03171 crossref_primary_10_1039_D2PY00139J crossref_primary_10_1021_acsaem_2c00475 crossref_primary_10_1021_acsami_3c18325 crossref_primary_10_1021_acs_chemmater_8b02276 crossref_primary_10_1039_D0QM00025F crossref_primary_10_1039_C8TA11197A crossref_primary_10_1016_j_nanoen_2019_04_053 crossref_primary_10_1002_solr_202000246 crossref_primary_10_1002_aenm_202203402 crossref_primary_10_1021_acs_jpcc_1c07050 crossref_primary_10_1016_j_cej_2022_137621 crossref_primary_10_1016_j_cej_2022_139926 crossref_primary_10_1039_D3TA07542G crossref_primary_10_1002_cjoc_202300542 crossref_primary_10_1002_advs_201801180 crossref_primary_10_1002_adma_202305006 crossref_primary_10_1002_solr_202300997 crossref_primary_10_1016_j_cclet_2019_01_010 crossref_primary_10_1002_adma_202001160 crossref_primary_10_54097_fv544g56 crossref_primary_10_1002_anie_202010856 crossref_primary_10_1002_adma_201802888 crossref_primary_10_1021_acsenergylett_8b00825 crossref_primary_10_1002_aenm_201900999 crossref_primary_10_1002_solr_202000421 crossref_primary_10_1039_C8TA03753A crossref_primary_10_1002_anie_202318756 crossref_primary_10_1039_D2TA02604J crossref_primary_10_1039_C9TA01888C crossref_primary_10_1002_ange_201915030 crossref_primary_10_1038_s41467_021_23389_1 crossref_primary_10_1039_D0EE02251A crossref_primary_10_1002_anie_202416751 crossref_primary_10_1039_D1TA10707K crossref_primary_10_1021_acs_chemmater_8b04087 crossref_primary_10_1002_anie_202101867 crossref_primary_10_1021_acsaem_0c02719 crossref_primary_10_1039_D2NJ06130A crossref_primary_10_1002_cssc_202100746 crossref_primary_10_1021_acs_accounts_3c00813 crossref_primary_10_1002_aenm_201900887 crossref_primary_10_1002_solr_202000537 crossref_primary_10_1246_bcsj_20200322 crossref_primary_10_1002_advs_201800434 crossref_primary_10_1039_D1TC01746B crossref_primary_10_1039_D4EE03394A crossref_primary_10_1016_j_dyepig_2022_110178 crossref_primary_10_1002_aenm_202003570 crossref_primary_10_1021_acsami_2c04530 crossref_primary_10_1002_smll_201801793 crossref_primary_10_1002_smtd_202200828 crossref_primary_10_1134_S1070363222110202 crossref_primary_10_1039_D1QM01622A crossref_primary_10_1039_D2ME00068G crossref_primary_10_1021_acsami_3c09076 crossref_primary_10_1007_s40820_024_01442_0 crossref_primary_10_1039_D0TA00677G crossref_primary_10_1007_s10118_019_2309_x crossref_primary_10_1002_adma_202007231 crossref_primary_10_1360_TB_2024_0449 crossref_primary_10_1002_solr_201800250 crossref_primary_10_1039_C8QM00238J crossref_primary_10_1002_aenm_202003441 crossref_primary_10_1016_j_cplett_2019_04_024 crossref_primary_10_1021_acsami_8b16131 crossref_primary_10_1021_acsenergylett_8b01808 crossref_primary_10_1021_acsapm_1c01406 crossref_primary_10_1039_D0TA12288B crossref_primary_10_1039_C9TA11285E crossref_primary_10_1002_bkcs_12888 crossref_primary_10_1093_nsr_nwz200 crossref_primary_10_1016_j_dyepig_2023_111737 crossref_primary_10_1021_acsaem_2c01945 crossref_primary_10_1039_C8TA09370A crossref_primary_10_1002_ente_202100912 crossref_primary_10_1002_cjoc_202400960 crossref_primary_10_1016_j_mtnano_2018_04_005 crossref_primary_10_1039_D2IM00037G crossref_primary_10_1016_j_solener_2020_07_100 crossref_primary_10_1016_j_mseb_2023_116456 crossref_primary_10_1039_D4EE02296C crossref_primary_10_1080_15421406_2019_1645458 crossref_primary_10_1002_smll_201907681 crossref_primary_10_1021_jacs_8b12126 crossref_primary_10_1002_cjoc_202300006 crossref_primary_10_1007_s40843_023_2867_6 crossref_primary_10_1007_s10118_022_2750_0 crossref_primary_10_1039_D1TC00579K crossref_primary_10_1002_ange_202214931 crossref_primary_10_3390_molecules28083625 crossref_primary_10_1002_aenm_202002572 crossref_primary_10_1142_S2737416523500035 crossref_primary_10_1002_aenm_202003408 crossref_primary_10_1002_ange_202407355 crossref_primary_10_1038_s41467_019_11001_6 crossref_primary_10_1002_cjoc_202000457 crossref_primary_10_1016_j_dyepig_2020_108970 crossref_primary_10_1002_aenm_201803012 crossref_primary_10_1039_D2RA07957G crossref_primary_10_1021_acsomega_0c02766 crossref_primary_10_1021_acsami_2c01190 crossref_primary_10_1002_adma_201907604 crossref_primary_10_1021_acsaem_4c00735 crossref_primary_10_1002_admt_202000174 crossref_primary_10_1002_smtd_202300036 crossref_primary_10_1021_acs_chemmater_2c02146 crossref_primary_10_1021_acs_chemmater_0c00097 crossref_primary_10_1016_j_cej_2021_132298 crossref_primary_10_1002_ange_202219245 crossref_primary_10_1038_s41467_019_08508_3 crossref_primary_10_1002_solr_202101034 crossref_primary_10_1002_cssc_202100689 crossref_primary_10_1007_s11082_020_02482_7 crossref_primary_10_1039_D1TA04030H crossref_primary_10_1002_adma_202203379 crossref_primary_10_1002_adma_202401370 crossref_primary_10_1021_polymscitech_4c00054 crossref_primary_10_1002_anie_202403753 crossref_primary_10_1246_bcsj_20200231 crossref_primary_10_1007_s11426_018_9320_3 crossref_primary_10_1002_adfm_202311736 crossref_primary_10_1002_ange_202106753 crossref_primary_10_1039_D3NJ05123D crossref_primary_10_1007_s00894_021_04922_x crossref_primary_10_3389_femat_2022_851294 crossref_primary_10_1021_accountsmr_2c00052 crossref_primary_10_1002_adma_201808279 crossref_primary_10_1021_acs_macromol_2c02184 crossref_primary_10_1039_C8QM00318A crossref_primary_10_1002_advs_202001986 crossref_primary_10_1021_acsami_0c17049 crossref_primary_10_1007_s11426_018_9315_2 crossref_primary_10_1002_smll_201802349 crossref_primary_10_1039_D3TC02039H crossref_primary_10_1002_smtd_201900531 crossref_primary_10_1002_aenm_201801601 crossref_primary_10_1002_pola_29293 crossref_primary_10_1016_j_orgel_2021_106132 crossref_primary_10_1016_j_orgel_2021_106133 crossref_primary_10_1016_j_orgel_2021_106131 crossref_primary_10_1002_adma_201800613 crossref_primary_10_1021_acsami_0c00837 crossref_primary_10_1039_D0CS00084A crossref_primary_10_1039_D5CP00267B crossref_primary_10_1002_solr_202000812 crossref_primary_10_1002_solr_202200172 crossref_primary_10_1002_cjoc_202200683 crossref_primary_10_1016_j_cej_2022_137375 crossref_primary_10_1039_C9TA02544H crossref_primary_10_1016_j_nanoen_2020_104861 crossref_primary_10_1021_acsaem_1c00369 crossref_primary_10_1002_adfm_202109410 crossref_primary_10_1016_j_chemphys_2021_111162 crossref_primary_10_1039_D4CS00132J crossref_primary_10_1021_acsomega_8b02053 crossref_primary_10_1002_aenm_201801618 crossref_primary_10_1002_smll_202202411 crossref_primary_10_1016_j_orgel_2021_106340 crossref_primary_10_1021_jacs_8b02695 crossref_primary_10_1016_j_nanoen_2020_104609 crossref_primary_10_1002_smll_202201209 crossref_primary_10_1016_j_dyepig_2023_111478 crossref_primary_10_1016_j_solmat_2018_10_003 crossref_primary_10_1002_anie_202318143 crossref_primary_10_1021_acs_chemmater_0c00459 crossref_primary_10_1039_C8TA11441B crossref_primary_10_1039_D1TA02075G crossref_primary_10_1002_agt2_488 crossref_primary_10_1002_adma_202002973 crossref_primary_10_1039_D1QM00026H crossref_primary_10_1016_j_mtener_2021_100938 crossref_primary_10_1016_j_nanoen_2020_104718 crossref_primary_10_1021_acs_inorgchem_4c04160 crossref_primary_10_1039_D1NR00470K crossref_primary_10_1002_adfm_202418659 crossref_primary_10_1039_D4TC01785D crossref_primary_10_1016_j_jechem_2022_03_030 crossref_primary_10_1002_chem_202403972 crossref_primary_10_1039_D1QM00027F crossref_primary_10_1021_acs_energyfuels_2c00462 crossref_primary_10_1016_j_mtener_2021_100802 crossref_primary_10_1039_C9TC00162J crossref_primary_10_1002_adfm_202108861 crossref_primary_10_1007_s12274_019_2288_9 crossref_primary_10_1002_adma_202206269 crossref_primary_10_1016_j_cclet_2019_12_003 crossref_primary_10_1021_acsami_9b04554 crossref_primary_10_1002_cssc_202102563 crossref_primary_10_1002_agt2_388 crossref_primary_10_1039_C9QM00505F crossref_primary_10_1002_adma_201807577 crossref_primary_10_1039_C9TC02013F crossref_primary_10_1039_D4EE02027H crossref_primary_10_1021_acs_chemmater_3c01216 crossref_primary_10_1039_D2TC01077A crossref_primary_10_1002_adfm_202007931 crossref_primary_10_1002_advs_201800755 crossref_primary_10_1039_D2TA09936E crossref_primary_10_1002_ange_202010856 crossref_primary_10_1002_anie_202308496 crossref_primary_10_1016_j_dyepig_2021_109801 crossref_primary_10_1039_D2TA09188G crossref_primary_10_1002_slct_202302799 crossref_primary_10_3390_polym15061508 crossref_primary_10_1002_marc_202200085 crossref_primary_10_1016_j_cej_2021_131473 crossref_primary_10_1021_acsaem_3c02429 crossref_primary_10_1002_aenm_202102591 crossref_primary_10_1016_j_arabjc_2022_104374 crossref_primary_10_1039_D2NJ04513C crossref_primary_10_1002_agt2_281 crossref_primary_10_1039_D2TC02289C crossref_primary_10_1039_D0QM00515K crossref_primary_10_1016_j_cej_2023_144472 crossref_primary_10_1002_cssc_202200034 crossref_primary_10_1021_acsami_4c18536 crossref_primary_10_1021_acsami_1c16950 crossref_primary_10_1016_j_synthmet_2024_117716 crossref_primary_10_1002_ange_202318756 crossref_primary_10_1021_acsami_9b03499 crossref_primary_10_1039_D0QM00514B crossref_primary_10_1016_j_nanoen_2020_104800 crossref_primary_10_1021_acsami_8b10347 crossref_primary_10_1088_2516_1075_ad1e3a crossref_primary_10_1039_D0CC05528J crossref_primary_10_1016_j_dyepig_2020_108319 crossref_primary_10_1021_acs_chemmater_8b00287 crossref_primary_10_3390_molecules24091760 crossref_primary_10_1002_anie_202407355 crossref_primary_10_1039_C9TA00164F crossref_primary_10_1021_acsami_9b18076 crossref_primary_10_1002_adma_201906175 crossref_primary_10_1002_adfm_201803128 crossref_primary_10_1002_anie_202106753 crossref_primary_10_1039_C8NJ03941K crossref_primary_10_1021_acsami_1c09597 crossref_primary_10_1039_C9TA07542A crossref_primary_10_1007_s11426_020_9868_8 crossref_primary_10_1002_aenm_202000851 crossref_primary_10_1021_acsami_0c13993 crossref_primary_10_1039_D2RA08091E crossref_primary_10_1039_C9EE03710A crossref_primary_10_1007_s10118_019_2171_x crossref_primary_10_1039_D1TC05550J crossref_primary_10_1002_adfm_201909535 crossref_primary_10_1002_aenm_202304063 crossref_primary_10_1002_ange_202318143 crossref_primary_10_1021_acsami_9b09256 crossref_primary_10_1016_j_cclet_2018_09_014 crossref_primary_10_1002_solr_201900317 crossref_primary_10_1016_j_solener_2020_01_032 crossref_primary_10_1002_adma_201803166 crossref_primary_10_1007_s10854_018_9961_8 crossref_primary_10_1039_D1TA09392D crossref_primary_10_1039_C8RA09292C crossref_primary_10_1021_acsami_9b18095 crossref_primary_10_1021_acs_inorgchem_0c03691 crossref_primary_10_1007_s10118_022_2769_2 crossref_primary_10_1021_acsomega_8b01925 crossref_primary_10_1039_C9TA02243K crossref_primary_10_1039_D0TA03683H crossref_primary_10_3389_fchem_2018_00198 crossref_primary_10_1039_C9TA08328F crossref_primary_10_1021_acsami_4c05136 crossref_primary_10_1021_acsami_4c06589 crossref_primary_10_1002_ange_202308496 crossref_primary_10_1016_j_solener_2021_10_048 crossref_primary_10_1021_acsomega_3c05665 crossref_primary_10_1016_j_cej_2021_129768 crossref_primary_10_1021_acsami_9b14981 crossref_primary_10_1002_solr_202100806 crossref_primary_10_1002_adma_202002217 crossref_primary_10_1007_s11426_021_1180_6 crossref_primary_10_1002_adfm_202108614 crossref_primary_10_1021_acs_accounts_4c00592 crossref_primary_10_1016_j_jphotochem_2023_115292 crossref_primary_10_1016_j_solmat_2021_111046 crossref_primary_10_1002_aenm_201801214 crossref_primary_10_1039_C9TA03177D crossref_primary_10_1039_D0CC07086F crossref_primary_10_1002_cssc_202101067 crossref_primary_10_1016_j_cplett_2022_140026 crossref_primary_10_1016_j_synthmet_2025_117864 crossref_primary_10_1038_s41598_024_74852_0 crossref_primary_10_1002_anie_202219245 crossref_primary_10_1039_D1EE02977K crossref_primary_10_1016_j_dyepig_2025_112667 crossref_primary_10_1016_j_saa_2021_120493 crossref_primary_10_1021_acs_chemmater_9b02355 crossref_primary_10_1002_pol_20210938 crossref_primary_10_1016_j_cej_2022_135384 crossref_primary_10_1039_C8QO00788H crossref_primary_10_1002_marc_202200139 crossref_primary_10_1021_acsaem_2c01179 crossref_primary_10_1016_j_orgel_2018_09_016 crossref_primary_10_1039_C8TA05440A crossref_primary_10_1039_D2TA07390K crossref_primary_10_1007_s11426_021_9991_0 crossref_primary_10_1002_aenm_201902065 crossref_primary_10_1016_j_orgel_2018_09_015 crossref_primary_10_1021_acsaem_3c02238 crossref_primary_10_1002_marc_202100828 crossref_primary_10_1039_C9TA06311K crossref_primary_10_1021_acsami_0c01850 crossref_primary_10_1021_acsami_1c22520 crossref_primary_10_1039_C9TC05358A crossref_primary_10_1039_D4EE04879B crossref_primary_10_1016_j_mtener_2024_101591 crossref_primary_10_1021_acsaem_0c02083 crossref_primary_10_1016_j_solener_2020_03_023 crossref_primary_10_1002_adma_201807842 crossref_primary_10_1021_acsami_1c06299 crossref_primary_10_1002_solr_202400356 crossref_primary_10_1016_j_synthmet_2023_117481 crossref_primary_10_1021_acsaem_3c03231 crossref_primary_10_1021_acsami_1c11412 crossref_primary_10_1016_j_mtener_2019_07_005 crossref_primary_10_1021_jacs_0c09800 crossref_primary_10_1002_aenm_202201076 crossref_primary_10_1002_ange_202403753 crossref_primary_10_3390_molecules30020344 crossref_primary_10_1016_j_nanoen_2023_108661 crossref_primary_10_1039_C9TC04680A crossref_primary_10_1039_D4TA02180K crossref_primary_10_1088_2399_7532_abf337 crossref_primary_10_1039_D0TA07960J crossref_primary_10_1002_aenm_202100342 crossref_primary_10_1002_solr_202200156 crossref_primary_10_1039_D2TA04501J crossref_primary_10_1002_smll_201900134 crossref_primary_10_1016_j_jphotochem_2023_115091 crossref_primary_10_1021_acsenergylett_0c00857 crossref_primary_10_1021_acs_macromol_1c01301 crossref_primary_10_1002_solr_201900012 crossref_primary_10_1021_acs_jpclett_4c00153 crossref_primary_10_1039_D4NJ02631D crossref_primary_10_1039_D0MA00133C crossref_primary_10_1039_D1NJ04136C crossref_primary_10_1002_aenm_201800204 crossref_primary_10_1016_j_mattod_2019_10_023 crossref_primary_10_1002_ange_202101867 crossref_primary_10_1021_acsaem_3c02261 |
Cites_doi | 10.1038/ncomms13740 10.1021/jacs.7b02677 10.1002/adma.201603940 10.1039/C6TA07368A 10.1039/C6TA04232E 10.1021/jacs.6b09110 10.1039/C5CS00593K 10.1039/C4EE01529K 10.1002/adma.201700144 10.1038/nenergy.2015.27 10.1038/ncomms11585 10.1126/science.1141711 10.1021/acs.accounts.5b00199 10.1002/adma.201606054 10.1038/ncomms13651 10.1002/adma.201600281 10.1002/adma.201600512 10.1038/nmat1928 10.1021/ja309289u 10.1021/jacs.6b00853 10.1038/nenergy.2016.89 10.1038/ncomms6293 10.1002/adma.201004554 10.1021/ja108861q 10.1021/jacs.7b00566 10.1039/C6EE02598F 10.1021/ma301900h 10.1021/ja506785w 10.1039/c2ee22296e 10.1021/ja0683537 10.1021/jacs.6b02004 10.1002/adma.201700254 10.1002/adma.200600160 10.1038/ncomms13094 10.1002/adma.201606396 10.1021/jacs.6b08523 10.1039/C7TC01310H 10.1039/C6CP07465K 10.1002/adma.201604155 10.1038/ncomms7013 10.1002/anie.201610944 10.1039/C5EE03481G 10.1002/adma.201603518 10.1002/smll.201701120 10.1002/adma.201602776 10.1021/ja5110602 10.1038/nmat4797 10.1002/adma.201605115 10.1002/adma.201404317 10.1021/jacs.6b12755 10.1002/adma.201604241 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201705208 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29271518 10_1002_adma_201705208 ADMA201705208 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Zhejiang Province Science and Technology Plan funderid: 2018C01047 – fundername: 973 Program funderid: 2014CB643503 – fundername: Fundamental Research Funds for the Central Universities funderid: 2016FZA4007 – fundername: National Natural Science Foundation of China funderid: 21734008; 21474088; 51473142; 51561145001; 51620105006; 61721005 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3738-56d2ac28c22aaf9b8d4493f881ba5db094a0bc9f9f4836dd578b0db791133bf63 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 02:21:46 EDT 2025 Mon Jul 14 09:12:00 EDT 2025 Mon Jul 21 05:41:45 EDT 2025 Tue Jul 01 00:44:38 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Jan 22 17:06:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | organic solar cells morphological stability unfused-core acceptors noncovalent interactions nonfullerene acceptors |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-56d2ac28c22aaf9b8d4493f881ba5db094a0bc9f9f4836dd578b0db791133bf63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5922-9550 |
PMID | 29271518 |
PQID | 1999120876 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1979968816 proquest_journals_1999120876 pubmed_primary_29271518 crossref_citationtrail_10_1002_adma_201705208 crossref_primary_10_1002_adma_201705208 wiley_primary_10_1002_adma_201705208_ADMA201705208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 8, 2018 |
PublicationDateYYYYMMDD | 2018-02-08 |
PublicationDate_xml | – month: 02 year: 2018 text: February 8, 2018 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2007; 129 2015; 6 2006; 18 2017; 29 2014; 136 2011; 133 2017; 139 2016; 4 2015; 48 2016; 7 2014; 5 2016; 1 2015; 27 2007; 317 2015; 137 2017; 16 2017; 33 2017; 13 2017; 56 2007; 6 2013; 135 2017; 19 2016; 138 2011; 23 2016; 28 2014; 7 2012; 45 2012; 5 2016; 9 2016; 45 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 Zhang S. (e_1_2_4_47_1) 2017; 33 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 6 start-page: 497 year: 2007 publication-title: Nat. Mater. – volume: 29 start-page: 1603940 year: 2017 publication-title: Adv. Mater. – volume: 138 start-page: 4955 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 3472 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 14983 year: 2016 publication-title: J. Mater. Chem. A – volume: 13 start-page: 1701120 year: 2017 publication-title: Small – volume: 29 start-page: 1606396 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 4852 year: 2017 publication-title: J. Mater. Chem. C – volume: 28 start-page: 4734 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 13094 year: 2016 publication-title: Nat. Commun. – volume: 9 start-page: 604 year: 2016 publication-title: Energy Environ. Sci. – volume: 138 start-page: 15523 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1605115 year: 2017 publication-title: Adv. Mater. – volume: 18 start-page: 2884 year: 2006 publication-title: Adv. Mater. – volume: 138 start-page: 2973 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 8208 year: 2012 publication-title: Energy Environ. Sci. – volume: 56 start-page: 3045 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 6013 year: 2015 publication-title: Nat. Commun. – volume: 16 start-page: 363 year: 2017 publication-title: Nat. Mater. – volume: 9 start-page: 3783 year: 2016 publication-title: Energy Environ. Sci. – volume: 45 start-page: 2544 year: 2016 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 5293 year: 2014 publication-title: Nat. Commun. – volume: 1 start-page: 15027 year: 2016 publication-title: Nat. Energy – volume: 28 start-page: 9423 year: 2016 publication-title: Adv. Mater. – volume: 29 start-page: 1604155 year: 2017 publication-title: Adv. Mater. – volume: 48 start-page: 2803 year: 2015 publication-title: Acc. Chem. Res. – volume: 4 start-page: 10659 year: 2016 publication-title: J. Mater. Chem. A – volume: 136 start-page: 12576 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 1336 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 7148 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1170 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 13740 year: 2016 publication-title: Nat. Commun. – volume: 29 start-page: 1606054 year: 2017 publication-title: Adv. Mater. – volume: 133 start-page: 2605 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 1806 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 9611 year: 2012 publication-title: Macromolecules – volume: 23 start-page: 2367 year: 2011 publication-title: Adv. Mater. – volume: 19 start-page: 3440 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 137 start-page: 898 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1700254 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 3040 year: 2014 publication-title: Energy Environ. Sci. – volume: 7 start-page: 11585 year: 2016 publication-title: Nat. Commun. – volume: 138 start-page: 15011 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 5980 year: 2016 publication-title: Adv. Mater. – volume: 29 start-page: 1700144 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 13651 year: 2016 publication-title: Nat. Commun. – volume: 33 start-page: 2327 year: 2017 publication-title: Acta Phys.‐Chim. Sin. – volume: 317 start-page: 222 year: 2007 publication-title: Science – volume: 1 start-page: 16089 year: 2016 publication-title: Nat. Energy – volume: 29 start-page: 1604241 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 9729 year: 2016 publication-title: Adv. Mater. – volume: 139 start-page: 3356 year: 2017 publication-title: J. Am. Chem. Soc. – ident: e_1_2_4_49_1 doi: 10.1038/ncomms13740 – ident: e_1_2_4_3_1 doi: 10.1021/jacs.7b02677 – volume: 33 start-page: 2327 year: 2017 ident: e_1_2_4_47_1 publication-title: Acta Phys.‐Chim. Sin. – ident: e_1_2_4_34_1 doi: 10.1002/adma.201603940 – ident: e_1_2_4_9_1 doi: 10.1039/C6TA07368A – ident: e_1_2_4_14_1 doi: 10.1039/C6TA04232E – ident: e_1_2_4_21_1 doi: 10.1021/jacs.6b09110 – ident: e_1_2_4_33_1 doi: 10.1039/C5CS00593K – ident: e_1_2_4_45_1 doi: 10.1039/C4EE01529K – ident: e_1_2_4_2_1 doi: 10.1002/adma.201700144 – ident: e_1_2_4_5_1 doi: 10.1038/nenergy.2015.27 – ident: e_1_2_4_36_1 doi: 10.1038/ncomms11585 – ident: e_1_2_4_42_1 doi: 10.1126/science.1141711 – ident: e_1_2_4_6_1 doi: 10.1021/acs.accounts.5b00199 – ident: e_1_2_4_22_1 doi: 10.1002/adma.201606054 – ident: e_1_2_4_30_1 doi: 10.1038/ncomms13651 – ident: e_1_2_4_29_1 doi: 10.1002/adma.201600281 – ident: e_1_2_4_50_1 doi: 10.1002/adma.201600512 – ident: e_1_2_4_41_1 doi: 10.1038/nmat1928 – ident: e_1_2_4_44_1 doi: 10.1021/ja309289u – ident: e_1_2_4_25_1 doi: 10.1021/jacs.6b00853 – ident: e_1_2_4_15_1 doi: 10.1038/nenergy.2016.89 – ident: e_1_2_4_4_1 doi: 10.1038/ncomms6293 – ident: e_1_2_4_51_1 doi: 10.1002/adma.201004554 – ident: e_1_2_4_37_1 doi: 10.1021/ja108861q – ident: e_1_2_4_27_1 doi: 10.1021/jacs.7b00566 – ident: e_1_2_4_19_1 doi: 10.1039/C6EE02598F – ident: e_1_2_4_46_1 doi: 10.1021/ma301900h – ident: e_1_2_4_39_1 doi: 10.1021/ja506785w – ident: e_1_2_4_52_1 doi: 10.1039/c2ee22296e – ident: e_1_2_4_38_1 doi: 10.1021/ja0683537 – ident: e_1_2_4_11_1 doi: 10.1021/jacs.6b02004 – ident: e_1_2_4_23_1 doi: 10.1002/adma.201700254 – ident: e_1_2_4_40_1 doi: 10.1002/adma.200600160 – ident: e_1_2_4_43_1 doi: 10.1038/ncomms13094 – ident: e_1_2_4_32_1 doi: 10.1002/adma.201606396 – ident: e_1_2_4_26_1 doi: 10.1021/jacs.6b08523 – ident: e_1_2_4_24_1 doi: 10.1039/C7TC01310H – ident: e_1_2_4_7_1 doi: 10.1039/C6CP07465K – ident: e_1_2_4_20_1 doi: 10.1002/adma.201604155 – ident: e_1_2_4_48_1 doi: 10.1038/ncomms7013 – ident: e_1_2_4_28_1 doi: 10.1002/anie.201610944 – ident: e_1_2_4_13_1 doi: 10.1039/C5EE03481G – ident: e_1_2_4_16_1 doi: 10.1002/adma.201603518 – ident: e_1_2_4_8_1 doi: 10.1002/smll.201701120 – ident: e_1_2_4_1_1 doi: 10.1002/adma.201602776 – ident: e_1_2_4_35_1 doi: 10.1021/ja5110602 – ident: e_1_2_4_12_1 doi: 10.1038/nmat4797 – ident: e_1_2_4_17_1 doi: 10.1002/adma.201605115 – ident: e_1_2_4_10_1 doi: 10.1002/adma.201404317 – ident: e_1_2_4_18_1 doi: 10.1021/jacs.6b12755 – ident: e_1_2_4_31_1 doi: 10.1002/adma.201604241 |
SSID | ssj0009606 |
Score | 2.6706743 |
Snippet | Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring... Most nonfullerene acceptors developed so far for high-performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused-ring... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Efficiency Energy conversion efficiency Heat treatment Materials science morphological stability Morphology noncovalent interactions nonfullerene acceptors organic solar cells Photovoltaic cells Solar cells unfused‐core acceptors |
Title | An Unfused‐Core‐Based Nonfullerene Acceptor Enables High‐Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705208 https://www.ncbi.nlm.nih.gov/pubmed/29271518 https://www.proquest.com/docview/1999120876 https://www.proquest.com/docview/1979968816 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQJzi0BfrYliIjIfVkSJzH2sewXYQqwYGyErfIz0tXCdpkpban_gSu_L3-EmacTWBbVZXaUxJlnNjOjOezM_OZkCOdCh9Jk7Hcq4ilLldMeyOZlxbcUeLRh2C0xWV-Pks_3WQ3T7L4O36IYcENLSOM12jgSjcnj6ShygbeIKSD4SHbFwO2EBVdPfJHITwPZHtJxmSeip61MeIn68XXvdJvUHMduQbXc_acqL7SXcTJl-Nlq4_N91_4HP-nVS_IsxUupUWnSDtkw1W7ZPsJW-EeuS8qOqv8snH254-7Sb1wcDgFL2jpZV3hOn7YaYUWBkNl6gWdhryshmIsCYhOA1sFpnrSLgPU0M84saYTN583FFeE6fRr-JNQtfSiBg3oR2YKmDhE8X6jqg3Po9cOAH9HCN28JLOz6fXknK12dmAGmZRYlluuDBeGc6W81MKmqUy8AAytMqthyqkibaSXPhVJbi0MKzqyegwjc5JonyevyGZVV-4NobHiIvaJUULkqRWxigGzCq-tcDoD8DQirP-ypVnRnuPuG_OyI2zmJXZ5OXT5iHwY5G87wo8_Su73ilKuDL8pkdUh5sjzNyKHw20wWew9Vbl6iTJjmGVCY0Hmdadgw6u45GMAYfBwHtTkL3Uoi48XxXD19l8KvSNbcC5CJLrYJ5vtYuneA9Bq9UEwpgfjWSOD |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lj9MwEICtZTkAB96PwgJGAnHKbuI86hw4lLarLrvtAVppb1k_L1QJalLBcuIncOVn8Ff4CfwSZpzHUhBCQtoDp6jp1HHssWfGHX8m5KmMuPVTFXuJFb4XmUR40qrUs6kGcxRatCGYbTFLJovo1XF8vEW-tnthaj5Et-CGI8PN1zjAcUF674waKrQDByEPhvm8yas8NKfvIWorXxyMoIufMbY_ng8nXnOwgKcQ5OPFiWZCMa4YE8KmkusoSkPLwYUTsZYQ8QhfqtSmNuJhojVotfS17MPEEIbSJiGUe4FcxGPEEdc_en1GrMKAwOH9wthLk4i3nEif7W3Wd9MO_ubcbvrKztjtXyPf2maqc1ze7q4ruas-_kKQ_K_a8Tq52rjedFCPlRtky-Q3yZWfgIy3yJdBThe5XZdGf__0eVisDFxegqHXdFbk-EbuMBk6UJgNVKzo2G09Kymmy4Do2AE5cDcrrTe5KvoG1w7o0CyXJcVFbzr-4P4sySs6LUDJW-NDwe13icqnVFSuPDo3ENPUzOvyNlmcS9vcIdt5kZt7hAaC8cCGSnCeRJoHIgC3nFupuZEx-Ic94rWqlKmG7I4HjCyzmknNMuzirOviHnneyb-rmSZ_lNxpNTNr5rYyQ3BFwBBl2CNPuq9hVsLWE7kp1ijTh0AaXhZk7tYa3T2KpawPfiYUzpxe_qUO2WA0HXSf7v_Ljx6TS5P59Cg7OpgdPiCX4T53ifd8h2xXq7V5CH5lJR-5kUzJyXmr_A8ibIIK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKkRAceD8WChgJxClt4jzWOXAI-1BL6QpBV-ot-HlhlVSbrKCc-Alc-Rf8Ff4Cv4QZ51EWhJCQeuAUJZk4jj32fOPMfCbksYy49VMVe4kVvheZRHjSqtSzqQZzFFq0IRhtMUt259GLo_hog3ztcmEafoh-wQ1HhpuvcYAfa7tzShoqtOMNQjoY5vM2rHLfnLwHp616tjeGHn7C2HRyONr12n0FPIU8Pl6caCYU44oxIWwquY6iNLQcEJyItQSHR_hSpTa1EQ8TrUGppa_lEOaFMJQ2CaHcc-R8lPgpbhYxfn1KWIX-gGP3C2MvTSLe0UT6bGe9vutm8Ddsuw6Vna2bXiHfulZqQlzeba9qua0-_kIg-T8141VyuQXeNGtGyjWyYYrr5NJPdIw3yJesoPPCriqjv3_6PCqXBg7PwcxrOisL_FHhtpKhmcJYoHJJJy7xrKIYLAOiE0fHgbmstElxVfQNrhzQkVksKopL3nTywf0qKWp6UIKKd6aHAuh3YconVNSuPHpowKNpGK-rm2R-Jm1zi2wWZWHuEBoIxgMbKsF5EmkeiABAObdScyNjQIcD4nWalKuW1x23F1nkDSM1y7GL876LB-RpL3_cMJr8UXKrU8y8ndmqHGkrAoZEhgPyqL8NcxK2nihMuUKZIbjR8LEgc7tR6P5VLGVDQJlQOHNq-Zc65Nn4IOvP7v7LQw_JhVfjaf5yb7Z_j1yEy9xF3fMtslkvV-Y-gMpaPnDjmJK3Z63xPwALd4C5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Unfused-Core-Based+Nonfullerene+Acceptor+Enables+High-Efficiency+Organic+Solar+Cells+with+Excellent+Morphological+Stability+at+High+Temperatures&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Shuixing&rft.au=Zhan%2C+Lingling&rft.au=Liu%2C+Feng&rft.au=Ren%2C+Jie&rft.date=2018-02-08&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=6&rft_id=info:doi/10.1002%2Fadma.201705208&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |