Review of the Development of First‐Generation Redox Flow Batteries: Iron‐Chromium System
The iron‐chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low‐cost, abundant iron and chromium chlorides as redox‐active materials, making it one of the most cost‐effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Ja...
Saved in:
Published in | ChemSusChem Vol. 15; no. 1; pp. e202101798 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The iron‐chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low‐cost, abundant iron and chromium chlorides as redox‐active materials, making it one of the most cost‐effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Japan in the 1970–1980s, and extensive studies on ICRFBs have been carried out over the past few decades. In addition, ICRFB is considered to be one of the most promising directions for cost‐effective and large‐scale energy storage applications, as its cost can theoretically be lower than that of zinc‐bromine and all‐vanadium RFBs, giving it the potential for large‐scale promotion. With the resolution of problems such as hydrogen evolution and electrolyte intermixing, the ICRFB technology is moving out of the laboratory and striving for greater power and more stable industrialization requirements. This Review summarizes the history, development, and research status of key components (carbon‐based electrode, electrolyte, and membranes) in the ICRFB system, aiming to give a brief guide to researchers who are involved in the related subject.
Let it flow: This is the first Review of the iron–chromium redox flow battery (ICRFB) system that is considered the first proposed true RFB. The history, development, and current research status of key components in the ICRFB system are summarized, and its working principle, battery performance, and cost are highlighted. |
---|---|
AbstractList | The iron-chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low-cost, abundant iron and chromium chlorides as redox-active materials, making it one of the most cost-effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Japan in the 1970-1980s, and extensive studies on ICRFBs have been carried out over the past few decades. In addition, ICRFB is considered to be one of the most promising directions for cost-effective and large-scale energy storage applications, as its cost can theoretically be lower than that of zinc-bromine and all-vanadium RFBs, giving it the potential for large-scale promotion. With the resolution of problems such as hydrogen evolution and electrolyte intermixing, the ICRFB technology is moving out of the laboratory and striving for greater power and more stable industrialization requirements. This Review summarizes the history, development, and research status of key components (carbon-based electrode, electrolyte, and membranes) in the ICRFB system, aiming to give a brief guide to researchers who are involved in the related subject. The iron‐chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low‐cost, abundant iron and chromium chlorides as redox‐active materials, making it one of the most cost‐effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Japan in the 1970–1980s, and extensive studies on ICRFBs have been carried out over the past few decades. In addition, ICRFB is considered to be one of the most promising directions for cost‐effective and large‐scale energy storage applications, as its cost can theoretically be lower than that of zinc‐bromine and all‐vanadium RFBs, giving it the potential for large‐scale promotion. With the resolution of problems such as hydrogen evolution and electrolyte intermixing, the ICRFB technology is moving out of the laboratory and striving for greater power and more stable industrialization requirements. This Review summarizes the history, development, and research status of key components (carbon‐based electrode, electrolyte, and membranes) in the ICRFB system, aiming to give a brief guide to researchers who are involved in the related subject. Let it flow: This is the first Review of the iron–chromium redox flow battery (ICRFB) system that is considered the first proposed true RFB. The history, development, and current research status of key components in the ICRFB system are summarized, and its working principle, battery performance, and cost are highlighted. The iron-chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low-cost, abundant iron and chromium chlorides as redox-active materials, making it one of the most cost-effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Japan in the 1970-1980s, and extensive studies on ICRFBs have been carried out over the past few decades. In addition, ICRFB is considered to be one of the most promising directions for cost-effective and large-scale energy storage applications, as its cost can theoretically be lower than that of zinc-bromine and all-vanadium RFBs, giving it the potential for large-scale promotion. With the resolution of problems such as hydrogen evolution and electrolyte intermixing, the ICRFB technology is moving out of the laboratory and striving for greater power and more stable industrialization requirements. This Review summarizes the history, development, and research status of key components (carbon-based electrode, electrolyte, and membranes) in the ICRFB system, aiming to give a brief guide to researchers who are involved in the related subject.The iron-chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low-cost, abundant iron and chromium chlorides as redox-active materials, making it one of the most cost-effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Japan in the 1970-1980s, and extensive studies on ICRFBs have been carried out over the past few decades. In addition, ICRFB is considered to be one of the most promising directions for cost-effective and large-scale energy storage applications, as its cost can theoretically be lower than that of zinc-bromine and all-vanadium RFBs, giving it the potential for large-scale promotion. With the resolution of problems such as hydrogen evolution and electrolyte intermixing, the ICRFB technology is moving out of the laboratory and striving for greater power and more stable industrialization requirements. This Review summarizes the history, development, and research status of key components (carbon-based electrode, electrolyte, and membranes) in the ICRFB system, aiming to give a brief guide to researchers who are involved in the related subject. |
Author | Sun, Chuanyu Zhang, Huan |
Author_xml | – sequence: 1 givenname: Chuanyu orcidid: 0000-0003-4932-7787 surname: Sun fullname: Sun, Chuanyu organization: University of Padova – sequence: 2 givenname: Huan orcidid: 0000-0003-2284-4274 surname: Zhang fullname: Zhang, Huan email: zhanghuan_chndl@163.com organization: University of Science and Technology Liaoning |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34724346$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9qGzEQh0VJaJw01x7LQi652NE_a3dzSzZ1ajAE7BZ6CAhJOyYyuytH0sbxrY_QZ-yTdB07DgRKTyOG75sR8ztGB41rAKHPBA8IxvTChGAGFFOCSZpnH1CPZIL3h4L_PNi_GTlCxyEsMBY4F-IjOmI8pZxx0UP3U3iysErcPIkPkNzAE1RuWUMTN62R9SH--fX7FhrwKlrXJFMo3XMyqtwquVYxgrcQLpOxd03HFQ_e1batk9k6RKg_ocO5qgKc7uoJ-jH6-r341p_c3Y6Lq0nfsJRlfS4MI4Dn1JTaDDMuhriETJFUKCYE0RnFvDS0zImmudIl0ZrrjDOsWZaXjLMTdL6du_TusYUQZW2DgapSDbg2SDrMKSOCC9qhZ-_QhWt90_1OUkFywihNWUd92VGtrqGUS29r5dfy9W4dMNgCxrsQPMz3CMFyE4zcBCP3wXQCfycYG18uGr2y1b-1fKutbAXr_yyRxWxWvLl_AR7eo5g |
CitedBy_id | crossref_primary_10_3390_app13010520 crossref_primary_10_3390_app14083316 crossref_primary_10_1021_jacs_4c01221 crossref_primary_10_3390_membranes13020215 crossref_primary_10_1149_1945_7111_ad0a75 crossref_primary_10_1021_acs_langmuir_2c03003 crossref_primary_10_1016_j_jcis_2024_08_091 crossref_primary_10_3390_en15051953 crossref_primary_10_3390_en17102333 crossref_primary_10_3390_membranes12121228 crossref_primary_10_1039_D3NR06578B crossref_primary_10_3390_en16041565 crossref_primary_10_1016_j_eng_2022_10_007 crossref_primary_10_3390_polym14152972 crossref_primary_10_1002_wene_541 crossref_primary_10_3390_polym14040845 crossref_primary_10_3390_en15134780 crossref_primary_10_1002_tcr_202300284 crossref_primary_10_3390_wevj13060096 crossref_primary_10_1002_anie_202316593 crossref_primary_10_1016_j_memsci_2025_123745 crossref_primary_10_3390_en17102345 crossref_primary_10_3390_su141811462 crossref_primary_10_1002_advs_202207728 crossref_primary_10_3390_membranes12100912 crossref_primary_10_3390_membranes13010007 crossref_primary_10_3390_su16052110 crossref_primary_10_3390_batteries9010040 crossref_primary_10_3390_en16052167 crossref_primary_10_1002_eem2_12605 crossref_primary_10_1063_5_0129255 crossref_primary_10_3390_batteries9010029 crossref_primary_10_3390_polym14193975 crossref_primary_10_3390_en15144975 crossref_primary_10_1002_bte2_20240059 crossref_primary_10_1016_j_electacta_2023_142292 crossref_primary_10_1016_j_ijhydene_2023_05_172 crossref_primary_10_3390_nano13071233 crossref_primary_10_1002_cssc_202402562 crossref_primary_10_1039_D3EY00231D crossref_primary_10_1016_j_memsci_2025_123914 crossref_primary_10_3390_membranes12111073 crossref_primary_10_1021_acsami_3c15803 crossref_primary_10_3390_batteries8090121 crossref_primary_10_3390_fire6100389 crossref_primary_10_1039_D4YA00101J crossref_primary_10_3390_batteries8120275 crossref_primary_10_1039_D4YA00331D crossref_primary_10_3390_batteries9010017 crossref_primary_10_1016_j_cej_2024_151936 crossref_primary_10_3390_batteries8120279 crossref_primary_10_1021_acsaem_4c00542 crossref_primary_10_1002_smtd_202400174 crossref_primary_10_26599_NRE_2024_9120135 crossref_primary_10_1002_EXP_20220073 crossref_primary_10_1039_D4TA02525C crossref_primary_10_1002_aesr_202300238 crossref_primary_10_1016_j_cej_2024_157189 crossref_primary_10_1149_1945_7111_ad80d4 crossref_primary_10_1039_D4SE00838C crossref_primary_10_1021_acssuschemeng_4c00046 crossref_primary_10_3390_app13010608 crossref_primary_10_3390_batteries11020078 crossref_primary_10_3390_en16031285 crossref_primary_10_1080_17518253_2023_2274529 crossref_primary_10_1002_aesr_202400118 crossref_primary_10_1021_jacs_4c05102 crossref_primary_10_1016_j_xcrp_2024_101782 crossref_primary_10_1038_s41467_024_50543_2 crossref_primary_10_3390_en15197369 crossref_primary_10_3390_membranes13080712 crossref_primary_10_1109_ACCESS_2024_3419561 crossref_primary_10_3389_fenrg_2024_1376739 crossref_primary_10_3390_su14095388 crossref_primary_10_3390_en15072454 crossref_primary_10_1007_s11426_024_2375_6 crossref_primary_10_1002_aesr_202300195 crossref_primary_10_3390_batteries10060214 crossref_primary_10_3390_polym15030659 crossref_primary_10_3390_en15072611 crossref_primary_10_1016_j_mtener_2024_101587 crossref_primary_10_3390_en16052099 crossref_primary_10_3390_membranes12090827 crossref_primary_10_3390_membranes12101001 crossref_primary_10_3390_membranes13100820 crossref_primary_10_1002_asia_202201242 crossref_primary_10_1021_acsaem_2c03471 crossref_primary_10_1016_j_matre_2024_100271 crossref_primary_10_1039_D2TA04515J crossref_primary_10_3390_polym14183718 crossref_primary_10_3390_membranes12111167 crossref_primary_10_3390_pr11010290 crossref_primary_10_1016_j_jpowsour_2023_233533 crossref_primary_10_3390_en15239247 crossref_primary_10_3390_en17071728 crossref_primary_10_3390_en16041876 crossref_primary_10_1002_aesr_202400113 crossref_primary_10_1002_adsu_202300663 crossref_primary_10_1002_cssc_202400550 crossref_primary_10_3390_batteries9080409 crossref_primary_10_3390_su15054625 crossref_primary_10_3390_chemengineering6030036 crossref_primary_10_3390_en16020833 crossref_primary_10_1002_solr_202400477 crossref_primary_10_3390_molecules27154918 crossref_primary_10_1016_j_ijhydene_2022_10_080 crossref_primary_10_1002_celc_202400267 crossref_primary_10_1039_D4NR00689E crossref_primary_10_1016_j_ces_2024_121126 crossref_primary_10_1002_er_8465 crossref_primary_10_3390_su141811570 crossref_primary_10_3390_en15186848 crossref_primary_10_3390_su16072939 crossref_primary_10_1002_ange_202316593 crossref_primary_10_3390_en16041985 crossref_primary_10_1016_j_jpcs_2022_110990 crossref_primary_10_1149_1945_7111_acb8de crossref_primary_10_1021_jacs_3c13828 crossref_primary_10_3390_polym14081617 crossref_primary_10_1002_eem2_12793 crossref_primary_10_1021_acsaem_4c01671 crossref_primary_10_3390_en15103512 crossref_primary_10_1016_j_est_2024_114329 crossref_primary_10_1016_j_memsci_2025_123696 crossref_primary_10_3390_en15155434 crossref_primary_10_3390_batteries9020135 crossref_primary_10_1016_j_est_2023_108383 crossref_primary_10_3390_app12052304 crossref_primary_10_26599_NRE_2023_9120081 crossref_primary_10_3390_batteries8110202 crossref_primary_10_1016_j_apenergy_2023_122534 crossref_primary_10_3390_molecules28062810 |
Cites_doi | 10.1016/j.electacta.2020.137524 10.1016/S0376-7388(00)82295-4 10.1039/C4CP03329A 10.1016/j.apenergy.2020.115252 10.1016/j.cej.2020.127855 10.1002/ange.201410823 10.1149/1.2113807 10.14447/jnmes.v16i4.155 10.1016/j.isci.2018.04.006 10.1016/0378-7753(92)80133-V 10.1016/j.jpowsour.2006.02.095 10.1002/cssc.201301045 10.1007/s11708-018-0552-4 10.1016/j.electacta.2021.138133 10.1016/j.jpowsour.2015.09.100 10.1016/0378-7753(93)80006-B 10.1002/cssc.202100966 10.1002/cssc.201701879 10.1039/c0ee00765j 10.1016/j.electacta.2017.08.016 10.1149/1.2108351 10.1002/adsu.201900020 10.1016/0013-4686(92)87084-D 10.1021/jz4001032 10.1002/cssc.201600198 10.2514/6.1979-989 10.1016/S0013-4686(99)00174-7 10.2172/5328915 10.1016/j.seta.2017.12.001 10.1016/0378-7753(89)80037-0 10.1016/0008-6223(85)90225-8 10.1002/er.5179 10.1039/C7TA02022H 10.1007/BF01092617 10.1002/cssc.202000633 10.1016/j.joule.2019.07.002 10.2172/6135611 10.1002/cssc.201200730 10.1016/j.apenergy.2016.08.135 10.1016/j.elecom.2007.04.021 10.1002/cssc.201701507 10.14711/thesis-991012564960903412 10.1016/j.ssi.2018.01.038 10.2172/6472995 10.1002/cssc.201100068 10.1002/celc.201900518 10.1016/j.jpowsour.2020.229445 10.1016/j.electacta.2019.06.130 10.1002/cssc.200800143 10.1016/j.memsci.2019.05.008 10.1007/s11581-019-02971-0 10.1016/j.jpowsour.2011.12.026 10.1021/nl400223v 10.1016/j.jpowsour.2011.09.003 10.1149/1.2115676 10.1021/acsenergylett.0c02205 10.1002/admi.201500309 10.1016/j.jpowsour.2018.02.028 10.1007/BF02744309 10.1016/j.electacta.2020.135646 10.1007/BF00617741 10.1039/C5TA02613J 10.1093/nsr/nww098 10.1016/0013-4686(92)85064-R 10.1002/anie.201410823 10.1021/acsenergylett.0c00761 10.1016/j.electacta.2019.03.056 10.1149/1.2114015 10.1002/er.4875 10.1016/j.jpowsour.2016.05.138 10.1016/j.jpowsour.2016.07.066 10.1002/cssc.201600106 10.5796/kogyobutsurikagaku.51.189 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.202101798 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | n/a |
ExternalDocumentID | 34724346 10_1002_cssc_202101798 CSSC202101798 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Doctoral Start-up Foundation of Liaoning Province funderid: 2021-BS-242 – fundername: Excellent Talent Training Program of the University of Science and Technology Liaoning funderid: 2019RC04 – fundername: Doctoral Start-up Foundation of Liaoning Province grantid: 2021-BS-242 – fundername: Excellent Talent Training Program of the University of Science and Technology Liaoning grantid: 2019RC04 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3738-46c31e0f2cdbc584650de8a176a3661b8204dc2d91b29abd1bb4b8430b389d343 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 15:05:26 EDT 2025 Fri Jul 25 12:13:16 EDT 2025 Thu Apr 03 06:53:37 EDT 2025 Tue Jul 01 00:36:18 EDT 2025 Thu Apr 24 22:58:06 EDT 2025 Wed Jan 22 16:27:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | membranes electrodes iron-chromium redox flow battery electrolytes energy storage |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-46c31e0f2cdbc584650de8a176a3661b8204dc2d91b29abd1bb4b8430b389d343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4932-7787 0000-0003-2284-4274 |
PMID | 34724346 |
PQID | 2619132273 |
PQPubID | 986333 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2592316462 proquest_journals_2619132273 pubmed_primary_34724346 crossref_primary_10_1002_cssc_202101798 crossref_citationtrail_10_1002_cssc_202101798 wiley_primary_10_1002_cssc_202101798_CSSC202101798 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 10, 2022 |
PublicationDateYYYYMMDD | 2022-01-10 |
PublicationDate_xml | – month: 01 year: 2022 text: January 10, 2022 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2013; 4 2017; 2 2017; 4 2021; 368 2015; 300 1983; 51 1999; 44 2020; 13 2008; 1 2011; 196 2016; 182 1985; 23 2013; 6 2012; 206 1983; 12 2020; 6 2020; 5 2018; 3 2013; 16 2013; 13 1984; 17 2019; 25 2020; 336 2014; 16 2007; 9 2015 2015; 54 127 2019; 318 2020; 44 2006; 160 1992; 43 2014; 7 1985; 15 2017; 248 2018; 383 1993; 45 2019; 3 2019; 6 2015; 3 2021; 421 2016; 327 2019; 309 1988; 10 1992; 39 2016; 324 1992; 37 2011; 4 1989; 27 2019; 584 2018; 25 2021; 14 2016; 3 2019; 43 2021; 378 2017; 10 2020; 271 2018; 319 2021; 493 2018; 12 2018; 11 1992; 22 2019; 133 2016; 9 2019; 131 2019; 132 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_9_2 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_11_3 e_1_2_8_15_1 e_1_2_8_57_1 Yano K. (e_1_2_8_5_1) 2017; 2 e_1_2_8_91_1 e_1_2_8_95_2 e_1_2_8_99_2 e_1_2_8_30_2 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_11_2 e_1_2_8_101_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_2 Cnobloch H. (e_1_2_8_34_1) 1983; 12 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_82_2 e_1_2_8_40_1 e_1_2_8_18_2 Yi Baolian L. B. (e_1_2_8_70_1) 1992; 43 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_2 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_75_2 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_89_2 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_81_2 e_1_2_8_17_2 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_97_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_32_2 e_1_2_8_74_2 e_1_2_8_51_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_23_2 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_88_2 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_12_2 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_96_2 e_1_2_8_31_2 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_73_2 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 4 start-page: 4068 year: 2011 end-page: 4073 publication-title: Energy Environ. Sci. – volume: 27 start-page: 219 year: 1989 end-page: 234 publication-title: J. Power Sources – volume: 17 start-page: 205 year: 1984 end-page: 217 publication-title: J. Membr. Sci. – volume: 248 start-page: 603 year: 2017 end-page: 613 publication-title: Electrochim. Acta – volume: 37 start-page: 1253 year: 1992 end-page: 1260 publication-title: Electrochim. Acta – volume: 13 start-page: 3805 year: 2020 end-page: 3819 publication-title: ChemSusChem – volume: 584 start-page: 246 year: 2019 end-page: 253 publication-title: J. Membr. Sci. – volume: 11 start-page: 125 year: 2018 end-page: 129 publication-title: ChemSusChem – volume: 22 start-page: 668 year: 1992 end-page: 674 publication-title: J. Appl. Electrochem. – volume: 10 start-page: 367 year: 1988 end-page: 372 publication-title: Bull. Mater. Sci. – volume: 6 start-page: 268 year: 2013 end-page: 274 publication-title: ChemSusChem – volume: 5 start-page: 13457 year: 2017 end-page: 13468 publication-title: J. Mater. Chem. A – volume: 43 start-page: 8739 year: 2019 end-page: 8752 publication-title: Int. J. Energy Res. – volume: 10 start-page: 4409 year: 2017 end-page: 4419 publication-title: ChemSusChem – volume: 39 start-page: 147 year: 1992 end-page: 154 publication-title: J. Power Sources – volume: 25 start-page: 4219 year: 2019 end-page: 4229 publication-title: Ionics – volume: 16 start-page: 19841 year: 2014 end-page: 19847 publication-title: Phys. Chem. Chem. Phys. – volume: 319 start-page: 110 year: 2018 end-page: 116 publication-title: Solid State Ionics – volume: 23 start-page: 655 year: 1985 end-page: 664 publication-title: Carbon – volume: 132 start-page: 1058 year: 2019 end-page: 1062 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 79 year: 1983 publication-title: Siemens Forsch.- Entwicklungsber. – volume: 132 start-page: 269 year: 2019 end-page: 273 publication-title: J. Electrochem. Soc. – volume: 309 start-page: 311 year: 2019 end-page: 325 publication-title: Electrochim. Acta – volume: 160 start-page: 716 year: 2006 end-page: 732 publication-title: J. Power Sources – volume: 1 start-page: 777 year: 2008 end-page: 779 publication-title: ChemSusChem – volume: 368 year: 2021 publication-title: Electrochim. Acta – volume: 378 year: 2021 publication-title: Electrochim. Acta – volume: 300 start-page: 438 year: 2015 end-page: 443 publication-title: J. Power Sources – volume: 44 start-page: 4559 year: 1999 end-page: 4571 publication-title: Electrochim. Acta – volume: 54 127 start-page: 9776 9912 year: 2015 2015 end-page: 9809 9947 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 63 year: 1985 end-page: 70 publication-title: J. Appl. Electrochem. – volume: 3 start-page: 2503 year: 2019 end-page: 2512 publication-title: Joule – volume: 37 start-page: 2459 year: 1992 end-page: 2465 publication-title: Electrochim. Acta – volume: 196 start-page: 10737 year: 2011 end-page: 10747 publication-title: J. Power Sources – volume: 336 year: 2020 publication-title: Electrochim. Acta – volume: 25 start-page: 43 year: 2018 end-page: 59 publication-title: Sustain. Energy Technol. Assess. – volume: 9 start-page: 1329 year: 2016 end-page: 1338 publication-title: ChemSusChem – volume: 182 start-page: 204 year: 2016 end-page: 209 publication-title: Appl. Energy – volume: 271 year: 2020 publication-title: Appl. Energy – volume: 51 start-page: 189 year: 1983 end-page: 190 publication-title: Denki Kagaku – volume: 12 start-page: 198 year: 2018 end-page: 224 publication-title: Front. Energy – volume: 327 start-page: 258 year: 2016 end-page: 264 publication-title: J. Power Sources – volume: 4 start-page: 1281 year: 2013 end-page: 1294 publication-title: J. Phys. Chem. Lett. – volume: 13 start-page: 1330 year: 2013 end-page: 1335 publication-title: Nano Lett. – volume: 9 start-page: 1455 year: 2016 end-page: 1461 publication-title: ChemSusChem – volume: 6 start-page: 3175 year: 2019 end-page: 3188 publication-title: ChemElectroChem – volume: 43 start-page: 330 year: 1992 end-page: 336 publication-title: CIESC Journal – volume: 133 start-page: 2109 year: 2019 end-page: 2112 publication-title: J. Electrochem. Soc. – volume: 44 start-page: 3839 year: 2020 end-page: 3853 publication-title: Int. J. Energy Res. – volume: 16 start-page: 287 year: 2013 end-page: 292 publication-title: J. New Mater. Electrochem. Syst. – volume: 3 year: 2019 publication-title: Adv. Sustainable Syst. – volume: 2 start-page: 28 year: 2017 publication-title: SEI Tech. Rev – volume: 4 start-page: 91 year: 2017 end-page: 105 publication-title: Natl. Sci. Rev. – volume: 4 start-page: 1388 year: 2011 end-page: 1406 publication-title: ChemSusChem – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 7 start-page: 914 year: 2014 end-page: 918 publication-title: ChemSusChem – volume: 383 start-page: 1 year: 2018 end-page: 9 publication-title: J. Power Sources – volume: 3 start-page: 40 year: 2018 end-page: 49 publication-title: iScience – volume: 14 start-page: 3945 year: 2021 end-page: 3952 publication-title: ChemSusChem – volume: 6 start-page: 158 year: 2020 end-page: 176 publication-title: ACS Energy Lett. – volume: 206 start-page: 450 year: 2012 end-page: 453 publication-title: J. Power Sources – volume: 3 start-page: 16913 year: 2015 end-page: 16933 publication-title: J. Mater. Chem. A – volume: 493 year: 2021 publication-title: J. Power Sources – volume: 421 year: 2021 publication-title: Chem. Eng. J. – volume: 324 start-page: 738 year: 2016 end-page: 744 publication-title: J. Power Sources – volume: 318 start-page: 913 year: 2019 end-page: 921 publication-title: Electrochim. Acta – volume: 45 start-page: 29 year: 1993 end-page: 41 publication-title: J. Power Sources – volume: 131 start-page: 701 year: 2019 end-page: 709 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 1758 year: 2020 end-page: 1762 publication-title: ACS Energy Lett. – volume: 9 start-page: 1924 year: 2007 end-page: 1930 publication-title: Electrochem. Commun. – ident: e_1_2_8_58_1 doi: 10.1016/j.electacta.2020.137524 – ident: e_1_2_8_44_1 doi: 10.1016/S0376-7388(00)82295-4 – ident: e_1_2_8_102_1 doi: 10.1039/C4CP03329A – ident: e_1_2_8_37_1 – ident: e_1_2_8_60_1 doi: 10.1016/j.apenergy.2020.115252 – ident: e_1_2_8_86_1 doi: 10.1016/j.cej.2020.127855 – ident: e_1_2_8_11_3 doi: 10.1002/ange.201410823 – ident: e_1_2_8_84_1 doi: 10.1149/1.2113807 – ident: e_1_2_8_83_1 doi: 10.14447/jnmes.v16i4.155 – ident: e_1_2_8_18_2 doi: 10.1016/j.isci.2018.04.006 – ident: e_1_2_8_22_1 – ident: e_1_2_8_56_1 doi: 10.1016/0378-7753(92)80133-V – ident: e_1_2_8_71_1 doi: 10.1016/j.jpowsour.2006.02.095 – ident: e_1_2_8_81_2 doi: 10.1002/cssc.201301045 – ident: e_1_2_8_12_2 doi: 10.1007/s11708-018-0552-4 – ident: e_1_2_8_40_1 – ident: e_1_2_8_96_2 doi: 10.1016/j.electacta.2021.138133 – ident: e_1_2_8_10_1 – ident: e_1_2_8_20_1 doi: 10.1016/j.jpowsour.2015.09.100 – ident: e_1_2_8_67_1 doi: 10.1016/0378-7753(93)80006-B – ident: e_1_2_8_31_2 – ident: e_1_2_8_97_1 – ident: e_1_2_8_75_2 doi: 10.1002/cssc.202100966 – ident: e_1_2_8_82_2 doi: 10.1002/cssc.201701879 – ident: e_1_2_8_39_2 doi: 10.1039/c0ee00765j – ident: e_1_2_8_72_1 – ident: e_1_2_8_68_1 doi: 10.1016/j.electacta.2017.08.016 – ident: e_1_2_8_85_1 doi: 10.1149/1.2108351 – ident: e_1_2_8_103_1 doi: 10.1002/adsu.201900020 – ident: e_1_2_8_77_1 doi: 10.1016/0013-4686(92)87084-D – ident: e_1_2_8_24_2 – ident: e_1_2_8_4_1 doi: 10.1021/jz4001032 – ident: e_1_2_8_74_2 doi: 10.1002/cssc.201600198 – ident: e_1_2_8_93_1 doi: 10.2514/6.1979-989 – ident: e_1_2_8_1_1 – ident: e_1_2_8_47_1 – ident: e_1_2_8_7_1 – ident: e_1_2_8_89_2 doi: 10.1016/S0013-4686(99)00174-7 – ident: e_1_2_8_30_2 doi: 10.2172/5328915 – ident: e_1_2_8_17_2 doi: 10.1016/j.seta.2017.12.001 – ident: e_1_2_8_21_1 doi: 10.1016/0378-7753(89)80037-0 – ident: e_1_2_8_79_1 doi: 10.1016/0008-6223(85)90225-8 – ident: e_1_2_8_35_1 – ident: e_1_2_8_42_2 doi: 10.1002/er.5179 – ident: e_1_2_8_62_1 doi: 10.1039/C7TA02022H – ident: e_1_2_8_41_2 doi: 10.1007/BF01092617 – ident: e_1_2_8_6_1 doi: 10.1002/cssc.202000633 – ident: e_1_2_8_92_1 – ident: e_1_2_8_61_1 doi: 10.1016/j.joule.2019.07.002 – ident: e_1_2_8_69_1 doi: 10.2172/6135611 – ident: e_1_2_8_8_2 doi: 10.1002/cssc.201200730 – ident: e_1_2_8_57_1 doi: 10.1016/j.apenergy.2016.08.135 – ident: e_1_2_8_78_1 doi: 10.1016/j.elecom.2007.04.021 – ident: e_1_2_8_2_2 doi: 10.1002/cssc.201701507 – ident: e_1_2_8_19_1 doi: 10.14711/thesis-991012564960903412 – ident: e_1_2_8_95_2 doi: 10.1016/j.ssi.2018.01.038 – ident: e_1_2_8_91_1 doi: 10.2172/6472995 – ident: e_1_2_8_9_2 doi: 10.1002/cssc.201100068 – ident: e_1_2_8_28_1 – ident: e_1_2_8_55_1 doi: 10.1002/celc.201900518 – ident: e_1_2_8_90_1 doi: 10.1016/j.jpowsour.2020.229445 – ident: e_1_2_8_13_2 doi: 10.1016/j.electacta.2019.06.130 – volume: 43 start-page: 330 year: 1992 ident: e_1_2_8_70_1 publication-title: CIESC Journal – ident: e_1_2_8_3_2 doi: 10.1002/cssc.200800143 – ident: e_1_2_8_25_1 doi: 10.2514/6.1979-989 – ident: e_1_2_8_94_1 – ident: e_1_2_8_101_1 doi: 10.1016/j.memsci.2019.05.008 – ident: e_1_2_8_64_1 doi: 10.1007/s11581-019-02971-0 – ident: e_1_2_8_80_1 – ident: e_1_2_8_104_1 doi: 10.1016/j.jpowsour.2011.12.026 – ident: e_1_2_8_88_2 doi: 10.1021/nl400223v – ident: e_1_2_8_15_1 – ident: e_1_2_8_36_1 doi: 10.1016/j.jpowsour.2011.09.003 – ident: e_1_2_8_43_1 doi: 10.1149/1.2115676 – ident: e_1_2_8_29_1 – ident: e_1_2_8_50_1 – ident: e_1_2_8_26_1 – ident: e_1_2_8_100_1 doi: 10.1021/acsenergylett.0c02205 – ident: e_1_2_8_16_2 doi: 10.1002/admi.201500309 – ident: e_1_2_8_32_2 – ident: e_1_2_8_38_2 – ident: e_1_2_8_99_2 doi: 10.1016/j.jpowsour.2018.02.028 – ident: e_1_2_8_51_1 doi: 10.1007/BF02744309 – ident: e_1_2_8_59_1 doi: 10.1016/j.electacta.2020.135646 – ident: e_1_2_8_45_1 doi: 10.1007/BF00617741 – ident: e_1_2_8_66_1 doi: 10.1039/C5TA02613J – ident: e_1_2_8_23_2 – ident: e_1_2_8_14_1 doi: 10.1093/nsr/nww098 – ident: e_1_2_8_76_1 doi: 10.1016/0013-4686(92)85064-R – ident: e_1_2_8_11_2 doi: 10.1002/anie.201410823 – ident: e_1_2_8_65_1 doi: 10.1021/acsenergylett.0c00761 – ident: e_1_2_8_27_1 – ident: e_1_2_8_98_2 doi: 10.1016/j.electacta.2019.03.056 – ident: e_1_2_8_48_1 doi: 10.1149/1.2114015 – ident: e_1_2_8_52_1 – volume: 12 start-page: 79 year: 1983 ident: e_1_2_8_34_1 publication-title: Siemens Forsch.- Entwicklungsber. – ident: e_1_2_8_63_1 doi: 10.1002/er.4875 – ident: e_1_2_8_53_1 doi: 10.1016/j.jpowsour.2016.05.138 – ident: e_1_2_8_54_1 doi: 10.1016/j.jpowsour.2016.07.066 – ident: e_1_2_8_46_1 – ident: e_1_2_8_73_2 doi: 10.1002/cssc.201600106 – ident: e_1_2_8_49_1 – volume: 2 start-page: 28 year: 2017 ident: e_1_2_8_5_1 publication-title: SEI Tech. Rev – ident: e_1_2_8_33_1 doi: 10.5796/kogyobutsurikagaku.51.189 – ident: e_1_2_8_87_1 |
SSID | ssj0060966 |
Score | 2.6496756 |
SecondaryResourceType | review_article |
Snippet | The iron‐chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low‐cost, abundant iron and chromium chlorides as redox‐active... The iron-chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low-cost, abundant iron and chromium chlorides as redox-active... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202101798 |
SubjectTerms | Bromine Chromium Electric Power Supplies Electrodes Electrolytes Energy storage Hydrogen evolution Iron iron-chromium redox flow battery membranes Oxidation-Reduction Rechargeable batteries Storage systems System effectiveness |
Title | Review of the Development of First‐Generation Redox Flow Batteries: Iron‐Chromium System |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202101798 https://www.ncbi.nlm.nih.gov/pubmed/34724346 https://www.proquest.com/docview/2619132273 https://www.proquest.com/docview/2592316462 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8QwFMeDeNGL-zJuRBA8dWyTNG29yeCggh5cwINQshXEmVZmQfHkR_Az-knMa6Z1RhFBj21f2jQvaf5p8n5BaE9RreMA0JdEaY9p6nuJiZTHRUizSNM4lBDgfH7BT27Y2W14OxbF7_gQ9Q83aBnl9xoauJD9g09oqOr3AUFIyjoF0b6wYAtU0WXNj-JWn5fhRTFnXshpUFEbfXIwmXyyV_omNSeVa9n1tOeRqDLtVpw8NIcD2VQvX3iO_3mrBTQ30qX4yFWkRTRl8iU006q2g1tGd24WARcZtpoRjy02glPte6si31_fHMUanI0vjS6ecbtTPGEH8bRj8kN82ityawdM3u79sIsdMX0F3bSPr1sn3mhrBk8BCsljXNHA-Jl1sFSgYUJfm1gEERfU9vjS6gqmFdFJIEkipA6kZDJm1JdWIGnK6CqazovcrCPMVZZlkdLCmIQJpRJhb6TDKJBMG1-SBvIq16RqxC2H7TM6qSMukxTKLK3LrIH2a_tHR-z40XKr8nQ6arn9FEaUMEKPaAPt1pdtWcNEishNMbQ2IchizrjN3JqrIfWjKIsIo4w3ECn9_Ese0tbVVas-2vhLok00SyAmw4e1iVtoetAbmm2rlAZyp2wNHwJDDRo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOJRLW15tIMAiIXFyau-u13ZvVUSUQpJD20gckCzvw1LUxEZ5CNRTf0J_I7-kO97YNEUICY62x_Z6Z8f7ze7MNwDvFdM6DpD6kirtcc18LzGR8kQWsjzSLA4lJjiPxmIw4Z--hHU0IebCOH6IZsENLaP6X6OB44L00S_WULVcIgchrQZV_BAeYVnvyqs6axikhEXoVYJRLLgXChbUvI0-Pdq-f3te-g1sbmPXavLp74Gsm-1iTi6765Xsqqt7jI7_9V37sLuBpuTEjaUn8MAUT2GnV1eEewZf3UYCKXNiYSO5E2-Ep_pTCyR_Xt84ImvUNzkzuvxB-rPyO3E8ntYtPyani7KwckjLO5-u58SRpj-HSf_jRW_gbaozeArZkDwuFAuMn1sdS4UwJvS1ibMgEhmzk7600IJrRXUSSJpkUgdSchlz5kuLkTTj7AW0irIwh0CEyvM8UjozJuGZUklmH6TDKJBcG1_SNni1blK1oS7HChqz1JEu0xT7LG36rA0fGvlvjrTjj5KdWtXpxniXKTqV6KRHrA3vmsu2r3EvJStMubYyISJjwYVt3IEbIs2rGI8oZ1y0gVaK_ksb0t75ea85evkvN72FncHFaJgOT8efX8FjiikaPoYqdqC1WqzNawucVvJNZRq3x-ERNQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9UwFMdPBBP0BRBFr4CWhMSncbe26zbezMUFUAkBSXgwWfprCRE2wr03GJ_8E_gb-UvoWe8mF2NI5HFbu3U9p-u3a8-nABuaGZNGiL6k2gTcsDDIbKIDIWNWJoalscIA56_7YueY753EJ3ei-D0fovvhhi2j-V5jA78wZf8PNFQPh4ggpI1PpTPwlIswRb_ePuwAUsIJ9Ca-KBU8iAWLWmxjSPvT-ae7pb-05rR0bfqefAFkW2q_5OTH5nikNvWve0DHx7zWIsxPhCn56D3pBTyx1RI8G7T7wb2E734agdQlcaKR3FlthKfyUycjb35fe4w1WpscWlP_JPlZfUU8xdMNyrfI7mVduXQI5T0_HZ8Tj0x_Bcf5p2-DnWCyN0OgkYUUcKFZZMPSWVhpFDFxaGwqo0RI5rp85YQFN5qaLFI0k8pESnGVchYqp5AM42wZZqu6sm-ACF2WZaKNtDbjUutMuhuZOIkUNzZUtAdBa5pCT8DluH_GWeGRy7TAOiu6OuvBhy79hUd2_DPlamvpYtJ0hwUOKXGInrAerHeXXV3jTIqsbD12aWLUxYILV7jX3kO6RzGeUM646AFt7PxAGYrB0dGgO3r7P5new9zBdl582d3_vALPKcZnhLhOcRVmR5dju-ZU00i9axrGLaQOD-0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+the+Development+of+First%E2%80%90Generation+Redox+Flow+Batteries%3A+Iron%E2%80%90Chromium+System&rft.jtitle=ChemSusChem&rft.au=Sun%2C+Chuanyu&rft.au=Zhang%2C+Huan&rft.date=2022-01-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1002%2Fcssc.202101798&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |