Review of the Development of First‐Generation Redox Flow Batteries: Iron‐Chromium System

The iron‐chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low‐cost, abundant iron and chromium chlorides as redox‐active materials, making it one of the most cost‐effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Ja...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 15; no. 1; pp. e202101798 - n/a
Main Authors Sun, Chuanyu, Zhang, Huan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The iron‐chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low‐cost, abundant iron and chromium chlorides as redox‐active materials, making it one of the most cost‐effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Japan in the 1970–1980s, and extensive studies on ICRFBs have been carried out over the past few decades. In addition, ICRFB is considered to be one of the most promising directions for cost‐effective and large‐scale energy storage applications, as its cost can theoretically be lower than that of zinc‐bromine and all‐vanadium RFBs, giving it the potential for large‐scale promotion. With the resolution of problems such as hydrogen evolution and electrolyte intermixing, the ICRFB technology is moving out of the laboratory and striving for greater power and more stable industrialization requirements. This Review summarizes the history, development, and research status of key components (carbon‐based electrode, electrolyte, and membranes) in the ICRFB system, aiming to give a brief guide to researchers who are involved in the related subject. Let it flow: This is the first Review of the iron–chromium redox flow battery (ICRFB) system that is considered the first proposed true RFB. The history, development, and current research status of key components in the ICRFB system are summarized, and its working principle, battery performance, and cost are highlighted.
AbstractList The iron-chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low-cost, abundant iron and chromium chlorides as redox-active materials, making it one of the most cost-effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Japan in the 1970-1980s, and extensive studies on ICRFBs have been carried out over the past few decades. In addition, ICRFB is considered to be one of the most promising directions for cost-effective and large-scale energy storage applications, as its cost can theoretically be lower than that of zinc-bromine and all-vanadium RFBs, giving it the potential for large-scale promotion. With the resolution of problems such as hydrogen evolution and electrolyte intermixing, the ICRFB technology is moving out of the laboratory and striving for greater power and more stable industrialization requirements. This Review summarizes the history, development, and research status of key components (carbon-based electrode, electrolyte, and membranes) in the ICRFB system, aiming to give a brief guide to researchers who are involved in the related subject.
The iron‐chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low‐cost, abundant iron and chromium chlorides as redox‐active materials, making it one of the most cost‐effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Japan in the 1970–1980s, and extensive studies on ICRFBs have been carried out over the past few decades. In addition, ICRFB is considered to be one of the most promising directions for cost‐effective and large‐scale energy storage applications, as its cost can theoretically be lower than that of zinc‐bromine and all‐vanadium RFBs, giving it the potential for large‐scale promotion. With the resolution of problems such as hydrogen evolution and electrolyte intermixing, the ICRFB technology is moving out of the laboratory and striving for greater power and more stable industrialization requirements. This Review summarizes the history, development, and research status of key components (carbon‐based electrode, electrolyte, and membranes) in the ICRFB system, aiming to give a brief guide to researchers who are involved in the related subject. Let it flow: This is the first Review of the iron–chromium redox flow battery (ICRFB) system that is considered the first proposed true RFB. The history, development, and current research status of key components in the ICRFB system are summarized, and its working principle, battery performance, and cost are highlighted.
The iron-chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low-cost, abundant iron and chromium chlorides as redox-active materials, making it one of the most cost-effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Japan in the 1970-1980s, and extensive studies on ICRFBs have been carried out over the past few decades. In addition, ICRFB is considered to be one of the most promising directions for cost-effective and large-scale energy storage applications, as its cost can theoretically be lower than that of zinc-bromine and all-vanadium RFBs, giving it the potential for large-scale promotion. With the resolution of problems such as hydrogen evolution and electrolyte intermixing, the ICRFB technology is moving out of the laboratory and striving for greater power and more stable industrialization requirements. This Review summarizes the history, development, and research status of key components (carbon-based electrode, electrolyte, and membranes) in the ICRFB system, aiming to give a brief guide to researchers who are involved in the related subject.The iron-chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low-cost, abundant iron and chromium chlorides as redox-active materials, making it one of the most cost-effective energy storage systems. ICRFBs were pioneered and studied extensively by NASA and Mitsui in Japan in the 1970-1980s, and extensive studies on ICRFBs have been carried out over the past few decades. In addition, ICRFB is considered to be one of the most promising directions for cost-effective and large-scale energy storage applications, as its cost can theoretically be lower than that of zinc-bromine and all-vanadium RFBs, giving it the potential for large-scale promotion. With the resolution of problems such as hydrogen evolution and electrolyte intermixing, the ICRFB technology is moving out of the laboratory and striving for greater power and more stable industrialization requirements. This Review summarizes the history, development, and research status of key components (carbon-based electrode, electrolyte, and membranes) in the ICRFB system, aiming to give a brief guide to researchers who are involved in the related subject.
Author Sun, Chuanyu
Zhang, Huan
Author_xml – sequence: 1
  givenname: Chuanyu
  orcidid: 0000-0003-4932-7787
  surname: Sun
  fullname: Sun, Chuanyu
  organization: University of Padova
– sequence: 2
  givenname: Huan
  orcidid: 0000-0003-2284-4274
  surname: Zhang
  fullname: Zhang, Huan
  email: zhanghuan_chndl@163.com
  organization: University of Science and Technology Liaoning
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34724346$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9qGzEQh0VJaJw01x7LQi652NE_a3dzSzZ1ajAE7BZ6CAhJOyYyuytH0sbxrY_QZ-yTdB07DgRKTyOG75sR8ztGB41rAKHPBA8IxvTChGAGFFOCSZpnH1CPZIL3h4L_PNi_GTlCxyEsMBY4F-IjOmI8pZxx0UP3U3iysErcPIkPkNzAE1RuWUMTN62R9SH--fX7FhrwKlrXJFMo3XMyqtwquVYxgrcQLpOxd03HFQ_e1batk9k6RKg_ocO5qgKc7uoJ-jH6-r341p_c3Y6Lq0nfsJRlfS4MI4Dn1JTaDDMuhriETJFUKCYE0RnFvDS0zImmudIl0ZrrjDOsWZaXjLMTdL6du_TusYUQZW2DgapSDbg2SDrMKSOCC9qhZ-_QhWt90_1OUkFywihNWUd92VGtrqGUS29r5dfy9W4dMNgCxrsQPMz3CMFyE4zcBCP3wXQCfycYG18uGr2y1b-1fKutbAXr_yyRxWxWvLl_AR7eo5g
CitedBy_id crossref_primary_10_3390_app13010520
crossref_primary_10_3390_app14083316
crossref_primary_10_1021_jacs_4c01221
crossref_primary_10_3390_membranes13020215
crossref_primary_10_1149_1945_7111_ad0a75
crossref_primary_10_1021_acs_langmuir_2c03003
crossref_primary_10_1016_j_jcis_2024_08_091
crossref_primary_10_3390_en15051953
crossref_primary_10_3390_en17102333
crossref_primary_10_3390_membranes12121228
crossref_primary_10_1039_D3NR06578B
crossref_primary_10_3390_en16041565
crossref_primary_10_1016_j_eng_2022_10_007
crossref_primary_10_3390_polym14152972
crossref_primary_10_1002_wene_541
crossref_primary_10_3390_polym14040845
crossref_primary_10_3390_en15134780
crossref_primary_10_1002_tcr_202300284
crossref_primary_10_3390_wevj13060096
crossref_primary_10_1002_anie_202316593
crossref_primary_10_1016_j_memsci_2025_123745
crossref_primary_10_3390_en17102345
crossref_primary_10_3390_su141811462
crossref_primary_10_1002_advs_202207728
crossref_primary_10_3390_membranes12100912
crossref_primary_10_3390_membranes13010007
crossref_primary_10_3390_su16052110
crossref_primary_10_3390_batteries9010040
crossref_primary_10_3390_en16052167
crossref_primary_10_1002_eem2_12605
crossref_primary_10_1063_5_0129255
crossref_primary_10_3390_batteries9010029
crossref_primary_10_3390_polym14193975
crossref_primary_10_3390_en15144975
crossref_primary_10_1002_bte2_20240059
crossref_primary_10_1016_j_electacta_2023_142292
crossref_primary_10_1016_j_ijhydene_2023_05_172
crossref_primary_10_3390_nano13071233
crossref_primary_10_1002_cssc_202402562
crossref_primary_10_1039_D3EY00231D
crossref_primary_10_1016_j_memsci_2025_123914
crossref_primary_10_3390_membranes12111073
crossref_primary_10_1021_acsami_3c15803
crossref_primary_10_3390_batteries8090121
crossref_primary_10_3390_fire6100389
crossref_primary_10_1039_D4YA00101J
crossref_primary_10_3390_batteries8120275
crossref_primary_10_1039_D4YA00331D
crossref_primary_10_3390_batteries9010017
crossref_primary_10_1016_j_cej_2024_151936
crossref_primary_10_3390_batteries8120279
crossref_primary_10_1021_acsaem_4c00542
crossref_primary_10_1002_smtd_202400174
crossref_primary_10_26599_NRE_2024_9120135
crossref_primary_10_1002_EXP_20220073
crossref_primary_10_1039_D4TA02525C
crossref_primary_10_1002_aesr_202300238
crossref_primary_10_1016_j_cej_2024_157189
crossref_primary_10_1149_1945_7111_ad80d4
crossref_primary_10_1039_D4SE00838C
crossref_primary_10_1021_acssuschemeng_4c00046
crossref_primary_10_3390_app13010608
crossref_primary_10_3390_batteries11020078
crossref_primary_10_3390_en16031285
crossref_primary_10_1080_17518253_2023_2274529
crossref_primary_10_1002_aesr_202400118
crossref_primary_10_1021_jacs_4c05102
crossref_primary_10_1016_j_xcrp_2024_101782
crossref_primary_10_1038_s41467_024_50543_2
crossref_primary_10_3390_en15197369
crossref_primary_10_3390_membranes13080712
crossref_primary_10_1109_ACCESS_2024_3419561
crossref_primary_10_3389_fenrg_2024_1376739
crossref_primary_10_3390_su14095388
crossref_primary_10_3390_en15072454
crossref_primary_10_1007_s11426_024_2375_6
crossref_primary_10_1002_aesr_202300195
crossref_primary_10_3390_batteries10060214
crossref_primary_10_3390_polym15030659
crossref_primary_10_3390_en15072611
crossref_primary_10_1016_j_mtener_2024_101587
crossref_primary_10_3390_en16052099
crossref_primary_10_3390_membranes12090827
crossref_primary_10_3390_membranes12101001
crossref_primary_10_3390_membranes13100820
crossref_primary_10_1002_asia_202201242
crossref_primary_10_1021_acsaem_2c03471
crossref_primary_10_1016_j_matre_2024_100271
crossref_primary_10_1039_D2TA04515J
crossref_primary_10_3390_polym14183718
crossref_primary_10_3390_membranes12111167
crossref_primary_10_3390_pr11010290
crossref_primary_10_1016_j_jpowsour_2023_233533
crossref_primary_10_3390_en15239247
crossref_primary_10_3390_en17071728
crossref_primary_10_3390_en16041876
crossref_primary_10_1002_aesr_202400113
crossref_primary_10_1002_adsu_202300663
crossref_primary_10_1002_cssc_202400550
crossref_primary_10_3390_batteries9080409
crossref_primary_10_3390_su15054625
crossref_primary_10_3390_chemengineering6030036
crossref_primary_10_3390_en16020833
crossref_primary_10_1002_solr_202400477
crossref_primary_10_3390_molecules27154918
crossref_primary_10_1016_j_ijhydene_2022_10_080
crossref_primary_10_1002_celc_202400267
crossref_primary_10_1039_D4NR00689E
crossref_primary_10_1016_j_ces_2024_121126
crossref_primary_10_1002_er_8465
crossref_primary_10_3390_su141811570
crossref_primary_10_3390_en15186848
crossref_primary_10_3390_su16072939
crossref_primary_10_1002_ange_202316593
crossref_primary_10_3390_en16041985
crossref_primary_10_1016_j_jpcs_2022_110990
crossref_primary_10_1149_1945_7111_acb8de
crossref_primary_10_1021_jacs_3c13828
crossref_primary_10_3390_polym14081617
crossref_primary_10_1002_eem2_12793
crossref_primary_10_1021_acsaem_4c01671
crossref_primary_10_3390_en15103512
crossref_primary_10_1016_j_est_2024_114329
crossref_primary_10_1016_j_memsci_2025_123696
crossref_primary_10_3390_en15155434
crossref_primary_10_3390_batteries9020135
crossref_primary_10_1016_j_est_2023_108383
crossref_primary_10_3390_app12052304
crossref_primary_10_26599_NRE_2023_9120081
crossref_primary_10_3390_batteries8110202
crossref_primary_10_1016_j_apenergy_2023_122534
crossref_primary_10_3390_molecules28062810
Cites_doi 10.1016/j.electacta.2020.137524
10.1016/S0376-7388(00)82295-4
10.1039/C4CP03329A
10.1016/j.apenergy.2020.115252
10.1016/j.cej.2020.127855
10.1002/ange.201410823
10.1149/1.2113807
10.14447/jnmes.v16i4.155
10.1016/j.isci.2018.04.006
10.1016/0378-7753(92)80133-V
10.1016/j.jpowsour.2006.02.095
10.1002/cssc.201301045
10.1007/s11708-018-0552-4
10.1016/j.electacta.2021.138133
10.1016/j.jpowsour.2015.09.100
10.1016/0378-7753(93)80006-B
10.1002/cssc.202100966
10.1002/cssc.201701879
10.1039/c0ee00765j
10.1016/j.electacta.2017.08.016
10.1149/1.2108351
10.1002/adsu.201900020
10.1016/0013-4686(92)87084-D
10.1021/jz4001032
10.1002/cssc.201600198
10.2514/6.1979-989
10.1016/S0013-4686(99)00174-7
10.2172/5328915
10.1016/j.seta.2017.12.001
10.1016/0378-7753(89)80037-0
10.1016/0008-6223(85)90225-8
10.1002/er.5179
10.1039/C7TA02022H
10.1007/BF01092617
10.1002/cssc.202000633
10.1016/j.joule.2019.07.002
10.2172/6135611
10.1002/cssc.201200730
10.1016/j.apenergy.2016.08.135
10.1016/j.elecom.2007.04.021
10.1002/cssc.201701507
10.14711/thesis-991012564960903412
10.1016/j.ssi.2018.01.038
10.2172/6472995
10.1002/cssc.201100068
10.1002/celc.201900518
10.1016/j.jpowsour.2020.229445
10.1016/j.electacta.2019.06.130
10.1002/cssc.200800143
10.1016/j.memsci.2019.05.008
10.1007/s11581-019-02971-0
10.1016/j.jpowsour.2011.12.026
10.1021/nl400223v
10.1016/j.jpowsour.2011.09.003
10.1149/1.2115676
10.1021/acsenergylett.0c02205
10.1002/admi.201500309
10.1016/j.jpowsour.2018.02.028
10.1007/BF02744309
10.1016/j.electacta.2020.135646
10.1007/BF00617741
10.1039/C5TA02613J
10.1093/nsr/nww098
10.1016/0013-4686(92)85064-R
10.1002/anie.201410823
10.1021/acsenergylett.0c00761
10.1016/j.electacta.2019.03.056
10.1149/1.2114015
10.1002/er.4875
10.1016/j.jpowsour.2016.05.138
10.1016/j.jpowsour.2016.07.066
10.1002/cssc.201600106
10.5796/kogyobutsurikagaku.51.189
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202101798
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage n/a
ExternalDocumentID 34724346
10_1002_cssc_202101798
CSSC202101798
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Doctoral Start-up Foundation of Liaoning Province
  funderid: 2021-BS-242
– fundername: Excellent Talent Training Program of the University of Science and Technology Liaoning
  funderid: 2019RC04
– fundername: Doctoral Start-up Foundation of Liaoning Province
  grantid: 2021-BS-242
– fundername: Excellent Talent Training Program of the University of Science and Technology Liaoning
  grantid: 2019RC04
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
K9.
7X8
ID FETCH-LOGICAL-c3738-46c31e0f2cdbc584650de8a176a3661b8204dc2d91b29abd1bb4b8430b389d343
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 15:05:26 EDT 2025
Fri Jul 25 12:13:16 EDT 2025
Thu Apr 03 06:53:37 EDT 2025
Tue Jul 01 00:36:18 EDT 2025
Thu Apr 24 22:58:06 EDT 2025
Wed Jan 22 16:27:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords membranes
electrodes
iron-chromium redox flow battery
electrolytes
energy storage
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-46c31e0f2cdbc584650de8a176a3661b8204dc2d91b29abd1bb4b8430b389d343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4932-7787
0000-0003-2284-4274
PMID 34724346
PQID 2619132273
PQPubID 986333
PageCount 15
ParticipantIDs proquest_miscellaneous_2592316462
proquest_journals_2619132273
pubmed_primary_34724346
crossref_primary_10_1002_cssc_202101798
crossref_citationtrail_10_1002_cssc_202101798
wiley_primary_10_1002_cssc_202101798_CSSC202101798
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 10, 2022
PublicationDateYYYYMMDD 2022-01-10
PublicationDate_xml – month: 01
  year: 2022
  text: January 10, 2022
  day: 10
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2013; 4
2017; 2
2017; 4
2021; 368
2015; 300
1983; 51
1999; 44
2020; 13
2008; 1
2011; 196
2016; 182
1985; 23
2013; 6
2012; 206
1983; 12
2020; 6
2020; 5
2018; 3
2013; 16
2013; 13
1984; 17
2019; 25
2020; 336
2014; 16
2007; 9
2015 2015; 54 127
2019; 318
2020; 44
2006; 160
1992; 43
2014; 7
1985; 15
2017; 248
2018; 383
1993; 45
2019; 3
2019; 6
2015; 3
2021; 421
2016; 327
2019; 309
1988; 10
1992; 39
2016; 324
1992; 37
2011; 4
1989; 27
2019; 584
2018; 25
2021; 14
2016; 3
2019; 43
2021; 378
2017; 10
2020; 271
2018; 319
2021; 493
2018; 12
2018; 11
1992; 22
2019; 133
2016; 9
2019; 131
2019; 132
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_9_2
e_1_2_8_41_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_11_3
e_1_2_8_15_1
e_1_2_8_57_1
Yano K. (e_1_2_8_5_1) 2017; 2
e_1_2_8_91_1
e_1_2_8_95_2
e_1_2_8_99_2
e_1_2_8_30_2
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_11_2
e_1_2_8_101_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_2
Cnobloch H. (e_1_2_8_34_1) 1983; 12
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_82_2
e_1_2_8_40_1
e_1_2_8_18_2
Yi Baolian L. B. (e_1_2_8_70_1) 1992; 43
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_2
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_75_2
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_89_2
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_81_2
e_1_2_8_17_2
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_97_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_32_2
e_1_2_8_74_2
e_1_2_8_51_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_23_2
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_88_2
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_12_2
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_96_2
e_1_2_8_31_2
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_73_2
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 4
  start-page: 4068
  year: 2011
  end-page: 4073
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 219
  year: 1989
  end-page: 234
  publication-title: J. Power Sources
– volume: 17
  start-page: 205
  year: 1984
  end-page: 217
  publication-title: J. Membr. Sci.
– volume: 248
  start-page: 603
  year: 2017
  end-page: 613
  publication-title: Electrochim. Acta
– volume: 37
  start-page: 1253
  year: 1992
  end-page: 1260
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 3805
  year: 2020
  end-page: 3819
  publication-title: ChemSusChem
– volume: 584
  start-page: 246
  year: 2019
  end-page: 253
  publication-title: J. Membr. Sci.
– volume: 11
  start-page: 125
  year: 2018
  end-page: 129
  publication-title: ChemSusChem
– volume: 22
  start-page: 668
  year: 1992
  end-page: 674
  publication-title: J. Appl. Electrochem.
– volume: 10
  start-page: 367
  year: 1988
  end-page: 372
  publication-title: Bull. Mater. Sci.
– volume: 6
  start-page: 268
  year: 2013
  end-page: 274
  publication-title: ChemSusChem
– volume: 5
  start-page: 13457
  year: 2017
  end-page: 13468
  publication-title: J. Mater. Chem. A
– volume: 43
  start-page: 8739
  year: 2019
  end-page: 8752
  publication-title: Int. J. Energy Res.
– volume: 10
  start-page: 4409
  year: 2017
  end-page: 4419
  publication-title: ChemSusChem
– volume: 39
  start-page: 147
  year: 1992
  end-page: 154
  publication-title: J. Power Sources
– volume: 25
  start-page: 4219
  year: 2019
  end-page: 4229
  publication-title: Ionics
– volume: 16
  start-page: 19841
  year: 2014
  end-page: 19847
  publication-title: Phys. Chem. Chem. Phys.
– volume: 319
  start-page: 110
  year: 2018
  end-page: 116
  publication-title: Solid State Ionics
– volume: 23
  start-page: 655
  year: 1985
  end-page: 664
  publication-title: Carbon
– volume: 132
  start-page: 1058
  year: 2019
  end-page: 1062
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 79
  year: 1983
  publication-title: Siemens Forsch.- Entwicklungsber.
– volume: 132
  start-page: 269
  year: 2019
  end-page: 273
  publication-title: J. Electrochem. Soc.
– volume: 309
  start-page: 311
  year: 2019
  end-page: 325
  publication-title: Electrochim. Acta
– volume: 160
  start-page: 716
  year: 2006
  end-page: 732
  publication-title: J. Power Sources
– volume: 1
  start-page: 777
  year: 2008
  end-page: 779
  publication-title: ChemSusChem
– volume: 368
  year: 2021
  publication-title: Electrochim. Acta
– volume: 378
  year: 2021
  publication-title: Electrochim. Acta
– volume: 300
  start-page: 438
  year: 2015
  end-page: 443
  publication-title: J. Power Sources
– volume: 44
  start-page: 4559
  year: 1999
  end-page: 4571
  publication-title: Electrochim. Acta
– volume: 54 127
  start-page: 9776 9912
  year: 2015 2015
  end-page: 9809 9947
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 63
  year: 1985
  end-page: 70
  publication-title: J. Appl. Electrochem.
– volume: 3
  start-page: 2503
  year: 2019
  end-page: 2512
  publication-title: Joule
– volume: 37
  start-page: 2459
  year: 1992
  end-page: 2465
  publication-title: Electrochim. Acta
– volume: 196
  start-page: 10737
  year: 2011
  end-page: 10747
  publication-title: J. Power Sources
– volume: 336
  year: 2020
  publication-title: Electrochim. Acta
– volume: 25
  start-page: 43
  year: 2018
  end-page: 59
  publication-title: Sustain. Energy Technol. Assess.
– volume: 9
  start-page: 1329
  year: 2016
  end-page: 1338
  publication-title: ChemSusChem
– volume: 182
  start-page: 204
  year: 2016
  end-page: 209
  publication-title: Appl. Energy
– volume: 271
  year: 2020
  publication-title: Appl. Energy
– volume: 51
  start-page: 189
  year: 1983
  end-page: 190
  publication-title: Denki Kagaku
– volume: 12
  start-page: 198
  year: 2018
  end-page: 224
  publication-title: Front. Energy
– volume: 327
  start-page: 258
  year: 2016
  end-page: 264
  publication-title: J. Power Sources
– volume: 4
  start-page: 1281
  year: 2013
  end-page: 1294
  publication-title: J. Phys. Chem. Lett.
– volume: 13
  start-page: 1330
  year: 2013
  end-page: 1335
  publication-title: Nano Lett.
– volume: 9
  start-page: 1455
  year: 2016
  end-page: 1461
  publication-title: ChemSusChem
– volume: 6
  start-page: 3175
  year: 2019
  end-page: 3188
  publication-title: ChemElectroChem
– volume: 43
  start-page: 330
  year: 1992
  end-page: 336
  publication-title: CIESC Journal
– volume: 133
  start-page: 2109
  year: 2019
  end-page: 2112
  publication-title: J. Electrochem. Soc.
– volume: 44
  start-page: 3839
  year: 2020
  end-page: 3853
  publication-title: Int. J. Energy Res.
– volume: 16
  start-page: 287
  year: 2013
  end-page: 292
  publication-title: J. New Mater. Electrochem. Syst.
– volume: 3
  year: 2019
  publication-title: Adv. Sustainable Syst.
– volume: 2
  start-page: 28
  year: 2017
  publication-title: SEI Tech. Rev
– volume: 4
  start-page: 91
  year: 2017
  end-page: 105
  publication-title: Natl. Sci. Rev.
– volume: 4
  start-page: 1388
  year: 2011
  end-page: 1406
  publication-title: ChemSusChem
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 7
  start-page: 914
  year: 2014
  end-page: 918
  publication-title: ChemSusChem
– volume: 383
  start-page: 1
  year: 2018
  end-page: 9
  publication-title: J. Power Sources
– volume: 3
  start-page: 40
  year: 2018
  end-page: 49
  publication-title: iScience
– volume: 14
  start-page: 3945
  year: 2021
  end-page: 3952
  publication-title: ChemSusChem
– volume: 6
  start-page: 158
  year: 2020
  end-page: 176
  publication-title: ACS Energy Lett.
– volume: 206
  start-page: 450
  year: 2012
  end-page: 453
  publication-title: J. Power Sources
– volume: 3
  start-page: 16913
  year: 2015
  end-page: 16933
  publication-title: J. Mater. Chem. A
– volume: 493
  year: 2021
  publication-title: J. Power Sources
– volume: 421
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 324
  start-page: 738
  year: 2016
  end-page: 744
  publication-title: J. Power Sources
– volume: 318
  start-page: 913
  year: 2019
  end-page: 921
  publication-title: Electrochim. Acta
– volume: 45
  start-page: 29
  year: 1993
  end-page: 41
  publication-title: J. Power Sources
– volume: 131
  start-page: 701
  year: 2019
  end-page: 709
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 1758
  year: 2020
  end-page: 1762
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 1924
  year: 2007
  end-page: 1930
  publication-title: Electrochem. Commun.
– ident: e_1_2_8_58_1
  doi: 10.1016/j.electacta.2020.137524
– ident: e_1_2_8_44_1
  doi: 10.1016/S0376-7388(00)82295-4
– ident: e_1_2_8_102_1
  doi: 10.1039/C4CP03329A
– ident: e_1_2_8_37_1
– ident: e_1_2_8_60_1
  doi: 10.1016/j.apenergy.2020.115252
– ident: e_1_2_8_86_1
  doi: 10.1016/j.cej.2020.127855
– ident: e_1_2_8_11_3
  doi: 10.1002/ange.201410823
– ident: e_1_2_8_84_1
  doi: 10.1149/1.2113807
– ident: e_1_2_8_83_1
  doi: 10.14447/jnmes.v16i4.155
– ident: e_1_2_8_18_2
  doi: 10.1016/j.isci.2018.04.006
– ident: e_1_2_8_22_1
– ident: e_1_2_8_56_1
  doi: 10.1016/0378-7753(92)80133-V
– ident: e_1_2_8_71_1
  doi: 10.1016/j.jpowsour.2006.02.095
– ident: e_1_2_8_81_2
  doi: 10.1002/cssc.201301045
– ident: e_1_2_8_12_2
  doi: 10.1007/s11708-018-0552-4
– ident: e_1_2_8_40_1
– ident: e_1_2_8_96_2
  doi: 10.1016/j.electacta.2021.138133
– ident: e_1_2_8_10_1
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jpowsour.2015.09.100
– ident: e_1_2_8_67_1
  doi: 10.1016/0378-7753(93)80006-B
– ident: e_1_2_8_31_2
– ident: e_1_2_8_97_1
– ident: e_1_2_8_75_2
  doi: 10.1002/cssc.202100966
– ident: e_1_2_8_82_2
  doi: 10.1002/cssc.201701879
– ident: e_1_2_8_39_2
  doi: 10.1039/c0ee00765j
– ident: e_1_2_8_72_1
– ident: e_1_2_8_68_1
  doi: 10.1016/j.electacta.2017.08.016
– ident: e_1_2_8_85_1
  doi: 10.1149/1.2108351
– ident: e_1_2_8_103_1
  doi: 10.1002/adsu.201900020
– ident: e_1_2_8_77_1
  doi: 10.1016/0013-4686(92)87084-D
– ident: e_1_2_8_24_2
– ident: e_1_2_8_4_1
  doi: 10.1021/jz4001032
– ident: e_1_2_8_74_2
  doi: 10.1002/cssc.201600198
– ident: e_1_2_8_93_1
  doi: 10.2514/6.1979-989
– ident: e_1_2_8_1_1
– ident: e_1_2_8_47_1
– ident: e_1_2_8_7_1
– ident: e_1_2_8_89_2
  doi: 10.1016/S0013-4686(99)00174-7
– ident: e_1_2_8_30_2
  doi: 10.2172/5328915
– ident: e_1_2_8_17_2
  doi: 10.1016/j.seta.2017.12.001
– ident: e_1_2_8_21_1
  doi: 10.1016/0378-7753(89)80037-0
– ident: e_1_2_8_79_1
  doi: 10.1016/0008-6223(85)90225-8
– ident: e_1_2_8_35_1
– ident: e_1_2_8_42_2
  doi: 10.1002/er.5179
– ident: e_1_2_8_62_1
  doi: 10.1039/C7TA02022H
– ident: e_1_2_8_41_2
  doi: 10.1007/BF01092617
– ident: e_1_2_8_6_1
  doi: 10.1002/cssc.202000633
– ident: e_1_2_8_92_1
– ident: e_1_2_8_61_1
  doi: 10.1016/j.joule.2019.07.002
– ident: e_1_2_8_69_1
  doi: 10.2172/6135611
– ident: e_1_2_8_8_2
  doi: 10.1002/cssc.201200730
– ident: e_1_2_8_57_1
  doi: 10.1016/j.apenergy.2016.08.135
– ident: e_1_2_8_78_1
  doi: 10.1016/j.elecom.2007.04.021
– ident: e_1_2_8_2_2
  doi: 10.1002/cssc.201701507
– ident: e_1_2_8_19_1
  doi: 10.14711/thesis-991012564960903412
– ident: e_1_2_8_95_2
  doi: 10.1016/j.ssi.2018.01.038
– ident: e_1_2_8_91_1
  doi: 10.2172/6472995
– ident: e_1_2_8_9_2
  doi: 10.1002/cssc.201100068
– ident: e_1_2_8_28_1
– ident: e_1_2_8_55_1
  doi: 10.1002/celc.201900518
– ident: e_1_2_8_90_1
  doi: 10.1016/j.jpowsour.2020.229445
– ident: e_1_2_8_13_2
  doi: 10.1016/j.electacta.2019.06.130
– volume: 43
  start-page: 330
  year: 1992
  ident: e_1_2_8_70_1
  publication-title: CIESC Journal
– ident: e_1_2_8_3_2
  doi: 10.1002/cssc.200800143
– ident: e_1_2_8_25_1
  doi: 10.2514/6.1979-989
– ident: e_1_2_8_94_1
– ident: e_1_2_8_101_1
  doi: 10.1016/j.memsci.2019.05.008
– ident: e_1_2_8_64_1
  doi: 10.1007/s11581-019-02971-0
– ident: e_1_2_8_80_1
– ident: e_1_2_8_104_1
  doi: 10.1016/j.jpowsour.2011.12.026
– ident: e_1_2_8_88_2
  doi: 10.1021/nl400223v
– ident: e_1_2_8_15_1
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jpowsour.2011.09.003
– ident: e_1_2_8_43_1
  doi: 10.1149/1.2115676
– ident: e_1_2_8_29_1
– ident: e_1_2_8_50_1
– ident: e_1_2_8_26_1
– ident: e_1_2_8_100_1
  doi: 10.1021/acsenergylett.0c02205
– ident: e_1_2_8_16_2
  doi: 10.1002/admi.201500309
– ident: e_1_2_8_32_2
– ident: e_1_2_8_38_2
– ident: e_1_2_8_99_2
  doi: 10.1016/j.jpowsour.2018.02.028
– ident: e_1_2_8_51_1
  doi: 10.1007/BF02744309
– ident: e_1_2_8_59_1
  doi: 10.1016/j.electacta.2020.135646
– ident: e_1_2_8_45_1
  doi: 10.1007/BF00617741
– ident: e_1_2_8_66_1
  doi: 10.1039/C5TA02613J
– ident: e_1_2_8_23_2
– ident: e_1_2_8_14_1
  doi: 10.1093/nsr/nww098
– ident: e_1_2_8_76_1
  doi: 10.1016/0013-4686(92)85064-R
– ident: e_1_2_8_11_2
  doi: 10.1002/anie.201410823
– ident: e_1_2_8_65_1
  doi: 10.1021/acsenergylett.0c00761
– ident: e_1_2_8_27_1
– ident: e_1_2_8_98_2
  doi: 10.1016/j.electacta.2019.03.056
– ident: e_1_2_8_48_1
  doi: 10.1149/1.2114015
– ident: e_1_2_8_52_1
– volume: 12
  start-page: 79
  year: 1983
  ident: e_1_2_8_34_1
  publication-title: Siemens Forsch.- Entwicklungsber.
– ident: e_1_2_8_63_1
  doi: 10.1002/er.4875
– ident: e_1_2_8_53_1
  doi: 10.1016/j.jpowsour.2016.05.138
– ident: e_1_2_8_54_1
  doi: 10.1016/j.jpowsour.2016.07.066
– ident: e_1_2_8_46_1
– ident: e_1_2_8_73_2
  doi: 10.1002/cssc.201600106
– ident: e_1_2_8_49_1
– volume: 2
  start-page: 28
  year: 2017
  ident: e_1_2_8_5_1
  publication-title: SEI Tech. Rev
– ident: e_1_2_8_33_1
  doi: 10.5796/kogyobutsurikagaku.51.189
– ident: e_1_2_8_87_1
SSID ssj0060966
Score 2.6496756
SecondaryResourceType review_article
Snippet The iron‐chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low‐cost, abundant iron and chromium chlorides as redox‐active...
The iron-chromium redox flow battery (ICRFB) is considered the first true RFB and utilizes low-cost, abundant iron and chromium chlorides as redox-active...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202101798
SubjectTerms Bromine
Chromium
Electric Power Supplies
Electrodes
Electrolytes
Energy storage
Hydrogen evolution
Iron
iron-chromium redox flow battery
membranes
Oxidation-Reduction
Rechargeable batteries
Storage systems
System effectiveness
Title Review of the Development of First‐Generation Redox Flow Batteries: Iron‐Chromium System
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202101798
https://www.ncbi.nlm.nih.gov/pubmed/34724346
https://www.proquest.com/docview/2619132273
https://www.proquest.com/docview/2592316462
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8QwFMeDeNGL-zJuRBA8dWyTNG29yeCggh5cwINQshXEmVZmQfHkR_Az-knMa6Z1RhFBj21f2jQvaf5p8n5BaE9RreMA0JdEaY9p6nuJiZTHRUizSNM4lBDgfH7BT27Y2W14OxbF7_gQ9Q83aBnl9xoauJD9g09oqOr3AUFIyjoF0b6wYAtU0WXNj-JWn5fhRTFnXshpUFEbfXIwmXyyV_omNSeVa9n1tOeRqDLtVpw8NIcD2VQvX3iO_3mrBTQ30qX4yFWkRTRl8iU006q2g1tGd24WARcZtpoRjy02glPte6si31_fHMUanI0vjS6ecbtTPGEH8bRj8kN82ityawdM3u79sIsdMX0F3bSPr1sn3mhrBk8BCsljXNHA-Jl1sFSgYUJfm1gEERfU9vjS6gqmFdFJIEkipA6kZDJm1JdWIGnK6CqazovcrCPMVZZlkdLCmIQJpRJhb6TDKJBMG1-SBvIq16RqxC2H7TM6qSMukxTKLK3LrIH2a_tHR-z40XKr8nQ6arn9FEaUMEKPaAPt1pdtWcNEishNMbQ2IchizrjN3JqrIfWjKIsIo4w3ECn9_Ese0tbVVas-2vhLok00SyAmw4e1iVtoetAbmm2rlAZyp2wNHwJDDRo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOJRLW15tIMAiIXFyau-u13ZvVUSUQpJD20gckCzvw1LUxEZ5CNRTf0J_I7-kO97YNEUICY62x_Z6Z8f7ze7MNwDvFdM6DpD6kirtcc18LzGR8kQWsjzSLA4lJjiPxmIw4Z--hHU0IebCOH6IZsENLaP6X6OB44L00S_WULVcIgchrQZV_BAeYVnvyqs6axikhEXoVYJRLLgXChbUvI0-Pdq-f3te-g1sbmPXavLp74Gsm-1iTi6765Xsqqt7jI7_9V37sLuBpuTEjaUn8MAUT2GnV1eEewZf3UYCKXNiYSO5E2-Ep_pTCyR_Xt84ImvUNzkzuvxB-rPyO3E8ntYtPyani7KwckjLO5-u58SRpj-HSf_jRW_gbaozeArZkDwuFAuMn1sdS4UwJvS1ibMgEhmzk7600IJrRXUSSJpkUgdSchlz5kuLkTTj7AW0irIwh0CEyvM8UjozJuGZUklmH6TDKJBcG1_SNni1blK1oS7HChqz1JEu0xT7LG36rA0fGvlvjrTjj5KdWtXpxniXKTqV6KRHrA3vmsu2r3EvJStMubYyISJjwYVt3IEbIs2rGI8oZ1y0gVaK_ksb0t75ea85evkvN72FncHFaJgOT8efX8FjiikaPoYqdqC1WqzNawucVvJNZRq3x-ERNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9UwFMdPBBP0BRBFr4CWhMSncbe26zbezMUFUAkBSXgwWfprCRE2wr03GJ_8E_gb-UvoWe8mF2NI5HFbu3U9p-u3a8-nABuaGZNGiL6k2gTcsDDIbKIDIWNWJoalscIA56_7YueY753EJ3ei-D0fovvhhi2j-V5jA78wZf8PNFQPh4ggpI1PpTPwlIswRb_ePuwAUsIJ9Ca-KBU8iAWLWmxjSPvT-ae7pb-05rR0bfqefAFkW2q_5OTH5nikNvWve0DHx7zWIsxPhCn56D3pBTyx1RI8G7T7wb2E734agdQlcaKR3FlthKfyUycjb35fe4w1WpscWlP_JPlZfUU8xdMNyrfI7mVduXQI5T0_HZ8Tj0x_Bcf5p2-DnWCyN0OgkYUUcKFZZMPSWVhpFDFxaGwqo0RI5rp85YQFN5qaLFI0k8pESnGVchYqp5AM42wZZqu6sm-ACF2WZaKNtDbjUutMuhuZOIkUNzZUtAdBa5pCT8DluH_GWeGRy7TAOiu6OuvBhy79hUd2_DPlamvpYtJ0hwUOKXGInrAerHeXXV3jTIqsbD12aWLUxYILV7jX3kO6RzGeUM646AFt7PxAGYrB0dGgO3r7P5new9zBdl582d3_vALPKcZnhLhOcRVmR5dju-ZU00i9axrGLaQOD-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+the+Development+of+First%E2%80%90Generation+Redox+Flow+Batteries%3A+Iron%E2%80%90Chromium+System&rft.jtitle=ChemSusChem&rft.au=Sun%2C+Chuanyu&rft.au=Zhang%2C+Huan&rft.date=2022-01-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1002%2Fcssc.202101798&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon