Engineering of Surface Energy of Cell‐Culture Platform to Enhance the Growth and Differentiation of Dendritic Cells via Vapor‐Phase Synthesized Functional Polymer Films

Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Fur...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 17; pp. e2106648 - n/a
Main Authors Lee, Minseok, Chun, Dongmin, Park, Seonghyeon, Choi, Goro, Kim, Yesol, Kang, Suk‐Jo, Im, Sung Gap
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell–substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross‐presentation, and CD8+ T cell activation, by 4.8‐fold compared to the conventional protocol. The cDC1s generated from the pCHMA‐coated plates retain the bona fide DC functions including the expression of co‐stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors’ knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs. The surface property of culture substrate can be simply and precisely modulated by coating extremely conformal polymers via initiated chemical vapor deposition. The prominent transition of cell adhesion can be induced during the dendritic cell (DC) differentiation subject to surface hydrophobicity. In particular, expansion of DCs and preferential differentiation of cDC1 showing bona fide DC functions can be substantially enhanced in the poly(cyclohexyl methacrylate).
AbstractList Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell–substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross‐presentation, and CD8 + T cell activation, by 4.8‐fold compared to the conventional protocol. The cDC1s generated from the pCHMA‐coated plates retain the bona fide DC functions including the expression of co‐stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors’ knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs.
Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell–substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross‐presentation, and CD8+ T cell activation, by 4.8‐fold compared to the conventional protocol. The cDC1s generated from the pCHMA‐coated plates retain the bona fide DC functions including the expression of co‐stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors’ knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs. The surface property of culture substrate can be simply and precisely modulated by coating extremely conformal polymers via initiated chemical vapor deposition. The prominent transition of cell adhesion can be induced during the dendritic cell (DC) differentiation subject to surface hydrophobicity. In particular, expansion of DCs and preferential differentiation of cDC1 showing bona fide DC functions can be substantially enhanced in the poly(cyclohexyl methacrylate).
Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell-substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross-presentation, and CD8+ T cell activation, by 4.8-fold compared to the conventional protocol. The cDC1s generated from the pCHMA-coated plates retain the bona fide DC functions including the expression of co-stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors' knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs.Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell-substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross-presentation, and CD8+ T cell activation, by 4.8-fold compared to the conventional protocol. The cDC1s generated from the pCHMA-coated plates retain the bona fide DC functions including the expression of co-stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors' knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs.
Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell-substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross-presentation, and CD8 T cell activation, by 4.8-fold compared to the conventional protocol. The cDC1s generated from the pCHMA-coated plates retain the bona fide DC functions including the expression of co-stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors' knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs.
Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell–substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross‐presentation, and CD8+ T cell activation, by 4.8‐fold compared to the conventional protocol. The cDC1s generated from the pCHMA‐coated plates retain the bona fide DC functions including the expression of co‐stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors’ knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs.
Author Park, Seonghyeon
Choi, Goro
Kim, Yesol
Im, Sung Gap
Lee, Minseok
Kang, Suk‐Jo
Chun, Dongmin
Author_xml – sequence: 1
  givenname: Minseok
  surname: Lee
  fullname: Lee, Minseok
  organization: Korea Advanced Institute of Science and Technology
– sequence: 2
  givenname: Dongmin
  surname: Chun
  fullname: Chun, Dongmin
  organization: Korea Advanced Institute of Science and Technology
– sequence: 3
  givenname: Seonghyeon
  surname: Park
  fullname: Park, Seonghyeon
  organization: Korea Advanced Institute of Science and Technology
– sequence: 4
  givenname: Goro
  surname: Choi
  fullname: Choi, Goro
  organization: Korea Advanced Institute of Science and Technology
– sequence: 5
  givenname: Yesol
  surname: Kim
  fullname: Kim, Yesol
  organization: Korea Advanced Institute of Science and Technology
– sequence: 6
  givenname: Suk‐Jo
  surname: Kang
  fullname: Kang, Suk‐Jo
  email: suk-jo.kang@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology
– sequence: 7
  givenname: Sung Gap
  orcidid: 0000-0002-2802-6398
  surname: Im
  fullname: Im, Sung Gap
  email: sgim@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35297560$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEURi1URNvAliWyxIZNgv_GnlmiNClIQUQKsB05k-vElccOtocqrHgEHoSn4kmYaUqQKiFWtqxzPl_d7xKd-eABoeeUTCgh7HVqnZswwiiRUpSP0AWVlI9lyaqz052Sc3SZ0g0hnDKhnqBzXrBKFZJcoJ8zv7UeIFq_xcHgVReNbgDPPMTtYXiZgnO_vv-Ydi53EfDS6WxCbHEOPbTTvofzDvB1DLd5h7Xf4CtrDETw2epsgx9CrsBvos22uYtL-KvV-LPeh9gnL3c6AV4dfB-T7DfY4Hnnm8HUDi-DO7QQ8dy6Nj1Fj412CZ7dnyP0aT77OH07Xny4fjd9sxg3XPFyLDgrSxBNwYHItWJ6LXllFGOFEcDXSnMlCiaNktoIVglVUFqWuipl01RcF3yEXh1z9zF86SDlurWp6QfXHkKXaiYF4YyTsurRlw_Qm9DFfvKBKgpBS9WTI_TinurWLWzqfbStjof6Tw89MDkCTQwpRTAnhJJ6KLoeiq5PRfeCeCA0Nt-tO0dt3b-16qjdWgeH_3xSr94vFn_d33w9wFE
CitedBy_id crossref_primary_10_1002_admi_202300587
crossref_primary_10_1021_acsami_4c14344
crossref_primary_10_1002_adma_202306665
crossref_primary_10_1038_s41467_024_54653_9
Cites_doi 10.1016/j.jaci.2009.12.980
10.1021/acsbiomaterials.9b01738
10.1038/nri1372
10.1016/j.molimm.2017.12.001
10.1039/B812121D
10.1038/nri3712
10.1021/la901453a
10.1016/j.cytogfr.2007.10.004
10.1084/jem.176.6.1693
10.1016/S0022-1759(98)00204-X
10.1038/nri2173
10.1038/cr.2016.157
10.1182/blood.V96.9.3029
10.1002/eji.201445080
10.1016/j.trecan.2018.09.001
10.1002/adfm.202100775
10.1016/j.immuni.2010.10.007
10.1016/j.mattod.2017.07.002
10.3390/colloids3020048
10.1016/j.biomaterials.2014.07.014
10.3389/fimmu.2013.00082
10.1159/000071463
10.1021/ja2108905
10.1002/smll.201701864
10.1016/S0142-9612(02)00240-5
10.1007/s12257-020-0269-1
10.1158/1078-0432.CCR-15-1399
10.1016/j.immuni.2011.08.008
10.1158/0008-5472.CAN-18-0927
10.1016/j.dental.2005.11.012
10.1002/jbm.b.33915
10.1158/2326-6066.CIR-17-0341
10.1080/0021846708544582
10.1186/s40425-019-0716-8
10.1002/adem.201700622
10.1021/acsabm.0c00844
10.1016/j.biomaterials.2014.09.002
10.4049/jimmunol.1401903
10.1016/S0142-9612(02)00439-8
10.1557/mrc.2018.14
10.1016/j.immuni.2009.08.027
10.1038/s41598-017-17787-z
10.1016/j.bioactmat.2018.05.005
10.1038/s41467-019-13368-y
10.1126/science.1164206
10.1088/1748-6041/4/4/045002
10.1038/ni.2467
10.1002/adma.201907225
10.1111/j.1365-2567.2008.02922.x
10.1038/ni1522
10.4049/jimmunol.174.11.6592
10.4049/jimmunol.179.11.7577
10.3389/fimmu.2019.01014
10.3389/fimmu.2019.02352
10.1177/0885328210372148
10.1002/smll.201503662
10.1016/j.biomaterials.2013.06.019
10.1039/C5RA10425D
10.1016/j.jmbbm.2019.07.003
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202106648
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 35297560
10_1002_smll_202106648
SMLL202106648
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Industry & Energy (MOTIE, Korea)
– fundername: National Research Foundation of Korea
– fundername: Technology Innovation Program
  funderid: 20008777
– fundername: Korea Government (MSIP)
  funderid: 2021R1A2B5B03001416; 2018R1A5A1024261
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3738-43288e4c53e06b72ab639f7225f4e3b7a374526f76af4294751188a986cc93a53
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 05:16:01 EDT 2025
Sat Jul 19 05:41:06 EDT 2025
Wed Feb 19 02:25:54 EST 2025
Thu Apr 24 23:04:04 EDT 2025
Tue Jul 01 02:54:10 EDT 2025
Wed Jan 22 16:26:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords surface energy
bone marrow-derived dendritic cells
functional polymer filmss
initiated chemical vapor deposition (iCVD)
type 1 conventional dendritic cells
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-43288e4c53e06b72ab639f7225f4e3b7a374526f76af4294751188a986cc93a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2802-6398
PMID 35297560
PQID 2655418732
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2640323089
proquest_journals_2655418732
pubmed_primary_35297560
crossref_primary_10_1002_smll_202106648
crossref_citationtrail_10_1002_smll_202106648
wiley_primary_10_1002_smll_202106648_SMLL202106648
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009 2019 2009 2011; 25 3 4 26
2018 2019; 8 99
2015; 5
2013; 4
2018 2020; 78 6
2004 2012; 4 134
2021 2020 2020 2002; 31 32 3 23
2019; 10
2017 2016 2016; 27 22 12
2008; 19
1992 2000; 176 96
2008 2009 2011 2017; 322 31 35 5
2009 2013; 9 34
1999; 223
2018; 21
2018 2018; 21 106
1970; 2
2019 2010 2015 2015; 7 33 45 194
2018; 3
2012 2014; 13 14
2019 2009; 10 126
2018; 4
2019 2010 2017; 110 125 13
2006; 22
2019 2014 2017; 10 35 7
2007; 8
2003; 24
2003; 25
2018 2021 2014; 20 26 35
2007; 7
2005 2007; 174 179
2015
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_26_2
e_1_2_8_7_4
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_13_3
e_1_2_8_15_1
e_1_2_8_30_3
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
Charette A. B. (e_1_2_8_18_1) 2015
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_6_2
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_16_4
e_1_2_8_12_2
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_12_4
e_1_2_8_16_1
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
References_xml – volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 4
  start-page: 82
  year: 2013
  publication-title: Front. Immunol.
– volume: 19
  start-page: 41
  year: 2008
  publication-title: Cytokine Growth Factor Rev.
– volume: 176 96
  start-page: 1693 3029
  year: 1992 2000
  publication-title: J. Exp. Med. Blood
– volume: 31 32 3 23
  start-page: 7654 4847
  year: 2021 2020 2020 2002
  publication-title: Adv. Funct. Mater. Adv. Mater. ACS Appl. Bio Mater. Biomaterials
– volume: 10 126
  start-page: 5408 475
  year: 2019 2009
  publication-title: Nat. Commun. Immunology
– volume: 8
  start-page: 1217
  year: 2007
  publication-title: Nat. Immunol.
– volume: 3
  start-page: 355
  year: 2018
  publication-title: Bioact. Mater.
– volume: 22
  start-page: 845
  year: 2006
  publication-title: Dent. Mater.
– volume: 2
  start-page: 66
  year: 1970
  publication-title: J. Adhes.
– volume: 4 134
  start-page: 469 3965
  year: 2004 2012
  publication-title: Nat. Rev. Immunol. J. Am. Chem. Soc.
– volume: 27 22 12
  start-page: 74 1897 1744
  year: 2017 2016 2016
  publication-title: Cell Res. Clin. Cancer Res. Small
– volume: 4
  start-page: 784
  year: 2018
  publication-title: Trends Cancer
– volume: 8 99
  start-page: 168 1
  year: 2018 2019
  publication-title: MRS Commun. J. Mech. Behav. Biomed. Mater.
– volume: 25 3 4 26
  start-page: 48 327
  year: 2009 2019 2009 2011
  publication-title: Langmuir Colloids Interfaces Biomed. Mater. J. Biomater. Appl.
– volume: 13 14
  start-page: 1145 571
  year: 2012 2014
  publication-title: Nat. Immunol. Nat. Rev. Immunol.
– volume: 322 31 35 5
  start-page: 1097 823 249 1098
  year: 2008 2009 2011 2017
  publication-title: Science Immunity Immunity Cancer Immunol. Res.
– volume: 78 6
  start-page: 6890 2240
  year: 2018 2020
  publication-title: Cancer Res. ACS Biomater. Sci. Eng.
– volume: 20 26 35
  start-page: 165 9811
  year: 2018 2021 2014
  publication-title: Adv. Eng. Mater. Biotechnol. Bioprocess. Eng. Biomaterials
– volume: 21
  start-page: 38
  year: 2018
  publication-title: Mater. Today
– volume: 174 179
  start-page: 6592 7577
  year: 2005 2007
  publication-title: J. Immunol. J. Immunol.
– volume: 10 35 7
  start-page: 2352 8867
  year: 2019 2014 2017
  publication-title: Front. Immunol. Biomaterials Sci. Rep.
– volume: 24
  start-page: 1059
  year: 2003
  publication-title: Biomaterials
– volume: 223
  start-page: 77
  year: 1999
  publication-title: J. Immunol. Methods
– volume: 10
  start-page: 1014
  year: 2019
  publication-title: Front. Immunol.
– volume: 7 33 45 194
  start-page: 238 464 624 1069
  year: 2019 2010 2015 2015
  publication-title: J. Immunother. Cancer Immunity Eur. J. Immunol. J. Immunol.
– volume: 9 34
  start-page: 411 7236
  year: 2009 2013
  publication-title: Lab Chip Biomaterials
– year: 2015
– volume: 21 106
  start-page: 38 1268
  year: 2018 2018
  publication-title: Mater. Today J. Biomed. Mater. Res., Part B
– volume: 25
  start-page: 14
  year: 2003
  publication-title: Dev. Neurosci.
– volume: 110 125 13
  start-page: 13 S3
  year: 2019 2010 2017
  publication-title: Mol. Immunol. J. Allergy Clin. Immunol. Small
– volume: 7
  start-page: 790
  year: 2007
  publication-title: Nat. Rev. Immunol.
– ident: e_1_2_8_2_2
  doi: 10.1016/j.jaci.2009.12.980
– ident: e_1_2_8_19_2
  doi: 10.1021/acsbiomaterials.9b01738
– ident: e_1_2_8_31_1
  doi: 10.1038/nri1372
– ident: e_1_2_8_2_1
  doi: 10.1016/j.molimm.2017.12.001
– ident: e_1_2_8_22_1
  doi: 10.1039/B812121D
– ident: e_1_2_8_6_2
  doi: 10.1038/nri3712
– ident: e_1_2_8_12_1
  doi: 10.1021/la901453a
– ident: e_1_2_8_3_1
  doi: 10.1016/j.cytogfr.2007.10.004
– ident: e_1_2_8_8_1
  doi: 10.1084/jem.176.6.1693
– ident: e_1_2_8_11_1
  doi: 10.1016/S0022-1759(98)00204-X
– ident: e_1_2_8_5_1
  doi: 10.1038/nri2173
– ident: e_1_2_8_1_1
  doi: 10.1038/cr.2016.157
– ident: e_1_2_8_8_2
  doi: 10.1182/blood.V96.9.3029
– ident: e_1_2_8_4_3
  doi: 10.1002/eji.201445080
– ident: e_1_2_8_28_1
  doi: 10.1016/j.trecan.2018.09.001
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.202100775
– ident: e_1_2_8_4_2
  doi: 10.1016/j.immuni.2010.10.007
– ident: e_1_2_8_21_1
  doi: 10.1016/j.mattod.2017.07.002
– ident: e_1_2_8_12_2
  doi: 10.3390/colloids3020048
– ident: e_1_2_8_30_2
  doi: 10.1016/j.biomaterials.2014.07.014
– ident: e_1_2_8_27_1
  doi: 10.3389/fimmu.2013.00082
– ident: e_1_2_8_23_1
  doi: 10.1159/000071463
– ident: e_1_2_8_31_2
  doi: 10.1021/ja2108905
– ident: e_1_2_8_2_3
  doi: 10.1002/smll.201701864
– ident: e_1_2_8_16_4
  doi: 10.1016/S0142-9612(02)00240-5
– ident: e_1_2_8_13_2
  doi: 10.1007/s12257-020-0269-1
– ident: e_1_2_8_1_2
  doi: 10.1158/1078-0432.CCR-15-1399
– ident: e_1_2_8_7_3
  doi: 10.1016/j.immuni.2011.08.008
– ident: e_1_2_8_19_1
  doi: 10.1158/0008-5472.CAN-18-0927
– ident: e_1_2_8_25_1
  doi: 10.1016/j.dental.2005.11.012
– ident: e_1_2_8_24_2
  doi: 10.1002/jbm.b.33915
– ident: e_1_2_8_7_4
  doi: 10.1158/2326-6066.CIR-17-0341
– ident: e_1_2_8_32_1
  doi: 10.1080/0021846708544582
– ident: e_1_2_8_4_1
  doi: 10.1186/s40425-019-0716-8
– ident: e_1_2_8_13_1
  doi: 10.1002/adem.201700622
– ident: e_1_2_8_16_3
  doi: 10.1021/acsabm.0c00844
– ident: e_1_2_8_13_3
  doi: 10.1016/j.biomaterials.2014.09.002
– ident: e_1_2_8_4_4
  doi: 10.4049/jimmunol.1401903
– ident: e_1_2_8_15_1
  doi: 10.1016/S0142-9612(02)00439-8
– ident: e_1_2_8_17_1
  doi: 10.1557/mrc.2018.14
– ident: e_1_2_8_7_2
  doi: 10.1016/j.immuni.2009.08.027
– ident: e_1_2_8_30_3
  doi: 10.1038/s41598-017-17787-z
– ident: e_1_2_8_14_1
  doi: 10.1016/j.bioactmat.2018.05.005
– volume-title: Handbook of Reagents for Organic Synthesis: Reagents for Heteroarene Functionalization
  year: 2015
  ident: e_1_2_8_18_1
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-019-13368-y
– ident: e_1_2_8_7_1
  doi: 10.1126/science.1164206
– ident: e_1_2_8_24_1
  doi: 10.1016/j.mattod.2017.07.002
– ident: e_1_2_8_12_3
  doi: 10.1088/1748-6041/4/4/045002
– ident: e_1_2_8_6_1
  doi: 10.1038/ni.2467
– ident: e_1_2_8_16_2
  doi: 10.1002/adma.201907225
– ident: e_1_2_8_26_2
  doi: 10.1111/j.1365-2567.2008.02922.x
– ident: e_1_2_8_10_1
  doi: 10.1038/ni1522
– ident: e_1_2_8_9_1
  doi: 10.4049/jimmunol.174.11.6592
– ident: e_1_2_8_9_2
  doi: 10.4049/jimmunol.179.11.7577
– ident: e_1_2_8_29_1
  doi: 10.3389/fimmu.2019.01014
– ident: e_1_2_8_30_1
  doi: 10.3389/fimmu.2019.02352
– ident: e_1_2_8_12_4
  doi: 10.1177/0885328210372148
– ident: e_1_2_8_1_3
  doi: 10.1002/smll.201503662
– ident: e_1_2_8_22_2
  doi: 10.1016/j.biomaterials.2013.06.019
– ident: e_1_2_8_20_1
  doi: 10.1039/C5RA10425D
– ident: e_1_2_8_17_2
  doi: 10.1016/j.jmbbm.2019.07.003
SSID ssj0031247
Score 2.4025648
Snippet Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune...
Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2106648
SubjectTerms Antigen Presentation
Antigens
Autoimmune diseases
bone marrow‐derived dendritic cells
Cell Culture Techniques - methods
Chemical vapor deposition
Cytokines
Dendritic Cells - metabolism
Differentiation
functional polymer filmss
Growth factors
Hydrophobicity
initiated chemical vapor deposition (iCVD)
Lymphocyte Activation
Lymphocytes
Modulation
Nanotechnology
Polymer films
Polymers
Polymers - metabolism
Substrates
Surface energy
type 1 conventional dendritic cells
Title Engineering of Surface Energy of Cell‐Culture Platform to Enhance the Growth and Differentiation of Dendritic Cells via Vapor‐Phase Synthesized Functional Polymer Films
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202106648
https://www.ncbi.nlm.nih.gov/pubmed/35297560
https://www.proquest.com/docview/2655418732
https://www.proquest.com/docview/2640323089
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT3Dg_ydQkJGQOKXd2onjHFHbpUIFrViKeovGjqNdNZugTRapPfEIPAhPxZMw42TDLgghwdHJ2HHkGc83_vmGsRdOpyq1cRHqPDZhZLUKIRYmtNookYLReeFPW7xTJ2fRm_P4fOMWf8cPMSy4kWX4-ZoMHEyz_5M0tFmUtHWAIYtSEd32pQNbhIreD_xREp2Xz66CPisk4q01a-NI7G9X3_ZKv0HNbeTqXc_4FoN1p7sTJxd7q9bs2atf-Bz_569us5s9LuWvOkW6w6656i67scFWeI992yjxuuDT1bIA6_ixvz5ITw5dWX7_8rWj6XR8UkJLmJi3NQrNSL844k3-GkP_dsahyvlRn5-l7TSEGjlyVe7zL_jmGv55DvwjYJiALU9m6HT59LLCZpr5lcv5GP1yt5zJJ3V5uXBLPp6Xi-Y-Oxsffzg8CftkD6ElcqUwkkJrF9lYupEyiQCD2KlIcLopIidNAjKhbOhFoqBAHxolFBppSLWyNpUQywdsp6or94jxGCS64Fhol5ooLSwocBg3xVaJgzxPIWDherAz2zOhU0KOMus4nEVGo5ANoxCwl4P8p44D5I-Su2vdyfq5oMmEQsh2oBMpAvZ8eI1WTFszULl6RTLRSGI0qNOAPex0bvgUQmTsvBoFTHjN-Usfsunb09Oh9PhfKj1h1wXd8vAHlHbZTrtcuaeIvVrzzNvXD1MNKbI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHIBD-S0EChgJiVParZ04zhG1XRbYViu2Rdwi23G0K7JJtckitScegQfhqXgSZpwfuiCEBEcntuPIM55v7PE3hLywMhaxCTNfpqH2AyOFr0KmfSO1YLHSMs1ctMWxGJ0Gbz-GXTQh3oVp-CH6DTfUDLdeo4LjhvTuT9bQapHj2QH4LEIE8iq5hmm9nVf1vmeQ4mC-XH4VsFo-Um91vI0Dtrveft0u_QY217GrMz7DW0R3w25iTj7trGq9Yy5-YXT8r_-6TTZbaEpfNbJ0h1yxxV1y8xJh4T3y7VKJlhmdrpaZMpYeuhuE-GTf5vn3L18bpk5LJ7mqERbTuoRKMxQxCpCTvgbvv55RVaT0oE3RUjdCgp0c2CJ1KRhcdxX9PFf0gwJPAXqezMDu0ul5Ad1U8wub0iGY5mZHk07K_Hxhl3Q4zxfVfXI6PDzZH_ltvgffIL-SH3AmpQ1MyO1A6IgpDfApi2DFyQLLdaR4hAnRs0ioDMxoEKF3JFUshTExVyHfIhtFWdiHhIaKgxUOmbSxDuLMKKEsuE6hEWwvTWPlEb-b7cS0ZOiYkyNPGhpnluAsJP0seORlX_-soQH5Y83tTniSdjmoEiYAte3JiDOPPO9fgyLj6YwqbLnCOsGAg0MoY488aISu_xSgZBi8GHiEOdH5yxiS6dF43Jce_UujZ-T66ORonIzfHL97TG4wvPTh4pW2yUa9XNknAMVq_dQp2w_SVS3N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSAgO_BcCBYyExCltajuOc0TdLgWWasVS1FtkO7Z2RTapNlmk9sQj8CA8FU_C2MmGXRBCgqOTsePIM55v_PMNQs-NSHmqYxuKPFYh04KHMiYq1EJxkkolcutPWxzzoxP25jQ-XbvF3_JD9AtuzjL8fO0M_Cy3ez9JQ-t54bYOIGThnInL6ArjkXB6PXjfE0hR8F4-vQo4rdAxb61oGyOyt1l_0y39hjU3oav3PcObSK563R45-bS7bNSuvviF0PF_fusWutEBU_yy1aTb6JIp76Dra3SFd9G3tRKuLJ4sF1Zqgw_9_UH35MAUxfcvX1ueToPHhWwcKMZNBUJTp2AYACd-BbF_M8WyzPGgS9DStCriGhmYMvcJGHxzNf48k_ijhDgBWh5PweviyXkJzdSzC5PjITjmdj0Tj6vifG4WeDgr5vU9dDI8_HBwFHbZHkLt2JVCRokQhumYmoirhEgF4MkmMN9YZqhKJE1cOnSbcGnBibLExUZCpoJrnVIZ0220VValeYBwLCn44JgIkyqWWi25NBA4xZqT_TxPZYDC1WBnuqNCdxk5iqwlcSaZG4WsH4UAvejlz1oSkD9K7qx0J-smgzojHDDbvkgoCdCz_jWYsdubkaWplk6GRRTCQZEG6H6rc_2nACND53kUIOI15y99yCbvRqO-9PBfKj1FV8eDYTZ6ffz2EbpG3I0Pf1hpB201i6V5DDisUU-8qf0ARccshQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+Surface+Energy+of+Cell-Culture+Platform+to+Enhance+the+Growth+and+Differentiation+of+Dendritic+Cells+via+Vapor-Phase+Synthesized+Functional+Polymer+Films&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lee%2C+Minseok&rft.au=Chun%2C+Dongmin&rft.au=Park%2C+Seonghyeon&rft.au=Choi%2C+Goro&rft.date=2022-04-01&rft.eissn=1613-6829&rft.volume=18&rft.issue=17&rft.spage=e2106648&rft_id=info:doi/10.1002%2Fsmll.202106648&rft_id=info%3Apmid%2F35297560&rft.externalDocID=35297560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon