Engineering of Surface Energy of Cell‐Culture Platform to Enhance the Growth and Differentiation of Dendritic Cells via Vapor‐Phase Synthesized Functional Polymer Films
Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Fur...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 17; pp. e2106648 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell–substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross‐presentation, and CD8+ T cell activation, by 4.8‐fold compared to the conventional protocol. The cDC1s generated from the pCHMA‐coated plates retain the bona fide DC functions including the expression of co‐stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors’ knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs.
The surface property of culture substrate can be simply and precisely modulated by coating extremely conformal polymers via initiated chemical vapor deposition. The prominent transition of cell adhesion can be induced during the dendritic cell (DC) differentiation subject to surface hydrophobicity. In particular, expansion of DCs and preferential differentiation of cDC1 showing bona fide DC functions can be substantially enhanced in the poly(cyclohexyl methacrylate). |
---|---|
AbstractList | Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell–substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross‐presentation, and CD8
+
T cell activation, by 4.8‐fold compared to the conventional protocol. The cDC1s generated from the pCHMA‐coated plates retain the bona fide DC functions including the expression of co‐stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors’ knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs. Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell–substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross‐presentation, and CD8+ T cell activation, by 4.8‐fold compared to the conventional protocol. The cDC1s generated from the pCHMA‐coated plates retain the bona fide DC functions including the expression of co‐stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors’ knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs. The surface property of culture substrate can be simply and precisely modulated by coating extremely conformal polymers via initiated chemical vapor deposition. The prominent transition of cell adhesion can be induced during the dendritic cell (DC) differentiation subject to surface hydrophobicity. In particular, expansion of DCs and preferential differentiation of cDC1 showing bona fide DC functions can be substantially enhanced in the poly(cyclohexyl methacrylate). Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell-substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross-presentation, and CD8+ T cell activation, by 4.8-fold compared to the conventional protocol. The cDC1s generated from the pCHMA-coated plates retain the bona fide DC functions including the expression of co-stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors' knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs.Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell-substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross-presentation, and CD8+ T cell activation, by 4.8-fold compared to the conventional protocol. The cDC1s generated from the pCHMA-coated plates retain the bona fide DC functions including the expression of co-stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors' knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs. Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell-substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross-presentation, and CD8 T cell activation, by 4.8-fold compared to the conventional protocol. The cDC1s generated from the pCHMA-coated plates retain the bona fide DC functions including the expression of co-stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors' knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs. Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell–substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross‐presentation, and CD8+ T cell activation, by 4.8‐fold compared to the conventional protocol. The cDC1s generated from the pCHMA‐coated plates retain the bona fide DC functions including the expression of co‐stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors’ knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs. |
Author | Park, Seonghyeon Choi, Goro Kim, Yesol Im, Sung Gap Lee, Minseok Kang, Suk‐Jo Chun, Dongmin |
Author_xml | – sequence: 1 givenname: Minseok surname: Lee fullname: Lee, Minseok organization: Korea Advanced Institute of Science and Technology – sequence: 2 givenname: Dongmin surname: Chun fullname: Chun, Dongmin organization: Korea Advanced Institute of Science and Technology – sequence: 3 givenname: Seonghyeon surname: Park fullname: Park, Seonghyeon organization: Korea Advanced Institute of Science and Technology – sequence: 4 givenname: Goro surname: Choi fullname: Choi, Goro organization: Korea Advanced Institute of Science and Technology – sequence: 5 givenname: Yesol surname: Kim fullname: Kim, Yesol organization: Korea Advanced Institute of Science and Technology – sequence: 6 givenname: Suk‐Jo surname: Kang fullname: Kang, Suk‐Jo email: suk-jo.kang@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology – sequence: 7 givenname: Sung Gap orcidid: 0000-0002-2802-6398 surname: Im fullname: Im, Sung Gap email: sgim@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35297560$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEURi1URNvAliWyxIZNgv_GnlmiNClIQUQKsB05k-vElccOtocqrHgEHoSn4kmYaUqQKiFWtqxzPl_d7xKd-eABoeeUTCgh7HVqnZswwiiRUpSP0AWVlI9lyaqz052Sc3SZ0g0hnDKhnqBzXrBKFZJcoJ8zv7UeIFq_xcHgVReNbgDPPMTtYXiZgnO_vv-Ydi53EfDS6WxCbHEOPbTTvofzDvB1DLd5h7Xf4CtrDETw2epsgx9CrsBvos22uYtL-KvV-LPeh9gnL3c6AV4dfB-T7DfY4Hnnm8HUDi-DO7QQ8dy6Nj1Fj412CZ7dnyP0aT77OH07Xny4fjd9sxg3XPFyLDgrSxBNwYHItWJ6LXllFGOFEcDXSnMlCiaNktoIVglVUFqWuipl01RcF3yEXh1z9zF86SDlurWp6QfXHkKXaiYF4YyTsurRlw_Qm9DFfvKBKgpBS9WTI_TinurWLWzqfbStjof6Tw89MDkCTQwpRTAnhJJ6KLoeiq5PRfeCeCA0Nt-tO0dt3b-16qjdWgeH_3xSr94vFn_d33w9wFE |
CitedBy_id | crossref_primary_10_1002_admi_202300587 crossref_primary_10_1021_acsami_4c14344 crossref_primary_10_1002_adma_202306665 crossref_primary_10_1038_s41467_024_54653_9 |
Cites_doi | 10.1016/j.jaci.2009.12.980 10.1021/acsbiomaterials.9b01738 10.1038/nri1372 10.1016/j.molimm.2017.12.001 10.1039/B812121D 10.1038/nri3712 10.1021/la901453a 10.1016/j.cytogfr.2007.10.004 10.1084/jem.176.6.1693 10.1016/S0022-1759(98)00204-X 10.1038/nri2173 10.1038/cr.2016.157 10.1182/blood.V96.9.3029 10.1002/eji.201445080 10.1016/j.trecan.2018.09.001 10.1002/adfm.202100775 10.1016/j.immuni.2010.10.007 10.1016/j.mattod.2017.07.002 10.3390/colloids3020048 10.1016/j.biomaterials.2014.07.014 10.3389/fimmu.2013.00082 10.1159/000071463 10.1021/ja2108905 10.1002/smll.201701864 10.1016/S0142-9612(02)00240-5 10.1007/s12257-020-0269-1 10.1158/1078-0432.CCR-15-1399 10.1016/j.immuni.2011.08.008 10.1158/0008-5472.CAN-18-0927 10.1016/j.dental.2005.11.012 10.1002/jbm.b.33915 10.1158/2326-6066.CIR-17-0341 10.1080/0021846708544582 10.1186/s40425-019-0716-8 10.1002/adem.201700622 10.1021/acsabm.0c00844 10.1016/j.biomaterials.2014.09.002 10.4049/jimmunol.1401903 10.1016/S0142-9612(02)00439-8 10.1557/mrc.2018.14 10.1016/j.immuni.2009.08.027 10.1038/s41598-017-17787-z 10.1016/j.bioactmat.2018.05.005 10.1038/s41467-019-13368-y 10.1126/science.1164206 10.1088/1748-6041/4/4/045002 10.1038/ni.2467 10.1002/adma.201907225 10.1111/j.1365-2567.2008.02922.x 10.1038/ni1522 10.4049/jimmunol.174.11.6592 10.4049/jimmunol.179.11.7577 10.3389/fimmu.2019.01014 10.3389/fimmu.2019.02352 10.1177/0885328210372148 10.1002/smll.201503662 10.1016/j.biomaterials.2013.06.019 10.1039/C5RA10425D 10.1016/j.jmbbm.2019.07.003 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202106648 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 35297560 10_1002_smll_202106648 SMLL202106648 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Industry & Energy (MOTIE, Korea) – fundername: National Research Foundation of Korea – fundername: Technology Innovation Program funderid: 20008777 – fundername: Korea Government (MSIP) funderid: 2021R1A2B5B03001416; 2018R1A5A1024261 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3738-43288e4c53e06b72ab639f7225f4e3b7a374526f76af4294751188a986cc93a53 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 05:16:01 EDT 2025 Sat Jul 19 05:41:06 EDT 2025 Wed Feb 19 02:25:54 EST 2025 Thu Apr 24 23:04:04 EDT 2025 Tue Jul 01 02:54:10 EDT 2025 Wed Jan 22 16:26:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | surface energy bone marrow-derived dendritic cells functional polymer filmss initiated chemical vapor deposition (iCVD) type 1 conventional dendritic cells |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-43288e4c53e06b72ab639f7225f4e3b7a374526f76af4294751188a986cc93a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2802-6398 |
PMID | 35297560 |
PQID | 2655418732 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2640323089 proquest_journals_2655418732 pubmed_primary_35297560 crossref_primary_10_1002_smll_202106648 crossref_citationtrail_10_1002_smll_202106648 wiley_primary_10_1002_smll_202106648_SMLL202106648 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009 2019 2009 2011; 25 3 4 26 2018 2019; 8 99 2015; 5 2013; 4 2018 2020; 78 6 2004 2012; 4 134 2021 2020 2020 2002; 31 32 3 23 2019; 10 2017 2016 2016; 27 22 12 2008; 19 1992 2000; 176 96 2008 2009 2011 2017; 322 31 35 5 2009 2013; 9 34 1999; 223 2018; 21 2018 2018; 21 106 1970; 2 2019 2010 2015 2015; 7 33 45 194 2018; 3 2012 2014; 13 14 2019 2009; 10 126 2018; 4 2019 2010 2017; 110 125 13 2006; 22 2019 2014 2017; 10 35 7 2007; 8 2003; 24 2003; 25 2018 2021 2014; 20 26 35 2007; 7 2005 2007; 174 179 2015 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_26_2 e_1_2_8_7_4 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_13_3 e_1_2_8_15_1 e_1_2_8_30_3 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 Charette A. B. (e_1_2_8_18_1) 2015 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_6_2 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_16_4 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_12_4 e_1_2_8_16_1 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 |
References_xml | – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 4 start-page: 82 year: 2013 publication-title: Front. Immunol. – volume: 19 start-page: 41 year: 2008 publication-title: Cytokine Growth Factor Rev. – volume: 176 96 start-page: 1693 3029 year: 1992 2000 publication-title: J. Exp. Med. Blood – volume: 31 32 3 23 start-page: 7654 4847 year: 2021 2020 2020 2002 publication-title: Adv. Funct. Mater. Adv. Mater. ACS Appl. Bio Mater. Biomaterials – volume: 10 126 start-page: 5408 475 year: 2019 2009 publication-title: Nat. Commun. Immunology – volume: 8 start-page: 1217 year: 2007 publication-title: Nat. Immunol. – volume: 3 start-page: 355 year: 2018 publication-title: Bioact. Mater. – volume: 22 start-page: 845 year: 2006 publication-title: Dent. Mater. – volume: 2 start-page: 66 year: 1970 publication-title: J. Adhes. – volume: 4 134 start-page: 469 3965 year: 2004 2012 publication-title: Nat. Rev. Immunol. J. Am. Chem. Soc. – volume: 27 22 12 start-page: 74 1897 1744 year: 2017 2016 2016 publication-title: Cell Res. Clin. Cancer Res. Small – volume: 4 start-page: 784 year: 2018 publication-title: Trends Cancer – volume: 8 99 start-page: 168 1 year: 2018 2019 publication-title: MRS Commun. J. Mech. Behav. Biomed. Mater. – volume: 25 3 4 26 start-page: 48 327 year: 2009 2019 2009 2011 publication-title: Langmuir Colloids Interfaces Biomed. Mater. J. Biomater. Appl. – volume: 13 14 start-page: 1145 571 year: 2012 2014 publication-title: Nat. Immunol. Nat. Rev. Immunol. – volume: 322 31 35 5 start-page: 1097 823 249 1098 year: 2008 2009 2011 2017 publication-title: Science Immunity Immunity Cancer Immunol. Res. – volume: 78 6 start-page: 6890 2240 year: 2018 2020 publication-title: Cancer Res. ACS Biomater. Sci. Eng. – volume: 20 26 35 start-page: 165 9811 year: 2018 2021 2014 publication-title: Adv. Eng. Mater. Biotechnol. Bioprocess. Eng. Biomaterials – volume: 21 start-page: 38 year: 2018 publication-title: Mater. Today – volume: 174 179 start-page: 6592 7577 year: 2005 2007 publication-title: J. Immunol. J. Immunol. – volume: 10 35 7 start-page: 2352 8867 year: 2019 2014 2017 publication-title: Front. Immunol. Biomaterials Sci. Rep. – volume: 24 start-page: 1059 year: 2003 publication-title: Biomaterials – volume: 223 start-page: 77 year: 1999 publication-title: J. Immunol. Methods – volume: 10 start-page: 1014 year: 2019 publication-title: Front. Immunol. – volume: 7 33 45 194 start-page: 238 464 624 1069 year: 2019 2010 2015 2015 publication-title: J. Immunother. Cancer Immunity Eur. J. Immunol. J. Immunol. – volume: 9 34 start-page: 411 7236 year: 2009 2013 publication-title: Lab Chip Biomaterials – year: 2015 – volume: 21 106 start-page: 38 1268 year: 2018 2018 publication-title: Mater. Today J. Biomed. Mater. Res., Part B – volume: 25 start-page: 14 year: 2003 publication-title: Dev. Neurosci. – volume: 110 125 13 start-page: 13 S3 year: 2019 2010 2017 publication-title: Mol. Immunol. J. Allergy Clin. Immunol. Small – volume: 7 start-page: 790 year: 2007 publication-title: Nat. Rev. Immunol. – ident: e_1_2_8_2_2 doi: 10.1016/j.jaci.2009.12.980 – ident: e_1_2_8_19_2 doi: 10.1021/acsbiomaterials.9b01738 – ident: e_1_2_8_31_1 doi: 10.1038/nri1372 – ident: e_1_2_8_2_1 doi: 10.1016/j.molimm.2017.12.001 – ident: e_1_2_8_22_1 doi: 10.1039/B812121D – ident: e_1_2_8_6_2 doi: 10.1038/nri3712 – ident: e_1_2_8_12_1 doi: 10.1021/la901453a – ident: e_1_2_8_3_1 doi: 10.1016/j.cytogfr.2007.10.004 – ident: e_1_2_8_8_1 doi: 10.1084/jem.176.6.1693 – ident: e_1_2_8_11_1 doi: 10.1016/S0022-1759(98)00204-X – ident: e_1_2_8_5_1 doi: 10.1038/nri2173 – ident: e_1_2_8_1_1 doi: 10.1038/cr.2016.157 – ident: e_1_2_8_8_2 doi: 10.1182/blood.V96.9.3029 – ident: e_1_2_8_4_3 doi: 10.1002/eji.201445080 – ident: e_1_2_8_28_1 doi: 10.1016/j.trecan.2018.09.001 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.202100775 – ident: e_1_2_8_4_2 doi: 10.1016/j.immuni.2010.10.007 – ident: e_1_2_8_21_1 doi: 10.1016/j.mattod.2017.07.002 – ident: e_1_2_8_12_2 doi: 10.3390/colloids3020048 – ident: e_1_2_8_30_2 doi: 10.1016/j.biomaterials.2014.07.014 – ident: e_1_2_8_27_1 doi: 10.3389/fimmu.2013.00082 – ident: e_1_2_8_23_1 doi: 10.1159/000071463 – ident: e_1_2_8_31_2 doi: 10.1021/ja2108905 – ident: e_1_2_8_2_3 doi: 10.1002/smll.201701864 – ident: e_1_2_8_16_4 doi: 10.1016/S0142-9612(02)00240-5 – ident: e_1_2_8_13_2 doi: 10.1007/s12257-020-0269-1 – ident: e_1_2_8_1_2 doi: 10.1158/1078-0432.CCR-15-1399 – ident: e_1_2_8_7_3 doi: 10.1016/j.immuni.2011.08.008 – ident: e_1_2_8_19_1 doi: 10.1158/0008-5472.CAN-18-0927 – ident: e_1_2_8_25_1 doi: 10.1016/j.dental.2005.11.012 – ident: e_1_2_8_24_2 doi: 10.1002/jbm.b.33915 – ident: e_1_2_8_7_4 doi: 10.1158/2326-6066.CIR-17-0341 – ident: e_1_2_8_32_1 doi: 10.1080/0021846708544582 – ident: e_1_2_8_4_1 doi: 10.1186/s40425-019-0716-8 – ident: e_1_2_8_13_1 doi: 10.1002/adem.201700622 – ident: e_1_2_8_16_3 doi: 10.1021/acsabm.0c00844 – ident: e_1_2_8_13_3 doi: 10.1016/j.biomaterials.2014.09.002 – ident: e_1_2_8_4_4 doi: 10.4049/jimmunol.1401903 – ident: e_1_2_8_15_1 doi: 10.1016/S0142-9612(02)00439-8 – ident: e_1_2_8_17_1 doi: 10.1557/mrc.2018.14 – ident: e_1_2_8_7_2 doi: 10.1016/j.immuni.2009.08.027 – ident: e_1_2_8_30_3 doi: 10.1038/s41598-017-17787-z – ident: e_1_2_8_14_1 doi: 10.1016/j.bioactmat.2018.05.005 – volume-title: Handbook of Reagents for Organic Synthesis: Reagents for Heteroarene Functionalization year: 2015 ident: e_1_2_8_18_1 – ident: e_1_2_8_26_1 doi: 10.1038/s41467-019-13368-y – ident: e_1_2_8_7_1 doi: 10.1126/science.1164206 – ident: e_1_2_8_24_1 doi: 10.1016/j.mattod.2017.07.002 – ident: e_1_2_8_12_3 doi: 10.1088/1748-6041/4/4/045002 – ident: e_1_2_8_6_1 doi: 10.1038/ni.2467 – ident: e_1_2_8_16_2 doi: 10.1002/adma.201907225 – ident: e_1_2_8_26_2 doi: 10.1111/j.1365-2567.2008.02922.x – ident: e_1_2_8_10_1 doi: 10.1038/ni1522 – ident: e_1_2_8_9_1 doi: 10.4049/jimmunol.174.11.6592 – ident: e_1_2_8_9_2 doi: 10.4049/jimmunol.179.11.7577 – ident: e_1_2_8_29_1 doi: 10.3389/fimmu.2019.01014 – ident: e_1_2_8_30_1 doi: 10.3389/fimmu.2019.02352 – ident: e_1_2_8_12_4 doi: 10.1177/0885328210372148 – ident: e_1_2_8_1_3 doi: 10.1002/smll.201503662 – ident: e_1_2_8_22_2 doi: 10.1016/j.biomaterials.2013.06.019 – ident: e_1_2_8_20_1 doi: 10.1039/C5RA10425D – ident: e_1_2_8_17_2 doi: 10.1016/j.jmbbm.2019.07.003 |
SSID | ssj0031247 |
Score | 2.4025648 |
Snippet | Although the dendritic cell (DC)‐based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune... Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2106648 |
SubjectTerms | Antigen Presentation Antigens Autoimmune diseases bone marrow‐derived dendritic cells Cell Culture Techniques - methods Chemical vapor deposition Cytokines Dendritic Cells - metabolism Differentiation functional polymer filmss Growth factors Hydrophobicity initiated chemical vapor deposition (iCVD) Lymphocyte Activation Lymphocytes Modulation Nanotechnology Polymer films Polymers Polymers - metabolism Substrates Surface energy type 1 conventional dendritic cells |
Title | Engineering of Surface Energy of Cell‐Culture Platform to Enhance the Growth and Differentiation of Dendritic Cells via Vapor‐Phase Synthesized Functional Polymer Films |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202106648 https://www.ncbi.nlm.nih.gov/pubmed/35297560 https://www.proquest.com/docview/2655418732 https://www.proquest.com/docview/2640323089 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT3Dg_ydQkJGQOKXd2onjHFHbpUIFrViKeovGjqNdNZugTRapPfEIPAhPxZMw42TDLgghwdHJ2HHkGc83_vmGsRdOpyq1cRHqPDZhZLUKIRYmtNookYLReeFPW7xTJ2fRm_P4fOMWf8cPMSy4kWX4-ZoMHEyz_5M0tFmUtHWAIYtSEd32pQNbhIreD_xREp2Xz66CPisk4q01a-NI7G9X3_ZKv0HNbeTqXc_4FoN1p7sTJxd7q9bs2atf-Bz_569us5s9LuWvOkW6w6656i67scFWeI992yjxuuDT1bIA6_ixvz5ITw5dWX7_8rWj6XR8UkJLmJi3NQrNSL844k3-GkP_dsahyvlRn5-l7TSEGjlyVe7zL_jmGv55DvwjYJiALU9m6HT59LLCZpr5lcv5GP1yt5zJJ3V5uXBLPp6Xi-Y-Oxsffzg8CftkD6ElcqUwkkJrF9lYupEyiQCD2KlIcLopIidNAjKhbOhFoqBAHxolFBppSLWyNpUQywdsp6or94jxGCS64Fhol5ooLSwocBg3xVaJgzxPIWDherAz2zOhU0KOMus4nEVGo5ANoxCwl4P8p44D5I-Su2vdyfq5oMmEQsh2oBMpAvZ8eI1WTFszULl6RTLRSGI0qNOAPex0bvgUQmTsvBoFTHjN-Usfsunb09Oh9PhfKj1h1wXd8vAHlHbZTrtcuaeIvVrzzNvXD1MNKbI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHIBD-S0EChgJiVParZ04zhG1XRbYViu2Rdwi23G0K7JJtckitScegQfhqXgSZpwfuiCEBEcntuPIM55v7PE3hLywMhaxCTNfpqH2AyOFr0KmfSO1YLHSMs1ctMWxGJ0Gbz-GXTQh3oVp-CH6DTfUDLdeo4LjhvTuT9bQapHj2QH4LEIE8iq5hmm9nVf1vmeQ4mC-XH4VsFo-Um91vI0Dtrveft0u_QY217GrMz7DW0R3w25iTj7trGq9Yy5-YXT8r_-6TTZbaEpfNbJ0h1yxxV1y8xJh4T3y7VKJlhmdrpaZMpYeuhuE-GTf5vn3L18bpk5LJ7mqERbTuoRKMxQxCpCTvgbvv55RVaT0oE3RUjdCgp0c2CJ1KRhcdxX9PFf0gwJPAXqezMDu0ul5Ad1U8wub0iGY5mZHk07K_Hxhl3Q4zxfVfXI6PDzZH_ltvgffIL-SH3AmpQ1MyO1A6IgpDfApi2DFyQLLdaR4hAnRs0ioDMxoEKF3JFUshTExVyHfIhtFWdiHhIaKgxUOmbSxDuLMKKEsuE6hEWwvTWPlEb-b7cS0ZOiYkyNPGhpnluAsJP0seORlX_-soQH5Y83tTniSdjmoEiYAte3JiDOPPO9fgyLj6YwqbLnCOsGAg0MoY488aISu_xSgZBi8GHiEOdH5yxiS6dF43Jce_UujZ-T66ORonIzfHL97TG4wvPTh4pW2yUa9XNknAMVq_dQp2w_SVS3N |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSAgO_BcCBYyExCltajuOc0TdLgWWasVS1FtkO7Z2RTapNlmk9sQj8CA8FU_C2MmGXRBCgqOTsePIM55v_PMNQs-NSHmqYxuKPFYh04KHMiYq1EJxkkolcutPWxzzoxP25jQ-XbvF3_JD9AtuzjL8fO0M_Cy3ez9JQ-t54bYOIGThnInL6ArjkXB6PXjfE0hR8F4-vQo4rdAxb61oGyOyt1l_0y39hjU3oav3PcObSK563R45-bS7bNSuvviF0PF_fusWutEBU_yy1aTb6JIp76Dra3SFd9G3tRKuLJ4sF1Zqgw_9_UH35MAUxfcvX1ueToPHhWwcKMZNBUJTp2AYACd-BbF_M8WyzPGgS9DStCriGhmYMvcJGHxzNf48k_ijhDgBWh5PweviyXkJzdSzC5PjITjmdj0Tj6vifG4WeDgr5vU9dDI8_HBwFHbZHkLt2JVCRokQhumYmoirhEgF4MkmMN9YZqhKJE1cOnSbcGnBibLExUZCpoJrnVIZ0220VValeYBwLCn44JgIkyqWWi25NBA4xZqT_TxPZYDC1WBnuqNCdxk5iqwlcSaZG4WsH4UAvejlz1oSkD9K7qx0J-smgzojHDDbvkgoCdCz_jWYsdubkaWplk6GRRTCQZEG6H6rc_2nACND53kUIOI15y99yCbvRqO-9PBfKj1FV8eDYTZ6ffz2EbpG3I0Pf1hpB201i6V5DDisUU-8qf0ARccshQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+Surface+Energy+of+Cell-Culture+Platform+to+Enhance+the+Growth+and+Differentiation+of+Dendritic+Cells+via+Vapor-Phase+Synthesized+Functional+Polymer+Films&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lee%2C+Minseok&rft.au=Chun%2C+Dongmin&rft.au=Park%2C+Seonghyeon&rft.au=Choi%2C+Goro&rft.date=2022-04-01&rft.eissn=1613-6829&rft.volume=18&rft.issue=17&rft.spage=e2106648&rft_id=info:doi/10.1002%2Fsmll.202106648&rft_id=info%3Apmid%2F35297560&rft.externalDocID=35297560 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |