Brain structure ages—A new biomarker for multi‐disease classification
Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different dise...
Saved in:
Published in | Human brain mapping Vol. 45; no. 1; pp. e26558 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel‐wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state‐of‐the‐art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi‐disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts.
Our novel brain structure age biomarker enables to accurately predict the chronological age of healthy people.
The deviation between the brain structure age and the subject's age can be used to improve the performance of a multi‐disease classification.
Our framework provides a visualization of the 3D deviation map for a better interpretation. |
---|---|
AbstractList | Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel-wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state-of-the-art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi-disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts. Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel‐wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state‐of‐the‐art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi‐disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts. Our novel brain structure age biomarker enables to accurately predict the chronological age of healthy people. The deviation between the brain structure age and the subject's age can be used to improve the performance of a multi‐disease classification. Our framework provides a visualization of the 3D deviation map for a better interpretation. Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel-wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state-of-the-art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi-disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts.Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel-wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state-of-the-art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi-disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts. |
Author | Clément, Michaël Mansencal, Boris Coupé, Pierrick Nguyen, Huy‐Dung |
Author_xml | – sequence: 1 givenname: Huy‐Dung orcidid: 0000-0002-3980-8029 surname: Nguyen fullname: Nguyen, Huy‐Dung email: huy-dung.nguyen@u-bordeaux.fr organization: Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800 – sequence: 2 givenname: Michaël surname: Clément fullname: Clément, Michaël organization: Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800 – sequence: 3 givenname: Boris surname: Mansencal fullname: Mansencal, Boris organization: Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800 – sequence: 4 givenname: Pierrick orcidid: 0000-0003-2709-3350 surname: Coupé fullname: Coupé, Pierrick organization: Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38224546$$D View this record in MEDLINE/PubMed https://hal.science/hal-04080401$$DView record in HAL |
BookMark | eNp1kc9u1DAQxi1U1P8HXgBF4gKHtB7HTpzjtgK20iIu9Gw59pi6JHGxE6re-ggceMI-Cd7utkgIDtZYo9989nzfAdkZw4iEvAJ6ApSy06tuOGG1EPIF2QfaNiWFttpZ32tRtryBPXKQ0jWlAILCLtmrJGNc8HqfXJxF7cciTXE20xyx0F8xPdz_WhQj3hadD4OO3zAWLsRimPvJP9z_tD6hTliYXqfknTd68mE8Ii-d7hMeb-shufzw_sv5slx9_nhxvliVpmoqWXJmed0xaRragrG2ctxQ6wCl08CtlSBNpbnrnJYGO4oCnADaCNM5y6CrDsm7je6V7tVN9PmDdypor5aLlVr3KKcyH_jBMvt2w97E8H3GNKnBJ4N9r0cMc1KsBSEaKmue0Td_oddhjmPeZE1xKWpBm0y93lJzN6B9fv_J0AycbgATQ0oRnTJ-evRnykb3CqhaR6ZyZOoxsj_7PE88if6L3arf-h7v_g-q5dmnzcRvRh6l2w |
CitedBy_id | crossref_primary_10_1016_j_bpsgos_2025_100489 crossref_primary_10_1016_j_neuroimage_2024_120825 crossref_primary_10_1186_s12883_024_03745_6 crossref_primary_10_1162_imag_a_00245 crossref_primary_10_1016_j_neurol_2024_04_004 |
Cites_doi | 10.1016/j.neuroimage.2015.09.018 10.1093/brain/awp232 10.1002/hbm.25850 10.1186/1750-1326-6-85 10.1016/j.neuroimage.2022.119210 10.18632/aging.101020 10.1109/rbme.2021.3107372 10.1016/j.pneurobio.2011.09.005 10.1093/cercor/bhh057 10.1038/s43587-022-00219-7 10.1038/s41597-021-01004-8 10.1126/science.6474172 10.1186/s43055-021-00454-9 10.1016/j.jcmg.2021.01.008 10.1016/j.neuroimage.2010.01.005 10.1177/1756286419859722 10.1016/j.neuroimage.2010.09.025 10.1007/s00414-020-02465-z 10.1016/j.media.2020.101871 10.1136/pgmj.2005.036665 10.1038/mp.2013.78 10.1002/jmri.22003 10.1016/j.neuroimage.2012.08.001 10.1093/schbul/sbw122 10.1371/journal.pone.0067346 10.1097/WAD.0b013e318142774e 10.1109/TMI.2010.2046908 10.1016/j.mri.2019.06.018 10.1038/s41586-018-0579-z 10.3389/fneur.2019.00789 10.1155/2014/820205 10.1109/TMI.2021.3066857 10.1109/TMI.2021.3085948 10.1038/s41467-019-13163-9 10.1101/2019.12.13.19014902 10.1007/s40273-015-0331-6 10.1038/s41467-022-29525-9 10.1038/sdata.2017.10 10.3389/fnagi.2021.761954 10.1038/s41591-023-02296-6 10.1002/ana.25746 10.1017/S1041610209009405 10.1093/gerona/62.10.1096 10.31887/DCNS.2006.8.1/ldelisi 10.1016/j.tins.2017.10.001 10.1016/j.neuroimage.2020.117026 10.1038/nrneurol.2009.215 10.1002/mrm.21521 10.1002/hbm.25011 10.1038/mp.2017.62 10.3389/fnins.2021.673120 10.1098/rstb.2001.0915 10.1177/0963721410377601 10.1016/j.neuroimage.2016.11.005 10.1016/j.neuroimage.2019.06.017 10.1016/j.artmed.2023.102636 10.1016/j.neuroimage.2019.05.025 10.1016/j.neuroimage.2017.07.059 10.1177/1352458518815602 10.1093/schbul/sbt142 10.1371/journal.pone.0017213 10.1002/jmri.21049 10.3389/fcvm.2022.754909 10.3174/ajnr.A4447 10.1073/pnas.2634794100 10.1016/j.neuroimage.2017.10.040 10.1002/alz.050562 10.1038/s41598-019-39809-8 10.1016/S1474-4422(21)00341-0 10.1016/j.neuroimage.2012.12.044 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by Wiley Periodicals LLC. 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: 2024 The Authors. published by Wiley Periodicals LLC. – notice: 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - NonCommercial - NoDerivatives |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7X7 7XB 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH K9. M0S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI 7X8 1XC VOOES |
DOI | 10.1002/hbm.26558 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Chemoreception Abstracts ProQuest Central (New) Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Computer Science |
EISSN | 1097-0193 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_04080401v2 38224546 10_1002_hbm_26558 HBM26558 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Institute on Drug Abuse – fundername: National Institute of Neurological Disorders and Stroke – fundername: Common‐wealth Scientific Industrial Research Organization – fundername: National Health and Medical Research Council of Australia – fundername: The Michael J. Fox Foundation for Parkinson's Research – fundername: National Institute of Child Health and Human Development – fundername: Dana Foundation – fundername: Human Brain Project funderid: PO1MHO52176‐11 – fundername: National Institute of Mental Health – fundername: National Institutes of Health funderid: K01 AG030514; P30AG010129; U01 AG024904 – fundername: NIDA NIH HHS – fundername: NIH HHS grantid: U01 AG024904 – fundername: NIH HHS grantid: K01 AG030514 – fundername: NIH HHS grantid: P30AG010129 – fundername: CIHR grantid: MOP-34996 – fundername: NIMH NIH HHS – fundername: NINDS NIH HHS |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS AEFGJ AEIMD AENEX AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AGXDD AHMBA AIDQK AIDYY AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE ALIPV CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 K9. P64 PKEHL PQEST PQUKI 7X8 1XC PMFND VOOES |
ID | FETCH-LOGICAL-c3738-42d46b28c7091cdd3f4c0df1e8fa14dd818c3a4fbfa8ceb0e51f51075cbfd21b3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Tue May 27 06:21:07 EDT 2025 Thu Jul 10 18:44:36 EDT 2025 Wed Aug 13 08:38:20 EDT 2025 Thu Apr 03 07:00:28 EDT 2025 Tue Jul 01 01:11:15 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Wed Aug 20 07:27:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | deep learning Parkinson's disease age prediction multiple sclerosis multi-disease classification frontotemporal dementia schizophrenia Alzheimer's disease brain structure ages Deep learning Multi-disease Classification Multiple sclerosis Brain Structure Ages Schizophrenia Age prediction Frontotemporal dementia |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-42d46b28c7091cdd3f4c0df1e8fa14dd818c3a4fbfa8ceb0e51f51075cbfd21b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2709-3350 0000-0002-3980-8029 0000-0002-9190-4819 0000-0002-0899-3428 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26558 |
PMID | 38224546 |
PQID | 2914856507 |
PQPubID | 996345 |
PageCount | 24 |
ParticipantIDs | hal_primary_oai_HAL_hal_04080401v2 proquest_miscellaneous_2915570864 proquest_journals_2914856507 pubmed_primary_38224546 crossref_citationtrail_10_1002_hbm_26558 crossref_primary_10_1002_hbm_26558 wiley_primary_10_1002_hbm_26558_HBM26558 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 2024-Jan 20240101 2024-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 40 2021; 68 2018; 562 2015; 36 2017; 4 2010; 19 2019; 10 2019; 12 2023; 144 2018; 169 2011; 54 2013; 70 2022; 21 2013; 8 2019; 200 2022; 256 2016; 34 2019; 62 2023; 29 2010; 29 2008; 27 2017; 163 2014; 19 2020; 88 2007; 62 2007; 21 2021; 40 2020; 219 2010; 6 2019; 197 2012; 63 2004; 101 2021; 8 2019; 9 2010; 31 2009; 21 2020; 41 2023; 16 1984; 225 2009; 132 2006; 8 2008; 59 2016; 122 2014; 2014 2022; 43 2018; 23 2014; 40 2011; 6 2021; 52 2021; 14 2006; 82 2021; 13 2021; 15 2021; 135 2020 2004; 14 2022; 9 2011; 95 2022; 13 2019 2020; 26 2018 2014 2022; 2 2017; 144 2016; 8 2017; 148 2001; 356 2010; 50 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 Franke K. (e_1_2_10_24_1) 2014 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 Bintsi K. M. (e_1_2_10_7_1) 2020 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Ueda M. (e_1_2_10_71_1) 2019 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 54 start-page: 2033 year: 2011 end-page: 2044 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage – volume: 148 start-page: 179 year: 2017 end-page: 188 article-title: Predicting brain‐age from multimodal imaging data captures cognitive impairment publication-title: NeuroImage – volume: 12 year: 2019 article-title: Advances in brain imaging in multiple sclerosis publication-title: Therapeutic Advances in Neurological Disorders – volume: 144 start-page: 262 year: 2017 end-page: 269 article-title: The Cambridge Centre for aging and Neuroscience (Cam‐CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross‐sectional adult lifespan sample publication-title: NeuroImage – volume: 19 start-page: 659 year: 2014 end-page: 667 article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism publication-title: Molecular Psychiatry – volume: 132 start-page: 2932 year: 2009 end-page: 2946 article-title: Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: A cluster analysis study publication-title: Brain – volume: 14 start-page: 2226 year: 2021 end-page: 2236 article-title: Deep learning to estimate biological age from chest radiographs publication-title: JACC: Cardiovascular Imaging – volume: 29 start-page: 1310 year: 2010 end-page: 1320 article-title: N4ITK: Improved N3 bias correction publication-title: IEEE Transactions on Medical Imaging – volume: 15 year: 2021 article-title: Classification‐biased apparent brain age for the prediction of Alzheimer's disease publication-title: Frontiers in Neuroscience – volume: 200 start-page: 528 year: 2019 end-page: 539 article-title: Estimation of brain age delta from brain imaging publication-title: NeuroImage – volume: 562 start-page: 203 year: 2018 end-page: 209 article-title: The UK Biobank resource with deep phenotyping and genomic data publication-title: Nature – volume: 21 start-page: 672 year: 2009 end-page: 687 article-title: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: Methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease publication-title: International Psychogeriatrics – volume: 62 start-page: 70 year: 2019 end-page: 77 article-title: Anatomical context improves deep learning on the brain age estimation task publication-title: Magnetic Resonance Imaging – volume: 40 start-page: 681 year: 2017 end-page: 690 article-title: Predicting age using neuroimaging: Innovative brain aging biomarkers publication-title: Trends in Neurosciences – volume: 19 start-page: 226 year: 2010 end-page: 231 article-title: Structural and functional brain abnormalities in schizophrenia publication-title: Current Directions in Psychological Science – year: 2018 – volume: 169 start-page: 11 year: 2018 end-page: 22 article-title: A spatio‐temporal reference model of the aging brain publication-title: NeuroImage – volume: 2 start-page: 412 year: 2022 end-page: 424 article-title: Deep learning‐based brain age prediction in normal aging and dementia publication-title: Nature Aging – volume: 70 start-page: 33 year: 2013 end-page: 36 article-title: MIRIAD—Public release of a multiple time point Alzheimer's MR imaging dataset publication-title: NeuroImage – volume: 31 start-page: 192 year: 2010 end-page: 203 article-title: Adaptive non‐local means denoising of MR images with spatially varying noise levels: Spatially adaptive nonlocal denoising publication-title: Journal of Magnetic Resonance Imaging – volume: 59 start-page: 866 year: 2008 end-page: 873 article-title: Robust MRI brain tissue parameter estimation by multistage outlier rejection publication-title: Magnetic Resonance in Medicine – volume: 21 start-page: 249 year: 2007 end-page: 258 article-title: The National Alzheimer's Coordinating Center (NACC) database: The uniform data set publication-title: Alzheimer Disease & Associated Disorders – volume: 13 start-page: 1979 year: 2022 article-title: Using deep learning to predict abdominal age from liver and pancreas magnetic resonance images publication-title: Nature Communications – volume: 16 start-page: 371 year: 2023 end-page: 385 article-title: A Review of Neuroimaging‐Driven Brain Age Estimation for Identification of Brain Disorders and Health Conditions publication-title: IEEE Reviews in Biomedical Engineering – volume: 356 start-page: 1293 year: 2001 end-page: 1322 article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) publication-title: Philosophical Transactions: Biological Sciences – volume: 40 start-page: 1778 year: 2021 end-page: 1791 article-title: Age‐net: An MRI‐based iterative framework for brain biological age estimation publication-title: IEEE Transactions on Medical Imaging – volume: 9 year: 2022 article-title: Electrocardiogram‐based heart age estimation by a deep learning model provides more information on the incidence of cardiovascular disorders publication-title: Frontiers in Cardiovascular Medicine – volume: 23 start-page: 1385 year: 2018 end-page: 1392 article-title: Brain age predicts mortality publication-title: Molecular Psychiatry – volume: 41 start-page: 3235 issue: 12 year: 2020 end-page: 3252 article-title: From a deep learning model back to the brain—Identifying regional predictors and their relation to aging publication-title: Human Brain Mapping – volume: 8 year: 2013 article-title: BrainAGE in mild cognitive impaired patients: Predicting the conversion to Alzheimer's disease publication-title: PLoS One – volume: 63 start-page: 1305 year: 2012 end-page: 1312 article-title: Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI publication-title: NeuroImage – volume: 6 start-page: 85 year: 2011 article-title: Adult hippocampal neurogenesis and its role in Alzheimer's disease publication-title: Molecular Neurodegeneration – start-page: 380 year: 2019 end-page: 383 – volume: 219 year: 2020 article-title: AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation publication-title: NeuroImage – volume: 52 start-page: 79 year: 2021 article-title: Imaging modalities in differential diagnosis of Parkinson's disease: Opportunities and challenges publication-title: Egyptian Journal of Radiology and Nuclear Medicine – volume: 135 start-page: 649 issue: 2 year: 2021 end-page: 663 article-title: Automated age estimation of young individuals based on 3D knee MRI using deep learning publication-title: International Journal of Legal Medicine – volume: 40 start-page: 1140 year: 2014 end-page: 1153 article-title: Accelerated brain aging in schizophrenia and beyond: A neuroanatomical marker of psychiatric disorders publication-title: Schizophrenia Bulletin – volume: 62 start-page: 1096 year: 2007 end-page: 1105 article-title: A method for identifying biomarkers of aging and constructing an index of biological age in humans publication-title: The Journals of Gerontology Series A: Biological Sciences and Medical Sciences – volume: 10 start-page: 5409 year: 2019 article-title: Brain age prediction using deep learning uncovers associated sequence variants publication-title: Nature Communications – volume: 256 year: 2022 article-title: Deep neural networks learn general and clinically relevant representations of the aging brain publication-title: NeuroImage – volume: 21 start-page: 258 year: 2022 end-page: 272 article-title: Advances and controversies in frontotemporal dementia: Diagnosis, biomarkers, and therapeutic considerations publication-title: The Lancet Neurology – volume: 144 year: 2023 article-title: Deep grading for MRI‐based differential diagnosis of Alzheimer's disease and frontotemporal dementia publication-title: Artificial Intelligence in Medicine – volume: 95 start-page: 629 year: 2011 end-page: 635 article-title: The Parkinson progression marker Initiative (PPMI) publication-title: Progress in Neurobiology – volume: 43 start-page: 3270 year: 2022 end-page: 3282 article-title: Hippocampal‐amygdalo‐ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models publication-title: Human Brain Mapping – volume: 2014 start-page: 1 year: 2014 end-page: 11 article-title: Nonlocal intracranial cavity extraction publication-title: International Journal of Biomedical Imaging – volume: 82 start-page: 84 year: 2006 end-page: 88 article-title: Aging and the brain publication-title: Postgraduate Medical Journal – volume: 6 start-page: 67 year: 2010 end-page: 77 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nature Reviews Neurology – volume: 27 start-page: 685 year: 2008 end-page: 691 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: Journal of Magnetic Resonance Imaging – volume: 36 start-page: 2219 year: 2015 end-page: 2226 article-title: Longitudinal study of gray matter changes in Parkinson disease publication-title: American Journal of Neuroradiology – volume: 13 year: 2021 article-title: Local brain‐age: A U‐net model publication-title: Frontiers in Aging Neuroscience – start-page: 98 year: 2020 end-page: 107 – volume: 9 start-page: 3998 year: 2019 article-title: Lifespan changes of the human brain in Alzheimer's disease publication-title: Scientific Reports – volume: 225 start-page: 1168 year: 1984 end-page: 1170 article-title: Alzheimer's disease: Cell‐specific pathology isolates the hippocampal formation publication-title: Science – volume: 40 start-page: 3400 year: 2021 end-page: 3412 article-title: Brain age estimation from MRI using cascade networks with ranking loss publication-title: IEEE Transactions on Medical Imaging – volume: 122 year: 2016 article-title: Glutamatergic and neuronal dysfunction in gray and white matter: A spectroscopic imaging study in a large schizophrenia sample publication-title: Schizophrenia Bulletin – start-page: 48 year: 2014 end-page: 54 – volume: 8 start-page: 227 year: 2021 article-title: A multi‐site, multi‐disorder resting‐state magnetic resonance image database publication-title: Scientific Data – volume: 29 start-page: 1221 issue: 5 year: 2023 end-page: 1231 article-title: Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality publication-title: Nature Medicine – volume: 14 start-page: 966 year: 2004 end-page: 973 article-title: A voxel‐based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time publication-title: Cerebral Cortex – volume: 197 start-page: 618 year: 2019 end-page: 624 article-title: A novel patch‐based procedure for estimating brain age across adulthood publication-title: NeuroImage – volume: 8 start-page: 1844 year: 2016 end-page: 1865 article-title: DNA methylation‐based measures of biological age: Meta‐analysis predicting time to death publication-title: Aging – volume: 6 year: 2011 article-title: Age‐related differences in plasma proteins: How plasma proteins change from neonates to adults publication-title: PLoS One – volume: 26 start-page: 118 year: 2020 end-page: 122 article-title: Observatoire Français de la Sclérose en Plaques (OFSEP): A unique multimodal nationwide MS registry in France publication-title: Multiple Sclerosis Journal – volume: 8 start-page: 71 year: 2006 end-page: 78 article-title: Understanding structural brain changes in schizophrenia publication-title: Dialogues in Clinical Neuroscience – volume: 4 year: 2017 article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II publication-title: Scientific Data – volume: 88 start-page: 93 year: 2020 end-page: 105 article-title: Longitudinal assessment of multiple sclerosis with the brain‐age paradigm publication-title: Annals of Neurology – volume: 34 start-page: 127 year: 2016 end-page: 138 article-title: National Database for Autism Research (NDAR): Big data opportunities for health services research and health technology assessment publication-title: PharmacoEconomics – volume: 50 start-page: 883 year: 2010 end-page: 892 article-title: Estimating the age of healthy subjects from T1‐weighted MRI scans using kernel methods: Exploring the influence of various parameters publication-title: NeuroImage – volume: 101 start-page: 343 year: 2004 end-page: 347 article-title: Increased hippocampal neurogenesis in Alzheimer's disease publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 start-page: 789 year: 2019 article-title: Ten years of BrainAGE as a neuroimaging biomarker of brain aging: What insights have we gained? publication-title: Frontiers in Neurology – volume: 163 start-page: 115 year: 2017 end-page: 124 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: NeuroImage – volume: 68 year: 2021 article-title: Accurate brain age prediction with lightweight deep neural networks publication-title: Medical Image Analysis – ident: e_1_2_10_67_1 doi: 10.1016/j.neuroimage.2015.09.018 – ident: e_1_2_10_74_1 doi: 10.1093/brain/awp232 – ident: e_1_2_10_20_1 doi: 10.1002/hbm.25850 – ident: e_1_2_10_55_1 doi: 10.1186/1750-1326-6-85 – ident: e_1_2_10_75_1 – ident: e_1_2_10_42_1 doi: 10.1016/j.neuroimage.2022.119210 – ident: e_1_2_10_12_1 doi: 10.18632/aging.101020 – ident: e_1_2_10_53_1 doi: 10.1109/rbme.2021.3107372 – ident: e_1_2_10_58_1 doi: 10.1016/j.pneurobio.2011.09.005 – ident: e_1_2_10_69_1 doi: 10.1093/cercor/bhh057 – ident: e_1_2_10_41_1 doi: 10.1038/s43587-022-00219-7 – ident: e_1_2_10_66_1 doi: 10.1038/s41597-021-01004-8 – ident: e_1_2_10_31_1 doi: 10.1126/science.6474172 – ident: e_1_2_10_54_1 doi: 10.1186/s43055-021-00454-9 – ident: e_1_2_10_63_1 doi: 10.1016/j.jcmg.2021.01.008 – ident: e_1_2_10_27_1 doi: 10.1016/j.neuroimage.2010.01.005 – start-page: 98 volume-title: Patch‐based brain age estimation from MR images year: 2020 ident: e_1_2_10_7_1 – ident: e_1_2_10_18_1 doi: 10.1177/1756286419859722 – ident: e_1_2_10_3_1 doi: 10.1016/j.neuroimage.2010.09.025 – ident: e_1_2_10_51_1 doi: 10.1007/s00414-020-02465-z – ident: e_1_2_10_60_1 doi: 10.1016/j.media.2020.101871 – ident: e_1_2_10_61_1 doi: 10.1136/pgmj.2005.036665 – ident: e_1_2_10_50_1 doi: 10.1038/mp.2013.78 – ident: e_1_2_10_46_1 doi: 10.1002/jmri.22003 – ident: e_1_2_10_26_1 doi: 10.1016/j.neuroimage.2012.08.001 – ident: e_1_2_10_9_1 doi: 10.1093/schbul/sbw122 – ident: e_1_2_10_29_1 doi: 10.1371/journal.pone.0067346 – ident: e_1_2_10_4_1 doi: 10.1097/WAD.0b013e318142774e – ident: e_1_2_10_70_1 doi: 10.1109/TMI.2010.2046908 – ident: e_1_2_10_6_1 doi: 10.1016/j.mri.2019.06.018 – ident: e_1_2_10_10_1 doi: 10.1038/s41586-018-0579-z – ident: e_1_2_10_25_1 doi: 10.3389/fneur.2019.00789 – ident: e_1_2_10_47_1 doi: 10.1155/2014/820205 – ident: e_1_2_10_2_1 doi: 10.1109/TMI.2021.3066857 – ident: e_1_2_10_13_1 doi: 10.1109/TMI.2021.3085948 – ident: e_1_2_10_36_1 doi: 10.1038/s41467-019-13163-9 – ident: e_1_2_10_39_1 doi: 10.1101/2019.12.13.19014902 – ident: e_1_2_10_59_1 doi: 10.1007/s40273-015-0331-6 – ident: e_1_2_10_40_1 doi: 10.1038/s41467-022-29525-9 – ident: e_1_2_10_49_1 doi: 10.1038/sdata.2017.10 – ident: e_1_2_10_62_1 doi: 10.3389/fnagi.2021.761954 – ident: e_1_2_10_68_1 doi: 10.1038/s41591-023-02296-6 – ident: e_1_2_10_16_1 doi: 10.1002/ana.25746 – ident: e_1_2_10_23_1 doi: 10.1017/S1041610209009405 – ident: e_1_2_10_56_1 doi: 10.1093/gerona/62.10.1096 – ident: e_1_2_10_22_1 doi: 10.31887/DCNS.2006.8.1/ldelisi – start-page: 48 volume-title: Dementia classification based on brain age estimation year: 2014 ident: e_1_2_10_24_1 – ident: e_1_2_10_14_1 doi: 10.1016/j.tins.2017.10.001 – ident: e_1_2_10_21_1 doi: 10.1016/j.neuroimage.2020.117026 – ident: e_1_2_10_28_1 doi: 10.1038/nrneurol.2009.215 – ident: e_1_2_10_48_1 doi: 10.1002/mrm.21521 – ident: e_1_2_10_43_1 doi: 10.1002/hbm.25011 – ident: e_1_2_10_17_1 doi: 10.1038/mp.2017.62 – ident: e_1_2_10_72_1 doi: 10.3389/fnins.2021.673120 – ident: e_1_2_10_52_1 doi: 10.1098/rstb.2001.0915 – ident: e_1_2_10_37_1 doi: 10.1177/0963721410377601 – ident: e_1_2_10_44_1 doi: 10.1016/j.neuroimage.2016.11.005 – ident: e_1_2_10_65_1 doi: 10.1016/j.neuroimage.2019.06.017 – ident: e_1_2_10_57_1 doi: 10.1016/j.artmed.2023.102636 – ident: e_1_2_10_5_1 doi: 10.1016/j.neuroimage.2019.05.025 – ident: e_1_2_10_15_1 doi: 10.1016/j.neuroimage.2017.07.059 – ident: e_1_2_10_73_1 doi: 10.1177/1352458518815602 – ident: e_1_2_10_38_1 doi: 10.1093/schbul/sbt142 – ident: e_1_2_10_32_1 doi: 10.1371/journal.pone.0017213 – start-page: 380 volume-title: An age estimation method using 3D‐CNN from brain MRI images year: 2019 ident: e_1_2_10_71_1 – ident: e_1_2_10_33_1 doi: 10.1002/jmri.21049 – ident: e_1_2_10_11_1 doi: 10.3389/fcvm.2022.754909 – ident: e_1_2_10_34_1 doi: 10.3174/ajnr.A4447 – ident: e_1_2_10_35_1 doi: 10.1073/pnas.2634794100 – ident: e_1_2_10_30_1 doi: 10.1016/j.neuroimage.2017.10.040 – ident: e_1_2_10_64_1 doi: 10.1002/alz.050562 – ident: e_1_2_10_19_1 doi: 10.1038/s41598-019-39809-8 – ident: e_1_2_10_8_1 doi: 10.1016/S1474-4422(21)00341-0 – ident: e_1_2_10_45_1 doi: 10.1016/j.neuroimage.2012.12.044 |
SSID | ssj0011501 |
Score | 2.4514904 |
Snippet | Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging... |
SourceID | hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e26558 |
SubjectTerms | Age Age composition Age determination age prediction Aging Algorithms Alzheimer Disease - pathology Alzheimer's disease Anomalies Biomarkers Brain Brain - diagnostic imaging Brain - pathology Brain research brain structure ages Chronology Classification Computer Science Deep learning Deviation Differential diagnosis Disease DNA methylation Estimation frontotemporal dementia Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging multiple sclerosis multi‐disease classification Neuroimaging Neuroimaging - methods Neurological diseases Parkinson's disease schizophrenia |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xkKpeKh5tWV4yqEK9uGwcJ05OaEHAqupyAmlvUfwSB8gCW5C48SP6C_tLmHG8KVULh0hRbCmOx575PDP5BuCLQ6NpEKjyOleeEwMXL7Uw3AqFBkNLb0IVhdFZPryQ38fZODrcpjGtcqYTg6K2E0M-8n1RInBH9NFXBze3nKpGUXQ1ltCYh0WiLqOULjXuDlwEdsKBC80sL1ELz5iF-mL_Ul9_E3lGld5f2KP5S8qG_Bdq_o1cg-k5WYIPETOyQSvkZZhzzQqsDho8L18_sj0WsjiDe3wF3o1isHwVTg-p_ANrGWLv7xxD1TH9_fRrwBBKM_rvnlJz7hjCVhbyCnmM1jBDkJpyiILYPsLFyfH50ZDHugncEE8Rl8LKXIvCKAQDxtrUS9O3PnGFrxNpLdpok9bSa18Xxum-yxKPW1NlRnsrEp1-goVm0rg1YBYPmcZb7TUxY_lSq9wUPi-Ucqkoa9mDr7PZq0wkFafaFldVS4csKpzoKkx0D3a7rjctk8Z_O6EIunbivh4OflT0DLVNgVfyIHqwOZNQFXfctPqzPnqw0zXjXqEASN24yX3oQ4xjRY7j_txKtntVSum0mczxi4KoXx9jNTwchZv1t8exAe8FIqDWX7MJCyhtt4UI5qfeDsv0GQsv7Zo priority: 102 providerName: ProQuest |
Title | Brain structure ages—A new biomarker for multi‐disease classification |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26558 https://www.ncbi.nlm.nih.gov/pubmed/38224546 https://www.proquest.com/docview/2914856507 https://www.proquest.com/docview/2915570864 https://hal.science/hal-04080401 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD7oFoovtlXbrrXLVKT0JetmMskk9Gm3KNviikiFfRBC5obQGsXdFdonf0If-gv9JT1ncinaFooPCSEzIXM5Z843Z858A7Bj0WhqBKpBkUgXEANXkCmuA8MlGgwlnPanKEwOk_GJ-DSNp0vwvtkLU_FDtA430gw_XpOCF2q2-5s09Eyd93kSx7TRl2K1CBAdt9RRBHT8ZAtNbJDhCNywCg34bvvlHVu0fEaRkH_CzLuo1Zud_Sdw2hS4ijb50l_MVV9_v8fl-MAaPYXVGo6yYSU_z2DJlmuwPixxKn7-jb1lPkDUe97X4PGkXodfh48jOlmCVeSziyvLcFSa3d78HDJE6Yy29FPUzxVDRMx8yOLtzY96KYhpwusUoORlYgNO9vc-fxgH9aEMgSYSpEBwIxLFUy0RaWhjIif0wLjQpq4IhTEIAHRUCKdckWqrBjYOHeq9jLVyhocqeg6d8qK0L4EZnMFqZ5RTRLvlMiUTnbokldJGPCtEF9413ZPrmrGcDs74mldcyzzHFst9i3Vhu816WdF0_DUT9nGbTsTa4-FBTu9wKEvxCq95F7YaEchrdZ7lPMNZI0LfgezCmzYZFZFWV4rSXix8HqIzSxMs94tKdNpfRRSrG4sEa-QF4N9lzMejiX_Y_P-sr2CFI9SqHENb0MG-t68RKs1VD5a5OMK7nMoePBrtHR4d97zboee15RdfGBPA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7AkigXg6CwitoaNV5adnp6XgdjdhUcZHdjDCTcxulXOMAssiLh5o_wd_ij_CVW9TzU-Lhx2GSz05np7aqu-qqr5iuAxxadpkagyss4cZwYuHimhOZGJOgwlHTad1GYTOP8QL49jA4X4Fv7LgyVVbY20RtqM9N0Rr4lMgTuiD4GycvTj5y6RlF2tW2hUavFnr28wJBt_mL3Ncr3iRA72_uvct50FeCaWHy4FEbGSqQ6QVepjQmd1APjApu6MpDGoAfTYSmdcmWqrRrYKHCouEmklTMiUCHedxGWZIihTA-WRtvTd--7vAXCKx_ioWPnGdr9lstoILaO1MlzEUfUW_4XD7h4RPWXf4Lb37Gyd3Y7K3CjQalsWKvVTViw1SqsDSuM0E8u2VPm60b9gfwqXJs06fk1eDOihhOs5qQ9P7MMjdX8-5evQ4bgndGb_lQMdMYQKDNfycib_BDTBOKpaskryi04uJI1vQ29albZDWAGw1rtjHKKuLhcppJYpy5Ok8SGIitlH561q1fohsacumkcFzUBsyhwoQu_0H141A09rbk7_joIRdBdJ7btfDgu6De0byl-gs-iD5uthIpmj8-LnxrZh4fdZdydlHIpKzs792OI4yyNcd7rtWS7R4VUwBvJGP-RF_W_51jko4n_cuf_83gA1_P9ybgY70737sKyQPxVnxZtQg8lb-8hfvqk7jdKy-DDVe-TH57oLaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71IVVcUGl5bFvAIEBczG6ch5MDQtuWZUu7FQcq7c2NX-qBZtsuBfXGj-DX8HP4Jcw4D0A8bj1EihIrcTwznm_syTcATxw6TYNAlZeZ9JwYuHihheFWSHQYOvEmVFGYHGbjo-TtNJ0uwLf2XxhKq2znxDBR25mhNfK-KBC4I_oYyL5v0iLe7Y5enZ1zqiBFO61tOY1aRfbd1WcM3-Yv93ZR1k-FGL1-vzPmTYUBbojRhyfCJpkWuZHoNo21sU_MwPrI5b6MEmvRm5m4TLz2ZW6cHrg08qjEMjXaWxHpGJ-7CMsyTiOyMTntgj0CWiHYQxfPC_QALavRQPRP9OkLkaVUZf4XX7h4QpmYf8Lc31FzcHujVbjZ4FU2rBXsFiy4ag3WhxXG6qdX7BkLGaRhaX4NVibNRv06vNmm0hOsZqe9vHAMp6359y9fhwxhPKN__ikt6IIhZGYhp5E3O0XMEJyn_KWgMrfh6FpG9A4sVbPK3QNmMcA13mqviZXLF1pmJvdZLqWLRVEmPXjejp4yDaE51dX4oGoqZqFwoFUY6B487pqe1Swef22EIujuE-_2eHig6BrOdDke0SfRg61WQqqx9rn6qZs9eNTdRjulzZeycrPL0IbYzvIM-323lmz3qphSedMkwy8Kov53H9V4exJONv7fj4ewgtahDvYO9zfhhkAgVi8bbcESCt7dRyD1UT8IGsvg-LpN5AdaCDB8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+structure+ages-A+new+biomarker+for+multi-disease+classification&rft.jtitle=Human+brain+mapping&rft.au=Nguyen%2C+Huy-Dung&rft.au=Cl%C3%A9ment%2C+Micha%C3%ABl&rft.au=Mansencal%2C+Boris&rft.au=Coup%C3%A9%2C+Pierrick&rft.date=2024-01-01&rft.eissn=1097-0193&rft.volume=45&rft.issue=1&rft.spage=e26558&rft_id=info:doi/10.1002%2Fhbm.26558&rft_id=info%3Apmid%2F38224546&rft.externalDocID=38224546 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |