Brain structure ages—A new biomarker for multi‐disease classification

Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different dise...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 45; no. 1; pp. e26558 - n/a
Main Authors Nguyen, Huy‐Dung, Clément, Michaël, Mansencal, Boris, Coupé, Pierrick
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel‐wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state‐of‐the‐art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi‐disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts. Our novel brain structure age biomarker enables to accurately predict the chronological age of healthy people. The deviation between the brain structure age and the subject's age can be used to improve the performance of a multi‐disease classification. Our framework provides a visualization of the 3D deviation map for a better interpretation.
AbstractList Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel-wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state-of-the-art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi-disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts.
Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel‐wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state‐of‐the‐art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi‐disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts. Our novel brain structure age biomarker enables to accurately predict the chronological age of healthy people. The deviation between the brain structure age and the subject's age can be used to improve the performance of a multi‐disease classification. Our framework provides a visualization of the 3D deviation map for a better interpretation.
Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel-wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state-of-the-art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi-disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts.Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel-wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state-of-the-art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi-disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts.
Author Clément, Michaël
Mansencal, Boris
Coupé, Pierrick
Nguyen, Huy‐Dung
Author_xml – sequence: 1
  givenname: Huy‐Dung
  orcidid: 0000-0002-3980-8029
  surname: Nguyen
  fullname: Nguyen, Huy‐Dung
  email: huy-dung.nguyen@u-bordeaux.fr
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800
– sequence: 2
  givenname: Michaël
  surname: Clément
  fullname: Clément, Michaël
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800
– sequence: 3
  givenname: Boris
  surname: Mansencal
  fullname: Mansencal, Boris
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800
– sequence: 4
  givenname: Pierrick
  orcidid: 0000-0003-2709-3350
  surname: Coupé
  fullname: Coupé, Pierrick
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38224546$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04080401$$DView record in HAL
BookMark eNp1kc9u1DAQxi1U1P8HXgBF4gKHtB7HTpzjtgK20iIu9Gw59pi6JHGxE6re-ggceMI-Cd7utkgIDtZYo9989nzfAdkZw4iEvAJ6ApSy06tuOGG1EPIF2QfaNiWFttpZ32tRtryBPXKQ0jWlAILCLtmrJGNc8HqfXJxF7cciTXE20xyx0F8xPdz_WhQj3hadD4OO3zAWLsRimPvJP9z_tD6hTliYXqfknTd68mE8Ii-d7hMeb-shufzw_sv5slx9_nhxvliVpmoqWXJmed0xaRragrG2ctxQ6wCl08CtlSBNpbnrnJYGO4oCnADaCNM5y6CrDsm7je6V7tVN9PmDdypor5aLlVr3KKcyH_jBMvt2w97E8H3GNKnBJ4N9r0cMc1KsBSEaKmue0Td_oddhjmPeZE1xKWpBm0y93lJzN6B9fv_J0AycbgATQ0oRnTJ-evRnykb3CqhaR6ZyZOoxsj_7PE88if6L3arf-h7v_g-q5dmnzcRvRh6l2w
CitedBy_id crossref_primary_10_1016_j_bpsgos_2025_100489
crossref_primary_10_1016_j_neuroimage_2024_120825
crossref_primary_10_1186_s12883_024_03745_6
crossref_primary_10_1162_imag_a_00245
crossref_primary_10_1016_j_neurol_2024_04_004
Cites_doi 10.1016/j.neuroimage.2015.09.018
10.1093/brain/awp232
10.1002/hbm.25850
10.1186/1750-1326-6-85
10.1016/j.neuroimage.2022.119210
10.18632/aging.101020
10.1109/rbme.2021.3107372
10.1016/j.pneurobio.2011.09.005
10.1093/cercor/bhh057
10.1038/s43587-022-00219-7
10.1038/s41597-021-01004-8
10.1126/science.6474172
10.1186/s43055-021-00454-9
10.1016/j.jcmg.2021.01.008
10.1016/j.neuroimage.2010.01.005
10.1177/1756286419859722
10.1016/j.neuroimage.2010.09.025
10.1007/s00414-020-02465-z
10.1016/j.media.2020.101871
10.1136/pgmj.2005.036665
10.1038/mp.2013.78
10.1002/jmri.22003
10.1016/j.neuroimage.2012.08.001
10.1093/schbul/sbw122
10.1371/journal.pone.0067346
10.1097/WAD.0b013e318142774e
10.1109/TMI.2010.2046908
10.1016/j.mri.2019.06.018
10.1038/s41586-018-0579-z
10.3389/fneur.2019.00789
10.1155/2014/820205
10.1109/TMI.2021.3066857
10.1109/TMI.2021.3085948
10.1038/s41467-019-13163-9
10.1101/2019.12.13.19014902
10.1007/s40273-015-0331-6
10.1038/s41467-022-29525-9
10.1038/sdata.2017.10
10.3389/fnagi.2021.761954
10.1038/s41591-023-02296-6
10.1002/ana.25746
10.1017/S1041610209009405
10.1093/gerona/62.10.1096
10.31887/DCNS.2006.8.1/ldelisi
10.1016/j.tins.2017.10.001
10.1016/j.neuroimage.2020.117026
10.1038/nrneurol.2009.215
10.1002/mrm.21521
10.1002/hbm.25011
10.1038/mp.2017.62
10.3389/fnins.2021.673120
10.1098/rstb.2001.0915
10.1177/0963721410377601
10.1016/j.neuroimage.2016.11.005
10.1016/j.neuroimage.2019.06.017
10.1016/j.artmed.2023.102636
10.1016/j.neuroimage.2019.05.025
10.1016/j.neuroimage.2017.07.059
10.1177/1352458518815602
10.1093/schbul/sbt142
10.1371/journal.pone.0017213
10.1002/jmri.21049
10.3389/fcvm.2022.754909
10.3174/ajnr.A4447
10.1073/pnas.2634794100
10.1016/j.neuroimage.2017.10.040
10.1002/alz.050562
10.1038/s41598-019-39809-8
10.1016/S1474-4422(21)00341-0
10.1016/j.neuroimage.2012.12.044
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC.
2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC.
– notice: 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - NonCommercial - NoDerivatives
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
7X8
1XC
VOOES
DOI 10.1002/hbm.26558
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Computer Science
EISSN 1097-0193
EndPage n/a
ExternalDocumentID oai_HAL_hal_04080401v2
38224546
10_1002_hbm_26558
HBM26558
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Institute on Drug Abuse
– fundername: National Institute of Neurological Disorders and Stroke
– fundername: Common‐wealth Scientific Industrial Research Organization
– fundername: National Health and Medical Research Council of Australia
– fundername: The Michael J. Fox Foundation for Parkinson's Research
– fundername: National Institute of Child Health and Human Development
– fundername: Dana Foundation
– fundername: Human Brain Project
  funderid: PO1MHO52176‐11
– fundername: National Institute of Mental Health
– fundername: National Institutes of Health
  funderid: K01 AG030514; P30AG010129; U01 AG024904
– fundername: NIDA NIH HHS
– fundername: NIH HHS
  grantid: U01 AG024904
– fundername: NIH HHS
  grantid: K01 AG030514
– fundername: NIH HHS
  grantid: P30AG010129
– fundername: CIHR
  grantid: MOP-34996
– fundername: NIMH NIH HHS
– fundername: NINDS NIH HHS
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
7X8
1XC
PMFND
VOOES
ID FETCH-LOGICAL-c3738-42d46b28c7091cdd3f4c0df1e8fa14dd818c3a4fbfa8ceb0e51f51075cbfd21b3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Tue May 27 06:21:07 EDT 2025
Thu Jul 10 18:44:36 EDT 2025
Wed Aug 13 08:38:20 EDT 2025
Thu Apr 03 07:00:28 EDT 2025
Tue Jul 01 01:11:15 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Wed Aug 20 07:27:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
Parkinson's disease
age prediction
multiple sclerosis
multi-disease classification
frontotemporal dementia
schizophrenia
Alzheimer's disease
brain structure ages
Deep learning
Multi-disease Classification
Multiple sclerosis
Brain Structure Ages
Schizophrenia
Age prediction
Frontotemporal dementia
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-42d46b28c7091cdd3f4c0df1e8fa14dd818c3a4fbfa8ceb0e51f51075cbfd21b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2709-3350
0000-0002-3980-8029
0000-0002-9190-4819
0000-0002-0899-3428
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26558
PMID 38224546
PQID 2914856507
PQPubID 996345
PageCount 24
ParticipantIDs hal_primary_oai_HAL_hal_04080401v2
proquest_miscellaneous_2915570864
proquest_journals_2914856507
pubmed_primary_38224546
crossref_citationtrail_10_1002_hbm_26558
crossref_primary_10_1002_hbm_26558
wiley_primary_10_1002_hbm_26558_HBM26558
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
2024-Jan
20240101
2024-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 40
2021; 68
2018; 562
2015; 36
2017; 4
2010; 19
2019; 10
2019; 12
2023; 144
2018; 169
2011; 54
2013; 70
2022; 21
2013; 8
2019; 200
2022; 256
2016; 34
2019; 62
2023; 29
2010; 29
2008; 27
2017; 163
2014; 19
2020; 88
2007; 62
2007; 21
2021; 40
2020; 219
2010; 6
2019; 197
2012; 63
2004; 101
2021; 8
2019; 9
2010; 31
2009; 21
2020; 41
2023; 16
1984; 225
2009; 132
2006; 8
2008; 59
2016; 122
2014; 2014
2022; 43
2018; 23
2014; 40
2011; 6
2021; 52
2021; 14
2006; 82
2021; 13
2021; 15
2021; 135
2020
2004; 14
2022; 9
2011; 95
2022; 13
2019
2020; 26
2018
2014
2022; 2
2017; 144
2016; 8
2017; 148
2001; 356
2010; 50
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
Franke K. (e_1_2_10_24_1) 2014
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
Bintsi K. M. (e_1_2_10_7_1) 2020
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Ueda M. (e_1_2_10_71_1) 2019
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
– volume: 148
  start-page: 179
  year: 2017
  end-page: 188
  article-title: Predicting brain‐age from multimodal imaging data captures cognitive impairment
  publication-title: NeuroImage
– volume: 12
  year: 2019
  article-title: Advances in brain imaging in multiple sclerosis
  publication-title: Therapeutic Advances in Neurological Disorders
– volume: 144
  start-page: 262
  year: 2017
  end-page: 269
  article-title: The Cambridge Centre for aging and Neuroscience (Cam‐CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross‐sectional adult lifespan sample
  publication-title: NeuroImage
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism
  publication-title: Molecular Psychiatry
– volume: 132
  start-page: 2932
  year: 2009
  end-page: 2946
  article-title: Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: A cluster analysis study
  publication-title: Brain
– volume: 14
  start-page: 2226
  year: 2021
  end-page: 2236
  article-title: Deep learning to estimate biological age from chest radiographs
  publication-title: JACC: Cardiovascular Imaging
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  article-title: N4ITK: Improved N3 bias correction
  publication-title: IEEE Transactions on Medical Imaging
– volume: 15
  year: 2021
  article-title: Classification‐biased apparent brain age for the prediction of Alzheimer's disease
  publication-title: Frontiers in Neuroscience
– volume: 200
  start-page: 528
  year: 2019
  end-page: 539
  article-title: Estimation of brain age delta from brain imaging
  publication-title: NeuroImage
– volume: 562
  start-page: 203
  year: 2018
  end-page: 209
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
– volume: 21
  start-page: 672
  year: 2009
  end-page: 687
  article-title: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: Methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease
  publication-title: International Psychogeriatrics
– volume: 62
  start-page: 70
  year: 2019
  end-page: 77
  article-title: Anatomical context improves deep learning on the brain age estimation task
  publication-title: Magnetic Resonance Imaging
– volume: 40
  start-page: 681
  year: 2017
  end-page: 690
  article-title: Predicting age using neuroimaging: Innovative brain aging biomarkers
  publication-title: Trends in Neurosciences
– volume: 19
  start-page: 226
  year: 2010
  end-page: 231
  article-title: Structural and functional brain abnormalities in schizophrenia
  publication-title: Current Directions in Psychological Science
– year: 2018
– volume: 169
  start-page: 11
  year: 2018
  end-page: 22
  article-title: A spatio‐temporal reference model of the aging brain
  publication-title: NeuroImage
– volume: 2
  start-page: 412
  year: 2022
  end-page: 424
  article-title: Deep learning‐based brain age prediction in normal aging and dementia
  publication-title: Nature Aging
– volume: 70
  start-page: 33
  year: 2013
  end-page: 36
  article-title: MIRIAD—Public release of a multiple time point Alzheimer's MR imaging dataset
  publication-title: NeuroImage
– volume: 31
  start-page: 192
  year: 2010
  end-page: 203
  article-title: Adaptive non‐local means denoising of MR images with spatially varying noise levels: Spatially adaptive nonlocal denoising
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 59
  start-page: 866
  year: 2008
  end-page: 873
  article-title: Robust MRI brain tissue parameter estimation by multistage outlier rejection
  publication-title: Magnetic Resonance in Medicine
– volume: 21
  start-page: 249
  year: 2007
  end-page: 258
  article-title: The National Alzheimer's Coordinating Center (NACC) database: The uniform data set
  publication-title: Alzheimer Disease & Associated Disorders
– volume: 13
  start-page: 1979
  year: 2022
  article-title: Using deep learning to predict abdominal age from liver and pancreas magnetic resonance images
  publication-title: Nature Communications
– volume: 16
  start-page: 371
  year: 2023
  end-page: 385
  article-title: A Review of Neuroimaging‐Driven Brain Age Estimation for Identification of Brain Disorders and Health Conditions
  publication-title: IEEE Reviews in Biomedical Engineering
– volume: 356
  start-page: 1293
  year: 2001
  end-page: 1322
  article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM)
  publication-title: Philosophical Transactions: Biological Sciences
– volume: 40
  start-page: 1778
  year: 2021
  end-page: 1791
  article-title: Age‐net: An MRI‐based iterative framework for brain biological age estimation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 9
  year: 2022
  article-title: Electrocardiogram‐based heart age estimation by a deep learning model provides more information on the incidence of cardiovascular disorders
  publication-title: Frontiers in Cardiovascular Medicine
– volume: 23
  start-page: 1385
  year: 2018
  end-page: 1392
  article-title: Brain age predicts mortality
  publication-title: Molecular Psychiatry
– volume: 41
  start-page: 3235
  issue: 12
  year: 2020
  end-page: 3252
  article-title: From a deep learning model back to the brain—Identifying regional predictors and their relation to aging
  publication-title: Human Brain Mapping
– volume: 8
  year: 2013
  article-title: BrainAGE in mild cognitive impaired patients: Predicting the conversion to Alzheimer's disease
  publication-title: PLoS One
– volume: 63
  start-page: 1305
  year: 2012
  end-page: 1312
  article-title: Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI
  publication-title: NeuroImage
– volume: 6
  start-page: 85
  year: 2011
  article-title: Adult hippocampal neurogenesis and its role in Alzheimer's disease
  publication-title: Molecular Neurodegeneration
– start-page: 380
  year: 2019
  end-page: 383
– volume: 219
  year: 2020
  article-title: AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation
  publication-title: NeuroImage
– volume: 52
  start-page: 79
  year: 2021
  article-title: Imaging modalities in differential diagnosis of Parkinson's disease: Opportunities and challenges
  publication-title: Egyptian Journal of Radiology and Nuclear Medicine
– volume: 135
  start-page: 649
  issue: 2
  year: 2021
  end-page: 663
  article-title: Automated age estimation of young individuals based on 3D knee MRI using deep learning
  publication-title: International Journal of Legal Medicine
– volume: 40
  start-page: 1140
  year: 2014
  end-page: 1153
  article-title: Accelerated brain aging in schizophrenia and beyond: A neuroanatomical marker of psychiatric disorders
  publication-title: Schizophrenia Bulletin
– volume: 62
  start-page: 1096
  year: 2007
  end-page: 1105
  article-title: A method for identifying biomarkers of aging and constructing an index of biological age in humans
  publication-title: The Journals of Gerontology Series A: Biological Sciences and Medical Sciences
– volume: 10
  start-page: 5409
  year: 2019
  article-title: Brain age prediction using deep learning uncovers associated sequence variants
  publication-title: Nature Communications
– volume: 256
  year: 2022
  article-title: Deep neural networks learn general and clinically relevant representations of the aging brain
  publication-title: NeuroImage
– volume: 21
  start-page: 258
  year: 2022
  end-page: 272
  article-title: Advances and controversies in frontotemporal dementia: Diagnosis, biomarkers, and therapeutic considerations
  publication-title: The Lancet Neurology
– volume: 144
  year: 2023
  article-title: Deep grading for MRI‐based differential diagnosis of Alzheimer's disease and frontotemporal dementia
  publication-title: Artificial Intelligence in Medicine
– volume: 95
  start-page: 629
  year: 2011
  end-page: 635
  article-title: The Parkinson progression marker Initiative (PPMI)
  publication-title: Progress in Neurobiology
– volume: 43
  start-page: 3270
  year: 2022
  end-page: 3282
  article-title: Hippocampal‐amygdalo‐ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models
  publication-title: Human Brain Mapping
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 11
  article-title: Nonlocal intracranial cavity extraction
  publication-title: International Journal of Biomedical Imaging
– volume: 82
  start-page: 84
  year: 2006
  end-page: 88
  article-title: Aging and the brain
  publication-title: Postgraduate Medical Journal
– volume: 6
  start-page: 67
  year: 2010
  end-page: 77
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nature Reviews Neurology
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 36
  start-page: 2219
  year: 2015
  end-page: 2226
  article-title: Longitudinal study of gray matter changes in Parkinson disease
  publication-title: American Journal of Neuroradiology
– volume: 13
  year: 2021
  article-title: Local brain‐age: A U‐net model
  publication-title: Frontiers in Aging Neuroscience
– start-page: 98
  year: 2020
  end-page: 107
– volume: 9
  start-page: 3998
  year: 2019
  article-title: Lifespan changes of the human brain in Alzheimer's disease
  publication-title: Scientific Reports
– volume: 225
  start-page: 1168
  year: 1984
  end-page: 1170
  article-title: Alzheimer's disease: Cell‐specific pathology isolates the hippocampal formation
  publication-title: Science
– volume: 40
  start-page: 3400
  year: 2021
  end-page: 3412
  article-title: Brain age estimation from MRI using cascade networks with ranking loss
  publication-title: IEEE Transactions on Medical Imaging
– volume: 122
  year: 2016
  article-title: Glutamatergic and neuronal dysfunction in gray and white matter: A spectroscopic imaging study in a large schizophrenia sample
  publication-title: Schizophrenia Bulletin
– start-page: 48
  year: 2014
  end-page: 54
– volume: 8
  start-page: 227
  year: 2021
  article-title: A multi‐site, multi‐disorder resting‐state magnetic resonance image database
  publication-title: Scientific Data
– volume: 29
  start-page: 1221
  issue: 5
  year: 2023
  end-page: 1231
  article-title: Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality
  publication-title: Nature Medicine
– volume: 14
  start-page: 966
  year: 2004
  end-page: 973
  article-title: A voxel‐based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time
  publication-title: Cerebral Cortex
– volume: 197
  start-page: 618
  year: 2019
  end-page: 624
  article-title: A novel patch‐based procedure for estimating brain age across adulthood
  publication-title: NeuroImage
– volume: 8
  start-page: 1844
  year: 2016
  end-page: 1865
  article-title: DNA methylation‐based measures of biological age: Meta‐analysis predicting time to death
  publication-title: Aging
– volume: 6
  year: 2011
  article-title: Age‐related differences in plasma proteins: How plasma proteins change from neonates to adults
  publication-title: PLoS One
– volume: 26
  start-page: 118
  year: 2020
  end-page: 122
  article-title: Observatoire Français de la Sclérose en Plaques (OFSEP): A unique multimodal nationwide MS registry in France
  publication-title: Multiple Sclerosis Journal
– volume: 8
  start-page: 71
  year: 2006
  end-page: 78
  article-title: Understanding structural brain changes in schizophrenia
  publication-title: Dialogues in Clinical Neuroscience
– volume: 4
  year: 2017
  article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II
  publication-title: Scientific Data
– volume: 88
  start-page: 93
  year: 2020
  end-page: 105
  article-title: Longitudinal assessment of multiple sclerosis with the brain‐age paradigm
  publication-title: Annals of Neurology
– volume: 34
  start-page: 127
  year: 2016
  end-page: 138
  article-title: National Database for Autism Research (NDAR): Big data opportunities for health services research and health technology assessment
  publication-title: PharmacoEconomics
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  article-title: Estimating the age of healthy subjects from T1‐weighted MRI scans using kernel methods: Exploring the influence of various parameters
  publication-title: NeuroImage
– volume: 101
  start-page: 343
  year: 2004
  end-page: 347
  article-title: Increased hippocampal neurogenesis in Alzheimer's disease
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  start-page: 789
  year: 2019
  article-title: Ten years of BrainAGE as a neuroimaging biomarker of brain aging: What insights have we gained?
  publication-title: Frontiers in Neurology
– volume: 163
  start-page: 115
  year: 2017
  end-page: 124
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: NeuroImage
– volume: 68
  year: 2021
  article-title: Accurate brain age prediction with lightweight deep neural networks
  publication-title: Medical Image Analysis
– ident: e_1_2_10_67_1
  doi: 10.1016/j.neuroimage.2015.09.018
– ident: e_1_2_10_74_1
  doi: 10.1093/brain/awp232
– ident: e_1_2_10_20_1
  doi: 10.1002/hbm.25850
– ident: e_1_2_10_55_1
  doi: 10.1186/1750-1326-6-85
– ident: e_1_2_10_75_1
– ident: e_1_2_10_42_1
  doi: 10.1016/j.neuroimage.2022.119210
– ident: e_1_2_10_12_1
  doi: 10.18632/aging.101020
– ident: e_1_2_10_53_1
  doi: 10.1109/rbme.2021.3107372
– ident: e_1_2_10_58_1
  doi: 10.1016/j.pneurobio.2011.09.005
– ident: e_1_2_10_69_1
  doi: 10.1093/cercor/bhh057
– ident: e_1_2_10_41_1
  doi: 10.1038/s43587-022-00219-7
– ident: e_1_2_10_66_1
  doi: 10.1038/s41597-021-01004-8
– ident: e_1_2_10_31_1
  doi: 10.1126/science.6474172
– ident: e_1_2_10_54_1
  doi: 10.1186/s43055-021-00454-9
– ident: e_1_2_10_63_1
  doi: 10.1016/j.jcmg.2021.01.008
– ident: e_1_2_10_27_1
  doi: 10.1016/j.neuroimage.2010.01.005
– start-page: 98
  volume-title: Patch‐based brain age estimation from MR images
  year: 2020
  ident: e_1_2_10_7_1
– ident: e_1_2_10_18_1
  doi: 10.1177/1756286419859722
– ident: e_1_2_10_3_1
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: e_1_2_10_51_1
  doi: 10.1007/s00414-020-02465-z
– ident: e_1_2_10_60_1
  doi: 10.1016/j.media.2020.101871
– ident: e_1_2_10_61_1
  doi: 10.1136/pgmj.2005.036665
– ident: e_1_2_10_50_1
  doi: 10.1038/mp.2013.78
– ident: e_1_2_10_46_1
  doi: 10.1002/jmri.22003
– ident: e_1_2_10_26_1
  doi: 10.1016/j.neuroimage.2012.08.001
– ident: e_1_2_10_9_1
  doi: 10.1093/schbul/sbw122
– ident: e_1_2_10_29_1
  doi: 10.1371/journal.pone.0067346
– ident: e_1_2_10_4_1
  doi: 10.1097/WAD.0b013e318142774e
– ident: e_1_2_10_70_1
  doi: 10.1109/TMI.2010.2046908
– ident: e_1_2_10_6_1
  doi: 10.1016/j.mri.2019.06.018
– ident: e_1_2_10_10_1
  doi: 10.1038/s41586-018-0579-z
– ident: e_1_2_10_25_1
  doi: 10.3389/fneur.2019.00789
– ident: e_1_2_10_47_1
  doi: 10.1155/2014/820205
– ident: e_1_2_10_2_1
  doi: 10.1109/TMI.2021.3066857
– ident: e_1_2_10_13_1
  doi: 10.1109/TMI.2021.3085948
– ident: e_1_2_10_36_1
  doi: 10.1038/s41467-019-13163-9
– ident: e_1_2_10_39_1
  doi: 10.1101/2019.12.13.19014902
– ident: e_1_2_10_59_1
  doi: 10.1007/s40273-015-0331-6
– ident: e_1_2_10_40_1
  doi: 10.1038/s41467-022-29525-9
– ident: e_1_2_10_49_1
  doi: 10.1038/sdata.2017.10
– ident: e_1_2_10_62_1
  doi: 10.3389/fnagi.2021.761954
– ident: e_1_2_10_68_1
  doi: 10.1038/s41591-023-02296-6
– ident: e_1_2_10_16_1
  doi: 10.1002/ana.25746
– ident: e_1_2_10_23_1
  doi: 10.1017/S1041610209009405
– ident: e_1_2_10_56_1
  doi: 10.1093/gerona/62.10.1096
– ident: e_1_2_10_22_1
  doi: 10.31887/DCNS.2006.8.1/ldelisi
– start-page: 48
  volume-title: Dementia classification based on brain age estimation
  year: 2014
  ident: e_1_2_10_24_1
– ident: e_1_2_10_14_1
  doi: 10.1016/j.tins.2017.10.001
– ident: e_1_2_10_21_1
  doi: 10.1016/j.neuroimage.2020.117026
– ident: e_1_2_10_28_1
  doi: 10.1038/nrneurol.2009.215
– ident: e_1_2_10_48_1
  doi: 10.1002/mrm.21521
– ident: e_1_2_10_43_1
  doi: 10.1002/hbm.25011
– ident: e_1_2_10_17_1
  doi: 10.1038/mp.2017.62
– ident: e_1_2_10_72_1
  doi: 10.3389/fnins.2021.673120
– ident: e_1_2_10_52_1
  doi: 10.1098/rstb.2001.0915
– ident: e_1_2_10_37_1
  doi: 10.1177/0963721410377601
– ident: e_1_2_10_44_1
  doi: 10.1016/j.neuroimage.2016.11.005
– ident: e_1_2_10_65_1
  doi: 10.1016/j.neuroimage.2019.06.017
– ident: e_1_2_10_57_1
  doi: 10.1016/j.artmed.2023.102636
– ident: e_1_2_10_5_1
  doi: 10.1016/j.neuroimage.2019.05.025
– ident: e_1_2_10_15_1
  doi: 10.1016/j.neuroimage.2017.07.059
– ident: e_1_2_10_73_1
  doi: 10.1177/1352458518815602
– ident: e_1_2_10_38_1
  doi: 10.1093/schbul/sbt142
– ident: e_1_2_10_32_1
  doi: 10.1371/journal.pone.0017213
– start-page: 380
  volume-title: An age estimation method using 3D‐CNN from brain MRI images
  year: 2019
  ident: e_1_2_10_71_1
– ident: e_1_2_10_33_1
  doi: 10.1002/jmri.21049
– ident: e_1_2_10_11_1
  doi: 10.3389/fcvm.2022.754909
– ident: e_1_2_10_34_1
  doi: 10.3174/ajnr.A4447
– ident: e_1_2_10_35_1
  doi: 10.1073/pnas.2634794100
– ident: e_1_2_10_30_1
  doi: 10.1016/j.neuroimage.2017.10.040
– ident: e_1_2_10_64_1
  doi: 10.1002/alz.050562
– ident: e_1_2_10_19_1
  doi: 10.1038/s41598-019-39809-8
– ident: e_1_2_10_8_1
  doi: 10.1016/S1474-4422(21)00341-0
– ident: e_1_2_10_45_1
  doi: 10.1016/j.neuroimage.2012.12.044
SSID ssj0011501
Score 2.4514904
Snippet Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e26558
SubjectTerms Age
Age composition
Age determination
age prediction
Aging
Algorithms
Alzheimer Disease - pathology
Alzheimer's disease
Anomalies
Biomarkers
Brain
Brain - diagnostic imaging
Brain - pathology
Brain research
brain structure ages
Chronology
Classification
Computer Science
Deep learning
Deviation
Differential diagnosis
Disease
DNA methylation
Estimation
frontotemporal dementia
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
multiple sclerosis
multi‐disease classification
Neuroimaging
Neuroimaging - methods
Neurological diseases
Parkinson's disease
schizophrenia
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xkKpeKh5tWV4yqEK9uGwcJ05OaEHAqupyAmlvUfwSB8gCW5C48SP6C_tLmHG8KVULh0hRbCmOx575PDP5BuCLQ6NpEKjyOleeEwMXL7Uw3AqFBkNLb0IVhdFZPryQ38fZODrcpjGtcqYTg6K2E0M-8n1RInBH9NFXBze3nKpGUXQ1ltCYh0WiLqOULjXuDlwEdsKBC80sL1ELz5iF-mL_Ul9_E3lGld5f2KP5S8qG_Bdq_o1cg-k5WYIPETOyQSvkZZhzzQqsDho8L18_sj0WsjiDe3wF3o1isHwVTg-p_ANrGWLv7xxD1TH9_fRrwBBKM_rvnlJz7hjCVhbyCnmM1jBDkJpyiILYPsLFyfH50ZDHugncEE8Rl8LKXIvCKAQDxtrUS9O3PnGFrxNpLdpok9bSa18Xxum-yxKPW1NlRnsrEp1-goVm0rg1YBYPmcZb7TUxY_lSq9wUPi-Ucqkoa9mDr7PZq0wkFafaFldVS4csKpzoKkx0D3a7rjctk8Z_O6EIunbivh4OflT0DLVNgVfyIHqwOZNQFXfctPqzPnqw0zXjXqEASN24yX3oQ4xjRY7j_txKtntVSum0mczxi4KoXx9jNTwchZv1t8exAe8FIqDWX7MJCyhtt4UI5qfeDsv0GQsv7Zo
  priority: 102
  providerName: ProQuest
Title Brain structure ages—A new biomarker for multi‐disease classification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26558
https://www.ncbi.nlm.nih.gov/pubmed/38224546
https://www.proquest.com/docview/2914856507
https://www.proquest.com/docview/2915570864
https://hal.science/hal-04080401
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD7oFoovtlXbrrXLVKT0JetmMskk9Gm3KNviikiFfRBC5obQGsXdFdonf0If-gv9JT1ncinaFooPCSEzIXM5Z843Z858A7Bj0WhqBKpBkUgXEANXkCmuA8MlGgwlnPanKEwOk_GJ-DSNp0vwvtkLU_FDtA430gw_XpOCF2q2-5s09Eyd93kSx7TRl2K1CBAdt9RRBHT8ZAtNbJDhCNywCg34bvvlHVu0fEaRkH_CzLuo1Zud_Sdw2hS4ijb50l_MVV9_v8fl-MAaPYXVGo6yYSU_z2DJlmuwPixxKn7-jb1lPkDUe97X4PGkXodfh48jOlmCVeSziyvLcFSa3d78HDJE6Yy29FPUzxVDRMx8yOLtzY96KYhpwusUoORlYgNO9vc-fxgH9aEMgSYSpEBwIxLFUy0RaWhjIif0wLjQpq4IhTEIAHRUCKdckWqrBjYOHeq9jLVyhocqeg6d8qK0L4EZnMFqZ5RTRLvlMiUTnbokldJGPCtEF9413ZPrmrGcDs74mldcyzzHFst9i3Vhu816WdF0_DUT9nGbTsTa4-FBTu9wKEvxCq95F7YaEchrdZ7lPMNZI0LfgezCmzYZFZFWV4rSXix8HqIzSxMs94tKdNpfRRSrG4sEa-QF4N9lzMejiX_Y_P-sr2CFI9SqHENb0MG-t68RKs1VD5a5OMK7nMoePBrtHR4d97zboee15RdfGBPA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7AkigXg6CwitoaNV5adnp6XgdjdhUcZHdjDCTcxulXOMAssiLh5o_wd_ij_CVW9TzU-Lhx2GSz05np7aqu-qqr5iuAxxadpkagyss4cZwYuHimhOZGJOgwlHTad1GYTOP8QL49jA4X4Fv7LgyVVbY20RtqM9N0Rr4lMgTuiD4GycvTj5y6RlF2tW2hUavFnr28wJBt_mL3Ncr3iRA72_uvct50FeCaWHy4FEbGSqQ6QVepjQmd1APjApu6MpDGoAfTYSmdcmWqrRrYKHCouEmklTMiUCHedxGWZIihTA-WRtvTd--7vAXCKx_ioWPnGdr9lstoILaO1MlzEUfUW_4XD7h4RPWXf4Lb37Gyd3Y7K3CjQalsWKvVTViw1SqsDSuM0E8u2VPm60b9gfwqXJs06fk1eDOihhOs5qQ9P7MMjdX8-5evQ4bgndGb_lQMdMYQKDNfycib_BDTBOKpaskryi04uJI1vQ29albZDWAGw1rtjHKKuLhcppJYpy5Ok8SGIitlH561q1fohsacumkcFzUBsyhwoQu_0H141A09rbk7_joIRdBdJ7btfDgu6De0byl-gs-iD5uthIpmj8-LnxrZh4fdZdydlHIpKzs792OI4yyNcd7rtWS7R4VUwBvJGP-RF_W_51jko4n_cuf_83gA1_P9ybgY70737sKyQPxVnxZtQg8lb-8hfvqk7jdKy-DDVe-TH57oLaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71IVVcUGl5bFvAIEBczG6ch5MDQtuWZUu7FQcq7c2NX-qBZtsuBfXGj-DX8HP4Jcw4D0A8bj1EihIrcTwznm_syTcATxw6TYNAlZeZ9JwYuHihheFWSHQYOvEmVFGYHGbjo-TtNJ0uwLf2XxhKq2znxDBR25mhNfK-KBC4I_oYyL5v0iLe7Y5enZ1zqiBFO61tOY1aRfbd1WcM3-Yv93ZR1k-FGL1-vzPmTYUBbojRhyfCJpkWuZHoNo21sU_MwPrI5b6MEmvRm5m4TLz2ZW6cHrg08qjEMjXaWxHpGJ-7CMsyTiOyMTntgj0CWiHYQxfPC_QALavRQPRP9OkLkaVUZf4XX7h4QpmYf8Lc31FzcHujVbjZ4FU2rBXsFiy4ag3WhxXG6qdX7BkLGaRhaX4NVibNRv06vNmm0hOsZqe9vHAMp6359y9fhwxhPKN__ikt6IIhZGYhp5E3O0XMEJyn_KWgMrfh6FpG9A4sVbPK3QNmMcA13mqviZXLF1pmJvdZLqWLRVEmPXjejp4yDaE51dX4oGoqZqFwoFUY6B487pqe1Swef22EIujuE-_2eHig6BrOdDke0SfRg61WQqqx9rn6qZs9eNTdRjulzZeycrPL0IbYzvIM-323lmz3qphSedMkwy8Kov53H9V4exJONv7fj4ewgtahDvYO9zfhhkAgVi8bbcESCt7dRyD1UT8IGsvg-LpN5AdaCDB8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+structure+ages-A+new+biomarker+for+multi-disease+classification&rft.jtitle=Human+brain+mapping&rft.au=Nguyen%2C+Huy-Dung&rft.au=Cl%C3%A9ment%2C+Micha%C3%ABl&rft.au=Mansencal%2C+Boris&rft.au=Coup%C3%A9%2C+Pierrick&rft.date=2024-01-01&rft.eissn=1097-0193&rft.volume=45&rft.issue=1&rft.spage=e26558&rft_id=info:doi/10.1002%2Fhbm.26558&rft_id=info%3Apmid%2F38224546&rft.externalDocID=38224546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon