Tunable and Ultraefficient Microwave Absorption Properties of Trace N‐Doped Two‐Dimensional Carbon‐Based Nanocomposites Loaded with Multi‐Rare Earth Oxides
A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon‐based nanocomposites with the loading of cerium oxide (CN‐Ce) and other types of rare earth oxides (CN‐REOs) can be successfully synthesized by...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 19; pp. e1906668 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon‐based nanocomposites with the loading of cerium oxide (CN‐Ce) and other types of rare earth oxides (CN‐REOs) can be successfully synthesized by a simple solvothermal‐sintering method. As‐synthesized 2D nanocomposites with local graphite‐like C3N4 structure and trace N‐doped are identified by transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. The CN‐REOs and polyvinylidene fluoride composite absorbers with reflection loss values above −40 dB are obtained in C‐band, X‐band, and Ku‐band, respectively. The empirical rules on effective bandwidth and frequency range are discovered and summarized, which can be successfully realized by simply tuning the doping amount or type of REO. The mechanism is explained by enhanced attenuation and tunable impedance matching. In addition co‐filled samples by two types of CN‐REOs nanocomposites are prepared to support these findings and inspire the preparation of absorber with desirable frequency band in the range of 2–18 GHz.
In the system of composites of PVDF and trace n‐doped carbon nanocomposites loaded with rare earth oxide, a high‐performance electromagnetic wave‐absorbing composite with adjustable electromagnetic wave absorption frequency range and adjustable effective absorption width is obtained. Regular performance is found based on extensive experimental data and analysis of intrinsic performance. In addition, the empirical conclusions are well‐validated by co‐filled (CN‐Ce+CN‐Eu)/PVDF samples. |
---|---|
AbstractList | A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon‐based nanocomposites with the loading of cerium oxide (CN‐Ce) and other types of rare earth oxides (CN‐REOs) can be successfully synthesized by a simple solvothermal‐sintering method. As‐synthesized 2D nanocomposites with local graphite‐like C
3
N
4
structure and trace N‐doped are identified by transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. The CN‐REOs and polyvinylidene fluoride composite absorbers with reflection loss values above −40 dB are obtained in C‐band, X‐band, and Ku‐band, respectively. The empirical rules on effective bandwidth and frequency range are discovered and summarized, which can be successfully realized by simply tuning the doping amount or type of REO. The mechanism is explained by enhanced attenuation and tunable impedance matching. In addition co‐filled samples by two types of CN‐REOs nanocomposites are prepared to support these findings and inspire the preparation of absorber with desirable frequency band in the range of 2–18 GHz. A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon‐based nanocomposites with the loading of cerium oxide (CN‐Ce) and other types of rare earth oxides (CN‐REOs) can be successfully synthesized by a simple solvothermal‐sintering method. As‐synthesized 2D nanocomposites with local graphite‐like C3N4 structure and trace N‐doped are identified by transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. The CN‐REOs and polyvinylidene fluoride composite absorbers with reflection loss values above −40 dB are obtained in C‐band, X‐band, and Ku‐band, respectively. The empirical rules on effective bandwidth and frequency range are discovered and summarized, which can be successfully realized by simply tuning the doping amount or type of REO. The mechanism is explained by enhanced attenuation and tunable impedance matching. In addition co‐filled samples by two types of CN‐REOs nanocomposites are prepared to support these findings and inspire the preparation of absorber with desirable frequency band in the range of 2–18 GHz. In the system of composites of PVDF and trace n‐doped carbon nanocomposites loaded with rare earth oxide, a high‐performance electromagnetic wave‐absorbing composite with adjustable electromagnetic wave absorption frequency range and adjustable effective absorption width is obtained. Regular performance is found based on extensive experimental data and analysis of intrinsic performance. In addition, the empirical conclusions are well‐validated by co‐filled (CN‐Ce+CN‐Eu)/PVDF samples. A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon‐based nanocomposites with the loading of cerium oxide (CN‐Ce) and other types of rare earth oxides (CN‐REOs) can be successfully synthesized by a simple solvothermal‐sintering method. As‐synthesized 2D nanocomposites with local graphite‐like C3N4 structure and trace N‐doped are identified by transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. The CN‐REOs and polyvinylidene fluoride composite absorbers with reflection loss values above −40 dB are obtained in C‐band, X‐band, and Ku‐band, respectively. The empirical rules on effective bandwidth and frequency range are discovered and summarized, which can be successfully realized by simply tuning the doping amount or type of REO. The mechanism is explained by enhanced attenuation and tunable impedance matching. In addition co‐filled samples by two types of CN‐REOs nanocomposites are prepared to support these findings and inspire the preparation of absorber with desirable frequency band in the range of 2–18 GHz. A high efficiency and great tunability of bandwidth and absorption-range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon-based nanocomposites with the loading of cerium oxide (CN-Ce) and other types of rare earth oxides (CN-REOs) can be successfully synthesized by a simple solvothermal-sintering method. As-synthesized 2D nanocomposites with local graphite-like C N structure and trace N-doped are identified by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. The CN-REOs and polyvinylidene fluoride composite absorbers with reflection loss values above -40 dB are obtained in C-band, X-band, and Ku-band, respectively. The empirical rules on effective bandwidth and frequency range are discovered and summarized, which can be successfully realized by simply tuning the doping amount or type of REO. The mechanism is explained by enhanced attenuation and tunable impedance matching. In addition co-filled samples by two types of CN-REOs nanocomposites are prepared to support these findings and inspire the preparation of absorber with desirable frequency band in the range of 2-18 GHz. |
Author | Yu, Shu‐Hong Gao, Shan Wang, Guang‐Sheng Guo, Lin |
Author_xml | – sequence: 1 givenname: Shan surname: Gao fullname: Gao, Shan – sequence: 2 givenname: Guang‐Sheng orcidid: 0000-0002-2408-9260 surname: Wang fullname: Wang, Guang‐Sheng email: wanggsh@buaa.edu.cn – sequence: 3 givenname: Lin surname: Guo fullname: Guo, Lin – sequence: 4 givenname: Shu‐Hong surname: Yu fullname: Yu, Shu‐Hong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32297713$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNvAliWyxIZNgn8m9syyhPIjTVoE6Xp0x3NHuPLYwZ4hdMcj8A68GU-Co5QgsWF1r46-e6R7zjk58cEjIU85W3DGxMs0OLcQjFdMKVU-IGdccTlXpahOjjtnp-Q8pVvGJBeFfkROpRCV1lyekZ-byUPrkILv6I0bI2DfW2PRj3RtTQw7-Ir0ok0hbkcbPP0QwxbjaDHR0NNNBIP06tf3H6-z3NHNLux3O6BPmQZHVxDb4LP4ClIGrsAHE4ZtSHbMFnWALqs7O36m68mNNoMfISK9hJil62-2w_SYPOzBJXxyP2fk5s3lZvVuXl-_fb-6qOdGalnOpTagQImCG9FXRb8ErRjrUVSm40zrgvVqWQiUrAPJTamUqarOtFIJXhZayxl5cfDdxvBlwjQ2g00GnQOPYUqNkDnlQnElM_r8H_Q2TDH_m6mCCSH1Mqc9I4sDlXNMKWLfbKMdIN41nDX7-pp9fc2xvnzw7N52agfsjvifvjJQHYCddXj3H7vm07qu_5r_BlkYrhg |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_127313 crossref_primary_10_1016_j_cej_2023_147446 crossref_primary_10_1007_s40820_024_01437_x crossref_primary_10_1016_j_carbon_2020_10_039 crossref_primary_10_1002_smll_202203044 crossref_primary_10_1016_j_carbon_2020_11_088 crossref_primary_10_1016_j_matchemphys_2020_124169 crossref_primary_10_1039_D3MH00734K crossref_primary_10_1007_s40820_021_00673_9 crossref_primary_10_1016_j_coco_2021_100767 crossref_primary_10_1016_j_carbon_2022_10_043 crossref_primary_10_1016_j_carbon_2021_04_053 crossref_primary_10_1002_pc_27372 crossref_primary_10_1016_j_compositesb_2021_108814 crossref_primary_10_1016_j_coco_2020_100492 crossref_primary_10_1016_j_materresbull_2024_112806 crossref_primary_10_1016_j_cej_2023_144841 crossref_primary_10_1016_j_cej_2024_149238 crossref_primary_10_1016_j_carbon_2022_03_075 crossref_primary_10_1021_acsami_0c15771 crossref_primary_10_1007_s10854_021_06069_0 crossref_primary_10_1016_j_jmrt_2023_05_218 crossref_primary_10_1007_s10854_024_12549_w crossref_primary_10_1016_j_compstruct_2021_115140 crossref_primary_10_1016_j_cej_2021_132621 crossref_primary_10_1021_acs_langmuir_2c03095 crossref_primary_10_1039_D2TA01798A crossref_primary_10_3390_mi14091762 crossref_primary_10_1021_acsaelm_1c00940 crossref_primary_10_1016_j_jcis_2023_11_049 crossref_primary_10_1002_adma_202106195 crossref_primary_10_1007_s40820_022_00904_7 crossref_primary_10_1016_j_coco_2022_101112 crossref_primary_10_1021_acsami_0c09202 crossref_primary_10_1088_2515_7655_ac9f6b crossref_primary_10_1016_j_jcis_2021_10_006 crossref_primary_10_1016_j_solidstatesciences_2021_106775 crossref_primary_10_1016_j_micromeso_2024_113090 crossref_primary_10_1002_smll_202107265 crossref_primary_10_1007_s40820_021_00750_z crossref_primary_10_1016_j_cej_2022_137943 crossref_primary_10_1016_j_carbon_2021_12_075 crossref_primary_10_1007_s10854_020_04804_7 crossref_primary_10_1016_j_diamond_2024_110835 crossref_primary_10_1016_j_sna_2023_114645 crossref_primary_10_1016_j_jcis_2022_09_043 crossref_primary_10_1016_j_cej_2023_147414 crossref_primary_10_1016_S1872_5805_21_60095_1 crossref_primary_10_1016_j_cej_2023_147413 crossref_primary_10_1016_j_jcis_2021_09_009 crossref_primary_10_1016_j_jcis_2023_05_112 crossref_primary_10_1016_j_colsurfa_2023_131564 crossref_primary_10_1016_j_apsusc_2021_150480 crossref_primary_10_1016_j_cej_2021_130591 crossref_primary_10_1039_D0TC04329J crossref_primary_10_1002_smll_202105411 crossref_primary_10_1007_s10854_020_04876_5 crossref_primary_10_1016_j_compositesb_2022_109839 crossref_primary_10_1021_acs_inorgchem_1c03035 crossref_primary_10_1007_s12274_023_6255_0 crossref_primary_10_1016_j_apsusc_2022_155142 crossref_primary_10_3390_cryst13081234 crossref_primary_10_1007_s40820_024_01435_z crossref_primary_10_1007_s12274_022_4675_x crossref_primary_10_1016_j_carbon_2020_11_043 crossref_primary_10_1016_j_carbon_2021_11_044 crossref_primary_10_1016_j_carbon_2021_11_043 crossref_primary_10_1007_s40820_023_01244_w crossref_primary_10_1016_j_jallcom_2021_160680 crossref_primary_10_1016_j_cej_2021_133640 crossref_primary_10_1016_j_mser_2024_100795 crossref_primary_10_1016_j_jallcom_2023_169492 crossref_primary_10_1007_s10854_021_06560_8 crossref_primary_10_1007_s13204_020_01639_w crossref_primary_10_1021_acsami_1c06446 crossref_primary_10_1007_s40820_021_00773_6 crossref_primary_10_1016_j_cclet_2020_06_014 crossref_primary_10_1016_j_carbon_2021_06_028 crossref_primary_10_1088_1361_6528_acda38 crossref_primary_10_1016_j_materresbull_2022_111872 crossref_primary_10_1039_D0TA11122H crossref_primary_10_1002_smll_202003407 crossref_primary_10_1016_j_mtcomm_2022_104223 crossref_primary_10_1016_j_ceramint_2022_07_271 crossref_primary_10_1016_j_carbon_2023_118071 crossref_primary_10_1016_j_jcis_2021_07_085 crossref_primary_10_1016_j_cej_2022_134905 crossref_primary_10_3390_nano11102640 crossref_primary_10_1016_j_compositesa_2022_107119 crossref_primary_10_1016_j_carbon_2020_09_045 crossref_primary_10_1016_j_carbon_2021_05_028 crossref_primary_10_1016_j_ceramint_2022_07_007 crossref_primary_10_1016_j_ceramint_2020_07_326 crossref_primary_10_1016_j_compscitech_2020_108643 crossref_primary_10_1016_j_nanoen_2023_109223 crossref_primary_10_1039_D1TA05181D crossref_primary_10_1016_j_apsusc_2024_159996 crossref_primary_10_1016_j_carbon_2021_06_044 crossref_primary_10_1016_j_carbon_2021_05_022 crossref_primary_10_1016_j_solidstatesciences_2022_106886 crossref_primary_10_1002_smsc_202100077 crossref_primary_10_1039_D4TC01018C crossref_primary_10_1016_j_compositesa_2023_107640 crossref_primary_10_1021_acsanm_2c02616 crossref_primary_10_1016_j_mtla_2023_101727 crossref_primary_10_1021_acs_langmuir_1c02110 crossref_primary_10_1016_j_carbon_2021_06_054 crossref_primary_10_1016_j_cej_2023_148383 crossref_primary_10_1007_s42114_021_00277_2 crossref_primary_10_1111_jace_17959 crossref_primary_10_1002_smll_202205624 crossref_primary_10_3390_molecules27031055 crossref_primary_10_1016_j_mtphys_2022_100845 crossref_primary_10_1021_acsaelm_2c00987 crossref_primary_10_1007_s40820_022_00804_w crossref_primary_10_1016_j_apmate_2023_100111 crossref_primary_10_1007_s40820_022_00841_5 crossref_primary_10_1016_j_carbon_2021_07_099 crossref_primary_10_1016_j_mtphys_2024_101373 crossref_primary_10_1016_j_pnsc_2021_04_007 crossref_primary_10_1016_j_compscitech_2022_109715 crossref_primary_10_1016_j_cej_2023_146199 crossref_primary_10_1016_j_mtcomm_2021_102190 crossref_primary_10_1016_j_matchemphys_2024_129448 crossref_primary_10_1016_j_isci_2023_107132 crossref_primary_10_1021_acs_jpcc_0c03092 crossref_primary_10_1016_j_carbon_2024_119017 crossref_primary_10_1016_j_jcis_2020_10_111 crossref_primary_10_1016_j_compositesb_2020_108491 crossref_primary_10_1016_j_cej_2020_127829 crossref_primary_10_1007_s10853_022_07173_0 crossref_primary_10_1021_acsomega_0c05034 crossref_primary_10_1016_j_cej_2023_147391 crossref_primary_10_1016_j_jcis_2021_09_191 crossref_primary_10_1021_acsanm_2c01993 crossref_primary_10_1016_j_carbon_2021_06_073 crossref_primary_10_1016_j_carbon_2021_01_136 crossref_primary_10_1063_5_0187760 crossref_primary_10_1016_j_compositesa_2022_106865 crossref_primary_10_1021_acsanm_2c04793 crossref_primary_10_1038_s41467_024_47537_5 crossref_primary_10_1016_j_carbon_2021_09_049 crossref_primary_10_1016_j_materresbull_2023_112278 crossref_primary_10_1016_j_jcis_2022_06_141 crossref_primary_10_1016_j_cej_2021_131272 crossref_primary_10_1016_j_carbon_2020_09_093 crossref_primary_10_1016_j_cej_2021_132253 crossref_primary_10_1111_jace_18220 crossref_primary_10_1002_adma_202304182 crossref_primary_10_1016_j_ceramint_2020_10_074 crossref_primary_10_1016_j_materresbull_2023_112284 crossref_primary_10_1016_j_carbon_2023_118462 crossref_primary_10_1021_acsami_0c09726 crossref_primary_10_1016_j_cej_2022_141241 crossref_primary_10_1016_j_carbon_2021_01_005 crossref_primary_10_1016_j_jcis_2020_09_122 crossref_primary_10_1007_s40820_021_00727_y crossref_primary_10_1016_j_jallcom_2021_162194 crossref_primary_10_1016_j_compositesb_2023_110710 crossref_primary_10_1002_adfm_202106677 crossref_primary_10_1007_s10854_022_08539_5 crossref_primary_10_1016_j_apsusc_2021_150991 crossref_primary_10_1016_j_apsusc_2023_156935 crossref_primary_10_1016_j_vacuum_2023_112705 crossref_primary_10_1016_j_jmrt_2024_07_042 crossref_primary_10_1021_acs_chemrev_1c00644 crossref_primary_10_1016_j_jallcom_2021_162343 crossref_primary_10_1016_j_carbon_2021_08_025 crossref_primary_10_1016_j_carbon_2023_118477 crossref_primary_10_1016_j_carbon_2021_08_029 crossref_primary_10_1016_j_apsusc_2023_156590 crossref_primary_10_1002_smll_202003905 crossref_primary_10_1002_adem_202000827 crossref_primary_10_1039_D0TC04919K crossref_primary_10_1007_s10854_022_09201_w crossref_primary_10_1021_acsanm_1c01729 crossref_primary_10_1016_j_carbon_2020_04_090 crossref_primary_10_1016_j_carbon_2021_09_070 crossref_primary_10_1021_acsanm_2c01022 crossref_primary_10_1007_s11356_023_27234_4 crossref_primary_10_1039_D2NR02490J crossref_primary_10_1016_j_cej_2021_129429 crossref_primary_10_1002_smll_202311389 crossref_primary_10_1016_j_carbon_2023_118343 crossref_primary_10_1016_j_carbon_2023_118585 crossref_primary_10_1016_j_apsusc_2024_159697 crossref_primary_10_1016_j_cej_2021_129547 crossref_primary_10_1016_j_ceramint_2022_04_324 crossref_primary_10_1016_j_ceramint_2021_10_058 crossref_primary_10_1016_j_jcis_2020_09_094 crossref_primary_10_1016_j_cej_2022_140506 crossref_primary_10_1016_j_cej_2022_140987 crossref_primary_10_1016_j_jallcom_2023_172843 crossref_primary_10_1007_s10854_023_11036_y crossref_primary_10_1016_j_jcis_2023_03_183 crossref_primary_10_1016_j_jallcom_2024_175499 crossref_primary_10_1039_D3TC04134D crossref_primary_10_1016_j_ceramint_2023_07_131 crossref_primary_10_1002_aelm_202001001 crossref_primary_10_1021_acs_jpcc_1c05977 crossref_primary_10_1007_s10854_020_04209_6 crossref_primary_10_1021_acsami_2c12958 crossref_primary_10_1007_s40820_022_00869_7 crossref_primary_10_1016_j_carbon_2023_118254 crossref_primary_10_1016_j_carbon_2023_118497 crossref_primary_10_1021_acsanm_2c00829 crossref_primary_10_1039_D3TA04087A crossref_primary_10_1007_s40820_022_00808_6 crossref_primary_10_1016_j_jcis_2021_07_118 crossref_primary_10_1021_acsnano_4c00193 crossref_primary_10_1016_j_compscitech_2020_108246 crossref_primary_10_1016_j_jallcom_2024_173784 crossref_primary_10_1039_D0QI01486A crossref_primary_10_1021_acsami_2c01171 crossref_primary_10_1039_D2TC04817E crossref_primary_10_1007_s42114_021_00308_y crossref_primary_10_1016_j_jcis_2021_03_007 crossref_primary_10_1002_smll_202100970 crossref_primary_10_1080_10408436_2021_1965954 crossref_primary_10_1039_D4RA02767A crossref_primary_10_1016_j_indcrop_2023_117901 crossref_primary_10_1016_j_carbon_2021_10_052 crossref_primary_10_1016_j_jallcom_2022_166096 crossref_primary_10_1016_j_jpcs_2021_110222 crossref_primary_10_1016_j_cej_2021_134226 crossref_primary_10_1016_j_jcis_2021_08_019 crossref_primary_10_1021_acsanm_0c02247 crossref_primary_10_1016_j_cej_2020_128295 crossref_primary_10_1016_j_ceramint_2022_05_145 |
Cites_doi | 10.1016/j.carbon.2016.10.059 10.1002/adma.200306460 10.1016/j.snb.2017.08.203 10.1002/adfm.201203732 10.1021/acsami.6b12547 10.1016/j.jcis.2017.09.032 10.1063/1.3250170 10.1021/la900923z 10.1016/j.cej.2018.04.119 10.1126/science.aag2421 10.1021/ja0357689 10.1002/cctc.201500893 10.1016/S0009-2614(03)00745-0 10.1039/C8TC04984J 10.1021/acsami.7b00370 10.1021/acsami.8b10353 10.1039/C4TA04493B 10.1088/0022-3727/40/17/056 10.1039/C7QM00204A 10.1016/j.carbon.2014.02.054 10.1039/c3ta11170a 10.1016/j.carbon.2012.01.033 10.1093/ije/dyt072 10.1021/acsami.5b05259 10.1088/0957-4484/23/45/455704 10.1039/c3cc42891e 10.1016/j.chemosphere.2017.12.061 10.1016/j.carbon.2018.07.044 10.1007/s00339-005-3417-8 10.1016/j.cej.2017.12.106 10.1016/j.polymer.2016.01.010 10.1039/C6NR02619B 10.1002/adma.201670178 10.1016/j.carbon.2017.01.077 10.1063/1.2803764 10.1016/j.puhe.2007.04.008 10.1002/anie.201403946 10.1002/pen.21163 10.1002/adma.201802403 10.1007/s12274-017-1758-1 10.1038/nature04969 10.1007/s10008-016-3157-z 10.1021/am508527s 10.1016/j.cej.2016.12.117 10.1063/1.364167 10.1039/C7CS00399D 10.1016/j.carbon.2017.01.036 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201906668 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_201906668 32297713 SMLL201906668 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 51472012 – fundername: National Natural Science Foundation of China grantid: 51472012 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF EJD FEDTE GODZA HVGLF NPM AAMNL AAYXX ACRPL CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3738-37ca6a6241c2f94f5a7600fe29cd107740f6542e30da31c866c99dcb362184773 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Wed Dec 04 15:54:45 EST 2024 Thu Oct 10 18:14:39 EDT 2024 Fri Dec 06 01:58:15 EST 2024 Sat Sep 28 08:27:25 EDT 2024 Sat Aug 24 01:07:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | carbon-based nanocomposites impedance matching rare earth oxides tunability microwave absorption |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-37ca6a6241c2f94f5a7600fe29cd107740f6542e30da31c866c99dcb362184773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2408-9260 |
PMID | 32297713 |
PQID | 2402237500 |
PQPubID | 1046358 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2390646163 proquest_journals_2402237500 crossref_primary_10_1002_smll_201906668 pubmed_primary_32297713 wiley_primary_10_1002_smll_201906668_SMLL201906668 |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2009; 25 2016 2016; 9 8 2013; 49 2016 2014 2006; 8 73 442 2013 2018 2017; 1 139 1 2007; 91 2017 2004 2019; 116 16 31 2017; 111 2015; 7 2017; 9 2017; 313 2017; 115 2003; 374 2012; 50 1997 2007; 81 40 2006; 82 2009; 95 2014; 2 2018; 337 2018; 512 2018 2018 2018 2018; 347 47 195 255 2016; 20 2008; 48 2016; 353 2003 2013; 125 23 2016 2008 2013; 84 122 42 2018; 11 2016; 28 2018; 10 2012; 23 2014; 53 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_6_4 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_6_3 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_9_3 e_1_2_7_25_2 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 50 start-page: 2202 year: 2012 publication-title: Carbon – volume: 512 start-page: 629 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1659 year: 2019 publication-title: J. Mater. Chem. C – volume: 9 8 start-page: 398 163 year: 2016 2016 publication-title: ACS Appl. Mater. Interfaces ChemCatChem – volume: 28 start-page: 5140 year: 2016 publication-title: Adv. Mater. – volume: 115 start-page: 493 year: 2017 publication-title: Carbon – volume: 313 start-page: 734 year: 2017 publication-title: Chem. Eng. J. – volume: 25 year: 2009 publication-title: Langmuir – volume: 353 start-page: 1137 year: 2016 publication-title: Science – volume: 95 year: 2009 publication-title: Appl. Phys. Lett. – volume: 1 139 1 start-page: 7031 759 2519 year: 2013 2018 2017 publication-title: J. Mater. Chem. A Carbon Mater. Chem. Front. – volume: 111 start-page: 722 year: 2017 publication-title: Carbon – volume: 125 23 start-page: 3661 year: 2003 2013 publication-title: J. Am. Chem. Soc. Adv. Funct. Mater. – volume: 84 122 42 start-page: 398 113 792 year: 2016 2008 2013 publication-title: Polymer Public Health Int. J. Epidemiol. – volume: 11 start-page: 1426 year: 2018 publication-title: Nano Res. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 337 start-page: 242 year: 2018 publication-title: Chem. Eng. J. – volume: 347 47 195 255 start-page: 563 4198 351 1788 year: 2018 2018 2018 2018 publication-title: Chem. Eng. J. Chem. Soc. Rev. Chemosphere Sens. Actuators, B – volume: 8 73 442 start-page: 185 282 year: 2016 2014 2006 publication-title: Nanoscale Carbon Nature – volume: 23 year: 2012 publication-title: Nanotechnology – volume: 82 start-page: 509 year: 2006 publication-title: Appl. Phys. A – volume: 7 start-page: 4233 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 2178 year: 2008 publication-title: Polym. Eng. Sci. – volume: 20 start-page: 1469 year: 2016 publication-title: J. Solid State Electrochem. – volume: 53 start-page: 7281 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 116 16 31 start-page: 50 401 year: 2017 2004 2019 publication-title: Carbon Adv. Mater. Adv. Mater. – volume: 49 start-page: 7522 year: 2013 publication-title: Chem. Commun. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 81 40 start-page: 830 5383 year: 1997 2007 publication-title: J. Appl. Phys. J. Phys. D: Appl. Phys. – volume: 374 start-page: 534 year: 2003 publication-title: Chem. Phys. Lett. – ident: e_1_2_7_30_1 doi: 10.1016/j.carbon.2016.10.059 – ident: e_1_2_7_2_2 doi: 10.1002/adma.200306460 – ident: e_1_2_7_6_4 doi: 10.1016/j.snb.2017.08.203 – ident: e_1_2_7_13_2 doi: 10.1002/adfm.201203732 – ident: e_1_2_7_15_1 doi: 10.1021/acsami.6b12547 – ident: e_1_2_7_20_1 doi: 10.1016/j.jcis.2017.09.032 – ident: e_1_2_7_26_1 doi: 10.1063/1.3250170 – ident: e_1_2_7_18_1 doi: 10.1021/la900923z – ident: e_1_2_7_6_1 doi: 10.1016/j.cej.2018.04.119 – ident: e_1_2_7_10_1 doi: 10.1126/science.aag2421 – ident: e_1_2_7_13_1 doi: 10.1021/ja0357689 – ident: e_1_2_7_15_2 doi: 10.1002/cctc.201500893 – ident: e_1_2_7_16_1 doi: 10.1016/S0009-2614(03)00745-0 – ident: e_1_2_7_24_1 doi: 10.1039/C8TC04984J – ident: e_1_2_7_14_1 doi: 10.1021/acsami.7b00370 – ident: e_1_2_7_5_1 doi: 10.1021/acsami.8b10353 – ident: e_1_2_7_29_1 doi: 10.1039/C4TA04493B – ident: e_1_2_7_25_2 doi: 10.1088/0022-3727/40/17/056 – ident: e_1_2_7_9_3 doi: 10.1039/C7QM00204A – ident: e_1_2_7_7_2 doi: 10.1016/j.carbon.2014.02.054 – ident: e_1_2_7_9_1 doi: 10.1039/c3ta11170a – ident: e_1_2_7_3_1 doi: 10.1016/j.carbon.2012.01.033 – ident: e_1_2_7_1_3 doi: 10.1093/ije/dyt072 – ident: e_1_2_7_27_1 doi: 10.1021/acsami.5b05259 – ident: e_1_2_7_8_1 doi: 10.1088/0957-4484/23/45/455704 – ident: e_1_2_7_19_1 doi: 10.1039/c3cc42891e – ident: e_1_2_7_6_3 doi: 10.1016/j.chemosphere.2017.12.061 – ident: e_1_2_7_9_2 doi: 10.1016/j.carbon.2018.07.044 – ident: e_1_2_7_21_1 doi: 10.1007/s00339-005-3417-8 – ident: e_1_2_7_33_1 doi: 10.1016/j.cej.2017.12.106 – ident: e_1_2_7_1_1 doi: 10.1016/j.polymer.2016.01.010 – ident: e_1_2_7_7_1 doi: 10.1039/C6NR02619B – ident: e_1_2_7_11_1 doi: 10.1002/adma.201670178 – ident: e_1_2_7_2_1 doi: 10.1016/j.carbon.2017.01.077 – ident: e_1_2_7_28_1 doi: 10.1063/1.2803764 – ident: e_1_2_7_1_2 doi: 10.1016/j.puhe.2007.04.008 – ident: e_1_2_7_12_1 doi: 10.1002/anie.201403946 – ident: e_1_2_7_23_1 doi: 10.1002/pen.21163 – ident: e_1_2_7_2_3 doi: 10.1002/adma.201802403 – ident: e_1_2_7_4_1 doi: 10.1007/s12274-017-1758-1 – ident: e_1_2_7_7_3 doi: 10.1038/nature04969 – ident: e_1_2_7_17_1 doi: 10.1007/s10008-016-3157-z – ident: e_1_2_7_22_1 doi: 10.1021/am508527s – ident: e_1_2_7_31_1 doi: 10.1016/j.cej.2016.12.117 – ident: e_1_2_7_25_1 doi: 10.1063/1.364167 – ident: e_1_2_7_6_2 doi: 10.1039/C7CS00399D – ident: e_1_2_7_32_1 doi: 10.1016/j.carbon.2017.01.036 |
SSID | ssj0031247 |
Score | 2.7103605 |
Snippet | A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D... A high efficiency and great tunability of bandwidth and absorption-range electromagnetic wave absorber is proposed without precedent. A series of 2D... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e1906668 |
SubjectTerms | Absorbers Attenuation Bandwidths Carbon Carbon nitride carbon‐based nanocomposites Cerium oxides Electromagnetic radiation Electrons Fourier transforms Frequencies Frequency ranges Impedance matching Microwave absorption Nanocomposites Nanotechnology Photoelectrons Polyvinylidene fluorides Raman spectroscopy Rare earth oxides Sintering (powder metallurgy) Spectrum analysis Synthesis tunability |
Title | Tunable and Ultraefficient Microwave Absorption Properties of Trace N‐Doped Two‐Dimensional Carbon‐Based Nanocomposites Loaded with Multi‐Rare Earth Oxides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201906668 https://www.ncbi.nlm.nih.gov/pubmed/32297713 https://www.proquest.com/docview/2402237500 https://search.proquest.com/docview/2390646163 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6hnuBQfkohtEVbCYmTW3u9XjvHElJVKCmoTaTerPH-qIhiIztpq554BN6BN-uTMLNOTEMPSHCz1__2zHyfd2e-ZeyNkBmYWEWBiUQaSCldkDlpA5spVWRaxSah2uHxsTqayg9nydmdKv5WH6LrcCPP8PGaHByKZv-3aGjz9YKGDhDQkIFTtW-EvkKs6KTTj4oRvPzsKohZAQlvLVUbQ7G_evgqKt2jmqvM1UPP4WMGy5tuM06-7M1nxZ6--UPP8X-e6glbX_BSftAa0lP2wJbP2KM7aoUb7Odk7gutOJSGTy9mNVivP4GwxceU13cFl5YfFE1V-zjEP1FHf02KrbxyHFFRW358-_3He2w2fHJV0TLNLtAqg_AB1EVVYuM7hFbDMfBXlPFOaWV4ilEFBlup45j7smHc8QRqy4do_ef84_VnY5vnbHo4nAyOgsUcD4EmTSWMbxoUKOQRWri-dAnQSKGzoq8N_pmmMnQ0pZaNQwNxpNGCdL9vdIG4i_-maRpvsrWyKu1LxkGEmROZiQwk0gpVKOlMZlQGYWgSm_bY2-U3zr-1Uh55K9oscnrteffae2x7aQL5wqWbnIahRIwEK-yx3W4zOiONsEBpqznuE-MJpEKO22MvWtPpLoWRE7l2hFuEN4C_3EN-Oh6NurVX_3LQFnsoqHfAp2dus7VZPbc7SKFmxWvvJr8A4KEY4g |
link.rule.ids | 315,781,785,1376,27929,27930,46299,46723 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BOQAH_gtpCywSEie39nq9do6ltArgBFQSiZu13h-BKDZyElpx4hH6DrwZT8LMOjYEDkhwi9f_zsx8387OfgvwmItMmVhGgYl4GgghXJA5YQObSVlmWsYmobnD44kczcSLt0lXTUhzYVp9iD7hRp7h4zU5OCWk936qhs4_ntDYASIaUvDsIlxCn297Vce9glSM8OXXV0HUCkh6q9NtDPne-vnruPQH2Vznrh58jq5D2T12W3PyYXe5KHf1l98UHf_rvW7AtRU1ZfutLd2EC7a6BVd_ESy8Dd-mSz_XiqnKsNnJolHWS1AgcrExlfadqs-W7ZfzuvGhiL2mXH9Doq2sdgyBUVs2-f71_Bk2GzY9rek3LTDQioOwA9WUdYWNTxFdDcPYX1PRO1WW4SXyWhlspdwx8zOH8cBj1Vh2iA7wjr06e2_s_A7Mjg6nB6NgtcxDoElWCUOcVlJJpBKau6FwiaLBQmf5UBvsnKYidLSqlo1Do-JIoxHp4dDoEqEXu6dpGm_CRlVX9h4wxcPM8cxERiXCcllK4UxmZKbC0CQ2HcCT7k8uPrVqHkWr28wL-uxF_9kHsNPZQLHy6nlBI1E8Ro4VDuBRvxv9kQZZVGXrJR4T4wWERJo7gLut7fS3wuCJdDvCPdxbwF-eoXgzzvN-a-tfTnoIl0fTcV7kzycvt-EKp2SBr9bcgY1Fs7T3kVEtygfeZ34AU9cc_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAc-P9ZKGAkJE5pE8dxvMfSdlVgd6nKrtRb5PhHIEpSZXcp4sQj8A68GU_CjLMbunBAglviOImTzMz3xR5_BnjGhdI2lUlkE55HQggfKS9c5JSUpTIytRnNHR6N5cFUvDrOjs_N4m_1IboON_KMEK_JwU-t3_4lGjr7eEJDBwhoyMDVRbgkJIZWokVHnYBUiugVlldB0IpIeWsl2xjz7fXz12HpD665Tl0D9gyug161uk05-bC1mJdb5stvgo7_81g34NqSmLKd1pJuwgVX3YKr5-QKb8P3ySLMtGK6smx6Mm-0CwIUiFtsRIl9Z_qTYzvlrG5CIGKH1NPfkGQrqz1DWDSOjX98_baHxZZNzmrapuUFWmkQtqubsq6w8AViq2UY-WtKeae8MrzEsNYWS6nnmIV5w1jxSDeO7aP5v2NvPr-3bnYHpoP9ye5BtFzkITIkqoQBzmipJRIJw31f-EzTUKF3vG8s_prmIva0ppZLY6vTxKAJmX7fmhKBF39O8zy9CxtVXbn7wDSPlefKJlZnwnFZSuGtslLpOLaZy3vwfPWNi9NWy6NoVZt5Qa-96F57DzZXJlAsfXpW0DgUT5FhxT142h1Gb6QhFl25eoF1UryAkEhye3CvNZ3uVhg6kWwneIQHA_hLG4q3o-Gw23vwLyc9gcuHe4Ni-HL8-iFc4dRTEFI1N2Fj3izcI6RT8_Jx8JifDcQbtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+and+Ultraefficient+Microwave+Absorption+Properties+of+Trace+N-Doped+Two-Dimensional+Carbon-Based+Nanocomposites+Loaded+with+Multi-Rare+Earth+Oxides&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Gao%2C+Shan&rft.au=Wang%2C+Guang-Sheng&rft.au=Guo%2C+Lin&rft.au=Yu%2C+Shu-Hong&rft.date=2020-05-01&rft.eissn=1613-6829&rft.volume=16&rft.issue=19&rft.spage=e1906668&rft_id=info:doi/10.1002%2Fsmll.201906668&rft_id=info%3Apmid%2F32297713&rft.externalDocID=32297713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |