Tunable and Ultraefficient Microwave Absorption Properties of Trace N‐Doped Two‐Dimensional Carbon‐Based Nanocomposites Loaded with Multi‐Rare Earth Oxides

A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon‐based nanocomposites with the loading of cerium oxide (CN‐Ce) and other types of rare earth oxides (CN‐REOs) can be successfully synthesized by...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 19; pp. e1906668 - n/a
Main Authors Gao, Shan, Wang, Guang‐Sheng, Guo, Lin, Yu, Shu‐Hong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon‐based nanocomposites with the loading of cerium oxide (CN‐Ce) and other types of rare earth oxides (CN‐REOs) can be successfully synthesized by a simple solvothermal‐sintering method. As‐synthesized 2D nanocomposites with local graphite‐like C3N4 structure and trace N‐doped are identified by transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. The CN‐REOs and polyvinylidene fluoride composite absorbers with reflection loss values above −40 dB are obtained in C‐band, X‐band, and Ku‐band, respectively. The empirical rules on effective bandwidth and frequency range are discovered and summarized, which can be successfully realized by simply tuning the doping amount or type of REO. The mechanism is explained by enhanced attenuation and tunable impedance matching. In addition co‐filled samples by two types of CN‐REOs nanocomposites are prepared to support these findings and inspire the preparation of absorber with desirable frequency band in the range of 2–18 GHz. In the system of composites of PVDF and trace n‐doped carbon nanocomposites loaded with rare earth oxide, a high‐performance electromagnetic wave‐absorbing composite with adjustable electromagnetic wave absorption frequency range and adjustable effective absorption width is obtained. Regular performance is found based on extensive experimental data and analysis of intrinsic performance. In addition, the empirical conclusions are well‐validated by co‐filled (CN‐Ce+CN‐Eu)/PVDF samples.
AbstractList A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon‐based nanocomposites with the loading of cerium oxide (CN‐Ce) and other types of rare earth oxides (CN‐REOs) can be successfully synthesized by a simple solvothermal‐sintering method. As‐synthesized 2D nanocomposites with local graphite‐like C 3 N 4 structure and trace N‐doped are identified by transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. The CN‐REOs and polyvinylidene fluoride composite absorbers with reflection loss values above −40 dB are obtained in C‐band, X‐band, and Ku‐band, respectively. The empirical rules on effective bandwidth and frequency range are discovered and summarized, which can be successfully realized by simply tuning the doping amount or type of REO. The mechanism is explained by enhanced attenuation and tunable impedance matching. In addition co‐filled samples by two types of CN‐REOs nanocomposites are prepared to support these findings and inspire the preparation of absorber with desirable frequency band in the range of 2–18 GHz.
A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon‐based nanocomposites with the loading of cerium oxide (CN‐Ce) and other types of rare earth oxides (CN‐REOs) can be successfully synthesized by a simple solvothermal‐sintering method. As‐synthesized 2D nanocomposites with local graphite‐like C3N4 structure and trace N‐doped are identified by transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. The CN‐REOs and polyvinylidene fluoride composite absorbers with reflection loss values above −40 dB are obtained in C‐band, X‐band, and Ku‐band, respectively. The empirical rules on effective bandwidth and frequency range are discovered and summarized, which can be successfully realized by simply tuning the doping amount or type of REO. The mechanism is explained by enhanced attenuation and tunable impedance matching. In addition co‐filled samples by two types of CN‐REOs nanocomposites are prepared to support these findings and inspire the preparation of absorber with desirable frequency band in the range of 2–18 GHz. In the system of composites of PVDF and trace n‐doped carbon nanocomposites loaded with rare earth oxide, a high‐performance electromagnetic wave‐absorbing composite with adjustable electromagnetic wave absorption frequency range and adjustable effective absorption width is obtained. Regular performance is found based on extensive experimental data and analysis of intrinsic performance. In addition, the empirical conclusions are well‐validated by co‐filled (CN‐Ce+CN‐Eu)/PVDF samples.
A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon‐based nanocomposites with the loading of cerium oxide (CN‐Ce) and other types of rare earth oxides (CN‐REOs) can be successfully synthesized by a simple solvothermal‐sintering method. As‐synthesized 2D nanocomposites with local graphite‐like C3N4 structure and trace N‐doped are identified by transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. The CN‐REOs and polyvinylidene fluoride composite absorbers with reflection loss values above −40 dB are obtained in C‐band, X‐band, and Ku‐band, respectively. The empirical rules on effective bandwidth and frequency range are discovered and summarized, which can be successfully realized by simply tuning the doping amount or type of REO. The mechanism is explained by enhanced attenuation and tunable impedance matching. In addition co‐filled samples by two types of CN‐REOs nanocomposites are prepared to support these findings and inspire the preparation of absorber with desirable frequency band in the range of 2–18 GHz.
A high efficiency and great tunability of bandwidth and absorption-range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon-based nanocomposites with the loading of cerium oxide (CN-Ce) and other types of rare earth oxides (CN-REOs) can be successfully synthesized by a simple solvothermal-sintering method. As-synthesized 2D nanocomposites with local graphite-like C N structure and trace N-doped are identified by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. The CN-REOs and polyvinylidene fluoride composite absorbers with reflection loss values above -40 dB are obtained in C-band, X-band, and Ku-band, respectively. The empirical rules on effective bandwidth and frequency range are discovered and summarized, which can be successfully realized by simply tuning the doping amount or type of REO. The mechanism is explained by enhanced attenuation and tunable impedance matching. In addition co-filled samples by two types of CN-REOs nanocomposites are prepared to support these findings and inspire the preparation of absorber with desirable frequency band in the range of 2-18 GHz.
Author Yu, Shu‐Hong
Gao, Shan
Wang, Guang‐Sheng
Guo, Lin
Author_xml – sequence: 1
  givenname: Shan
  surname: Gao
  fullname: Gao, Shan
– sequence: 2
  givenname: Guang‐Sheng
  orcidid: 0000-0002-2408-9260
  surname: Wang
  fullname: Wang, Guang‐Sheng
  email: wanggsh@buaa.edu.cn
– sequence: 3
  givenname: Lin
  surname: Guo
  fullname: Guo, Lin
– sequence: 4
  givenname: Shu‐Hong
  surname: Yu
  fullname: Yu, Shu‐Hong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32297713$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNvAliWyxIZNgn8m9syyhPIjTVoE6Xp0x3NHuPLYwZ4hdMcj8A68GU-Co5QgsWF1r46-e6R7zjk58cEjIU85W3DGxMs0OLcQjFdMKVU-IGdccTlXpahOjjtnp-Q8pVvGJBeFfkROpRCV1lyekZ-byUPrkILv6I0bI2DfW2PRj3RtTQw7-Ir0ok0hbkcbPP0QwxbjaDHR0NNNBIP06tf3H6-z3NHNLux3O6BPmQZHVxDb4LP4ClIGrsAHE4ZtSHbMFnWALqs7O36m68mNNoMfISK9hJil62-2w_SYPOzBJXxyP2fk5s3lZvVuXl-_fb-6qOdGalnOpTagQImCG9FXRb8ErRjrUVSm40zrgvVqWQiUrAPJTamUqarOtFIJXhZayxl5cfDdxvBlwjQ2g00GnQOPYUqNkDnlQnElM_r8H_Q2TDH_m6mCCSH1Mqc9I4sDlXNMKWLfbKMdIN41nDX7-pp9fc2xvnzw7N52agfsjvifvjJQHYCddXj3H7vm07qu_5r_BlkYrhg
CitedBy_id crossref_primary_10_1016_j_cej_2020_127313
crossref_primary_10_1016_j_cej_2023_147446
crossref_primary_10_1007_s40820_024_01437_x
crossref_primary_10_1016_j_carbon_2020_10_039
crossref_primary_10_1002_smll_202203044
crossref_primary_10_1016_j_carbon_2020_11_088
crossref_primary_10_1016_j_matchemphys_2020_124169
crossref_primary_10_1039_D3MH00734K
crossref_primary_10_1007_s40820_021_00673_9
crossref_primary_10_1016_j_coco_2021_100767
crossref_primary_10_1016_j_carbon_2022_10_043
crossref_primary_10_1016_j_carbon_2021_04_053
crossref_primary_10_1002_pc_27372
crossref_primary_10_1016_j_compositesb_2021_108814
crossref_primary_10_1016_j_coco_2020_100492
crossref_primary_10_1016_j_materresbull_2024_112806
crossref_primary_10_1016_j_cej_2023_144841
crossref_primary_10_1016_j_cej_2024_149238
crossref_primary_10_1016_j_carbon_2022_03_075
crossref_primary_10_1021_acsami_0c15771
crossref_primary_10_1007_s10854_021_06069_0
crossref_primary_10_1016_j_jmrt_2023_05_218
crossref_primary_10_1007_s10854_024_12549_w
crossref_primary_10_1016_j_compstruct_2021_115140
crossref_primary_10_1016_j_cej_2021_132621
crossref_primary_10_1021_acs_langmuir_2c03095
crossref_primary_10_1039_D2TA01798A
crossref_primary_10_3390_mi14091762
crossref_primary_10_1021_acsaelm_1c00940
crossref_primary_10_1016_j_jcis_2023_11_049
crossref_primary_10_1002_adma_202106195
crossref_primary_10_1007_s40820_022_00904_7
crossref_primary_10_1016_j_coco_2022_101112
crossref_primary_10_1021_acsami_0c09202
crossref_primary_10_1088_2515_7655_ac9f6b
crossref_primary_10_1016_j_jcis_2021_10_006
crossref_primary_10_1016_j_solidstatesciences_2021_106775
crossref_primary_10_1016_j_micromeso_2024_113090
crossref_primary_10_1002_smll_202107265
crossref_primary_10_1007_s40820_021_00750_z
crossref_primary_10_1016_j_cej_2022_137943
crossref_primary_10_1016_j_carbon_2021_12_075
crossref_primary_10_1007_s10854_020_04804_7
crossref_primary_10_1016_j_diamond_2024_110835
crossref_primary_10_1016_j_sna_2023_114645
crossref_primary_10_1016_j_jcis_2022_09_043
crossref_primary_10_1016_j_cej_2023_147414
crossref_primary_10_1016_S1872_5805_21_60095_1
crossref_primary_10_1016_j_cej_2023_147413
crossref_primary_10_1016_j_jcis_2021_09_009
crossref_primary_10_1016_j_jcis_2023_05_112
crossref_primary_10_1016_j_colsurfa_2023_131564
crossref_primary_10_1016_j_apsusc_2021_150480
crossref_primary_10_1016_j_cej_2021_130591
crossref_primary_10_1039_D0TC04329J
crossref_primary_10_1002_smll_202105411
crossref_primary_10_1007_s10854_020_04876_5
crossref_primary_10_1016_j_compositesb_2022_109839
crossref_primary_10_1021_acs_inorgchem_1c03035
crossref_primary_10_1007_s12274_023_6255_0
crossref_primary_10_1016_j_apsusc_2022_155142
crossref_primary_10_3390_cryst13081234
crossref_primary_10_1007_s40820_024_01435_z
crossref_primary_10_1007_s12274_022_4675_x
crossref_primary_10_1016_j_carbon_2020_11_043
crossref_primary_10_1016_j_carbon_2021_11_044
crossref_primary_10_1016_j_carbon_2021_11_043
crossref_primary_10_1007_s40820_023_01244_w
crossref_primary_10_1016_j_jallcom_2021_160680
crossref_primary_10_1016_j_cej_2021_133640
crossref_primary_10_1016_j_mser_2024_100795
crossref_primary_10_1016_j_jallcom_2023_169492
crossref_primary_10_1007_s10854_021_06560_8
crossref_primary_10_1007_s13204_020_01639_w
crossref_primary_10_1021_acsami_1c06446
crossref_primary_10_1007_s40820_021_00773_6
crossref_primary_10_1016_j_cclet_2020_06_014
crossref_primary_10_1016_j_carbon_2021_06_028
crossref_primary_10_1088_1361_6528_acda38
crossref_primary_10_1016_j_materresbull_2022_111872
crossref_primary_10_1039_D0TA11122H
crossref_primary_10_1002_smll_202003407
crossref_primary_10_1016_j_mtcomm_2022_104223
crossref_primary_10_1016_j_ceramint_2022_07_271
crossref_primary_10_1016_j_carbon_2023_118071
crossref_primary_10_1016_j_jcis_2021_07_085
crossref_primary_10_1016_j_cej_2022_134905
crossref_primary_10_3390_nano11102640
crossref_primary_10_1016_j_compositesa_2022_107119
crossref_primary_10_1016_j_carbon_2020_09_045
crossref_primary_10_1016_j_carbon_2021_05_028
crossref_primary_10_1016_j_ceramint_2022_07_007
crossref_primary_10_1016_j_ceramint_2020_07_326
crossref_primary_10_1016_j_compscitech_2020_108643
crossref_primary_10_1016_j_nanoen_2023_109223
crossref_primary_10_1039_D1TA05181D
crossref_primary_10_1016_j_apsusc_2024_159996
crossref_primary_10_1016_j_carbon_2021_06_044
crossref_primary_10_1016_j_carbon_2021_05_022
crossref_primary_10_1016_j_solidstatesciences_2022_106886
crossref_primary_10_1002_smsc_202100077
crossref_primary_10_1039_D4TC01018C
crossref_primary_10_1016_j_compositesa_2023_107640
crossref_primary_10_1021_acsanm_2c02616
crossref_primary_10_1016_j_mtla_2023_101727
crossref_primary_10_1021_acs_langmuir_1c02110
crossref_primary_10_1016_j_carbon_2021_06_054
crossref_primary_10_1016_j_cej_2023_148383
crossref_primary_10_1007_s42114_021_00277_2
crossref_primary_10_1111_jace_17959
crossref_primary_10_1002_smll_202205624
crossref_primary_10_3390_molecules27031055
crossref_primary_10_1016_j_mtphys_2022_100845
crossref_primary_10_1021_acsaelm_2c00987
crossref_primary_10_1007_s40820_022_00804_w
crossref_primary_10_1016_j_apmate_2023_100111
crossref_primary_10_1007_s40820_022_00841_5
crossref_primary_10_1016_j_carbon_2021_07_099
crossref_primary_10_1016_j_mtphys_2024_101373
crossref_primary_10_1016_j_pnsc_2021_04_007
crossref_primary_10_1016_j_compscitech_2022_109715
crossref_primary_10_1016_j_cej_2023_146199
crossref_primary_10_1016_j_mtcomm_2021_102190
crossref_primary_10_1016_j_matchemphys_2024_129448
crossref_primary_10_1016_j_isci_2023_107132
crossref_primary_10_1021_acs_jpcc_0c03092
crossref_primary_10_1016_j_carbon_2024_119017
crossref_primary_10_1016_j_jcis_2020_10_111
crossref_primary_10_1016_j_compositesb_2020_108491
crossref_primary_10_1016_j_cej_2020_127829
crossref_primary_10_1007_s10853_022_07173_0
crossref_primary_10_1021_acsomega_0c05034
crossref_primary_10_1016_j_cej_2023_147391
crossref_primary_10_1016_j_jcis_2021_09_191
crossref_primary_10_1021_acsanm_2c01993
crossref_primary_10_1016_j_carbon_2021_06_073
crossref_primary_10_1016_j_carbon_2021_01_136
crossref_primary_10_1063_5_0187760
crossref_primary_10_1016_j_compositesa_2022_106865
crossref_primary_10_1021_acsanm_2c04793
crossref_primary_10_1038_s41467_024_47537_5
crossref_primary_10_1016_j_carbon_2021_09_049
crossref_primary_10_1016_j_materresbull_2023_112278
crossref_primary_10_1016_j_jcis_2022_06_141
crossref_primary_10_1016_j_cej_2021_131272
crossref_primary_10_1016_j_carbon_2020_09_093
crossref_primary_10_1016_j_cej_2021_132253
crossref_primary_10_1111_jace_18220
crossref_primary_10_1002_adma_202304182
crossref_primary_10_1016_j_ceramint_2020_10_074
crossref_primary_10_1016_j_materresbull_2023_112284
crossref_primary_10_1016_j_carbon_2023_118462
crossref_primary_10_1021_acsami_0c09726
crossref_primary_10_1016_j_cej_2022_141241
crossref_primary_10_1016_j_carbon_2021_01_005
crossref_primary_10_1016_j_jcis_2020_09_122
crossref_primary_10_1007_s40820_021_00727_y
crossref_primary_10_1016_j_jallcom_2021_162194
crossref_primary_10_1016_j_compositesb_2023_110710
crossref_primary_10_1002_adfm_202106677
crossref_primary_10_1007_s10854_022_08539_5
crossref_primary_10_1016_j_apsusc_2021_150991
crossref_primary_10_1016_j_apsusc_2023_156935
crossref_primary_10_1016_j_vacuum_2023_112705
crossref_primary_10_1016_j_jmrt_2024_07_042
crossref_primary_10_1021_acs_chemrev_1c00644
crossref_primary_10_1016_j_jallcom_2021_162343
crossref_primary_10_1016_j_carbon_2021_08_025
crossref_primary_10_1016_j_carbon_2023_118477
crossref_primary_10_1016_j_carbon_2021_08_029
crossref_primary_10_1016_j_apsusc_2023_156590
crossref_primary_10_1002_smll_202003905
crossref_primary_10_1002_adem_202000827
crossref_primary_10_1039_D0TC04919K
crossref_primary_10_1007_s10854_022_09201_w
crossref_primary_10_1021_acsanm_1c01729
crossref_primary_10_1016_j_carbon_2020_04_090
crossref_primary_10_1016_j_carbon_2021_09_070
crossref_primary_10_1021_acsanm_2c01022
crossref_primary_10_1007_s11356_023_27234_4
crossref_primary_10_1039_D2NR02490J
crossref_primary_10_1016_j_cej_2021_129429
crossref_primary_10_1002_smll_202311389
crossref_primary_10_1016_j_carbon_2023_118343
crossref_primary_10_1016_j_carbon_2023_118585
crossref_primary_10_1016_j_apsusc_2024_159697
crossref_primary_10_1016_j_cej_2021_129547
crossref_primary_10_1016_j_ceramint_2022_04_324
crossref_primary_10_1016_j_ceramint_2021_10_058
crossref_primary_10_1016_j_jcis_2020_09_094
crossref_primary_10_1016_j_cej_2022_140506
crossref_primary_10_1016_j_cej_2022_140987
crossref_primary_10_1016_j_jallcom_2023_172843
crossref_primary_10_1007_s10854_023_11036_y
crossref_primary_10_1016_j_jcis_2023_03_183
crossref_primary_10_1016_j_jallcom_2024_175499
crossref_primary_10_1039_D3TC04134D
crossref_primary_10_1016_j_ceramint_2023_07_131
crossref_primary_10_1002_aelm_202001001
crossref_primary_10_1021_acs_jpcc_1c05977
crossref_primary_10_1007_s10854_020_04209_6
crossref_primary_10_1021_acsami_2c12958
crossref_primary_10_1007_s40820_022_00869_7
crossref_primary_10_1016_j_carbon_2023_118254
crossref_primary_10_1016_j_carbon_2023_118497
crossref_primary_10_1021_acsanm_2c00829
crossref_primary_10_1039_D3TA04087A
crossref_primary_10_1007_s40820_022_00808_6
crossref_primary_10_1016_j_jcis_2021_07_118
crossref_primary_10_1021_acsnano_4c00193
crossref_primary_10_1016_j_compscitech_2020_108246
crossref_primary_10_1016_j_jallcom_2024_173784
crossref_primary_10_1039_D0QI01486A
crossref_primary_10_1021_acsami_2c01171
crossref_primary_10_1039_D2TC04817E
crossref_primary_10_1007_s42114_021_00308_y
crossref_primary_10_1016_j_jcis_2021_03_007
crossref_primary_10_1002_smll_202100970
crossref_primary_10_1080_10408436_2021_1965954
crossref_primary_10_1039_D4RA02767A
crossref_primary_10_1016_j_indcrop_2023_117901
crossref_primary_10_1016_j_carbon_2021_10_052
crossref_primary_10_1016_j_jallcom_2022_166096
crossref_primary_10_1016_j_jpcs_2021_110222
crossref_primary_10_1016_j_cej_2021_134226
crossref_primary_10_1016_j_jcis_2021_08_019
crossref_primary_10_1021_acsanm_0c02247
crossref_primary_10_1016_j_cej_2020_128295
crossref_primary_10_1016_j_ceramint_2022_05_145
Cites_doi 10.1016/j.carbon.2016.10.059
10.1002/adma.200306460
10.1016/j.snb.2017.08.203
10.1002/adfm.201203732
10.1021/acsami.6b12547
10.1016/j.jcis.2017.09.032
10.1063/1.3250170
10.1021/la900923z
10.1016/j.cej.2018.04.119
10.1126/science.aag2421
10.1021/ja0357689
10.1002/cctc.201500893
10.1016/S0009-2614(03)00745-0
10.1039/C8TC04984J
10.1021/acsami.7b00370
10.1021/acsami.8b10353
10.1039/C4TA04493B
10.1088/0022-3727/40/17/056
10.1039/C7QM00204A
10.1016/j.carbon.2014.02.054
10.1039/c3ta11170a
10.1016/j.carbon.2012.01.033
10.1093/ije/dyt072
10.1021/acsami.5b05259
10.1088/0957-4484/23/45/455704
10.1039/c3cc42891e
10.1016/j.chemosphere.2017.12.061
10.1016/j.carbon.2018.07.044
10.1007/s00339-005-3417-8
10.1016/j.cej.2017.12.106
10.1016/j.polymer.2016.01.010
10.1039/C6NR02619B
10.1002/adma.201670178
10.1016/j.carbon.2017.01.077
10.1063/1.2803764
10.1016/j.puhe.2007.04.008
10.1002/anie.201403946
10.1002/pen.21163
10.1002/adma.201802403
10.1007/s12274-017-1758-1
10.1038/nature04969
10.1007/s10008-016-3157-z
10.1021/am508527s
10.1016/j.cej.2016.12.117
10.1063/1.364167
10.1039/C7CS00399D
10.1016/j.carbon.2017.01.036
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201906668
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_201906668
32297713
SMLL201906668
Genre article
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 51472012
– fundername: National Natural Science Foundation of China
  grantid: 51472012
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
EJD
FEDTE
GODZA
HVGLF
NPM
AAMNL
AAYXX
ACRPL
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3738-37ca6a6241c2f94f5a7600fe29cd107740f6542e30da31c866c99dcb362184773
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Wed Dec 04 15:54:45 EST 2024
Thu Oct 10 18:14:39 EDT 2024
Fri Dec 06 01:58:15 EST 2024
Sat Sep 28 08:27:25 EDT 2024
Sat Aug 24 01:07:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords carbon-based nanocomposites
impedance matching
rare earth oxides
tunability
microwave absorption
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-37ca6a6241c2f94f5a7600fe29cd107740f6542e30da31c866c99dcb362184773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2408-9260
PMID 32297713
PQID 2402237500
PQPubID 1046358
PageCount 13
ParticipantIDs proquest_miscellaneous_2390646163
proquest_journals_2402237500
crossref_primary_10_1002_smll_201906668
pubmed_primary_32297713
wiley_primary_10_1002_smll_201906668_SMLL201906668
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2009; 25
2016 2016; 9 8
2013; 49
2016 2014 2006; 8 73 442
2013 2018 2017; 1 139 1
2007; 91
2017 2004 2019; 116 16 31
2017; 111
2015; 7
2017; 9
2017; 313
2017; 115
2003; 374
2012; 50
1997 2007; 81 40
2006; 82
2009; 95
2014; 2
2018; 337
2018; 512
2018 2018 2018 2018; 347 47 195 255
2016; 20
2008; 48
2016; 353
2003 2013; 125 23
2016 2008 2013; 84 122 42
2018; 11
2016; 28
2018; 10
2012; 23
2014; 53
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_6_4
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_6_3
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_9_3
e_1_2_7_25_2
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 50
  start-page: 2202
  year: 2012
  publication-title: Carbon
– volume: 512
  start-page: 629
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1659
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 9 8
  start-page: 398 163
  year: 2016 2016
  publication-title: ACS Appl. Mater. Interfaces ChemCatChem
– volume: 28
  start-page: 5140
  year: 2016
  publication-title: Adv. Mater.
– volume: 115
  start-page: 493
  year: 2017
  publication-title: Carbon
– volume: 313
  start-page: 734
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 25
  year: 2009
  publication-title: Langmuir
– volume: 353
  start-page: 1137
  year: 2016
  publication-title: Science
– volume: 95
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 1 139 1
  start-page: 7031 759 2519
  year: 2013 2018 2017
  publication-title: J. Mater. Chem. A Carbon Mater. Chem. Front.
– volume: 111
  start-page: 722
  year: 2017
  publication-title: Carbon
– volume: 125 23
  start-page: 3661
  year: 2003 2013
  publication-title: J. Am. Chem. Soc. Adv. Funct. Mater.
– volume: 84 122 42
  start-page: 398 113 792
  year: 2016 2008 2013
  publication-title: Polymer Public Health Int. J. Epidemiol.
– volume: 11
  start-page: 1426
  year: 2018
  publication-title: Nano Res.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 337
  start-page: 242
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 347 47 195 255
  start-page: 563 4198 351 1788
  year: 2018 2018 2018 2018
  publication-title: Chem. Eng. J. Chem. Soc. Rev. Chemosphere Sens. Actuators, B
– volume: 8 73 442
  start-page: 185 282
  year: 2016 2014 2006
  publication-title: Nanoscale Carbon Nature
– volume: 23
  year: 2012
  publication-title: Nanotechnology
– volume: 82
  start-page: 509
  year: 2006
  publication-title: Appl. Phys. A
– volume: 7
  start-page: 4233
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 2178
  year: 2008
  publication-title: Polym. Eng. Sci.
– volume: 20
  start-page: 1469
  year: 2016
  publication-title: J. Solid State Electrochem.
– volume: 53
  start-page: 7281
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 116 16 31
  start-page: 50 401
  year: 2017 2004 2019
  publication-title: Carbon Adv. Mater. Adv. Mater.
– volume: 49
  start-page: 7522
  year: 2013
  publication-title: Chem. Commun.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 81 40
  start-page: 830 5383
  year: 1997 2007
  publication-title: J. Appl. Phys. J. Phys. D: Appl. Phys.
– volume: 374
  start-page: 534
  year: 2003
  publication-title: Chem. Phys. Lett.
– ident: e_1_2_7_30_1
  doi: 10.1016/j.carbon.2016.10.059
– ident: e_1_2_7_2_2
  doi: 10.1002/adma.200306460
– ident: e_1_2_7_6_4
  doi: 10.1016/j.snb.2017.08.203
– ident: e_1_2_7_13_2
  doi: 10.1002/adfm.201203732
– ident: e_1_2_7_15_1
  doi: 10.1021/acsami.6b12547
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jcis.2017.09.032
– ident: e_1_2_7_26_1
  doi: 10.1063/1.3250170
– ident: e_1_2_7_18_1
  doi: 10.1021/la900923z
– ident: e_1_2_7_6_1
  doi: 10.1016/j.cej.2018.04.119
– ident: e_1_2_7_10_1
  doi: 10.1126/science.aag2421
– ident: e_1_2_7_13_1
  doi: 10.1021/ja0357689
– ident: e_1_2_7_15_2
  doi: 10.1002/cctc.201500893
– ident: e_1_2_7_16_1
  doi: 10.1016/S0009-2614(03)00745-0
– ident: e_1_2_7_24_1
  doi: 10.1039/C8TC04984J
– ident: e_1_2_7_14_1
  doi: 10.1021/acsami.7b00370
– ident: e_1_2_7_5_1
  doi: 10.1021/acsami.8b10353
– ident: e_1_2_7_29_1
  doi: 10.1039/C4TA04493B
– ident: e_1_2_7_25_2
  doi: 10.1088/0022-3727/40/17/056
– ident: e_1_2_7_9_3
  doi: 10.1039/C7QM00204A
– ident: e_1_2_7_7_2
  doi: 10.1016/j.carbon.2014.02.054
– ident: e_1_2_7_9_1
  doi: 10.1039/c3ta11170a
– ident: e_1_2_7_3_1
  doi: 10.1016/j.carbon.2012.01.033
– ident: e_1_2_7_1_3
  doi: 10.1093/ije/dyt072
– ident: e_1_2_7_27_1
  doi: 10.1021/acsami.5b05259
– ident: e_1_2_7_8_1
  doi: 10.1088/0957-4484/23/45/455704
– ident: e_1_2_7_19_1
  doi: 10.1039/c3cc42891e
– ident: e_1_2_7_6_3
  doi: 10.1016/j.chemosphere.2017.12.061
– ident: e_1_2_7_9_2
  doi: 10.1016/j.carbon.2018.07.044
– ident: e_1_2_7_21_1
  doi: 10.1007/s00339-005-3417-8
– ident: e_1_2_7_33_1
  doi: 10.1016/j.cej.2017.12.106
– ident: e_1_2_7_1_1
  doi: 10.1016/j.polymer.2016.01.010
– ident: e_1_2_7_7_1
  doi: 10.1039/C6NR02619B
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201670178
– ident: e_1_2_7_2_1
  doi: 10.1016/j.carbon.2017.01.077
– ident: e_1_2_7_28_1
  doi: 10.1063/1.2803764
– ident: e_1_2_7_1_2
  doi: 10.1016/j.puhe.2007.04.008
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.201403946
– ident: e_1_2_7_23_1
  doi: 10.1002/pen.21163
– ident: e_1_2_7_2_3
  doi: 10.1002/adma.201802403
– ident: e_1_2_7_4_1
  doi: 10.1007/s12274-017-1758-1
– ident: e_1_2_7_7_3
  doi: 10.1038/nature04969
– ident: e_1_2_7_17_1
  doi: 10.1007/s10008-016-3157-z
– ident: e_1_2_7_22_1
  doi: 10.1021/am508527s
– ident: e_1_2_7_31_1
  doi: 10.1016/j.cej.2016.12.117
– ident: e_1_2_7_25_1
  doi: 10.1063/1.364167
– ident: e_1_2_7_6_2
  doi: 10.1039/C7CS00399D
– ident: e_1_2_7_32_1
  doi: 10.1016/j.carbon.2017.01.036
SSID ssj0031247
Score 2.7103605
Snippet A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D...
A high efficiency and great tunability of bandwidth and absorption-range electromagnetic wave absorber is proposed without precedent. A series of 2D...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1906668
SubjectTerms Absorbers
Attenuation
Bandwidths
Carbon
Carbon nitride
carbon‐based nanocomposites
Cerium oxides
Electromagnetic radiation
Electrons
Fourier transforms
Frequencies
Frequency ranges
Impedance matching
Microwave absorption
Nanocomposites
Nanotechnology
Photoelectrons
Polyvinylidene fluorides
Raman spectroscopy
Rare earth oxides
Sintering (powder metallurgy)
Spectrum analysis
Synthesis
tunability
Title Tunable and Ultraefficient Microwave Absorption Properties of Trace N‐Doped Two‐Dimensional Carbon‐Based Nanocomposites Loaded with Multi‐Rare Earth Oxides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201906668
https://www.ncbi.nlm.nih.gov/pubmed/32297713
https://www.proquest.com/docview/2402237500
https://search.proquest.com/docview/2390646163
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6hnuBQfkohtEVbCYmTW3u9XjvHElJVKCmoTaTerPH-qIhiIztpq554BN6BN-uTMLNOTEMPSHCz1__2zHyfd2e-ZeyNkBmYWEWBiUQaSCldkDlpA5spVWRaxSah2uHxsTqayg9nydmdKv5WH6LrcCPP8PGaHByKZv-3aGjz9YKGDhDQkIFTtW-EvkKs6KTTj4oRvPzsKohZAQlvLVUbQ7G_evgqKt2jmqvM1UPP4WMGy5tuM06-7M1nxZ6--UPP8X-e6glbX_BSftAa0lP2wJbP2KM7aoUb7Odk7gutOJSGTy9mNVivP4GwxceU13cFl5YfFE1V-zjEP1FHf02KrbxyHFFRW358-_3He2w2fHJV0TLNLtAqg_AB1EVVYuM7hFbDMfBXlPFOaWV4ilEFBlup45j7smHc8QRqy4do_ef84_VnY5vnbHo4nAyOgsUcD4EmTSWMbxoUKOQRWri-dAnQSKGzoq8N_pmmMnQ0pZaNQwNxpNGCdL9vdIG4i_-maRpvsrWyKu1LxkGEmROZiQwk0gpVKOlMZlQGYWgSm_bY2-U3zr-1Uh55K9oscnrteffae2x7aQL5wqWbnIahRIwEK-yx3W4zOiONsEBpqznuE-MJpEKO22MvWtPpLoWRE7l2hFuEN4C_3EN-Oh6NurVX_3LQFnsoqHfAp2dus7VZPbc7SKFmxWvvJr8A4KEY4g
link.rule.ids 315,781,785,1376,27929,27930,46299,46723
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BOQAH_gtpCywSEie39nq9do6ltArgBFQSiZu13h-BKDZyElpx4hH6DrwZT8LMOjYEDkhwi9f_zsx8387OfgvwmItMmVhGgYl4GgghXJA5YQObSVlmWsYmobnD44kczcSLt0lXTUhzYVp9iD7hRp7h4zU5OCWk936qhs4_ntDYASIaUvDsIlxCn297Vce9glSM8OXXV0HUCkh6q9NtDPne-vnruPQH2Vznrh58jq5D2T12W3PyYXe5KHf1l98UHf_rvW7AtRU1ZfutLd2EC7a6BVd_ESy8Dd-mSz_XiqnKsNnJolHWS1AgcrExlfadqs-W7ZfzuvGhiL2mXH9Doq2sdgyBUVs2-f71_Bk2GzY9rek3LTDQioOwA9WUdYWNTxFdDcPYX1PRO1WW4SXyWhlspdwx8zOH8cBj1Vh2iA7wjr06e2_s_A7Mjg6nB6NgtcxDoElWCUOcVlJJpBKau6FwiaLBQmf5UBvsnKYidLSqlo1Do-JIoxHp4dDoEqEXu6dpGm_CRlVX9h4wxcPM8cxERiXCcllK4UxmZKbC0CQ2HcCT7k8uPrVqHkWr28wL-uxF_9kHsNPZQLHy6nlBI1E8Ro4VDuBRvxv9kQZZVGXrJR4T4wWERJo7gLut7fS3wuCJdDvCPdxbwF-eoXgzzvN-a-tfTnoIl0fTcV7kzycvt-EKp2SBr9bcgY1Fs7T3kVEtygfeZ34AU9cc_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAc-P9ZKGAkJE5pE8dxvMfSdlVgd6nKrtRb5PhHIEpSZXcp4sQj8A68GU_CjLMbunBAglviOImTzMz3xR5_BnjGhdI2lUlkE55HQggfKS9c5JSUpTIytRnNHR6N5cFUvDrOjs_N4m_1IboON_KMEK_JwU-t3_4lGjr7eEJDBwhoyMDVRbgkJIZWokVHnYBUiugVlldB0IpIeWsl2xjz7fXz12HpD665Tl0D9gyug161uk05-bC1mJdb5stvgo7_81g34NqSmLKd1pJuwgVX3YKr5-QKb8P3ySLMtGK6smx6Mm-0CwIUiFtsRIl9Z_qTYzvlrG5CIGKH1NPfkGQrqz1DWDSOjX98_baHxZZNzmrapuUFWmkQtqubsq6w8AViq2UY-WtKeae8MrzEsNYWS6nnmIV5w1jxSDeO7aP5v2NvPr-3bnYHpoP9ye5BtFzkITIkqoQBzmipJRIJw31f-EzTUKF3vG8s_prmIva0ppZLY6vTxKAJmX7fmhKBF39O8zy9CxtVXbn7wDSPlefKJlZnwnFZSuGtslLpOLaZy3vwfPWNi9NWy6NoVZt5Qa-96F57DzZXJlAsfXpW0DgUT5FhxT142h1Gb6QhFl25eoF1UryAkEhye3CvNZ3uVhg6kWwneIQHA_hLG4q3o-Gw23vwLyc9gcuHe4Ni-HL8-iFc4dRTEFI1N2Fj3izcI6RT8_Jx8JifDcQbtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+and+Ultraefficient+Microwave+Absorption+Properties+of+Trace+N-Doped+Two-Dimensional+Carbon-Based+Nanocomposites+Loaded+with+Multi-Rare+Earth+Oxides&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Gao%2C+Shan&rft.au=Wang%2C+Guang-Sheng&rft.au=Guo%2C+Lin&rft.au=Yu%2C+Shu-Hong&rft.date=2020-05-01&rft.eissn=1613-6829&rft.volume=16&rft.issue=19&rft.spage=e1906668&rft_id=info:doi/10.1002%2Fsmll.201906668&rft_id=info%3Apmid%2F32297713&rft.externalDocID=32297713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon