MOF‐Derived Ni/ZIF‐8/ZnO Arrays on Carbon Fiber Cloth for Efficient Adsorption‐Catalytic Oxidation

The catalytic oxidation of toxic organic pollutants in water requires enhanced efficiency for commercial applications. A ZnO nanorod array grown on a carbon fiber cloth (CFC) serves as the zinc source to ensure that the Ni/ZIF‐8/ZnO nanoreactor is constructed. The Ni/ZIF‐8/ZnO/CFC nanoreactor effici...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 50; pp. e2303928 - n/a
Main Authors Wang, Yue, Ge, Yu, Wang, Ruoding, Liu, Zifan, Yin, Zhonglong, Yang, Zhen, Liu, Fuqiang, Yang, Weiben
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The catalytic oxidation of toxic organic pollutants in water requires enhanced efficiency for commercial applications. A ZnO nanorod array grown on a carbon fiber cloth (CFC) serves as the zinc source to ensure that the Ni/ZIF‐8/ZnO nanoreactor is constructed. The Ni/ZIF‐8/ZnO/CFC nanoreactor efficiently activates peroxymonosulfate (PMS) for bisphenol A (BPA) degradation owing to its high density of active sites, high adsorbability, and dispersibility structure, which concentrates catalytic and adsorptive sites within a confined space. Experimental and theoretical calculations clearly show that the introduction of Ni is beneficial for improving the adsorption of BPA and the activation of PMS. The synergistic mechanism of BPA adsorption–PMS activation is also investigated, and the degradation pathway of BPA is examined. Moreover, a filter catalytic unit is constructed using Ni/ZIF‐8/ZnO/CFC to achieve a continuous zero discharge of BPA, which is convenient for nanocatalyst recycling. This study aims to develop a new strategy for the removal of emerging organic pollutants from water using a system with strong adsorption and catalytic capabilities. The novel Ni/ZIF‐8/ZnO nanoreactor array is grown on carbon fiber cloth (CFC). The efficient activated peroxymonosulfate (PMS) performance of Ni/ZIF‐8/ZnO/CFC results from the high density of active sites, high adsorbability, and dispersibility structure, which concentrates catalytic and adsorptive sites within a confined space.
AbstractList Abstract The catalytic oxidation of toxic organic pollutants in water requires enhanced efficiency for commercial applications. A ZnO nanorod array grown on a carbon fiber cloth (CFC) serves as the zinc source to ensure that the Ni/ZIF‐8/ZnO nanoreactor is constructed. The Ni/ZIF‐8/ZnO/CFC nanoreactor efficiently activates peroxymonosulfate (PMS) for bisphenol A (BPA) degradation owing to its high density of active sites, high adsorbability, and dispersibility structure, which concentrates catalytic and adsorptive sites within a confined space. Experimental and theoretical calculations clearly show that the introduction of Ni is beneficial for improving the adsorption of BPA and the activation of PMS. The synergistic mechanism of BPA adsorption–PMS activation is also investigated, and the degradation pathway of BPA is examined. Moreover, a filter catalytic unit is constructed using Ni/ZIF‐8/ZnO/CFC to achieve a continuous zero discharge of BPA, which is convenient for nanocatalyst recycling. This study aims to develop a new strategy for the removal of emerging organic pollutants from water using a system with strong adsorption and catalytic capabilities.
The catalytic oxidation of toxic organic pollutants in water requires enhanced efficiency for commercial applications. A ZnO nanorod array grown on a carbon fiber cloth (CFC) serves as the zinc source to ensure that the Ni/ZIF‐8/ZnO nanoreactor is constructed. The Ni/ZIF‐8/ZnO/CFC nanoreactor efficiently activates peroxymonosulfate (PMS) for bisphenol A (BPA) degradation owing to its high density of active sites, high adsorbability, and dispersibility structure, which concentrates catalytic and adsorptive sites within a confined space. Experimental and theoretical calculations clearly show that the introduction of Ni is beneficial for improving the adsorption of BPA and the activation of PMS. The synergistic mechanism of BPA adsorption–PMS activation is also investigated, and the degradation pathway of BPA is examined. Moreover, a filter catalytic unit is constructed using Ni/ZIF‐8/ZnO/CFC to achieve a continuous zero discharge of BPA, which is convenient for nanocatalyst recycling. This study aims to develop a new strategy for the removal of emerging organic pollutants from water using a system with strong adsorption and catalytic capabilities. The novel Ni/ZIF‐8/ZnO nanoreactor array is grown on carbon fiber cloth (CFC). The efficient activated peroxymonosulfate (PMS) performance of Ni/ZIF‐8/ZnO/CFC results from the high density of active sites, high adsorbability, and dispersibility structure, which concentrates catalytic and adsorptive sites within a confined space.
The catalytic oxidation of toxic organic pollutants in water requires enhanced efficiency for commercial applications. A ZnO nanorod array grown on a carbon fiber cloth (CFC) serves as the zinc source to ensure that the Ni/ZIF‐8/ZnO nanoreactor is constructed. The Ni/ZIF‐8/ZnO/CFC nanoreactor efficiently activates peroxymonosulfate (PMS) for bisphenol A (BPA) degradation owing to its high density of active sites, high adsorbability, and dispersibility structure, which concentrates catalytic and adsorptive sites within a confined space. Experimental and theoretical calculations clearly show that the introduction of Ni is beneficial for improving the adsorption of BPA and the activation of PMS. The synergistic mechanism of BPA adsorption–PMS activation is also investigated, and the degradation pathway of BPA is examined. Moreover, a filter catalytic unit is constructed using Ni/ZIF‐8/ZnO/CFC to achieve a continuous zero discharge of BPA, which is convenient for nanocatalyst recycling. This study aims to develop a new strategy for the removal of emerging organic pollutants from water using a system with strong adsorption and catalytic capabilities.
Author Yang, Zhen
Wang, Ruoding
Wang, Yue
Liu, Zifan
Ge, Yu
Yang, Weiben
Yin, Zhonglong
Liu, Fuqiang
Author_xml – sequence: 1
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
  organization: Nanjing Normal University
– sequence: 2
  givenname: Yu
  surname: Ge
  fullname: Ge, Yu
  organization: Nanjing Normal University
– sequence: 3
  givenname: Ruoding
  surname: Wang
  fullname: Wang, Ruoding
  organization: Nanjing Normal University
– sequence: 4
  givenname: Zifan
  surname: Liu
  fullname: Liu, Zifan
  organization: Nanjing Normal University
– sequence: 5
  givenname: Zhonglong
  surname: Yin
  fullname: Yin, Zhonglong
  organization: Nanjing Normal University
– sequence: 6
  givenname: Zhen
  surname: Yang
  fullname: Yang, Zhen
  organization: Nanjing Normal University
– sequence: 7
  givenname: Fuqiang
  surname: Liu
  fullname: Liu, Fuqiang
  organization: Nanjing University
– sequence: 8
  givenname: Weiben
  orcidid: 0000-0002-8521-255X
  surname: Yang
  fullname: Yang, Weiben
  email: yangwb007@njnu.edu.cn
  organization: Nanjing Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37625020$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vEzEQxS3Uiv6BK0dkiUsvScZ21vYeo6WBSmlzAC69WPZ6VnW1WQd7Q8mNj8Bn5JOwq5QgceE0o6ffexrNuyAnXeyQkDcMpgyAz_KmbaccuABRcv2CnDPJxERqXp4cdwZn5CLnRwDB-Fy9JGdCSV4Ah3PycLte_vrx8z2m8A09vQuz-5tR0LP7bk0XKdl9prGjlU1uGMvgMNGqjf0DbWKi100T6oBdTxc-x7TtQ-wGd2V72-77UNP19-DtqL4ip41tM75-npfky_L6c_Vxslp_uKkWq0ktlNATXqL1lnGndMnQFVig9FrVtuSCOyE5aOuURzn33Ctn5RzmDcjSO9Eox0BckqtD7jbFrzvMvdmEXGPb2g7jLhuuC6VFoYQc0Hf_oI9xl7rhOsNLAM1GdqCmB6pOMeeEjdmmsLFpbxiYsQMzdmCOHQyGt8-xO7dBf8T_PH0AygPwFFrc_yfOfLpdrf6G_wbsGJaP
CitedBy_id crossref_primary_10_1016_j_apcatb_2024_124293
Cites_doi 10.1016/j.jcis.2022.01.003
10.1021/acs.est.9b05475
10.1016/j.cej.2017.11.059
10.1016/j.efmat.2023.03.001
10.1016/j.jiec.2021.09.029
10.1002/adma.201807771
10.1080/10643389.2023.2168473
10.1016/j.cej.2018.02.078
10.1016/j.jhazmat.2017.11.024
10.1016/j.jcis.2020.04.024
10.1016/j.micromeso.2018.06.040
10.1016/j.apcatb.2015.08.050
10.1166/jno.2021.3142
10.1021/acs.est.9b01749
10.1016/j.micromeso.2020.110777
10.1016/j.jcis.2019.07.059
10.1002/adfm.202001973
10.1021/acs.est.7b03007
10.1002/adma.202001866
10.1016/j.jhazmat.2014.12.051
10.1080/01496395.2021.1995426
10.1016/j.apcatb.2022.121891
10.1016/j.nanoen.2022.107162
10.1002/adfm.202003947
10.1016/j.seppur.2022.121716
10.1016/j.watres.2007.06.038
10.1016/j.cej.2016.10.064
10.1002/adma.202001894
10.1002/adfm.202111184
10.1021/acs.est.6b02079
10.1021/acs.est.0c01161
10.1039/D3EN00007A
10.1016/j.chemosphere.2022.137384
10.1016/j.cej.2019.122412
10.1021/acsestwater.0c00169
10.1016/j.jhazmat.2021.127549
10.1002/adma.202200096
10.1002/adma.201405222
10.1016/j.apcatb.2022.121408
10.1039/C9DT00813F
10.1016/j.wasman.2017.01.002
10.1002/adfm.202105267
10.1016/j.cej.2021.134417
10.1016/j.apcatb.2021.119921
10.1002/anie.202014472
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202303928
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202303928
37625020
SMLL202303928
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Research Project of Universities in Jiangsu Province of China
  funderid: 21KJB610014
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20220380
– fundername: National Natural Science Foundation of China
  funderid: 52200058; 52070100; 51978341
– fundername: Natural Science Research Project of Universities in Jiangsu Province of China
  grantid: 21KJB610014
– fundername: National Natural Science Foundation of China
  grantid: 52070100
– fundername: National Natural Science Foundation of China
  grantid: 51978341
– fundername: National Natural Science Foundation of China
  grantid: 52200058
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20220380
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
NPM
SV3
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3738-29eada12b7891eb5e5e6d87ca9232b36208ab7de64d2d7ba6404f069db3f7b103
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Sat Aug 17 02:12:27 EDT 2024
Thu Oct 10 19:36:43 EDT 2024
Fri Aug 23 03:49:08 EDT 2024
Fri Oct 18 08:51:00 EDT 2024
Sat Aug 24 00:43:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords bisphenol A
catalytic oxidation
organic pollutants
nanoreactors
peroxymonosulfate
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-29eada12b7891eb5e5e6d87ca9232b36208ab7de64d2d7ba6404f069db3f7b103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8521-255X
PMID 37625020
PQID 2900812857
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2857835736
proquest_journals_2900812857
crossref_primary_10_1002_smll_202303928
pubmed_primary_37625020
wiley_primary_10_1002_smll_202303928_SMLL202303928
PublicationCentury 2000
PublicationDate 2023-Dec
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 53
2018; 342
2017; 60
2019; 31
2019; 53
2018; 344
2015; 286
2016; 50
2022; 319
2020; 32
2021; 286
2020; 54
2021; 1
2016; 181
2022; 432
2017; 51
2021; 57
2021; 16
2015; 27
2022 2022 2022 2023; 133 299 312 10
2021 2022; 32 34
2020; 31
2020; 30
2018 2017; 334 310
2019 2019 2019 2022; 48 555 273 613
2021; 314
2020; 379
2023; 313
2022; 97
2022; 32
2007; 41
2020; 575
2021; 60
2022; 105
2019 2022; 53 424
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_15_3
e_1_2_8_17_1
e_1_2_8_15_4
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_2
e_1_2_8_16_1
e_1_2_8_19_3
e_1_2_8_19_4
e_1_2_8_32_1
e_1_2_8_10_1
Liu D. (e_1_2_8_15_1) 2022; 133
e_1_2_8_30_2
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 342
  start-page: 364
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 2400
  year: 2015
  publication-title: Adv. Mater.
– volume: 432
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 313
  year: 2023
  publication-title: Chemosphere
– volume: 105
  start-page: 34
  year: 2022
  publication-title: J. Ind. Eng. Chem.
– volume: 60
  start-page: 4588
  year: 2021
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 41
  start-page: 4373
  year: 2007
  publication-title: Water Res.
– volume: 48 555 273 613
  start-page: 4650 234 177 71
  year: 2019 2019 2019 2022
  publication-title: Dalton Trans. J. Colloid Interface Sci. Microporous Mesoporous Mater. J. Colloid Interface Sci.
– volume: 97
  year: 2022
  publication-title: Nano Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 51
  year: 2017
  publication-title: Environ. Sci. Technol.
– volume: 379
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 181
  start-page: 788
  year: 2016
  publication-title: Appl. Catal., B
– volume: 53 424
  start-page: 9181
  year: 2019 2022
  publication-title: Environ. Sci. Technol. J. Hazard. Mater.
– volume: 133 299 312 10
  start-page: 992 1528
  year: 2022 2022 2022 2023
  publication-title: Chem. Eng. J. Sep. Purif. Technol. Appl. Catal., B Environ. Sci.: Nano
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 314
  year: 2021
  publication-title: Microporous Mesoporous Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 575
  start-page: 206
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 57
  start-page: 1535
  year: 2021
  publication-title: Sep. Sci. Technol.
– volume: 53
  start-page: 1289
  year: 2023
  publication-title: Environ. Sci. Technol. Environ. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 50
  year: 2016
  publication-title: Environ. Sci. Technol.
– volume: 53
  year: 2019
  publication-title: Environ. Sci. Technol.
– volume: 319
  year: 2022
  publication-title: Appl. Catal., B
– volume: 54
  start-page: 6438
  year: 2020
  publication-title: Environ. Sci. Technol.
– volume: 16
  start-page: 1861
  year: 2021
  publication-title: J. Nanoelectron. Optoelectron.
– volume: 1
  start-page: 417
  year: 2021
  publication-title: ACS ES&T Water
– volume: 286
  start-page: 285
  year: 2015
  publication-title: J. Hazard. Mater.
– volume: 32 34
  year: 2021 2022
  publication-title: Adv. Funct. Mater. Adv. Mater.
– volume: 344
  start-page: 1198
  year: 2018
  publication-title: J. Hazard. Mater.
– volume: 60
  start-page: 775
  year: 2017
  publication-title: Waste Manage.
– volume: 334 310
  start-page: 1502 41
  year: 2018 2017
  publication-title: Chem. Eng. J. Chem. Eng. J.
– volume: 286
  year: 2021
  publication-title: Appl. Catal., B
– ident: e_1_2_8_19_4
  doi: 10.1016/j.jcis.2022.01.003
– volume: 133
  start-page: 992
  year: 2022
  ident: e_1_2_8_15_1
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Liu D.
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.est.9b05475
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cej.2017.11.059
– ident: e_1_2_8_8_2
  doi: 10.1016/j.efmat.2023.03.001
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jiec.2021.09.029
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201807771
– ident: e_1_2_8_8_1
  doi: 10.1080/10643389.2023.2168473
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cej.2018.02.078
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jhazmat.2017.11.024
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jcis.2020.04.024
– ident: e_1_2_8_19_3
  doi: 10.1016/j.micromeso.2018.06.040
– ident: e_1_2_8_36_1
  doi: 10.1016/j.apcatb.2015.08.050
– ident: e_1_2_8_11_1
  doi: 10.1166/jno.2021.3142
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.est.9b01749
– ident: e_1_2_8_16_1
  doi: 10.1016/j.micromeso.2020.110777
– ident: e_1_2_8_19_2
  doi: 10.1016/j.jcis.2019.07.059
– ident: e_1_2_8_20_1
  doi: 10.1002/adfm.202001973
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.est.7b03007
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.202001866
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jhazmat.2014.12.051
– ident: e_1_2_8_7_1
  doi: 10.1080/01496395.2021.1995426
– ident: e_1_2_8_10_1
  doi: 10.1016/j.apcatb.2022.121891
– ident: e_1_2_8_25_1
  doi: 10.1016/j.nanoen.2022.107162
– ident: e_1_2_8_5_1
  doi: 10.1002/adfm.202003947
– ident: e_1_2_8_15_2
  doi: 10.1016/j.seppur.2022.121716
– ident: e_1_2_8_3_1
  doi: 10.1016/j.watres.2007.06.038
– ident: e_1_2_8_30_2
  doi: 10.1016/j.cej.2016.10.064
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.202001894
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.202111184
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.est.6b02079
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.est.0c01161
– ident: e_1_2_8_15_4
  doi: 10.1039/D3EN00007A
– ident: e_1_2_8_18_1
  doi: 10.1016/j.chemosphere.2022.137384
– ident: e_1_2_8_14_1
  doi: 10.1016/j.cej.2019.122412
– ident: e_1_2_8_17_1
  doi: 10.1021/acsestwater.0c00169
– ident: e_1_2_8_2_2
  doi: 10.1016/j.jhazmat.2021.127549
– ident: e_1_2_8_12_2
  doi: 10.1002/adma.202200096
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.201405222
– ident: e_1_2_8_15_3
  doi: 10.1016/j.apcatb.2022.121408
– ident: e_1_2_8_19_1
  doi: 10.1039/C9DT00813F
– ident: e_1_2_8_1_1
  doi: 10.1016/j.wasman.2017.01.002
– ident: e_1_2_8_12_1
  doi: 10.1002/adfm.202105267
– ident: e_1_2_8_27_1
  doi: 10.1016/j.cej.2021.134417
– ident: e_1_2_8_33_1
  doi: 10.1016/j.apcatb.2021.119921
– ident: e_1_2_8_28_1
  doi: 10.1002/anie.202014472
SSID ssj0031247
Score 2.5054817
Snippet The catalytic oxidation of toxic organic pollutants in water requires enhanced efficiency for commercial applications. A ZnO nanorod array grown on a carbon...
Abstract The catalytic oxidation of toxic organic pollutants in water requires enhanced efficiency for commercial applications. A ZnO nanorod array grown on a...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2303928
SubjectTerms Adsorption
Adsorptivity
Arrays
Bisphenol A
Carbon fibers
Catalytic oxidation
Cloth
Confined spaces
Degradation
nanoreactors
Nanorods
Nanotechnology
organic pollutants
Oxidation
peroxymonosulfate
Pollutants
Zinc oxide
Title MOF‐Derived Ni/ZIF‐8/ZnO Arrays on Carbon Fiber Cloth for Efficient Adsorption‐Catalytic Oxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202303928
https://www.ncbi.nlm.nih.gov/pubmed/37625020
https://www.proquest.com/docview/2900812857
https://search.proquest.com/docview/2857835736
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsMwGA6yK73wfJgnIghe1bVZ2zSXMh1TNgceQHZTkibF4exk3US98hF8Rp_E_2-36vRC0Ks2TUPS_KevOXwhZB8pzbnHXEu64ALdwFeW0EJYHGKBZBH8cnDc4Nw69xvX7tmNd_NlF3_OD1EMuKFlZP4aDVyqtPJJGpre93DqACA0hHjc7YtseoiKLgr-qCoEr-x0FYhZFhJvTVgbbVaZLj4dlX5AzWnkmoWe-gKRk0bnK07uDkdDdRi9fONz_M9XLZL5MS6lR7kiLZEZkyyTuS9shSvkttWuv7--HUPy0Wh63q10TvFBUOkkbSg5kM8p7Se0JgcKLnVci0JrPVAFCsiYnmRkFRDj6JFO-4PMVUHpGo4fPUOttP3UzQ94WiXX9ZOrWsMaH9RgRUiMZDEB-igdpnggHKM84xlfBzySgB6ZghBpB1JxbXxXM82V9F3bjW1faFWNuXLs6hopJf3EbBAaMxFp7qgozpjoHCFk7HhaucroGNBtmRxMBBU-5HwcYc68zELsu7DouzLZnsgxHNtlGjKBGIgFHi-TvSIbLAqnSWRi-iN4B3IBl_KqXybrufyLqsAdA2Zk0AyWSfGXNoSXrWazSG3-pdAWmcX7fAXNNikNByOzAzhoqHYzXf8AfhsAjg
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619NByKJQWurAUV6rUU9jEm8TxcbWwWsr-SC1IFZfIjh2BoNlqfxBw4hF4Rp6EmWQTWHqo1J4i2xnZsWc8X-zxZ4AvRGkuAu47yscp0I9C7UgjpSPQFyie4C-HoAPO_UHYPfa__QzKaEI6C1PwQ1QLbmQZ-XxNBk4L0o1H1tDJrwvaO0AMjT4-egmv0OYDss297xWDVBPdV36_Cnoth6i3St5GlzcW5Rf90h9gcxG75s6nswK6bHYRc3K-O5vq3eTmGaPjf33XKrydQ1PWKnTpHbyw2RosPyEsfA-n_WHn_vZuD5OX1rDBWePkgDKixkk2RMmxup6wUcbaaqzx0aFwFNa-QG1gCI7Zfs5XgW6OtcxkNM5nK5Ru0xLSNdbKhldnxR1PH-C4s3_U7jrzuxqchLiRHC5RJZXHtYikZ3VgAxuaSCQKASTX6CXdSGlhbOgbboRWoe_6qRtKo5up0J7bXIelbJTZj8BSLhMjPJ2kORmdJ6VKvcBoX1uTIsCtwddypOLfBSVHXJAv85j6Lq76rgb1ciDjuWlOYi4JBvEoEDX4XBWjUdFOicrsaIbvYClCU9EMa7BRKEBVFc7ICBs5NoPnw_iXNsQ_-r1eldr8F6EdeN096vfi3sHgcAveUH4RUFOHpel4ZrcRFk31p1zxHwCP5gSu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkCp6gFKgLFBwpUqcwiaOE8dHtEsE7T6qFiTEJbJjRyAgi_ZRFU78BH5jf0nHyW5g4YBET5HjjOx4ZjyfX58BvlpKcx5Q5kiGXSCLQuUILYTDMRZImuKQg9sDzu1OeHjCvp0Gp09O8Zf8ENWEm_WMor-2Dn6js_ojaejg-souHSCExhAfzcI8C31qh1_NnxWBlI_Rq7heBYOWY5m3JrSNLq1Py0-HpRdYcxq6FrEnXgI5qXW55eRybzRUe-ndM0LH__mtD7A4BqZkv7SkZZgx-Ud4_4SucAXO29347_1DE5O_jSadi_rZkX0R1c_yLkr25e2A9HLSkH2Fj9huRiGNK7QFgtCYHBRsFRjkyL4e9PpFX4XSDTuBdIulku6fi_KGp1U4iQ-OG4fO-KYGJ7XMSA4VaJDSo4pHwjMqMIEJdcRTifCRKoyRbiQV1yZkmmquZMhclrmh0MrPuPJcfw3m8l5u1oFkVKSaeyrNCio6TwiZeYFWTBmdIbytwe5EUclNSciRlNTLNLFtl1RtV4OtiR6TsWMOEiosCKJRwGvwpcpGl7LrJDI3vRF-g7kITLkf1uBTqf-qKOyPETRSrAYttPhKHZJf7VarSm28RWgH3v1oxknrqPN9Exbs63I3zRbMDfsj8xkx0VBtF2b_D39tA10
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF-Derived+Ni%2FZIF-8%2FZnO+Arrays+on+Carbon+Fiber+Cloth+for+Efficient+Adsorption-Catalytic+Oxidation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Yue&rft.au=Ge%2C+Yu&rft.au=Wang%2C+Ruoding&rft.au=Liu%2C+Zifan&rft.date=2023-12-01&rft.eissn=1613-6829&rft.volume=19&rft.issue=50&rft.spage=e2303928&rft.epage=e2303928&rft_id=info:doi/10.1002%2Fsmll.202303928&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon