LeukocyteMask: An automated localization and segmentation method for leukocyte in blood smear images using deep neural networks
Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune...
Saved in:
Published in | Journal of biophotonics Vol. 12; no. 7; pp. e201800488 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.07.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1864-063X 1864-0648 1864-0648 |
DOI | 10.1002/jbio.201800488 |
Cover
Abstract | Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end‐to‐end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel‐level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state‐of‐the‐art performance for the segmentation of leukocyte in terms of robustness and accuracy
.
In this paper, an end‐to‐end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel‐level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. |
---|---|
AbstractList | Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end‐to‐end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel‐level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state‐of‐the‐art performance for the segmentation of leukocyte in terms of robustness and accuracy
.
In this paper, an end‐to‐end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel‐level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end‐to‐end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel‐level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state‐of‐the‐art performance for the segmentation of leukocyte in terms of robustness and accuracy Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end-to-end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel-level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state-of-the-art performance for the segmentation of leukocyte in terms of robustness and accuracy . Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end-to-end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel-level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state-of-the-art performance for the segmentation of leukocyte in terms of robustness and accuracy .Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end-to-end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel-level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state-of-the-art performance for the segmentation of leukocyte in terms of robustness and accuracy . |
Author | Xu, Yong Fan, Haoyi Li, Zuoyong Zhang, Fengbin Liu, Guanghai Xi, Liang |
Author_xml | – sequence: 1 givenname: Haoyi surname: Fan fullname: Fan, Haoyi organization: Harbin University of Science and Technology – sequence: 2 givenname: Fengbin surname: Zhang fullname: Zhang, Fengbin email: zhangfengbin@hrbust.edu.cn organization: Harbin University of Science and Technology – sequence: 3 givenname: Liang surname: Xi fullname: Xi, Liang organization: Harbin University of Science and Technology – sequence: 4 givenname: Zuoyong surname: Li fullname: Li, Zuoyong email: fzulzytdq@126.com organization: Fujian University of Traditional Chinese Medicine – sequence: 5 givenname: Guanghai surname: Liu fullname: Liu, Guanghai organization: Guangxi Normal University – sequence: 6 givenname: Yong surname: Xu fullname: Xu, Yong organization: Harbin Institute of Technology (Shenzhen) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30891934$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rFDEUx4NU7A-9epSAFy-75vfMeGuL1cpKLwrehmTmZc1uJlmTGcp68V9vyrQrFMTTC4_P5yV531N0FGIAhF5TsqSEsPcb4-KSEVoTIur6GTqhtRILokR9dDjzH8foNOcNIYpwyV-gY07qhjZcnKA_K5i2sduP8FXn7Qd8HrCexjjoEXrsY6e9-61HF0s79DjDeoAwzo0Bxp-xxzYm7B-HYBew8bG08wA6YTfoNWQ8ZRfWuAfY4QBT0r6U8TambX6JnlvtM7x6qGfo-9XHb5efF6ubT9eX56tFxyteLygzQFWlKdWE1aaxVlrLLJdaKkMaI7veKCbqilHb9R1hUhhbqYo2UiouCD9D7-a5uxR_TZDHdnC5A-91gDjlltFGyKI3tKBvn6CbOKVQXtcyJglvlFSiUG8eqMkM0Le7VP6a9u3jaguwnIEuxZwT2ANCSXufXXufXXvIrgjiidC5edVj0s7_W2tm7dZ52P_nkvbLxfXNX_cOyDivcQ |
CitedBy_id | crossref_primary_10_1007_s11063_020_10321_9 crossref_primary_10_1155_2022_6347307 crossref_primary_10_1007_s11760_019_01586_2 crossref_primary_10_1186_s12880_022_00801_w crossref_primary_10_1002_int_22753 crossref_primary_10_1002_jbio_202300196 crossref_primary_10_54365_adyumbd_1069856 crossref_primary_10_1109_ACCESS_2020_2964271 crossref_primary_10_1016_j_bspc_2023_105243 crossref_primary_10_1002_cyto_a_24832 crossref_primary_10_1016_j_eswa_2024_125390 crossref_primary_10_1016_j_compbiomed_2023_106551 crossref_primary_10_3390_s24206682 crossref_primary_10_1002_cpe_5844 crossref_primary_10_1109_ACCESS_2020_3048172 crossref_primary_10_1016_j_asoc_2020_106884 crossref_primary_10_1109_ACCESS_2022_3171916 crossref_primary_10_1016_j_bspc_2022_103590 crossref_primary_10_1016_j_knosys_2024_112648 crossref_primary_10_1007_s11042_024_18373_y crossref_primary_10_1155_2021_9933481 crossref_primary_10_1186_s12859_022_04602_4 crossref_primary_10_1016_j_bspc_2024_106820 crossref_primary_10_1016_j_compbiomed_2022_106028 crossref_primary_10_1109_ACCESS_2020_3021660 crossref_primary_10_1016_j_bspc_2022_104518 crossref_primary_10_32604_csse_2023_029597 crossref_primary_10_3233_JIFS_189773 crossref_primary_10_1016_j_jpi_2024_100390 crossref_primary_10_1016_j_asoc_2020_107006 crossref_primary_10_1002_jbio_202200244 crossref_primary_10_1109_ACCESS_2019_2946681 crossref_primary_10_1002_jbio_201960186 crossref_primary_10_1109_ACCESS_2021_3083703 crossref_primary_10_3324_haematol_2021_280209 crossref_primary_10_1109_TIM_2023_3235434 crossref_primary_10_1088_1742_6596_1999_1_012140 crossref_primary_10_3389_fonc_2023_1223353 crossref_primary_10_1016_j_compbiomed_2020_104034 crossref_primary_10_1007_s11517_023_02955_3 crossref_primary_10_1109_JBHI_2023_3238726 crossref_primary_10_1002_cpe_6462 crossref_primary_10_1016_j_bbe_2020_02_005 crossref_primary_10_3390_s23177640 crossref_primary_10_1002_jbio_202200174 crossref_primary_10_3389_fphy_2022_812192 crossref_primary_10_1109_TEM_2021_3103549 crossref_primary_10_1186_s12911_023_02153_z crossref_primary_10_3390_s22155520 crossref_primary_10_1002_ila2_10 crossref_primary_10_1364_BOE_462905 crossref_primary_10_3390_bioengineering11090937 |
Cites_doi | 10.1109/TPAMI.2018.2789887 10.1007/s00138-016-0812-4 10.1007/s11265-008-0201-y 10.1109/ACCESS.2017.2784800 10.3390/s140916128 10.1016/j.patcog.2012.05.006 10.1016/j.micron.2013.09.006 10.1186/1471-2105-14-173 10.1016/j.patcog.2015.10.009 10.1002/jbio.201800146 10.1016/j.neunet.2018.02.002 10.1016/j.micron.2018.01.010 10.1016/j.jss.2012.04.012 10.1109/TIP.2018.2847422 10.1007/11540007_98 10.1016/j.compmedimag.2011.01.003 10.3390/s150306688 10.1109/TPAMI.2016.2572683 10.1016/j.patcog.2015.02.005 10.1109/TMI.2011.2141674 10.1186/1471-2105-14-S10-S6 10.1002/jbio.201700003 10.1109/RBME.2016.2515127 10.1109/CVPR.2017.106 10.1002/cyto.a.22457 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 |
DOI | 10.1002/jbio.201800488 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Biotechnology Research Abstracts Technology Research Database Electronics & Communications Abstracts ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1864-0648 |
EndPage | n/a |
ExternalDocumentID | 30891934 10_1002_jbio_201800488 JBIO201800488 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Heilongjiang Province funderid: F2018019 – fundername: Project for Innovative Talents in University of Heilongjiang Province of China funderid: UNPYSCT‐2015048 – fundername: Natural Science Foundation of Fujian Province – fundername: Fujian Provincial Leading Project funderid: 2017H0030 – fundername: National Natural Science Foundation of China funderid: 61172168; 61772254 – fundername: Key Project of College Youth Natural Science Foundation of Fujian Province funderid: JZ160467 – fundername: Project for Innovative Talents in University of Heilongjiang Province of China grantid: UNPYSCT-2015048 – fundername: Fujian Provincial Leading Project grantid: 2017H0030 – fundername: National Natural Science Foundation of China grantid: 61172168 – fundername: Natural Science Foundation of Heilongjiang Province grantid: F2018019 – fundername: National Natural Science Foundation of China grantid: 61772254 – fundername: Key Project of College Youth Natural Science Foundation of Fujian Province grantid: JZ160467 |
GroupedDBID | --- 05W 0R~ 1OC 31~ 33P 3SF 4.4 52U 52V 53G 5DZ 5GY 66C 8-0 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRMAN DRSTM EBD EBS EJD EMOBN F5P FEDTE FUBAC G-S GODZA HGLYW HVGLF HZ~ IX1 KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WIH WIJ WIK WOHZO WXSBR WYJ XV2 ZZTAW AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7SP 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JG9 K9. L7M P64 7X8 |
ID | FETCH-LOGICAL-c3738-12be167a11a028b9ff5ff2f35a56b09b5cdb6248721fcdc0254bf767195563403 |
IEDL.DBID | DR2 |
ISSN | 1864-063X 1864-0648 |
IngestDate | Fri Jul 11 02:54:20 EDT 2025 Sun Jul 13 03:54:29 EDT 2025 Thu Apr 03 07:02:17 EDT 2025 Thu Apr 24 23:05:38 EDT 2025 Tue Jul 01 01:54:36 EDT 2025 Wed Jan 22 16:40:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | bright field microscope cell segmentation white blood cells deep neural networks |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-12be167a11a028b9ff5ff2f35a56b09b5cdb6248721fcdc0254bf767195563403 |
Notes | Funding information Fujian Provincial Leading Project, Grant/Award Number: 2017H0030; Key Project of College Youth Natural Science Foundation of Fujian Province, Grant/Award Number: JZ160467; Project for Innovative Talents in University of Heilongjiang Province of China, Grant/Award Number: UNPYSCT‐2015048; Natural Science Foundation of Fujian Province; Natural Science Foundation of Heilongjiang Province, Grant/Award Number: F2018019; National Natural Science Foundation of China, Grant/Award Numbers: 61172168, 61772254 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30891934 |
PQID | 2250396564 |
PQPubID | 1006377 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2194587291 proquest_journals_2250396564 pubmed_primary_30891934 crossref_primary_10_1002_jbio_201800488 crossref_citationtrail_10_1002_jbio_201800488 wiley_primary_10_1002_jbio_201800488_JBIO201800488 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 2019-07-00 20190701 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany – name: Jena |
PublicationTitle | Journal of biophotonics |
PublicationTitleAlternate | J Biophotonics |
PublicationYear | 2019 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2015; 15 2012 2010 2018; 107 2018; 102 2009 2011; 30 2016; 52 2005 2011; 35 2008; 55 2018; 40 2003 2014; 85 2011; 38 2014; 20 2018; 6 2015; 48 2013; 14 2017; 39 2017; 11 2019; 28 2014; 14 2018 2017 2016 2015 2014 2018; 11 2012; 45 2016; 27 2014; 56 2016; 9 2012; 85 e_1_2_8_28_1 Yi F. (e_1_2_8_14_1) 2005 Prinyakupt J. (e_1_2_8_21_1) 2014; 20 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_27_1 Pan C. (e_1_2_8_19_1) 2009 Girshick R. (e_1_2_8_42_1) 2015 Lin T.‐Y. (e_1_2_8_26_1) 2017 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 Simard P. Y. (e_1_2_8_36_1) 2003 Singh V. K. (e_1_2_8_44_1) 2018 e_1_2_8_17_1 Ren S. (e_1_2_8_41_1) 2015 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_16_1 Zhang L. (e_1_2_8_31_1) 2017 Nair V. (e_1_2_8_40_1) 2010 Simonyan K. (e_1_2_8_38_1) 2014 Ioffe S. (e_1_2_8_39_1) 2015 Krizhevsky A. (e_1_2_8_37_1) 2012 e_1_2_8_32_1 e_1_2_8_10_1 Saidi M. (e_1_2_8_23_1) 2016 e_1_2_8_11_1 e_1_2_8_34_1 He K. (e_1_2_8_35_1) 2017 e_1_2_8_12_1 e_1_2_8_33_1 Pan C. (e_1_2_8_18_1) 2011; 38 Ronneberger O. (e_1_2_8_30_1) 2015 |
References_xml | – start-page: 2117 year: 2017 – volume: 40 start-page: 3034 year: 2018 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 55 start-page: 169 year: 2008 publication-title: J Signal Processing Systems. – volume: 35 start-page: 333 year: 2011 publication-title: Comput. Med. Imaging Graph. – volume: 15 start-page: 22561 year: 2015 publication-title: Sensors. – start-page: 91 year: 2015 – start-page: 958 year: 2003 – start-page: 1440 year: 2015 – volume: 107 start-page: 55 year: 2018 publication-title: Micron – start-page: 31 year: 2016 publication-title: MedPRAI – volume: 27 start-page: 1 year: 2016 publication-title: Mach Vis Appl. – volume: 20 start-page: 1 issue: 1 year: 2014 publication-title: Biomedl Eng – start-page: 787 year: 2005 – volume: 85 start-page: 480 year: 2014 publication-title: Cytometry – start-page: 336 year: 2009 – start-page: 807 year: 2010 – start-page: 833 year: 2018 – volume: 45 start-page: 4151 year: 2012 publication-title: Pattern Recogn – volume: 14 start-page: 173 year: 2013 publication-title: BMC Bioinformatics – volume: 52 start-page: 317 year: 2016 publication-title: Pattern Recogn – volume: 38 start-page: 7479 year: 2011 publication-title: Expert Syst Appl. – volume: 11 start-page: e201800146 year: 2018 publication-title: J. Biophotonics – year: 2014 – volume: 14 start-page: 16128 year: 2014 publication-title: Sensors. – start-page: 6476 year: 2005 publication-title: Proc IEEE Conf Eng Med Biol – volume: 39 start-page: 640 year: 2017 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2980 year: 2017 – start-page: 448 year: 2015 – volume: 28 start-page: 6 year: 2019 publication-title: IEEE Trans Image Process – volume: 30 start-page: 1661 year: 2011 publication-title: IEEE Trans. Med. Imaging – volume: 6 start-page: 7445 year: 2018 publication-title: IEEE Access. – start-page: 234 year: 2015 – volume: 85 start-page: 2104 year: 2012 publication-title: J Syst Software. – volume: 102 start-page: 36 year: 2018 publication-title: Neu Networks. – volume: 11 start-page: e201700003 year: 2017 publication-title: J. Biophotonics – volume: 56 start-page: 17 year: 2014 publication-title: Micron – start-page: 1097 year: 2012 – year: 2017 – volume: 14 start-page: 1 year: 2013 publication-title: BMC Bioinformatics. – volume: 48 start-page: 2554 year: 2015 publication-title: Pattern Recogn – start-page: 770 year: 2016 – start-page: 936 year: 2017 – volume: 9 start-page: 234 year: 2016 publication-title: IEEE Rev Biomed Eng – ident: e_1_2_8_27_1 doi: 10.1109/TPAMI.2018.2789887 – volume-title: ISBI year: 2017 ident: e_1_2_8_31_1 – start-page: 958 volume-title: Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis year: 2003 ident: e_1_2_8_36_1 – ident: e_1_2_8_17_1 doi: 10.1007/s00138-016-0812-4 – ident: e_1_2_8_22_1 doi: 10.1007/s11265-008-0201-y – ident: e_1_2_8_28_1 doi: 10.1109/ACCESS.2017.2784800 – ident: e_1_2_8_5_1 doi: 10.3390/s140916128 – ident: e_1_2_8_7_1 doi: 10.1016/j.patcog.2012.05.006 – ident: e_1_2_8_10_1 doi: 10.1016/j.micron.2013.09.006 – volume: 38 start-page: 7479 year: 2011 ident: e_1_2_8_18_1 publication-title: Expert Syst Appl. – ident: e_1_2_8_16_1 doi: 10.1186/1471-2105-14-173 – volume-title: Very Deep Convolutional Networks for Large‐Scale Image Recognition year: 2014 ident: e_1_2_8_38_1 – start-page: 1440 volume-title: Fast R‐CNN, ICCV year: 2015 ident: e_1_2_8_42_1 – start-page: 833 volume-title: Conditional Generative Adversarial and Convolutional Networks for X‐ray Breast Mass Segmentation and Shape Classification, MICCAI year: 2018 ident: e_1_2_8_44_1 – ident: e_1_2_8_13_1 doi: 10.1016/j.patcog.2015.10.009 – start-page: 336 volume-title: Segmentation of Blood and Bone Marrow Cell Images via Learning by Sampling year: 2009 ident: e_1_2_8_19_1 – start-page: 807 volume-title: Rectified Linear Units Improve Restricted Boltzmann Machines, ICML year: 2010 ident: e_1_2_8_40_1 – ident: e_1_2_8_32_1 doi: 10.1002/jbio.201800146 – start-page: 448 volume-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML year: 2015 ident: e_1_2_8_39_1 – start-page: 91 volume-title: Faster R‐CNN: Towards Real‐Time Object Detection with Region Proposal Networks NIPS year: 2015 ident: e_1_2_8_41_1 – ident: e_1_2_8_3_1 doi: 10.1016/j.neunet.2018.02.002 – ident: e_1_2_8_20_1 doi: 10.1016/j.micron.2018.01.010 – start-page: 234 volume-title: U‐Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI year: 2015 ident: e_1_2_8_30_1 – ident: e_1_2_8_8_1 doi: 10.1016/j.jss.2012.04.012 – ident: e_1_2_8_11_1 doi: 10.1109/TIP.2018.2847422 – start-page: 31 year: 2016 ident: e_1_2_8_23_1 publication-title: MedPRAI – start-page: 1097 volume-title: Imagenet Classification with Deep Convolutional Neural Networks NIPS year: 2012 ident: e_1_2_8_37_1 – ident: e_1_2_8_4_1 doi: 10.1007/11540007_98 – ident: e_1_2_8_43_1 doi: 10.1016/j.compmedimag.2011.01.003 – start-page: 6476 year: 2005 ident: e_1_2_8_14_1 publication-title: Proc IEEE Conf Eng Med Biol – ident: e_1_2_8_6_1 doi: 10.3390/s150306688 – start-page: 936 volume-title: Feature pyramid networks for object detection, CVPR, year: 2017 ident: e_1_2_8_26_1 – ident: e_1_2_8_29_1 doi: 10.1109/TPAMI.2016.2572683 – ident: e_1_2_8_12_1 doi: 10.1016/j.patcog.2015.02.005 – start-page: 2980 volume-title: Mask R‐CNN, ICCV year: 2017 ident: e_1_2_8_35_1 – ident: e_1_2_8_15_1 doi: 10.1109/TMI.2011.2141674 – ident: e_1_2_8_24_1 doi: 10.1186/1471-2105-14-S10-S6 – ident: e_1_2_8_33_1 doi: 10.1002/jbio.201700003 – volume: 20 start-page: 1 issue: 1 year: 2014 ident: e_1_2_8_21_1 publication-title: Biomedl Eng – ident: e_1_2_8_2_1 doi: 10.1109/RBME.2016.2515127 – ident: e_1_2_8_34_1 doi: 10.1109/CVPR.2017.106 – ident: e_1_2_8_9_1 doi: 10.1002/cyto.a.22457 – ident: e_1_2_8_25_1 doi: 10.1109/CVPR.2016.90 |
SSID | ssj0060353 |
Score | 2.4379816 |
Snippet | Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e201800488 |
SubjectTerms | Acquired immune deficiency syndrome AIDS Artificial neural networks bright field microscope Cell morphology cell segmentation Cell size Cytology deep neural networks Digital imaging Erythrocytes Hepatitis Image acquisition Image analysis Image processing Image segmentation Impurities Information processing Leukemia Leukocytes Localization Morphology Neural networks Smear white blood cells |
Title | LeukocyteMask: An automated localization and segmentation method for leukocyte in blood smear images using deep neural networks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.201800488 https://www.ncbi.nlm.nih.gov/pubmed/30891934 https://www.proquest.com/docview/2250396564 https://www.proquest.com/docview/2194587291 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQT-UApXwtlMpISJzcxnbijbmVlqpUFCREpb1F_qyW7XqrJjnAhb_ecZyELgghwS1R7GSSzIyfk3nPCL1ipeLGs4JIJ0uSW8WJlAUn1AjnuBKlNJE7fPZRnJznp7NidovFn_Qhxg9uMTK6fB0DXOl6_6do6Fc9j-Q9WnZOCEmYchHF848-j_pRIuOdDCUtRU5gLJ4Nqo0Z21_vvj4q_QY115FrN_Qc30dqMDpVnCz22kbvme-_6Dn-z11toXs9LsUHyZEeoDsubKO7t9QKH6IfH1y7WJlvjTtT9eINPghYtc0KIK-zuBsTe04nVsHi2l0se15TwGmdagwAGV8OJ8HzgLuyeVwvIdzwfAmprcaxEP8CW-eucNTaBJtCqlSvH6Hz43dfDk9Iv34DMVEviVCmHRVTRakCFKOl94X3zPNCFUJnUhfGasFgxsSoN9ZEXr72UzGlMqqW5Rl_jDbCKrinCFsbOcQis1bzyK2VPqdaWm2NkRrS9QSR4f1Vphc3j2tsXFZJlplV8cFW44OdoNdj-6sk6_HHljuDO1R9eNcVJEGwB6BwPkEvx8MQmPFviwpu1UIbKsFSmLuAcU-SG42X4lkpATlDb9Y5w19sqE7fvv807j37l07P0SZsy1RovIM2muvWvQA41ejdLmRuAP67GEc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD78fSAkZC4uQ2thNv3FtpqbZlt0iolXqL_Eq1bNdbkeQAF_464zgJLAghwTGJnUyceXx2Zj4j9JrlipuSZUQ6mZPUKk6kzDihRjjHlcilCbXDsxMxOUuPz7M-mzDUwkR-iGHBLVhG66-DgYcF6Z0frKGf9DxU79G81cLr6EYKaCPMvw4-DgxSIuEtESXNRUogGp_3vI0J21nvvx6XfgOb69i1DT6Hd5HuxY45J4vtptbb5usvjI7_9V730J0OmuK9qEv30TXnH6DbPxEWPkTfpq5ZrMyX2s1UtdjFex6rpl4B6nUWt2GxK-vEyltcuYtlV9rkcdyqGgNGxpf9TfDc4zZzHldLsDg8X4J3q3DIxb_A1rkrHOg2QSYfk9WrR-js8N3p_oR0WzgQEyiTCGXaUTFWlCoAMlqWZVaWrOSZyoROpM6M1YLBpInR0lgTSvN1ORZjKgNxWZrwx2jDr7x7irC1oYxYJNZqHsprZZlSLa22xkgNHnuESP8BC9Pxm4dtNi6LyMzMijCwxTCwI_RmaH8VmT3-2HKr14eis_CqAD8I8gAaTkfo1XAZbDP8cFHerRpoQyVICtMXEO5J1KPhUTzJJYBn6M1abfiLDMXx26MPw9Gzf-n0Et2cnM6mxfTo5P0mugXnZcw73kIb9efGPQd0VesXrf18B4LeHGY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgO5VlYKGAkJE5uYzvxxtzKY9WWtiBEpb1FflbLdrOrJjnAhb_OOE5CF4SQ4JjETibJzPhzMt9nhF6wXHHjWUakkzlJreJEyowTaoRzXIlcmsAdPj4R-6fp4TSbXmLxR32I4YNbiIw2X4cAX1m_-1M09IueBfIezVsnvIqupQLgRIBFnwYBKZHwVoeS5iIlMBhPe9nGhO2u918fln7DmuvQtR17JreQ6q2OJSfznabWO-bbL4KO_3Nbt9FmB0zxXvSkO-iKK--im5fkCu-h70eumS_N19odq2r-Cu-VWDX1EjCvs7gdFDtSJ1alxZU7W3TEphLHhaoxIGR83p8Ez0rc1s3jagHxhmcLyG0VDpX4Z9g6t8JBbBNsKmOpenUfnU7efX6zT7oFHIgJgkmEMu2oGCtKFcAYLb3PvGeeZyoTOpE6M1YLBlMmRr2xJhDztR-LMZVBtixN-BbaKJele4iwtYFELBJrNQ_kWulTqqXV1hipIV-PEOnfX2E6dfOwyMZ5EXWZWREebDE82BF6ObRfRV2PP7bc7t2h6OK7KiALgj2AhdMRej4chsgMv1tU6ZYNtKESLIXJCxj3ILrRcCme5BKgM_RmrTP8xYbi8PXBh2Hr0b90eoauf3w7KY4OTt4_Rjdgt4xFx9too75o3BOAVrV-2kbPDxSLGxU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LeukocyteMask%3A+An+automated+localization+and+segmentation+method+for+leukocyte+in+blood+smear+images+using+deep+neural+networks&rft.jtitle=Journal+of+biophotonics&rft.au=Fan%2C+Haoyi&rft.au=Zhang%2C+Fengbin&rft.au=Xi%2C+Liang&rft.au=Li%2C+Zuoyong&rft.date=2019-07-01&rft.pub=WILEY%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=1864-063X&rft.eissn=1864-0648&rft.volume=12&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjbio.201800488&rft.externalDBID=10.1002%252Fjbio.201800488&rft.externalDocID=JBIO201800488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon |