LeukocyteMask: An automated localization and segmentation method for leukocyte in blood smear images using deep neural networks

Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune...

Full description

Saved in:
Bibliographic Details
Published inJournal of biophotonics Vol. 12; no. 7; pp. e201800488 - n/a
Main Authors Fan, Haoyi, Zhang, Fengbin, Xi, Liang, Li, Zuoyong, Liu, Guanghai, Xu, Yong
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.07.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1864-063X
1864-0648
1864-0648
DOI10.1002/jbio.201800488

Cover

Abstract Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end‐to‐end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel‐level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state‐of‐the‐art performance for the segmentation of leukocyte in terms of robustness and accuracy . In this paper, an end‐to‐end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel‐level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network.
AbstractList Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end‐to‐end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel‐level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state‐of‐the‐art performance for the segmentation of leukocyte in terms of robustness and accuracy . In this paper, an end‐to‐end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel‐level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network.
Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end‐to‐end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel‐level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state‐of‐the‐art performance for the segmentation of leukocyte in terms of robustness and accuracy
Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end-to-end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel-level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state-of-the-art performance for the segmentation of leukocyte in terms of robustness and accuracy .
Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end-to-end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel-level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state-of-the-art performance for the segmentation of leukocyte in terms of robustness and accuracy .Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood smear images, acquired from bright field microscope, are vital for diagnosing many diseases such as hepatitis, leukaemia and acquired immune deficiency syndrome (AIDS). The major challenge for robust and accurate identification and segmentation of leukocyte in blood smear images lays in the large variations of cell appearance such as size, colour and shape of cells, the adhesion between leukocytes (white blood cells, WBCs) and erythrocytes (red blood cells, RBCs), and the emergence of substantial dyeing impurities in blood smear images. In this paper, an end-to-end leukocyte localization and segmentation method is proposed, named LeukocyteMask, in which pixel-level prior information is utilized for supervisor training of a deep convolutional neural network, which is then employed to locate the region of interests (ROI) of leukocyte, and finally segmentation mask of leukocyte is obtained based on the extracted ROI by forward propagation of the network. Experimental results validate the effectiveness of the propose method and both the quantitative and qualitative comparisons with existing methods indicate that LeukocyteMask achieves a state-of-the-art performance for the segmentation of leukocyte in terms of robustness and accuracy .
Author Xu, Yong
Fan, Haoyi
Li, Zuoyong
Zhang, Fengbin
Liu, Guanghai
Xi, Liang
Author_xml – sequence: 1
  givenname: Haoyi
  surname: Fan
  fullname: Fan, Haoyi
  organization: Harbin University of Science and Technology
– sequence: 2
  givenname: Fengbin
  surname: Zhang
  fullname: Zhang, Fengbin
  email: zhangfengbin@hrbust.edu.cn
  organization: Harbin University of Science and Technology
– sequence: 3
  givenname: Liang
  surname: Xi
  fullname: Xi, Liang
  organization: Harbin University of Science and Technology
– sequence: 4
  givenname: Zuoyong
  surname: Li
  fullname: Li, Zuoyong
  email: fzulzytdq@126.com
  organization: Fujian University of Traditional Chinese Medicine
– sequence: 5
  givenname: Guanghai
  surname: Liu
  fullname: Liu, Guanghai
  organization: Guangxi Normal University
– sequence: 6
  givenname: Yong
  surname: Xu
  fullname: Xu, Yong
  organization: Harbin Institute of Technology (Shenzhen)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30891934$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEUx4NU7A-9epSAFy-75vfMeGuL1cpKLwrehmTmZc1uJlmTGcp68V9vyrQrFMTTC4_P5yV531N0FGIAhF5TsqSEsPcb4-KSEVoTIur6GTqhtRILokR9dDjzH8foNOcNIYpwyV-gY07qhjZcnKA_K5i2sduP8FXn7Qd8HrCexjjoEXrsY6e9-61HF0s79DjDeoAwzo0Bxp-xxzYm7B-HYBew8bG08wA6YTfoNWQ8ZRfWuAfY4QBT0r6U8TambX6JnlvtM7x6qGfo-9XHb5efF6ubT9eX56tFxyteLygzQFWlKdWE1aaxVlrLLJdaKkMaI7veKCbqilHb9R1hUhhbqYo2UiouCD9D7-a5uxR_TZDHdnC5A-91gDjlltFGyKI3tKBvn6CbOKVQXtcyJglvlFSiUG8eqMkM0Le7VP6a9u3jaguwnIEuxZwT2ANCSXufXXufXXvIrgjiidC5edVj0s7_W2tm7dZ52P_nkvbLxfXNX_cOyDivcQ
CitedBy_id crossref_primary_10_1007_s11063_020_10321_9
crossref_primary_10_1155_2022_6347307
crossref_primary_10_1007_s11760_019_01586_2
crossref_primary_10_1186_s12880_022_00801_w
crossref_primary_10_1002_int_22753
crossref_primary_10_1002_jbio_202300196
crossref_primary_10_54365_adyumbd_1069856
crossref_primary_10_1109_ACCESS_2020_2964271
crossref_primary_10_1016_j_bspc_2023_105243
crossref_primary_10_1002_cyto_a_24832
crossref_primary_10_1016_j_eswa_2024_125390
crossref_primary_10_1016_j_compbiomed_2023_106551
crossref_primary_10_3390_s24206682
crossref_primary_10_1002_cpe_5844
crossref_primary_10_1109_ACCESS_2020_3048172
crossref_primary_10_1016_j_asoc_2020_106884
crossref_primary_10_1109_ACCESS_2022_3171916
crossref_primary_10_1016_j_bspc_2022_103590
crossref_primary_10_1016_j_knosys_2024_112648
crossref_primary_10_1007_s11042_024_18373_y
crossref_primary_10_1155_2021_9933481
crossref_primary_10_1186_s12859_022_04602_4
crossref_primary_10_1016_j_bspc_2024_106820
crossref_primary_10_1016_j_compbiomed_2022_106028
crossref_primary_10_1109_ACCESS_2020_3021660
crossref_primary_10_1016_j_bspc_2022_104518
crossref_primary_10_32604_csse_2023_029597
crossref_primary_10_3233_JIFS_189773
crossref_primary_10_1016_j_jpi_2024_100390
crossref_primary_10_1016_j_asoc_2020_107006
crossref_primary_10_1002_jbio_202200244
crossref_primary_10_1109_ACCESS_2019_2946681
crossref_primary_10_1002_jbio_201960186
crossref_primary_10_1109_ACCESS_2021_3083703
crossref_primary_10_3324_haematol_2021_280209
crossref_primary_10_1109_TIM_2023_3235434
crossref_primary_10_1088_1742_6596_1999_1_012140
crossref_primary_10_3389_fonc_2023_1223353
crossref_primary_10_1016_j_compbiomed_2020_104034
crossref_primary_10_1007_s11517_023_02955_3
crossref_primary_10_1109_JBHI_2023_3238726
crossref_primary_10_1002_cpe_6462
crossref_primary_10_1016_j_bbe_2020_02_005
crossref_primary_10_3390_s23177640
crossref_primary_10_1002_jbio_202200174
crossref_primary_10_3389_fphy_2022_812192
crossref_primary_10_1109_TEM_2021_3103549
crossref_primary_10_1186_s12911_023_02153_z
crossref_primary_10_3390_s22155520
crossref_primary_10_1002_ila2_10
crossref_primary_10_1364_BOE_462905
crossref_primary_10_3390_bioengineering11090937
Cites_doi 10.1109/TPAMI.2018.2789887
10.1007/s00138-016-0812-4
10.1007/s11265-008-0201-y
10.1109/ACCESS.2017.2784800
10.3390/s140916128
10.1016/j.patcog.2012.05.006
10.1016/j.micron.2013.09.006
10.1186/1471-2105-14-173
10.1016/j.patcog.2015.10.009
10.1002/jbio.201800146
10.1016/j.neunet.2018.02.002
10.1016/j.micron.2018.01.010
10.1016/j.jss.2012.04.012
10.1109/TIP.2018.2847422
10.1007/11540007_98
10.1016/j.compmedimag.2011.01.003
10.3390/s150306688
10.1109/TPAMI.2016.2572683
10.1016/j.patcog.2015.02.005
10.1109/TMI.2011.2141674
10.1186/1471-2105-14-S10-S6
10.1002/jbio.201700003
10.1109/RBME.2016.2515127
10.1109/CVPR.2017.106
10.1002/cyto.a.22457
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
DOI 10.1002/jbio.201800488
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Technology Research Database
Electronics & Communications Abstracts
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-0648
EndPage n/a
ExternalDocumentID 30891934
10_1002_jbio_201800488
JBIO201800488
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Heilongjiang Province
  funderid: F2018019
– fundername: Project for Innovative Talents in University of Heilongjiang Province of China
  funderid: UNPYSCT‐2015048
– fundername: Natural Science Foundation of Fujian Province
– fundername: Fujian Provincial Leading Project
  funderid: 2017H0030
– fundername: National Natural Science Foundation of China
  funderid: 61172168; 61772254
– fundername: Key Project of College Youth Natural Science Foundation of Fujian Province
  funderid: JZ160467
– fundername: Project for Innovative Talents in University of Heilongjiang Province of China
  grantid: UNPYSCT-2015048
– fundername: Fujian Provincial Leading Project
  grantid: 2017H0030
– fundername: National Natural Science Foundation of China
  grantid: 61172168
– fundername: Natural Science Foundation of Heilongjiang Province
  grantid: F2018019
– fundername: National Natural Science Foundation of China
  grantid: 61772254
– fundername: Key Project of College Youth Natural Science Foundation of Fujian Province
  grantid: JZ160467
GroupedDBID ---
05W
0R~
1OC
31~
33P
3SF
4.4
52U
52V
53G
5DZ
5GY
66C
8-0
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NNB
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7SP
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JG9
K9.
L7M
P64
7X8
ID FETCH-LOGICAL-c3738-12be167a11a028b9ff5ff2f35a56b09b5cdb6248721fcdc0254bf767195563403
IEDL.DBID DR2
ISSN 1864-063X
1864-0648
IngestDate Fri Jul 11 02:54:20 EDT 2025
Sun Jul 13 03:54:29 EDT 2025
Thu Apr 03 07:02:17 EDT 2025
Thu Apr 24 23:05:38 EDT 2025
Tue Jul 01 01:54:36 EDT 2025
Wed Jan 22 16:40:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords bright field microscope
cell segmentation
white blood cells
deep neural networks
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-12be167a11a028b9ff5ff2f35a56b09b5cdb6248721fcdc0254bf767195563403
Notes Funding information
Fujian Provincial Leading Project, Grant/Award Number: 2017H0030; Key Project of College Youth Natural Science Foundation of Fujian Province, Grant/Award Number: JZ160467; Project for Innovative Talents in University of Heilongjiang Province of China, Grant/Award Number: UNPYSCT‐2015048; Natural Science Foundation of Fujian Province; Natural Science Foundation of Heilongjiang Province, Grant/Award Number: F2018019; National Natural Science Foundation of China, Grant/Award Numbers: 61172168, 61772254
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30891934
PQID 2250396564
PQPubID 1006377
PageCount 17
ParticipantIDs proquest_miscellaneous_2194587291
proquest_journals_2250396564
pubmed_primary_30891934
crossref_primary_10_1002_jbio_201800488
crossref_citationtrail_10_1002_jbio_201800488
wiley_primary_10_1002_jbio_201800488_JBIO201800488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
– name: Jena
PublicationTitle Journal of biophotonics
PublicationTitleAlternate J Biophotonics
PublicationYear 2019
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2015; 15
2012
2010
2018; 107
2018; 102
2009
2011; 30
2016; 52
2005
2011; 35
2008; 55
2018; 40
2003
2014; 85
2011; 38
2014; 20
2018; 6
2015; 48
2013; 14
2017; 39
2017; 11
2019; 28
2014; 14
2018
2017
2016
2015
2014
2018; 11
2012; 45
2016; 27
2014; 56
2016; 9
2012; 85
e_1_2_8_28_1
Yi F. (e_1_2_8_14_1) 2005
Prinyakupt J. (e_1_2_8_21_1) 2014; 20
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_27_1
Pan C. (e_1_2_8_19_1) 2009
Girshick R. (e_1_2_8_42_1) 2015
Lin T.‐Y. (e_1_2_8_26_1) 2017
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
Simard P. Y. (e_1_2_8_36_1) 2003
Singh V. K. (e_1_2_8_44_1) 2018
e_1_2_8_17_1
Ren S. (e_1_2_8_41_1) 2015
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_16_1
Zhang L. (e_1_2_8_31_1) 2017
Nair V. (e_1_2_8_40_1) 2010
Simonyan K. (e_1_2_8_38_1) 2014
Ioffe S. (e_1_2_8_39_1) 2015
Krizhevsky A. (e_1_2_8_37_1) 2012
e_1_2_8_32_1
e_1_2_8_10_1
Saidi M. (e_1_2_8_23_1) 2016
e_1_2_8_11_1
e_1_2_8_34_1
He K. (e_1_2_8_35_1) 2017
e_1_2_8_12_1
e_1_2_8_33_1
Pan C. (e_1_2_8_18_1) 2011; 38
Ronneberger O. (e_1_2_8_30_1) 2015
References_xml – start-page: 2117
  year: 2017
– volume: 40
  start-page: 3034
  year: 2018
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 55
  start-page: 169
  year: 2008
  publication-title: J Signal Processing Systems.
– volume: 35
  start-page: 333
  year: 2011
  publication-title: Comput. Med. Imaging Graph.
– volume: 15
  start-page: 22561
  year: 2015
  publication-title: Sensors.
– start-page: 91
  year: 2015
– start-page: 958
  year: 2003
– start-page: 1440
  year: 2015
– volume: 107
  start-page: 55
  year: 2018
  publication-title: Micron
– start-page: 31
  year: 2016
  publication-title: MedPRAI
– volume: 27
  start-page: 1
  year: 2016
  publication-title: Mach Vis Appl.
– volume: 20
  start-page: 1
  issue: 1
  year: 2014
  publication-title: Biomedl Eng
– start-page: 787
  year: 2005
– volume: 85
  start-page: 480
  year: 2014
  publication-title: Cytometry
– start-page: 336
  year: 2009
– start-page: 807
  year: 2010
– start-page: 833
  year: 2018
– volume: 45
  start-page: 4151
  year: 2012
  publication-title: Pattern Recogn
– volume: 14
  start-page: 173
  year: 2013
  publication-title: BMC Bioinformatics
– volume: 52
  start-page: 317
  year: 2016
  publication-title: Pattern Recogn
– volume: 38
  start-page: 7479
  year: 2011
  publication-title: Expert Syst Appl.
– volume: 11
  start-page: e201800146
  year: 2018
  publication-title: J. Biophotonics
– year: 2014
– volume: 14
  start-page: 16128
  year: 2014
  publication-title: Sensors.
– start-page: 6476
  year: 2005
  publication-title: Proc IEEE Conf Eng Med Biol
– volume: 39
  start-page: 640
  year: 2017
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2980
  year: 2017
– start-page: 448
  year: 2015
– volume: 28
  start-page: 6
  year: 2019
  publication-title: IEEE Trans Image Process
– volume: 30
  start-page: 1661
  year: 2011
  publication-title: IEEE Trans. Med. Imaging
– volume: 6
  start-page: 7445
  year: 2018
  publication-title: IEEE Access.
– start-page: 234
  year: 2015
– volume: 85
  start-page: 2104
  year: 2012
  publication-title: J Syst Software.
– volume: 102
  start-page: 36
  year: 2018
  publication-title: Neu Networks.
– volume: 11
  start-page: e201700003
  year: 2017
  publication-title: J. Biophotonics
– volume: 56
  start-page: 17
  year: 2014
  publication-title: Micron
– start-page: 1097
  year: 2012
– year: 2017
– volume: 14
  start-page: 1
  year: 2013
  publication-title: BMC Bioinformatics.
– volume: 48
  start-page: 2554
  year: 2015
  publication-title: Pattern Recogn
– start-page: 770
  year: 2016
– start-page: 936
  year: 2017
– volume: 9
  start-page: 234
  year: 2016
  publication-title: IEEE Rev Biomed Eng
– ident: e_1_2_8_27_1
  doi: 10.1109/TPAMI.2018.2789887
– volume-title: ISBI
  year: 2017
  ident: e_1_2_8_31_1
– start-page: 958
  volume-title: Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis
  year: 2003
  ident: e_1_2_8_36_1
– ident: e_1_2_8_17_1
  doi: 10.1007/s00138-016-0812-4
– ident: e_1_2_8_22_1
  doi: 10.1007/s11265-008-0201-y
– ident: e_1_2_8_28_1
  doi: 10.1109/ACCESS.2017.2784800
– ident: e_1_2_8_5_1
  doi: 10.3390/s140916128
– ident: e_1_2_8_7_1
  doi: 10.1016/j.patcog.2012.05.006
– ident: e_1_2_8_10_1
  doi: 10.1016/j.micron.2013.09.006
– volume: 38
  start-page: 7479
  year: 2011
  ident: e_1_2_8_18_1
  publication-title: Expert Syst Appl.
– ident: e_1_2_8_16_1
  doi: 10.1186/1471-2105-14-173
– volume-title: Very Deep Convolutional Networks for Large‐Scale Image Recognition
  year: 2014
  ident: e_1_2_8_38_1
– start-page: 1440
  volume-title: Fast R‐CNN, ICCV
  year: 2015
  ident: e_1_2_8_42_1
– start-page: 833
  volume-title: Conditional Generative Adversarial and Convolutional Networks for X‐ray Breast Mass Segmentation and Shape Classification, MICCAI
  year: 2018
  ident: e_1_2_8_44_1
– ident: e_1_2_8_13_1
  doi: 10.1016/j.patcog.2015.10.009
– start-page: 336
  volume-title: Segmentation of Blood and Bone Marrow Cell Images via Learning by Sampling
  year: 2009
  ident: e_1_2_8_19_1
– start-page: 807
  volume-title: Rectified Linear Units Improve Restricted Boltzmann Machines, ICML
  year: 2010
  ident: e_1_2_8_40_1
– ident: e_1_2_8_32_1
  doi: 10.1002/jbio.201800146
– start-page: 448
  volume-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML
  year: 2015
  ident: e_1_2_8_39_1
– start-page: 91
  volume-title: Faster R‐CNN: Towards Real‐Time Object Detection with Region Proposal Networks NIPS
  year: 2015
  ident: e_1_2_8_41_1
– ident: e_1_2_8_3_1
  doi: 10.1016/j.neunet.2018.02.002
– ident: e_1_2_8_20_1
  doi: 10.1016/j.micron.2018.01.010
– start-page: 234
  volume-title: U‐Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI
  year: 2015
  ident: e_1_2_8_30_1
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jss.2012.04.012
– ident: e_1_2_8_11_1
  doi: 10.1109/TIP.2018.2847422
– start-page: 31
  year: 2016
  ident: e_1_2_8_23_1
  publication-title: MedPRAI
– start-page: 1097
  volume-title: Imagenet Classification with Deep Convolutional Neural Networks NIPS
  year: 2012
  ident: e_1_2_8_37_1
– ident: e_1_2_8_4_1
  doi: 10.1007/11540007_98
– ident: e_1_2_8_43_1
  doi: 10.1016/j.compmedimag.2011.01.003
– start-page: 6476
  year: 2005
  ident: e_1_2_8_14_1
  publication-title: Proc IEEE Conf Eng Med Biol
– ident: e_1_2_8_6_1
  doi: 10.3390/s150306688
– start-page: 936
  volume-title: Feature pyramid networks for object detection, CVPR,
  year: 2017
  ident: e_1_2_8_26_1
– ident: e_1_2_8_29_1
  doi: 10.1109/TPAMI.2016.2572683
– ident: e_1_2_8_12_1
  doi: 10.1016/j.patcog.2015.02.005
– start-page: 2980
  volume-title: Mask R‐CNN, ICCV
  year: 2017
  ident: e_1_2_8_35_1
– ident: e_1_2_8_15_1
  doi: 10.1109/TMI.2011.2141674
– ident: e_1_2_8_24_1
  doi: 10.1186/1471-2105-14-S10-S6
– ident: e_1_2_8_33_1
  doi: 10.1002/jbio.201700003
– volume: 20
  start-page: 1
  issue: 1
  year: 2014
  ident: e_1_2_8_21_1
  publication-title: Biomedl Eng
– ident: e_1_2_8_2_1
  doi: 10.1109/RBME.2016.2515127
– ident: e_1_2_8_34_1
  doi: 10.1109/CVPR.2017.106
– ident: e_1_2_8_9_1
  doi: 10.1002/cyto.a.22457
– ident: e_1_2_8_25_1
  doi: 10.1109/CVPR.2016.90
SSID ssj0060353
Score 2.4379816
Snippet Digital pathology and microscope image analysis is widely used in comprehensive studies of cell morphology. Identification and analysis of leukocytes in blood...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e201800488
SubjectTerms Acquired immune deficiency syndrome
AIDS
Artificial neural networks
bright field microscope
Cell morphology
cell segmentation
Cell size
Cytology
deep neural networks
Digital imaging
Erythrocytes
Hepatitis
Image acquisition
Image analysis
Image processing
Image segmentation
Impurities
Information processing
Leukemia
Leukocytes
Localization
Morphology
Neural networks
Smear
white blood cells
Title LeukocyteMask: An automated localization and segmentation method for leukocyte in blood smear images using deep neural networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.201800488
https://www.ncbi.nlm.nih.gov/pubmed/30891934
https://www.proquest.com/docview/2250396564
https://www.proquest.com/docview/2194587291
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQT-UApXwtlMpISJzcxnbijbmVlqpUFCREpb1F_qyW7XqrJjnAhb_ecZyELgghwS1R7GSSzIyfk3nPCL1ipeLGs4JIJ0uSW8WJlAUn1AjnuBKlNJE7fPZRnJznp7NidovFn_Qhxg9uMTK6fB0DXOl6_6do6Fc9j-Q9WnZOCEmYchHF848-j_pRIuOdDCUtRU5gLJ4Nqo0Z21_vvj4q_QY115FrN_Qc30dqMDpVnCz22kbvme-_6Dn-z11toXs9LsUHyZEeoDsubKO7t9QKH6IfH1y7WJlvjTtT9eINPghYtc0KIK-zuBsTe04nVsHi2l0se15TwGmdagwAGV8OJ8HzgLuyeVwvIdzwfAmprcaxEP8CW-eucNTaBJtCqlSvH6Hz43dfDk9Iv34DMVEviVCmHRVTRakCFKOl94X3zPNCFUJnUhfGasFgxsSoN9ZEXr72UzGlMqqW5Rl_jDbCKrinCFsbOcQis1bzyK2VPqdaWm2NkRrS9QSR4f1Vphc3j2tsXFZJlplV8cFW44OdoNdj-6sk6_HHljuDO1R9eNcVJEGwB6BwPkEvx8MQmPFviwpu1UIbKsFSmLuAcU-SG42X4lkpATlDb9Y5w19sqE7fvv807j37l07P0SZsy1RovIM2muvWvQA41ejdLmRuAP67GEc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD78fSAkZC4uQ2thNv3FtpqbZlt0iolXqL_Eq1bNdbkeQAF_464zgJLAghwTGJnUyceXx2Zj4j9JrlipuSZUQ6mZPUKk6kzDihRjjHlcilCbXDsxMxOUuPz7M-mzDUwkR-iGHBLVhG66-DgYcF6Z0frKGf9DxU79G81cLr6EYKaCPMvw4-DgxSIuEtESXNRUogGp_3vI0J21nvvx6XfgOb69i1DT6Hd5HuxY45J4vtptbb5usvjI7_9V730J0OmuK9qEv30TXnH6DbPxEWPkTfpq5ZrMyX2s1UtdjFex6rpl4B6nUWt2GxK-vEyltcuYtlV9rkcdyqGgNGxpf9TfDc4zZzHldLsDg8X4J3q3DIxb_A1rkrHOg2QSYfk9WrR-js8N3p_oR0WzgQEyiTCGXaUTFWlCoAMlqWZVaWrOSZyoROpM6M1YLBpInR0lgTSvN1ORZjKgNxWZrwx2jDr7x7irC1oYxYJNZqHsprZZlSLa22xkgNHnuESP8BC9Pxm4dtNi6LyMzMijCwxTCwI_RmaH8VmT3-2HKr14eis_CqAD8I8gAaTkfo1XAZbDP8cFHerRpoQyVICtMXEO5J1KPhUTzJJYBn6M1abfiLDMXx26MPw9Gzf-n0Et2cnM6mxfTo5P0mugXnZcw73kIb9efGPQd0VesXrf18B4LeHGY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgO5VlYKGAkJE5uYzvxxtzKY9WWtiBEpb1FflbLdrOrJjnAhb_OOE5CF4SQ4JjETibJzPhzMt9nhF6wXHHjWUakkzlJreJEyowTaoRzXIlcmsAdPj4R-6fp4TSbXmLxR32I4YNbiIw2X4cAX1m_-1M09IueBfIezVsnvIqupQLgRIBFnwYBKZHwVoeS5iIlMBhPe9nGhO2u918fln7DmuvQtR17JreQ6q2OJSfznabWO-bbL4KO_3Nbt9FmB0zxXvSkO-iKK--im5fkCu-h70eumS_N19odq2r-Cu-VWDX1EjCvs7gdFDtSJ1alxZU7W3TEphLHhaoxIGR83p8Ez0rc1s3jagHxhmcLyG0VDpX4Z9g6t8JBbBNsKmOpenUfnU7efX6zT7oFHIgJgkmEMu2oGCtKFcAYLb3PvGeeZyoTOpE6M1YLBlMmRr2xJhDztR-LMZVBtixN-BbaKJele4iwtYFELBJrNQ_kWulTqqXV1hipIV-PEOnfX2E6dfOwyMZ5EXWZWREebDE82BF6ObRfRV2PP7bc7t2h6OK7KiALgj2AhdMRej4chsgMv1tU6ZYNtKESLIXJCxj3ILrRcCme5BKgM_RmrTP8xYbi8PXBh2Hr0b90eoauf3w7KY4OTt4_Rjdgt4xFx9too75o3BOAVrV-2kbPDxSLGxU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LeukocyteMask%3A+An+automated+localization+and+segmentation+method+for+leukocyte+in+blood+smear+images+using+deep+neural+networks&rft.jtitle=Journal+of+biophotonics&rft.au=Fan%2C+Haoyi&rft.au=Zhang%2C+Fengbin&rft.au=Xi%2C+Liang&rft.au=Li%2C+Zuoyong&rft.date=2019-07-01&rft.pub=WILEY%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=1864-063X&rft.eissn=1864-0648&rft.volume=12&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjbio.201800488&rft.externalDBID=10.1002%252Fjbio.201800488&rft.externalDocID=JBIO201800488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon