Near‐Full‐Spectrum Emission Realized in a Single Lead Halide Perovskite across the Visible‐Light Region

The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near‐full‐spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a si...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 43; pp. e202411298 - n/a
Main Authors An, Lian‐Cai, Li, Zi‐Ying, Azeem, Muhammad, Li, Wei, Qin, Yan, Gao, Fei‐Fei, Han, Song‐De, Wang, Guo‐Ming, Bu, Xian‐He
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.10.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near‐full‐spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single‐component two‐dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3+), is reported, achieved through high‐pressure treatment. A pressure‐induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N−H⋅⋅⋅Br and O−H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red‐shifted PL emissions, leading to the near‐full‐spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites. Near‐full ‐spectrum emissions are achieved in a single component 2D lead halide perovskites by applying hydrostatic pressure.This work establishes a new pathway to achieve the PL full‐spectrum emission and provide valuable insights into the relationship between the HP‐PL emissions and high‐pressure phase transitions.
AbstractList The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near-full-spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single-component two-dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+ = (HO)(CH2)2NH3+), is reported, achieved through high-pressure treatment. A pressure-induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the bandgap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N-H…Br and O-H…Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red-shifted PL emissions, leading to the near-full-spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.
The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near-full-spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single-component two-dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3 +), is reported, achieved through high-pressure treatment. A pressure-induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N-H⋅⋅⋅Br and O-H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red-shifted PL emissions, leading to the near-full-spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near-full-spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single-component two-dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3 +), is reported, achieved through high-pressure treatment. A pressure-induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N-H⋅⋅⋅Br and O-H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red-shifted PL emissions, leading to the near-full-spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.
The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near‐full‐spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single‐component two‐dimensional (2D) hybrid lead halide perovskite, (ETA) 2 PbBr 4 (ETA + =(HO)(CH 2 ) 2 NH 3 + ), is reported, achieved through high‐pressure treatment. A pressure‐induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N−H⋅⋅⋅Br and O−H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red‐shifted PL emissions, leading to the near‐full‐spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.
The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near‐full‐spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single‐component two‐dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3+), is reported, achieved through high‐pressure treatment. A pressure‐induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N−H⋅⋅⋅Br and O−H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red‐shifted PL emissions, leading to the near‐full‐spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites. Near‐full ‐spectrum emissions are achieved in a single component 2D lead halide perovskites by applying hydrostatic pressure.This work establishes a new pathway to achieve the PL full‐spectrum emission and provide valuable insights into the relationship between the HP‐PL emissions and high‐pressure phase transitions.
The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near‐full‐spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single‐component two‐dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3+), is reported, achieved through high‐pressure treatment. A pressure‐induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N−H⋅⋅⋅Br and O−H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red‐shifted PL emissions, leading to the near‐full‐spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.
Author Qin, Yan
Li, Wei
Bu, Xian‐He
Han, Song‐De
An, Lian‐Cai
Wang, Guo‐Ming
Gao, Fei‐Fei
Azeem, Muhammad
Li, Zi‐Ying
Author_xml – sequence: 1
  givenname: Lian‐Cai
  orcidid: 0009-0003-1605-1849
  surname: An
  fullname: An, Lian‐Cai
  organization: Qingdao University
– sequence: 2
  givenname: Zi‐Ying
  surname: Li
  fullname: Li, Zi‐Ying
  organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry
– sequence: 3
  givenname: Muhammad
  surname: Azeem
  fullname: Azeem, Muhammad
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Wei
  orcidid: 0000-0002-5277-6850
  surname: Li
  fullname: Li, Wei
  email: wl276@nankai.edu.cn
  organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry
– sequence: 5
  givenname: Yan
  orcidid: 0000-0002-6187-601X
  surname: Qin
  fullname: Qin, Yan
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Fei‐Fei
  orcidid: 0000-0002-6900-817X
  surname: Gao
  fullname: Gao, Fei‐Fei
  organization: Heilongjiang University
– sequence: 7
  givenname: Song‐De
  orcidid: 0000-0001-6335-8083
  surname: Han
  fullname: Han, Song‐De
  organization: Qingdao University
– sequence: 8
  givenname: Guo‐Ming
  orcidid: 0000-0003-0156-904X
  surname: Wang
  fullname: Wang, Guo‐Ming
  email: gmwang_pub@163.com
  organization: Qingdao University
– sequence: 9
  givenname: Xian‐He
  orcidid: 0000-0002-2646-7974
  surname: Bu
  fullname: Bu, Xian‐He
  organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39011619$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URP_AlSOyxKWXLJ44WdvHqtrSSquCKHC1ZuPJ1sVJFjsBlRMfgc_IJ8HLtiBVQpxmJP_ek9-bQ7bXDz0x9hzEDIQoX2HvaVaKsgIojX7EDqAuoZBKyb28V1IWStewzw5Tusm81mL-hO1LIwDmYA5Yd0kYf37_cTaFkMfVhpoxTh1fdD4lP_T8HWHw38hx33PkV75fB-JLQsfP84Mj_pbi8CV98iNxbOKQEh-viX_0ya8CZculX1-P2Wad3Z6yxy2GRM_u5hH7cLZ4f3peLN-8vjg9WRaNVFIXADnAHFuhW63qplQImuYkaokoKqzQKagUQesQEMpauXrV1sZUDlxdKieP2PHOdxOHzxOl0eY4DYWAPQ1TslLoXJcxusroywfozTDFPv_Oym1HCmoDmXpxR02rjpzdRN9hvLX3RWag2gG_K4jU2saPOObMY0QfLAi7vZfd3sv-uVeWzR7I7p3_KTA7wVcf6PY_tD25vFj81f4CpMOpzg
CitedBy_id crossref_primary_10_1063_5_0242364
Cites_doi 10.1021/acs.inorgchem.7b02285
10.1038/s41467-020-16412-4
10.1007/s40820-021-00685-5
10.1021/jacs.3c05974
10.31635/ccschem.020.202000430
10.1016/j.ijggc.2015.05.016
10.1021/acs.accounts.1c00626
10.1039/D3SC01730C
10.1016/j.cplett.2021.139132
10.1038/s41598-019-56331-z
10.1002/adma.202102326
10.1021/acs.chemmater.9b03426
10.1107/S0021889806014075
10.1039/C8TA11992A
10.1021/jacs.6b10390
10.1002/anie.201901045
10.1002/anie.202218675
10.1002/anie.202311912
10.1021/acsenergylett.7b00807
10.1021/acs.inorgchem.7b01094
10.1002/anie.202015395
10.1126/sciadv.aav9445
10.1002/adfm.202109277
10.1021/acs.jpclett.5b01309
10.1038/s41557-020-0488-2
10.1038/s41467-020-19330-7
10.1039/C8CS00563J
10.1021/jacs.8b08691
10.1021/acsaem.1c01925
10.1021/ic048814u
10.1002/anie.202001635
10.1021/acs.cgd.1c00961
10.1002/adom.202100003
10.1021/jacs.7b06143
10.1038/s41467-019-14084-3
10.1038/s41557-023-01311-0
10.1021/acs.jpclett.1c03437
10.1002/jrs.1250260811
10.1021/jacs.2c12527
10.1039/B818330A
10.1002/smll.202300455
10.1038/s41467-022-28127-9
10.1021/acs.jpcc.9b06169
10.1021/acs.chemmater.4c00305
10.1039/C6CP03474H
10.1021/acsenergylett.2c01631
10.21105/joss.05556
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley‐VCH GmbH.
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202411298
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 39011619
10_1002_anie_202411298
ANIE202411298
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22071126; 21991143; 22375105
– fundername: National Key Research and Development Program of China
  funderid: 2022YFA1503300
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3738-113776af08f875c27a18e6e053aa04a4ad7147e1fda1a1257d5bf5994d1d527d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:11:16 EDT 2025
Fri Jul 25 11:53:19 EDT 2025
Wed Feb 19 02:09:43 EST 2025
Thu Apr 24 23:05:24 EDT 2025
Tue Jul 01 01:47:44 EDT 2025
Wed Jan 22 17:15:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords High-Pressure
2D Lead Halide Perovskite
Full-Spectrum Emission
Phase transition
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-113776af08f875c27a18e6e053aa04a4ad7147e1fda1a1257d5bf5994d1d527d3
Notes L.‐C. An and Z.‐Y Li contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6335-8083
0000-0002-5277-6850
0009-0003-1605-1849
0000-0003-0156-904X
0000-0002-6187-601X
0000-0002-2646-7974
0000-0002-6900-817X
PMID 39011619
PQID 3116171591
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_3081299984
proquest_journals_3116171591
pubmed_primary_39011619
crossref_citationtrail_10_1002_anie_202411298
crossref_primary_10_1002_anie_202411298
wiley_primary_10_1002_anie_202411298_ANIE202411298
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 21, 2024
PublicationDateYYYYMMDD 2024-10-21
PublicationDate_xml – month: 10
  year: 2024
  text: October 21, 2024
  day: 21
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2004; 43
2019; 7
2019; 9
2015; 6
2015; 39
2021; 21
2021; 4
2023; 14
2017; 2
2018; 140
2021; 3
2019; 5
2019; 31
2023; 15
2021; 785
2023; 8
2023; 145
2006; 39
2023; 19
2019; 58
2020; 59
2020; 12
2020; 11
2016; 18
2024; 36
2019; 123
2017; 139
2021; 13
2009; 11
2023; 62
2021; 12
2021; 33
1995; 26
2022; 7
2019; 48
2017; 56
2022; 13
2022; 32
2022; 55
2021; 60
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 58
  start-page: 6943
  year: 2019
  end-page: 6947
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 2913
  year: 2015
  end-page: 2918
  publication-title: J. Phys. Chem. Lett.
– volume: 39
  start-page: 607
  year: 2006
  end-page: 614
  publication-title: J. Appl. Crystallogr.
– volume: 11
  start-page: 5481
  year: 2020
  publication-title: Nat. Commun.
– volume: 14
  start-page: 6348
  year: 2023
  end-page: 6354
  publication-title: Chem. Sci.
– volume: 60
  start-page: 10082
  year: 2021
  end-page: 10088
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 387
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 6357
  year: 2019
  end-page: 6362
  publication-title: J. Mater. Chem. A
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 27051
  year: 2016
  end-page: 27066
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 672
  year: 2020
  end-page: 682
  publication-title: Nat. Chem.
– volume: 56
  start-page: 9291
  year: 2017
  end-page: 9302
  publication-title: Inorg. Chem.
– volume: 36
  start-page: 3435
  year: 2024
  end-page: 3443
  publication-title: Chem. Mater.
– volume: 2
  start-page: 2518
  year: 2017
  end-page: 2524
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 19
  year: 2009
  end-page: 32
  publication-title: CrystEngComm
– volume: 139
  start-page: 39
  issue: 1
  year: 2017
  end-page: 42
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 163
  year: 2021
  publication-title: Nano-Micro Lett.
– volume: 3
  start-page: 2203
  year: 2021
  end-page: 2210
  publication-title: CCS Chem.
– volume: 145
  start-page: 21330
  year: 2023
  end-page: 21343
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 5556
  year: 2023
  publication-title: J. Open Source Softw.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 8361
  year: 2004
  end-page: 8366
  publication-title: Inorg. Chem.
– volume: 55
  start-page: 345
  year: 2022
  end-page: 353
  publication-title: Acc. Chem. Res.
– volume: 785
  year: 2021
  publication-title: Chem. Phys. Lett.
– volume: 31
  start-page: 9098
  year: 2019
  end-page: 9104
  publication-title: Chem. Mater.
– volume: 9
  start-page: 19745
  year: 2019
  publication-title: Sci. Rep.
– volume: 11
  start-page: 2617
  year: 2020
  publication-title: Nat. Commun.
– volume: 56
  start-page: 14991
  year: 2017
  end-page: 14998
  publication-title: Inorg. Chem.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 123
  start-page: 22491
  year: 2019
  end-page: 22498
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 653
  year: 1995
  end-page: 661
  publication-title: J. Raman Spectrosc.
– volume: 140
  start-page: 13078
  year: 2018
  end-page: 13088
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 11956
  year: 2017
  end-page: 11963
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 483
  year: 2022
  publication-title: Nat. Commun.
– volume: 12
  start-page: 11371
  year: 2021
  end-page: 11377
  publication-title: J. Phys. Chem. Lett.
– volume: 21
  start-page: 6619
  year: 2021
  end-page: 6634
  publication-title: Cryst. Growth Des.
– volume: 4
  start-page: 10003
  year: 2021
  end-page: 10011
  publication-title: ACS Appl. Energ. Mater.
– volume: 39
  start-page: 139
  year: 2015
  end-page: 147
  publication-title: Int. J. Greenhouse Gas Control
– volume: 59
  start-page: 17533
  year: 2020
  end-page: 17539
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 3423
  year: 2022
  end-page: 3431
  publication-title: ACS Energy Lett.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 145
  start-page: 8908
  year: 2023
  end-page: 8916
  publication-title: J. Am. Chem. Soc.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 48
  start-page: 517
  year: 2019
  end-page: 539
  publication-title: Chem. Soc. Rev.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 15
  start-page: 1745
  year: 2023
  end-page: 1753
  publication-title: Nat. Chem.
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.inorgchem.7b02285
– ident: e_1_2_8_1_1
  doi: 10.1038/s41467-020-16412-4
– ident: e_1_2_8_17_1
  doi: 10.1007/s40820-021-00685-5
– ident: e_1_2_8_12_1
  doi: 10.1021/jacs.3c05974
– ident: e_1_2_8_23_1
  doi: 10.31635/ccschem.020.202000430
– ident: e_1_2_8_41_1
  doi: 10.1016/j.ijggc.2015.05.016
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.accounts.1c00626
– ident: e_1_2_8_29_1
  doi: 10.1039/D3SC01730C
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cplett.2021.139132
– ident: e_1_2_8_44_1
  doi: 10.1038/s41598-019-56331-z
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202102326
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.chemmater.9b03426
– ident: e_1_2_8_42_1
  doi: 10.1107/S0021889806014075
– ident: e_1_2_8_25_1
  doi: 10.1039/C8TA11992A
– ident: e_1_2_8_47_1
  doi: 10.1021/jacs.6b10390
– ident: e_1_2_8_6_1
  doi: 10.1002/anie.201901045
– ident: e_1_2_8_19_1
  doi: 10.1002/anie.202218675
– ident: e_1_2_8_2_1
  doi: 10.1002/anie.202311912
– ident: e_1_2_8_30_1
  doi: 10.1021/acsenergylett.7b00807
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.inorgchem.7b01094
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.202015395
– ident: e_1_2_8_31_1
  doi: 10.1126/sciadv.aav9445
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.202109277
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.jpclett.5b01309
– ident: e_1_2_8_16_1
  doi: 10.1038/s41557-020-0488-2
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-020-19330-7
– ident: e_1_2_8_8_1
  doi: 10.1039/C8CS00563J
– ident: e_1_2_8_21_1
  doi: 10.1021/jacs.8b08691
– ident: e_1_2_8_28_1
  doi: 10.1021/acsaem.1c01925
– ident: e_1_2_8_24_1
  doi: 10.1021/ic048814u
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.202001635
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.cgd.1c00961
– ident: e_1_2_8_18_1
  doi: 10.1002/adom.202100003
– ident: e_1_2_8_9_1
  doi: 10.1021/jacs.7b06143
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-019-14084-3
– ident: e_1_2_8_15_1
  doi: 10.1038/s41557-023-01311-0
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.jpclett.1c03437
– ident: e_1_2_8_39_1
  doi: 10.1002/jrs.1250260811
– ident: e_1_2_8_33_1
  doi: 10.1021/jacs.2c12527
– ident: e_1_2_8_46_1
  doi: 10.1039/B818330A
– ident: e_1_2_8_32_1
  doi: 10.1002/smll.202300455
– ident: e_1_2_8_3_1
  doi: 10.1038/s41467-022-28127-9
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.jpcc.9b06169
– ident: e_1_2_8_48_1
  doi: 10.1021/acs.chemmater.4c00305
– ident: e_1_2_8_37_1
  doi: 10.1039/C6CP03474H
– ident: e_1_2_8_10_1
  doi: 10.1021/acsenergylett.2c01631
– ident: e_1_2_8_35_1
  doi: 10.1107/S0021889806014075
– ident: e_1_2_8_36_1
  doi: 10.21105/joss.05556
SSID ssj0028806
Score 2.4884498
Snippet The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a...
The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202411298
SubjectTerms 2D Lead Halide Perovskite
Cations
Crystal structure
Emission
Emissions
Full-Spectrum Emission
High pressure
Hydrogen bonding
Hydrogen bonds
Lead compounds
Metal halides
Orthorhombic phase
Perovskites
Phase Transition
Phase transitions
Photoluminescence
Photons
Title Near‐Full‐Spectrum Emission Realized in a Single Lead Halide Perovskite across the Visible‐Light Region
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202411298
https://www.ncbi.nlm.nih.gov/pubmed/39011619
https://www.proquest.com/docview/3116171591
https://www.proquest.com/docview/3081299984
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9NvGwv_NuAQDd5EtKeArXjxvFjhYoKmqoJBuItcmJbqmhTRFseeOIj8Bn5JNwlTbYOIST2lESxncT2-X538f0OYB-1SJwoj5JmMgrJcUmYSLRSVMadjmTmRV7uthjE_Qt5etW5-iuKv-KHaBxuJBnlek0CbrLp4R_SUIrARvsONRCqLIr2pQ1bhIrOGv4ogZOzCi-KopCy0NesjW1xuFx9WSu9gJrLyLVUPcdrYOqXrnacXB_MZ9lBfv8Pn-P_fNU6rC5wKetWE2kDPrhiEz4e1engPsN4gDLx9PBINiseKG_97HY-Zj0sQB43doaQc3jvLBsWzLBzVIkjxyiDJ-vjDevYL3c7uZuSt5iZshsYgk92OUShHDls8if5CbAZ2iH9BS6Oe7-P-uEiV0OYEzdSyIm5MDa-nXi0gHKhDE9cTHknjGlLI41VXCrHvTXcIKhStpP5jtbSctsRykZbsFJMCrcDzFmvYx8rYxFOytgkWmqrRJ7j-uNi7QMI67FK8wWROeXTGKUVBbNIqRPTphMD-NGUv6koPF4t2aqHPl2I8jSNOJmAiPp4AN-b29i39GfFFG4yxzIIrFCv60QGsF1NmeZR5FTCFnQAohz4N94h7Q5Oes3V7nsq7cEnOicNK3gLVnA2uK8InWbZt1I8ngEmLREW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VciiX8k8XChgJxGnb2Ous1wcOVZsqoSFC_UG9Ld61LUWkG9Q0IHrqI_RVeBUegSdhZv9QQAgJqQdOUbKO12vPeL6Z9XwD8BytSJwoj5pmMkrJcUmYSPRSVMadjmTmRV6ethjF_SP5-rh7vARfm1yYih-iDbiRZpT7NSk4BaQ3f7KGUgo2OnhogtBmJfW5yj335TN6bbNXgx1c4hdC7PYOt_thXVggzInIJ-REsxcb30k8wvVcKMMTF1ORBGM60khjFZfKcW8NN4gAlO1mvqu1tNx2hbIR9nsNrlMZcaLr39lvGasEqkOV0BRFIdW9b3giO2JzcbyLdvA3cLuIlUtjt3sTvjXTVJ1x-bAxP8s28vNfGCT_q3m8Bas19GZbla7chiVX3IGV7abi3V04GeGgvl9ckluOHweUhHo6P2E9bEBBRbaPqHp87iwbF8ywA7T6E8eoSCnr4wXr2Ft3Ov00o4A4M-W8M8TX7N0Y952Jwy6HFArBbugQ-D04upKnvQ_LxbRwa8Cc9Tr2sTIWEbOMTaKltkrkOW6xLtY-gLARjjSvudqpZMgkrVimRUqLlraLFsDLtv3HiqXkjy3XG1lL691qlkacvFwEtjyAZ-1lnFt6eWQKN51jG8SOCF10IgN4UMloeyuKm2EPOgBRStpfxpBujQa99tvDf_nTU1jpH74ZpsPBaO8R3KDfCVAIvg7LKBnuMSLFs-xJqZsM3l-1EP8ANcdttw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIgEX_qELBYwE4rRt7HXW6wOHqkmU0CqqWop6W7xrW4qabqqmAdETj8Cj8Cq8Ak_CzP6hgBASUg-comQdr9ee8Xwz6_kG4AVakThRHjXNZJSS45IwkeilqIw7HcnMi7w8bTGOh4fyzVH3aAW-NrkwFT9EG3AjzSj3a1LwU-s3f5KGUgY2-ndogdBkJfWxyh336SM6bfPXox6u8EshBv2328OwrisQ5sTjE3Ji2YuN7yQe0XoulOGJi6lGgjEdaaSxikvluLeGGwQAynYz39VaWm67QtkI-70CV2Xc0VQsorffElYJ1IYqnymKQip739BEdsTm8niXzeBv2HYZKpe2bnALvjWzVB1xOd5YnGcb-cUvBJL_0zTehps18GZblabcgRVX3IXr2029u3twMsZBff_8hZxy_DigFNSzxQnrYwMKKbJ9xNSTC2fZpGCGHaDNnzpGJUrZEC9Yx_bc2ezDnMLhzJTTzhBds3cT3HWmDrvcpUAIdkNHwO_D4aU87QNYLWaFWwPmrNexj5WxiJdlbBIttVUiz3GDdbH2AYSNbKR5zdROBUOmacUxLVJatLRdtABete1PK46SP7Zcb0QtrfeqeRpx8nER1vIAnreXcW7p1ZEp3GyBbRA5InDRiQzgYSWi7a0oaoY96ABEKWh_GUO6NR7122-P_uVPz-DaXm-Q7o7GO4_hBv1MaELwdVhFwXBPECaeZ09LzWTw_rJl-AdgoWxm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near%E2%80%90Full%E2%80%90Spectrum+Emission+Realized+in+a+Single+Lead+Halide+Perovskite+across+the+Visible%E2%80%90Light+Region&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=An%2C+Lian%E2%80%90Cai&rft.au=Li%2C+Zi%E2%80%90Ying&rft.au=Azeem%2C+Muhammad&rft.au=Li%2C+Wei&rft.date=2024-10-21&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002%2Fanie.202411298&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202411298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon