Near‐Full‐Spectrum Emission Realized in a Single Lead Halide Perovskite across the Visible‐Light Region
The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near‐full‐spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a si...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 43; pp. e202411298 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.10.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near‐full‐spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single‐component two‐dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3+), is reported, achieved through high‐pressure treatment. A pressure‐induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N−H⋅⋅⋅Br and O−H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red‐shifted PL emissions, leading to the near‐full‐spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.
Near‐full ‐spectrum emissions are achieved in a single component 2D lead halide perovskites by applying hydrostatic pressure.This work establishes a new pathway to achieve the PL full‐spectrum emission and provide valuable insights into the relationship between the HP‐PL emissions and high‐pressure phase transitions. |
---|---|
AbstractList | The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near-full-spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single-component two-dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+ = (HO)(CH2)2NH3+), is reported, achieved through high-pressure treatment. A pressure-induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the bandgap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N-H…Br and O-H…Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red-shifted PL emissions, leading to the near-full-spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites. The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near-full-spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single-component two-dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3 +), is reported, achieved through high-pressure treatment. A pressure-induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N-H⋅⋅⋅Br and O-H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red-shifted PL emissions, leading to the near-full-spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near-full-spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single-component two-dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3 +), is reported, achieved through high-pressure treatment. A pressure-induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N-H⋅⋅⋅Br and O-H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red-shifted PL emissions, leading to the near-full-spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites. The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near‐full‐spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single‐component two‐dimensional (2D) hybrid lead halide perovskite, (ETA) 2 PbBr 4 (ETA + =(HO)(CH 2 ) 2 NH 3 + ), is reported, achieved through high‐pressure treatment. A pressure‐induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N−H⋅⋅⋅Br and O−H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red‐shifted PL emissions, leading to the near‐full‐spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites. The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near‐full‐spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single‐component two‐dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3+), is reported, achieved through high‐pressure treatment. A pressure‐induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N−H⋅⋅⋅Br and O−H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red‐shifted PL emissions, leading to the near‐full‐spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites. Near‐full ‐spectrum emissions are achieved in a single component 2D lead halide perovskites by applying hydrostatic pressure.This work establishes a new pathway to achieve the PL full‐spectrum emission and provide valuable insights into the relationship between the HP‐PL emissions and high‐pressure phase transitions. The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near‐full‐spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single‐component two‐dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3+), is reported, achieved through high‐pressure treatment. A pressure‐induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N−H⋅⋅⋅Br and O−H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red‐shifted PL emissions, leading to the near‐full‐spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites. |
Author | Qin, Yan Li, Wei Bu, Xian‐He Han, Song‐De An, Lian‐Cai Wang, Guo‐Ming Gao, Fei‐Fei Azeem, Muhammad Li, Zi‐Ying |
Author_xml | – sequence: 1 givenname: Lian‐Cai orcidid: 0009-0003-1605-1849 surname: An fullname: An, Lian‐Cai organization: Qingdao University – sequence: 2 givenname: Zi‐Ying surname: Li fullname: Li, Zi‐Ying organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry – sequence: 3 givenname: Muhammad surname: Azeem fullname: Azeem, Muhammad organization: Huazhong University of Science and Technology – sequence: 4 givenname: Wei orcidid: 0000-0002-5277-6850 surname: Li fullname: Li, Wei email: wl276@nankai.edu.cn organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry – sequence: 5 givenname: Yan orcidid: 0000-0002-6187-601X surname: Qin fullname: Qin, Yan organization: Huazhong University of Science and Technology – sequence: 6 givenname: Fei‐Fei orcidid: 0000-0002-6900-817X surname: Gao fullname: Gao, Fei‐Fei organization: Heilongjiang University – sequence: 7 givenname: Song‐De orcidid: 0000-0001-6335-8083 surname: Han fullname: Han, Song‐De organization: Qingdao University – sequence: 8 givenname: Guo‐Ming orcidid: 0000-0003-0156-904X surname: Wang fullname: Wang, Guo‐Ming email: gmwang_pub@163.com organization: Qingdao University – sequence: 9 givenname: Xian‐He orcidid: 0000-0002-2646-7974 surname: Bu fullname: Bu, Xian‐He organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39011619$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URP_AlSOyxKWXLJ44WdvHqtrSSquCKHC1ZuPJ1sVJFjsBlRMfgc_IJ8HLtiBVQpxmJP_ek9-bQ7bXDz0x9hzEDIQoX2HvaVaKsgIojX7EDqAuoZBKyb28V1IWStewzw5Tusm81mL-hO1LIwDmYA5Yd0kYf37_cTaFkMfVhpoxTh1fdD4lP_T8HWHw38hx33PkV75fB-JLQsfP84Mj_pbi8CV98iNxbOKQEh-viX_0ya8CZculX1-P2Wad3Z6yxy2GRM_u5hH7cLZ4f3peLN-8vjg9WRaNVFIXADnAHFuhW63qplQImuYkaokoKqzQKagUQesQEMpauXrV1sZUDlxdKieP2PHOdxOHzxOl0eY4DYWAPQ1TslLoXJcxusroywfozTDFPv_Oym1HCmoDmXpxR02rjpzdRN9hvLX3RWag2gG_K4jU2saPOObMY0QfLAi7vZfd3sv-uVeWzR7I7p3_KTA7wVcf6PY_tD25vFj81f4CpMOpzg |
CitedBy_id | crossref_primary_10_1063_5_0242364 |
Cites_doi | 10.1021/acs.inorgchem.7b02285 10.1038/s41467-020-16412-4 10.1007/s40820-021-00685-5 10.1021/jacs.3c05974 10.31635/ccschem.020.202000430 10.1016/j.ijggc.2015.05.016 10.1021/acs.accounts.1c00626 10.1039/D3SC01730C 10.1016/j.cplett.2021.139132 10.1038/s41598-019-56331-z 10.1002/adma.202102326 10.1021/acs.chemmater.9b03426 10.1107/S0021889806014075 10.1039/C8TA11992A 10.1021/jacs.6b10390 10.1002/anie.201901045 10.1002/anie.202218675 10.1002/anie.202311912 10.1021/acsenergylett.7b00807 10.1021/acs.inorgchem.7b01094 10.1002/anie.202015395 10.1126/sciadv.aav9445 10.1002/adfm.202109277 10.1021/acs.jpclett.5b01309 10.1038/s41557-020-0488-2 10.1038/s41467-020-19330-7 10.1039/C8CS00563J 10.1021/jacs.8b08691 10.1021/acsaem.1c01925 10.1021/ic048814u 10.1002/anie.202001635 10.1021/acs.cgd.1c00961 10.1002/adom.202100003 10.1021/jacs.7b06143 10.1038/s41467-019-14084-3 10.1038/s41557-023-01311-0 10.1021/acs.jpclett.1c03437 10.1002/jrs.1250260811 10.1021/jacs.2c12527 10.1039/B818330A 10.1002/smll.202300455 10.1038/s41467-022-28127-9 10.1021/acs.jpcc.9b06169 10.1021/acs.chemmater.4c00305 10.1039/C6CP03474H 10.1021/acsenergylett.2c01631 10.21105/joss.05556 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley‐VCH GmbH. 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202411298 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 39011619 10_1002_anie_202411298 ANIE202411298 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22071126; 21991143; 22375105 – fundername: National Key Research and Development Program of China funderid: 2022YFA1503300 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3738-113776af08f875c27a18e6e053aa04a4ad7147e1fda1a1257d5bf5994d1d527d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:11:16 EDT 2025 Fri Jul 25 11:53:19 EDT 2025 Wed Feb 19 02:09:43 EST 2025 Thu Apr 24 23:05:24 EDT 2025 Tue Jul 01 01:47:44 EDT 2025 Wed Jan 22 17:15:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | High-Pressure 2D Lead Halide Perovskite Full-Spectrum Emission Phase transition |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-113776af08f875c27a18e6e053aa04a4ad7147e1fda1a1257d5bf5994d1d527d3 |
Notes | L.‐C. An and Z.‐Y Li contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6335-8083 0000-0002-5277-6850 0009-0003-1605-1849 0000-0003-0156-904X 0000-0002-6187-601X 0000-0002-2646-7974 0000-0002-6900-817X |
PMID | 39011619 |
PQID | 3116171591 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3081299984 proquest_journals_3116171591 pubmed_primary_39011619 crossref_citationtrail_10_1002_anie_202411298 crossref_primary_10_1002_anie_202411298 wiley_primary_10_1002_anie_202411298_ANIE202411298 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 21, 2024 |
PublicationDateYYYYMMDD | 2024-10-21 |
PublicationDate_xml | – month: 10 year: 2024 text: October 21, 2024 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2004; 43 2019; 7 2019; 9 2015; 6 2015; 39 2021; 21 2021; 4 2023; 14 2017; 2 2018; 140 2021; 3 2019; 5 2019; 31 2023; 15 2021; 785 2023; 8 2023; 145 2006; 39 2023; 19 2019; 58 2020; 59 2020; 12 2020; 11 2016; 18 2024; 36 2019; 123 2017; 139 2021; 13 2009; 11 2023; 62 2021; 12 2021; 33 1995; 26 2022; 7 2019; 48 2017; 56 2022; 13 2022; 32 2022; 55 2021; 60 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 58 start-page: 6943 year: 2019 end-page: 6947 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 2913 year: 2015 end-page: 2918 publication-title: J. Phys. Chem. Lett. – volume: 39 start-page: 607 year: 2006 end-page: 614 publication-title: J. Appl. Crystallogr. – volume: 11 start-page: 5481 year: 2020 publication-title: Nat. Commun. – volume: 14 start-page: 6348 year: 2023 end-page: 6354 publication-title: Chem. Sci. – volume: 60 start-page: 10082 year: 2021 end-page: 10088 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 387 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 6357 year: 2019 end-page: 6362 publication-title: J. Mater. Chem. A – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 27051 year: 2016 end-page: 27066 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 672 year: 2020 end-page: 682 publication-title: Nat. Chem. – volume: 56 start-page: 9291 year: 2017 end-page: 9302 publication-title: Inorg. Chem. – volume: 36 start-page: 3435 year: 2024 end-page: 3443 publication-title: Chem. Mater. – volume: 2 start-page: 2518 year: 2017 end-page: 2524 publication-title: ACS Energy Lett. – volume: 11 start-page: 19 year: 2009 end-page: 32 publication-title: CrystEngComm – volume: 139 start-page: 39 issue: 1 year: 2017 end-page: 42 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 163 year: 2021 publication-title: Nano-Micro Lett. – volume: 3 start-page: 2203 year: 2021 end-page: 2210 publication-title: CCS Chem. – volume: 145 start-page: 21330 year: 2023 end-page: 21343 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 5556 year: 2023 publication-title: J. Open Source Softw. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 43 start-page: 8361 year: 2004 end-page: 8366 publication-title: Inorg. Chem. – volume: 55 start-page: 345 year: 2022 end-page: 353 publication-title: Acc. Chem. Res. – volume: 785 year: 2021 publication-title: Chem. Phys. Lett. – volume: 31 start-page: 9098 year: 2019 end-page: 9104 publication-title: Chem. Mater. – volume: 9 start-page: 19745 year: 2019 publication-title: Sci. Rep. – volume: 11 start-page: 2617 year: 2020 publication-title: Nat. Commun. – volume: 56 start-page: 14991 year: 2017 end-page: 14998 publication-title: Inorg. Chem. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 123 start-page: 22491 year: 2019 end-page: 22498 publication-title: J. Phys. Chem. C – volume: 26 start-page: 653 year: 1995 end-page: 661 publication-title: J. Raman Spectrosc. – volume: 140 start-page: 13078 year: 2018 end-page: 13088 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 11956 year: 2017 end-page: 11963 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 483 year: 2022 publication-title: Nat. Commun. – volume: 12 start-page: 11371 year: 2021 end-page: 11377 publication-title: J. Phys. Chem. Lett. – volume: 21 start-page: 6619 year: 2021 end-page: 6634 publication-title: Cryst. Growth Des. – volume: 4 start-page: 10003 year: 2021 end-page: 10011 publication-title: ACS Appl. Energ. Mater. – volume: 39 start-page: 139 year: 2015 end-page: 147 publication-title: Int. J. Greenhouse Gas Control – volume: 59 start-page: 17533 year: 2020 end-page: 17539 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 3423 year: 2022 end-page: 3431 publication-title: ACS Energy Lett. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 145 start-page: 8908 year: 2023 end-page: 8916 publication-title: J. Am. Chem. Soc. – volume: 19 year: 2023 publication-title: Small – volume: 48 start-page: 517 year: 2019 end-page: 539 publication-title: Chem. Soc. Rev. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 15 start-page: 1745 year: 2023 end-page: 1753 publication-title: Nat. Chem. – ident: e_1_2_8_14_1 doi: 10.1021/acs.inorgchem.7b02285 – ident: e_1_2_8_1_1 doi: 10.1038/s41467-020-16412-4 – ident: e_1_2_8_17_1 doi: 10.1007/s40820-021-00685-5 – ident: e_1_2_8_12_1 doi: 10.1021/jacs.3c05974 – ident: e_1_2_8_23_1 doi: 10.31635/ccschem.020.202000430 – ident: e_1_2_8_41_1 doi: 10.1016/j.ijggc.2015.05.016 – ident: e_1_2_8_5_1 doi: 10.1021/acs.accounts.1c00626 – ident: e_1_2_8_29_1 doi: 10.1039/D3SC01730C – ident: e_1_2_8_11_1 doi: 10.1016/j.cplett.2021.139132 – ident: e_1_2_8_44_1 doi: 10.1038/s41598-019-56331-z – ident: e_1_2_8_13_1 doi: 10.1002/adma.202102326 – ident: e_1_2_8_38_1 doi: 10.1021/acs.chemmater.9b03426 – ident: e_1_2_8_42_1 doi: 10.1107/S0021889806014075 – ident: e_1_2_8_25_1 doi: 10.1039/C8TA11992A – ident: e_1_2_8_47_1 doi: 10.1021/jacs.6b10390 – ident: e_1_2_8_6_1 doi: 10.1002/anie.201901045 – ident: e_1_2_8_19_1 doi: 10.1002/anie.202218675 – ident: e_1_2_8_2_1 doi: 10.1002/anie.202311912 – ident: e_1_2_8_30_1 doi: 10.1021/acsenergylett.7b00807 – ident: e_1_2_8_43_1 doi: 10.1021/acs.inorgchem.7b01094 – ident: e_1_2_8_26_1 doi: 10.1002/anie.202015395 – ident: e_1_2_8_31_1 doi: 10.1126/sciadv.aav9445 – ident: e_1_2_8_34_1 doi: 10.1002/adfm.202109277 – ident: e_1_2_8_40_1 doi: 10.1021/acs.jpclett.5b01309 – ident: e_1_2_8_16_1 doi: 10.1038/s41557-020-0488-2 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-020-19330-7 – ident: e_1_2_8_8_1 doi: 10.1039/C8CS00563J – ident: e_1_2_8_21_1 doi: 10.1021/jacs.8b08691 – ident: e_1_2_8_28_1 doi: 10.1021/acsaem.1c01925 – ident: e_1_2_8_24_1 doi: 10.1021/ic048814u – ident: e_1_2_8_27_1 doi: 10.1002/anie.202001635 – ident: e_1_2_8_45_1 doi: 10.1021/acs.cgd.1c00961 – ident: e_1_2_8_18_1 doi: 10.1002/adom.202100003 – ident: e_1_2_8_9_1 doi: 10.1021/jacs.7b06143 – ident: e_1_2_8_7_1 doi: 10.1038/s41467-019-14084-3 – ident: e_1_2_8_15_1 doi: 10.1038/s41557-023-01311-0 – ident: e_1_2_8_20_1 doi: 10.1021/acs.jpclett.1c03437 – ident: e_1_2_8_39_1 doi: 10.1002/jrs.1250260811 – ident: e_1_2_8_33_1 doi: 10.1021/jacs.2c12527 – ident: e_1_2_8_46_1 doi: 10.1039/B818330A – ident: e_1_2_8_32_1 doi: 10.1002/smll.202300455 – ident: e_1_2_8_3_1 doi: 10.1038/s41467-022-28127-9 – ident: e_1_2_8_22_1 doi: 10.1021/acs.jpcc.9b06169 – ident: e_1_2_8_48_1 doi: 10.1021/acs.chemmater.4c00305 – ident: e_1_2_8_37_1 doi: 10.1039/C6CP03474H – ident: e_1_2_8_10_1 doi: 10.1021/acsenergylett.2c01631 – ident: e_1_2_8_35_1 doi: 10.1107/S0021889806014075 – ident: e_1_2_8_36_1 doi: 10.21105/joss.05556 |
SSID | ssj0028806 |
Score | 2.4884498 |
Snippet | The engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a... The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202411298 |
SubjectTerms | 2D Lead Halide Perovskite Cations Crystal structure Emission Emissions Full-Spectrum Emission High pressure Hydrogen bonding Hydrogen bonds Lead compounds Metal halides Orthorhombic phase Perovskites Phase Transition Phase transitions Photoluminescence Photons |
Title | Near‐Full‐Spectrum Emission Realized in a Single Lead Halide Perovskite across the Visible‐Light Region |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202411298 https://www.ncbi.nlm.nih.gov/pubmed/39011619 https://www.proquest.com/docview/3116171591 https://www.proquest.com/docview/3081299984 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9NvGwv_NuAQDd5EtKeArXjxvFjhYoKmqoJBuItcmJbqmhTRFseeOIj8Bn5JNwlTbYOIST2lESxncT2-X538f0OYB-1SJwoj5JmMgrJcUmYSLRSVMadjmTmRV7uthjE_Qt5etW5-iuKv-KHaBxuJBnlek0CbrLp4R_SUIrARvsONRCqLIr2pQ1bhIrOGv4ogZOzCi-KopCy0NesjW1xuFx9WSu9gJrLyLVUPcdrYOqXrnacXB_MZ9lBfv8Pn-P_fNU6rC5wKetWE2kDPrhiEz4e1engPsN4gDLx9PBINiseKG_97HY-Zj0sQB43doaQc3jvLBsWzLBzVIkjxyiDJ-vjDevYL3c7uZuSt5iZshsYgk92OUShHDls8if5CbAZ2iH9BS6Oe7-P-uEiV0OYEzdSyIm5MDa-nXi0gHKhDE9cTHknjGlLI41VXCrHvTXcIKhStpP5jtbSctsRykZbsFJMCrcDzFmvYx8rYxFOytgkWmqrRJ7j-uNi7QMI67FK8wWROeXTGKUVBbNIqRPTphMD-NGUv6koPF4t2aqHPl2I8jSNOJmAiPp4AN-b29i39GfFFG4yxzIIrFCv60QGsF1NmeZR5FTCFnQAohz4N94h7Q5Oes3V7nsq7cEnOicNK3gLVnA2uK8InWbZt1I8ngEmLREW |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VciiX8k8XChgJxGnb2Ous1wcOVZsqoSFC_UG9Ld61LUWkG9Q0IHrqI_RVeBUegSdhZv9QQAgJqQdOUbKO12vPeL6Z9XwD8BytSJwoj5pmMkrJcUmYSPRSVMadjmTmRV6ethjF_SP5-rh7vARfm1yYih-iDbiRZpT7NSk4BaQ3f7KGUgo2OnhogtBmJfW5yj335TN6bbNXgx1c4hdC7PYOt_thXVggzInIJ-REsxcb30k8wvVcKMMTF1ORBGM60khjFZfKcW8NN4gAlO1mvqu1tNx2hbIR9nsNrlMZcaLr39lvGasEqkOV0BRFIdW9b3giO2JzcbyLdvA3cLuIlUtjt3sTvjXTVJ1x-bAxP8s28vNfGCT_q3m8Bas19GZbla7chiVX3IGV7abi3V04GeGgvl9ckluOHweUhHo6P2E9bEBBRbaPqHp87iwbF8ywA7T6E8eoSCnr4wXr2Ft3Ov00o4A4M-W8M8TX7N0Y952Jwy6HFArBbugQ-D04upKnvQ_LxbRwa8Cc9Tr2sTIWEbOMTaKltkrkOW6xLtY-gLARjjSvudqpZMgkrVimRUqLlraLFsDLtv3HiqXkjy3XG1lL691qlkacvFwEtjyAZ-1lnFt6eWQKN51jG8SOCF10IgN4UMloeyuKm2EPOgBRStpfxpBujQa99tvDf_nTU1jpH74ZpsPBaO8R3KDfCVAIvg7LKBnuMSLFs-xJqZsM3l-1EP8ANcdttw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIgEX_qELBYwE4rRt7HXW6wOHqkmU0CqqWop6W7xrW4qabqqmAdETj8Cj8Cq8Ak_CzP6hgBASUg-comQdr9ee8Xwz6_kG4AVakThRHjXNZJSS45IwkeilqIw7HcnMi7w8bTGOh4fyzVH3aAW-NrkwFT9EG3AjzSj3a1LwU-s3f5KGUgY2-ndogdBkJfWxyh336SM6bfPXox6u8EshBv2328OwrisQ5sTjE3Ji2YuN7yQe0XoulOGJi6lGgjEdaaSxikvluLeGGwQAynYz39VaWm67QtkI-70CV2Xc0VQsorffElYJ1IYqnymKQip739BEdsTm8niXzeBv2HYZKpe2bnALvjWzVB1xOd5YnGcb-cUvBJL_0zTehps18GZblabcgRVX3IXr2029u3twMsZBff_8hZxy_DigFNSzxQnrYwMKKbJ9xNSTC2fZpGCGHaDNnzpGJUrZEC9Yx_bc2ezDnMLhzJTTzhBds3cT3HWmDrvcpUAIdkNHwO_D4aU87QNYLWaFWwPmrNexj5WxiJdlbBIttVUiz3GDdbH2AYSNbKR5zdROBUOmacUxLVJatLRdtABete1PK46SP7Zcb0QtrfeqeRpx8nER1vIAnreXcW7p1ZEp3GyBbRA5InDRiQzgYSWi7a0oaoY96ABEKWh_GUO6NR7122-P_uVPz-DaXm-Q7o7GO4_hBv1MaELwdVhFwXBPECaeZ09LzWTw_rJl-AdgoWxm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near%E2%80%90Full%E2%80%90Spectrum+Emission+Realized+in+a+Single+Lead+Halide+Perovskite+across+the+Visible%E2%80%90Light+Region&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=An%2C+Lian%E2%80%90Cai&rft.au=Li%2C+Zi%E2%80%90Ying&rft.au=Azeem%2C+Muhammad&rft.au=Li%2C+Wei&rft.date=2024-10-21&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002%2Fanie.202411298&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202411298 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |