Biointerfacing Antagonizing T‐Cell Inhibitory Nanoparticles Potentiate Hepatocellular Carcinoma Checkpoint Blockade Therapy

Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 51; pp. e2105237 - n/a
Main Authors Wu, Han, Zhu, Jia‐Qi, Xu, Xin‐Fei, Xing, Hao, Wang, Ming‐Da, Liang, Lei, Li, Chao, Jia, Hang‐Dong, Shen, Feng, Huang, Dong‐Sheng, Yang, Tian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen‐presenting cells, a biointerfacing antagonizing T‐cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T‐cell immunoglobulin domain and mucin domain‐3 antibodies (anti‐TIM‐3) as well as PD‐L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti‐TIM‐3 can cooperate with PD‐L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti‐TIM‐3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune‐inhibiting microenvironment is effectively applied to PD‐L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1‐type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor‐burden survival. The biointerfacing antagonizing T‐cell Inhibitory nanoparticles (BAT NPs) are synthesized to participate in Hepatocellular carcinoma immunoregulatory therapy and tumor starvation therapy. The platelet membrane acts as a bionic and targeted function. BAT NPs can be combined with PD‐L1 checkpoint therapy to activate T cells, promote dendritic cells proliferation and M1 polarization, and the following collagen deposition contributes to starvation therapy.
AbstractList Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen-presenting cells, a biointerfacing antagonizing T-cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T-cell immunoglobulin domain and mucin domain-3 antibodies (anti-TIM-3) as well as PD-L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti-TIM-3 can cooperate with PD-L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti-TIM-3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune-inhibiting microenvironment is effectively applied to PD-L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1-type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor-burden survival.
Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen‐presenting cells, a biointerfacing antagonizing T‐cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T‐cell immunoglobulin domain and mucin domain‐3 antibodies (anti‐TIM‐3) as well as PD‐L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti‐TIM‐3 can cooperate with PD‐L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti‐TIM‐3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune‐inhibiting microenvironment is effectively applied to PD‐L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1‐type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor‐burden survival. The biointerfacing antagonizing T‐cell Inhibitory nanoparticles (BAT NPs) are synthesized to participate in Hepatocellular carcinoma immunoregulatory therapy and tumor starvation therapy. The platelet membrane acts as a bionic and targeted function. BAT NPs can be combined with PD‐L1 checkpoint therapy to activate T cells, promote dendritic cells proliferation and M1 polarization, and the following collagen deposition contributes to starvation therapy.
Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen-presenting cells, a biointerfacing antagonizing T-cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T-cell immunoglobulin domain and mucin domain-3 antibodies (anti-TIM-3) as well as PD-L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti-TIM-3 can cooperate with PD-L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti-TIM-3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune-inhibiting microenvironment is effectively applied to PD-L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1-type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor-burden survival.Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen-presenting cells, a biointerfacing antagonizing T-cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T-cell immunoglobulin domain and mucin domain-3 antibodies (anti-TIM-3) as well as PD-L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti-TIM-3 can cooperate with PD-L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti-TIM-3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune-inhibiting microenvironment is effectively applied to PD-L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1-type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor-burden survival.
Author Zhu, Jia‐Qi
Shen, Feng
Liang, Lei
Huang, Dong‐Sheng
Wu, Han
Wang, Ming‐Da
Xing, Hao
Jia, Hang‐Dong
Li, Chao
Xu, Xin‐Fei
Yang, Tian
Author_xml – sequence: 1
  givenname: Han
  orcidid: 0000-0002-9829-3600
  surname: Wu
  fullname: Wu, Han
  organization: Second Military Medical University (Naval Medical University)
– sequence: 2
  givenname: Jia‐Qi
  surname: Zhu
  fullname: Zhu, Jia‐Qi
  organization: Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)
– sequence: 3
  givenname: Xin‐Fei
  surname: Xu
  fullname: Xu, Xin‐Fei
  organization: Second Military Medical University (Naval Medical University)
– sequence: 4
  givenname: Hao
  surname: Xing
  fullname: Xing, Hao
  organization: Second Military Medical University (Naval Medical University)
– sequence: 5
  givenname: Ming‐Da
  surname: Wang
  fullname: Wang, Ming‐Da
  organization: Second Military Medical University (Naval Medical University)
– sequence: 6
  givenname: Lei
  surname: Liang
  fullname: Liang, Lei
  organization: Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)
– sequence: 7
  givenname: Chao
  surname: Li
  fullname: Li, Chao
  organization: Second Military Medical University (Naval Medical University)
– sequence: 8
  givenname: Hang‐Dong
  surname: Jia
  fullname: Jia, Hang‐Dong
  organization: Hangzhou Medical College
– sequence: 9
  givenname: Feng
  surname: Shen
  fullname: Shen, Feng
  organization: Second Military Medical University (Naval Medical University)
– sequence: 10
  givenname: Dong‐Sheng
  surname: Huang
  fullname: Huang, Dong‐Sheng
  email: huangdongshengzj@hotmail.com
  organization: Hangzhou Medical College
– sequence: 11
  givenname: Tian
  orcidid: 0000-0003-0575-0698
  surname: Yang
  fullname: Yang, Tian
  email: yangtianehbh@smmu.edu.cn
  organization: Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34791793$$D View this record in MEDLINE/PubMed
BookMark eNqFkctq3DAUhkVJaC7ttsti6Kabmeji6zIxbROYpIVO1-JYPs4okSVXkilTKPQR-ox9kthMLhAoXUlC3_froP-I7FlnkZA3jC4Zpfwk9MYsOeWMZlwUL8ghy5lY5CWv9h73jB6QoxBuKBWMp8VLciDSomJFJQ7JrzPttI3oO1DaXienNsK1s_rnfFj__f2nRmOSC7vRjY7Ob5MrsG4AH7UyGJIvLqKNGiIm5zhAdGrCRwM-qcFPga6HpN6guh3mV5Iz49QttJisN-hh2L4i-x2YgK_v12Py7eOHdX2-WH3-dFGfrhZKFKJYdCoryq7JmqZJc-DA2qyrRMYy1rZC5Fmuco7I2gYY62jZdHlJVVmpqswoFrwVx-T9Lnfw7vuIIcpeh3lUsOjGIHlWVbTgOWMT-u4ZeuNGb6fp5HQ_IzlNJ-rtPTU2PbZy8LoHv5UPHzsB6Q5Q3oXgsZNKR4ja2ehBG8monPuTc3_ysb9JWz7THpL_KVQ74Yc2uP0PLb9erlZP7h0DW7CN
CitedBy_id crossref_primary_10_1039_D4TB02477J
crossref_primary_10_1007_s12274_024_6777_0
crossref_primary_10_5582_bst_2023_01275
crossref_primary_10_1002_adtp_202300304
crossref_primary_10_1016_j_cej_2024_154506
crossref_primary_10_1002_smll_202311128
crossref_primary_10_1039_D3MA01150J
Cites_doi 10.1039/D0CS00986E
10.1016/j.cell.2020.08.040
10.1016/j.jhep.2019.04.007
10.1038/s41568-021-00339-z
10.1021/acs.bioconjchem.6b00569
10.1016/j.ccell.2021.05.009
10.1126/sciadv.aaz6108
10.1002/adma.202006189
10.1200/JCO.21.00163
10.1016/j.ccell.2020.10.011
10.1038/s41467-021-23864-9
10.1126/scitranslmed.aaz6804
10.1002/adma.201603463
10.1038/s41591-021-01444-0
10.1158/2159-8290.CD-15-1408
10.1002/adma.201503323
10.1016/j.jhep.2019.03.014
10.1016/j.immuni.2021.04.019
10.1038/s41422-020-0277-x
10.1038/s41467-021-21099-2
10.1016/j.jhep.2021.07.004
10.1021/acs.nanolett.1c01210
10.1016/j.cell.2020.11.041
10.1186/s12951-019-0494-y
10.1158/2159-8290.CD-20-0770
10.1016/j.immuni.2012.07.016
10.1021/acs.nanolett.1c00238
10.1016/j.jhep.2019.09.025
10.1038/nature15373
10.1136/gutjnl-2020-320716
10.1002/adma.201706759
10.1016/j.immuni.2010.10.009
10.1038/s41572-020-00240-3
10.1016/j.jhep.2021.06.015
10.1200/JCO.20.03555
10.1126/science.aar3593
10.1038/ni.1661
10.1002/adma.201904997
10.1002/hep.32023
10.1021/acsnano.7b07720
10.1002/adma.202000208
10.1016/j.cell.2021.02.048
10.1038/nature13848
10.1021/acsami.1c08552
10.1016/j.cell.2017.05.046
10.1038/s41575-020-00395-0
10.1038/s41586-021-03626-9
10.1016/S1470-2045(21)00332-6
10.1186/s12943-020-01297-0
10.1038/s41586-021-03741-7
10.1016/j.cell.2021.07.015
10.1038/s41467-021-24610-x
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202105237
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 34791793
10_1002_smll_202105237
SMLL202105237
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81972726
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3737-fc578fb5bbb46a2a1d5f935151dd33656c62ee1dba11f08bf680c89c9850e72d3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 04:18:07 EDT 2025
Fri Jul 25 11:52:05 EDT 2025
Wed Feb 19 02:27:39 EST 2025
Tue Jul 01 02:54:05 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Wed Jan 22 16:26:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords checkpoint blockade
biointerfacing nanoparticles
tumor targeting
starvation therapy
hepatocellular carcinoma
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-fc578fb5bbb46a2a1d5f935151dd33656c62ee1dba11f08bf680c89c9850e72d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9829-3600
0000-0003-0575-0698
PMID 34791793
PQID 2612611604
PQPubID 1046358
PageCount 13
ParticipantIDs proquest_miscellaneous_2599072611
proquest_journals_2612611604
pubmed_primary_34791793
crossref_citationtrail_10_1002_smll_202105237
crossref_primary_10_1002_smll_202105237
wiley_primary_10_1002_smll_202105237_SMLL202105237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 362
2010; 33
2021; 7
2021; 27
2019; 71
2021; 21
2021; 20
2021; 22
2019; 31
2017; 28
2020; 183
2008; 9
2019; 17
2020; 38
2021; 184
2015; 526
2020; 32
2012; 37
2021; 50
2021; 74
2021; 13
2020; 7
2020; 6
2016; 6
2021; 10
2021; 54
2021; 75
2015; 27
2021; 12
2021; 11
2021; 33
2020; 30
2020; 72
2021; 18
2021; 39
2020; 70
2015; 517
2018; 30
2021; 595
2018; 12
2016; 28
2017; 169
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
Raghav K. (e_1_2_8_13_1) 2021; 10
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
Melaiu O. (e_1_2_8_28_1) 2020; 7
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 21
  start-page: 6031
  year: 2021
  publication-title: Nano Lett.
– volume: 9
  start-page: 1270
  year: 2008
  publication-title: Nat. Immunol.
– volume: 10
  year: 2021
  publication-title: Cancer Discovery
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 2603
  year: 2021
  publication-title: Nano Lett.
– volume: 72
  start-page: 307
  year: 2020
  publication-title: J. Hepatol.
– volume: 39
  start-page: 989
  year: 2021
  publication-title: Cancer Cell
– volume: 184
  start-page: 404
  year: 2021
  publication-title: Cell
– volume: 13
  year: 2021
  publication-title: Sci. Transl. Med.
– volume: 11
  start-page: 1792
  year: 2021
  publication-title: Cancer Discovery
– volume: 169
  start-page: 1327
  year: 2017
  publication-title: Cell
– volume: 71
  start-page: 333
  year: 2019
  publication-title: J. Hepatol.
– volume: 70
  start-page: 1746
  year: 2020
  publication-title: Gut
– volume: 27
  start-page: 1536
  year: 2021
  publication-title: Nat. Med.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 526
  start-page: 118
  year: 2015
  publication-title: Nature
– volume: 71
  start-page: 163
  year: 2019
  publication-title: J. Hepatol.
– volume: 20
  start-page: 10
  year: 2021
  publication-title: Mol. Cancer
– volume: 74
  start-page: 2652
  year: 2021
  publication-title: Hepatology
– volume: 6
  start-page: 546
  year: 2016
  publication-title: Cancer Discovery
– volume: 12
  start-page: 832
  year: 2021
  publication-title: Nat. Commun.
– volume: 517
  start-page: 386
  year: 2015
  publication-title: Nature
– volume: 50
  start-page: 1587
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 595
  start-page: 101
  year: 2021
  publication-title: Nature
– volume: 22
  start-page: 1126
  year: 2021
  publication-title: Lancet Oncol.
– volume: 27
  start-page: 7043
  year: 2015
  publication-title: Adv. Mater.
– volume: 184
  start-page: 2033
  year: 2021
  publication-title: Cell
– volume: 21
  start-page: 298
  year: 2021
  publication-title: Nat. Rev. Cancer
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 12
  start-page: 3500
  year: 2021
  publication-title: Nat. Commun.
– volume: 28
  start-page: 9573
  year: 2016
  publication-title: Adv. Mater.
– volume: 38
  start-page: 803
  year: 2020
  publication-title: Cancer Cell
– volume: 362
  year: 2018
  publication-title: Science
– volume: 12
  start-page: 4300
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  start-page: 6
  year: 2021
  publication-title: Nat. Rev. Dis. Primers
– volume: 75
  start-page: 1154
  year: 2021
  publication-title: J. Hepatol.
– volume: 37
  start-page: 930
  year: 2012
  publication-title: Immunity
– volume: 184
  start-page: 4512
  year: 2021
  publication-title: Cell
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 54
  start-page: 1154
  year: 2021
  publication-title: Immunity
– volume: 28
  start-page: 23
  year: 2017
  publication-title: Bioconjugate Chem.
– volume: 7
  start-page: 10
  year: 2020
  publication-title: Semin. Cancer Biol.
– volume: 17
  start-page: 60
  year: 2019
  publication-title: J. Nanobiotechnol.
– volume: 39
  start-page: 2991
  year: 2021
  publication-title: J. Clin. Oncol.
– volume: 39
  start-page: 3002
  year: 2021
  publication-title: J. Clin. Oncol.
– volume: 595
  start-page: 730
  year: 2021
  publication-title: Nature
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 30
  start-page: 285
  year: 2020
  publication-title: Cell Res.
– volume: 33
  start-page: 620
  year: 2010
  publication-title: Immunity
– volume: 12
  start-page: 109
  year: 2018
  publication-title: ACS Nano
– volume: 183
  start-page: 377
  year: 2020
  publication-title: Cell
– volume: 75
  start-page: 960
  year: 2021
  publication-title: J. Hepatol.
– volume: 18
  start-page: 293
  year: 2021
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– ident: e_1_2_8_42_1
  doi: 10.1039/D0CS00986E
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cell.2020.08.040
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jhep.2019.04.007
– ident: e_1_2_8_49_1
  doi: 10.1038/s41568-021-00339-z
– volume: 10
  year: 2021
  ident: e_1_2_8_13_1
  publication-title: Cancer Discovery
– ident: e_1_2_8_33_1
  doi: 10.1021/acs.bioconjchem.6b00569
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ccell.2021.05.009
– ident: e_1_2_8_30_1
  doi: 10.1126/sciadv.aaz6108
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.202006189
– ident: e_1_2_8_4_1
  doi: 10.1200/JCO.21.00163
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ccell.2020.10.011
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-021-23864-9
– ident: e_1_2_8_17_1
  doi: 10.1126/scitranslmed.aaz6804
– volume: 7
  start-page: 10
  year: 2020
  ident: e_1_2_8_28_1
  publication-title: Semin. Cancer Biol.
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.201603463
– ident: e_1_2_8_12_1
  doi: 10.1038/s41591-021-01444-0
– ident: e_1_2_8_46_1
  doi: 10.1158/2159-8290.CD-15-1408
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201503323
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jhep.2019.03.014
– ident: e_1_2_8_25_1
  doi: 10.1016/j.immuni.2021.04.019
– ident: e_1_2_8_26_1
  doi: 10.1038/s41422-020-0277-x
– ident: e_1_2_8_27_1
  doi: 10.1038/s41467-021-21099-2
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jhep.2021.07.004
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.nanolett.1c01210
– ident: e_1_2_8_50_1
  doi: 10.1016/j.cell.2020.11.041
– ident: e_1_2_8_41_1
  doi: 10.1186/s12951-019-0494-y
– ident: e_1_2_8_18_1
  doi: 10.1158/2159-8290.CD-20-0770
– ident: e_1_2_8_38_1
  doi: 10.1016/j.immuni.2012.07.016
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.nanolett.1c00238
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jhep.2019.09.025
– ident: e_1_2_8_34_1
  doi: 10.1038/nature15373
– ident: e_1_2_8_20_1
  doi: 10.1136/gutjnl-2020-320716
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.201706759
– ident: e_1_2_8_40_1
  doi: 10.1016/j.immuni.2010.10.009
– ident: e_1_2_8_3_1
  doi: 10.1038/s41572-020-00240-3
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jhep.2021.06.015
– ident: e_1_2_8_1_1
  doi: 10.1200/JCO.20.03555
– ident: e_1_2_8_44_1
  doi: 10.1126/science.aar3593
– ident: e_1_2_8_39_1
  doi: 10.1038/ni.1661
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.201904997
– ident: e_1_2_8_9_1
  doi: 10.1002/hep.32023
– ident: e_1_2_8_32_1
  doi: 10.1021/acsnano.7b07720
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.202000208
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cell.2021.02.048
– ident: e_1_2_8_37_1
  doi: 10.1038/nature13848
– ident: e_1_2_8_43_1
  doi: 10.1021/acsami.1c08552
– ident: e_1_2_8_45_1
  doi: 10.1016/j.cell.2017.05.046
– ident: e_1_2_8_6_1
  doi: 10.1038/s41575-020-00395-0
– ident: e_1_2_8_24_1
  doi: 10.1038/s41586-021-03626-9
– ident: e_1_2_8_8_1
  doi: 10.1016/S1470-2045(21)00332-6
– ident: e_1_2_8_47_1
  doi: 10.1186/s12943-020-01297-0
– ident: e_1_2_8_2_1
  doi: 10.1038/s41586-021-03741-7
– ident: e_1_2_8_48_1
  doi: 10.1016/j.cell.2021.07.015
– ident: e_1_2_8_53_1
  doi: 10.1038/s41467-021-24610-x
SSID ssj0031247
Score 2.4203813
Snippet Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2105237
SubjectTerms Adjuvants
Antibodies
Antigens
biointerfacing nanoparticles
Carcinoma, Hepatocellular - drug therapy
checkpoint blockade
Domains
hepatocellular carcinoma
Humans
Immune system
Immunosuppression
Liver cancer
Liver Neoplasms - drug therapy
Lymphocytes
Macrophages
Nanoparticles
Nanotechnology
starvation therapy
Synergistic effect
T-Lymphocytes
Therapy
Tumor Microenvironment
tumor targeting
Tumors
Title Biointerfacing Antagonizing T‐Cell Inhibitory Nanoparticles Potentiate Hepatocellular Carcinoma Checkpoint Blockade Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202105237
https://www.ncbi.nlm.nih.gov/pubmed/34791793
https://www.proquest.com/docview/2612611604
https://www.proquest.com/docview/2599072611
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7Ekx587mrUlRaEPUWT7rzmqIMyLiqyjuAt9Cs4zJiIk7kIgj9hf-P-kq1KMtFxkYX1lk4q6Ve9Ol39FcC-EJxwxA1qP5W4AfcCVwWhco2lTElRwnWVee7iMurdBD9uw9s3p_hrfIj2hxtJRqWvScClGh--goaO70e0dYBLFlxL0XFyCtgir-hnix8l0HhV2VXQZrkEvDVFbfT44ezrs1bpL1dz1nOtTM_pMshpo-uIk-HBpFQH-ukdnuNnerUCS41fyo5qRlqFOZuvweIbtMJ1eD4eFIQu8ZhJjTfYUU47WvngiQr93y-_unY0Ymf53UANaOueoebGJXkTeceuipIik9C3ZT20gWVBewYUBMu6lM8oL-4l695ZPXygWtgxWtmhNJb1a9yDL3BzetLv9twme4OrRSxiN9OoDDIVKqWCSHLpmzDrCHSffGMETlWkI26tb5T0_cxLVBYlnk46upOEno25EV9hPi9yuwmsg26Wwr4JS8ASuGj3LH429sLEJJnQoQPudPZS3UCbU4aNUVqDMvOUhjVth9WB7y39Qw3q8SHlzpQZ0ka4xymhrkW-H3mBA3vtYxRLGjeZ22KCNCGa-ZjIHNiomaitig7vkl50gFes8I82pNcX5-dtaet_XtqGBbquw3B2YL58nNhv6EyVarcSmD-yjBge
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcgAOlDemBRYJxMmtvetXDhzalCqhSYUglXoz3ofVKKkdNY4QlZD6E_pX-Cv8BH4JM35BQAgJqQeOXq_X-5id-XZ39huA50Jw4hHXqP1kZHvc8Wzp-dLWhiIlBRFXZeS54UHQO_TeHPlHK_CluQtT8UO0G240M0p9TROcNqS3frCGzk-mdHaAaxZcTIW1X-W--fQRV23zV_1dHOIXnO-9HnV7dh1YwFYiFKGdKpTTVPpSSi9IeOJqP-0ItOyu1kIgwlEBN8bVMnHd1IlkGkSOijqqE_mOCbkWWO4VuEphxImuf_ddy1gl0FyW8VzQStpE9dXwRDp8a7m-y3bwN3C7jJVLY7e3Bl-bbqp8XCabi0JuqrNfGCT_q368BTdr6M22q7lyG1ZMdgdu_ETIeBc-74xzItA4TROFCWw7o0O7bHxGD6Nv5xddM52yfnY8lmPyTmBonPJZ41zI3uYFOV8hfGc9NPNFTsci5OfLuhSyKctPEtY9Nmoyo7-wHQQSk0QbNqqoHe7B4aW0_z6sZnlmHgLrIJKU2DZhiDsjRK1qsNjQ8SMdpUL5FtiNuMSqZm-nICLTuOKd5jENY9wOowUv2_yzirfkjzk3GumLa_01j4lYLnDdwPEseNa-Rs1D_ZZkJl9gHh-RTEjZLHhQSW37K7qfTKrfAl7K3l_qEL8fDgbt06N_-egpXOuNhoN40D_YX4frlF55HW3AanG6MI8ROxbySTlbGXy4bLH-Dss4do0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEB2VIiF44H4xFFgkEE9u7V3f8sBDmxAlNK0qSKW-ud6L1SipHTWOEJWQ-AQ-hV_hF_gSZnyDgBASUh949Hq919mZs97ZMwDPheDEI65R-8nI9rjj2dLzpa0NRUoKIq7KyHN7-8Hg0Htz5B-twZfmLkzFD9H-cKOVUeprWuBznW79IA1dnM7o6AC3LLiXCmu3yl3z4T1u2havhj2c4Rec91-PuwO7jitgKxGK0E4VimkqfSmlFyQ8cbWfdgQadldrIRDgqIAb42qZuG7qRDINIkdFHdWJfMeEXAss9xJc9gKnQ8Eiem9bwiqB1rIM54JG0iamr4Ym0uFbq-1dNYO_YdtVqFzauv4N-NqMUuXiMt1cFnJTnf9CIPk_DeNNuF4Db7ZdrZRbsGay23DtJzrGO_BxZ5ITfcZZmihMYNsZHdllk3N6GH_79LlrZjM2zE4mckK-CQxNUz5vXAvZQV6Q6xWCdzZAI1_kdChCXr6sSwGbsvw0Yd0To6ZzqoXtIIyYJtqwcUXscBcOL6T_92A9yzPzAFgHcaTEvglDzBkh6lSDxYaOH-koFcq3wG6kJVY1dzuFEJnFFes0j2ka43YaLXjZ5p9XrCV_zLnRCF9ca69FTLRygesGjmfBs_Y16h0atyQz-RLz-IhjQspmwf1KaNuq6HYyKX4LeCl6f2lD_G5vNGqfHv7LR0_hykGvH4-G-7uP4ColVy5HG7BenC3NYwSOhXxSrlUGxxct1d8B3LZ1PA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biointerfacing+Antagonizing+T-Cell+Inhibitory+Nanoparticles+Potentiate+Hepatocellular+Carcinoma+Checkpoint+Blockade+Therapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wu%2C+Han&rft.au=Zhu%2C+Jia-Qi&rft.au=Xu%2C+Xin-Fei&rft.au=Xing%2C+Hao&rft.date=2021-12-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=17&rft.issue=51&rft.spage=e2105237&rft_id=info:doi/10.1002%2Fsmll.202105237&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon