Biointerfacing Antagonizing T‐Cell Inhibitory Nanoparticles Potentiate Hepatocellular Carcinoma Checkpoint Blockade Therapy
Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 51; pp. e2105237 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen‐presenting cells, a biointerfacing antagonizing T‐cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T‐cell immunoglobulin domain and mucin domain‐3 antibodies (anti‐TIM‐3) as well as PD‐L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti‐TIM‐3 can cooperate with PD‐L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti‐TIM‐3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune‐inhibiting microenvironment is effectively applied to PD‐L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1‐type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor‐burden survival.
The biointerfacing antagonizing T‐cell Inhibitory nanoparticles (BAT NPs) are synthesized to participate in Hepatocellular carcinoma immunoregulatory therapy and tumor starvation therapy. The platelet membrane acts as a bionic and targeted function. BAT NPs can be combined with PD‐L1 checkpoint therapy to activate T cells, promote dendritic cells proliferation and M1 polarization, and the following collagen deposition contributes to starvation therapy. |
---|---|
AbstractList | Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen-presenting cells, a biointerfacing antagonizing T-cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T-cell immunoglobulin domain and mucin domain-3 antibodies (anti-TIM-3) as well as PD-L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti-TIM-3 can cooperate with PD-L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti-TIM-3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune-inhibiting microenvironment is effectively applied to PD-L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1-type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor-burden survival. Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen‐presenting cells, a biointerfacing antagonizing T‐cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T‐cell immunoglobulin domain and mucin domain‐3 antibodies (anti‐TIM‐3) as well as PD‐L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti‐TIM‐3 can cooperate with PD‐L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti‐TIM‐3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune‐inhibiting microenvironment is effectively applied to PD‐L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1‐type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor‐burden survival. The biointerfacing antagonizing T‐cell Inhibitory nanoparticles (BAT NPs) are synthesized to participate in Hepatocellular carcinoma immunoregulatory therapy and tumor starvation therapy. The platelet membrane acts as a bionic and targeted function. BAT NPs can be combined with PD‐L1 checkpoint therapy to activate T cells, promote dendritic cells proliferation and M1 polarization, and the following collagen deposition contributes to starvation therapy. Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen-presenting cells, a biointerfacing antagonizing T-cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T-cell immunoglobulin domain and mucin domain-3 antibodies (anti-TIM-3) as well as PD-L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti-TIM-3 can cooperate with PD-L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti-TIM-3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune-inhibiting microenvironment is effectively applied to PD-L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1-type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor-burden survival.Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen-presenting cells, a biointerfacing antagonizing T-cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T-cell immunoglobulin domain and mucin domain-3 antibodies (anti-TIM-3) as well as PD-L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti-TIM-3 can cooperate with PD-L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti-TIM-3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune-inhibiting microenvironment is effectively applied to PD-L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1-type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor-burden survival. |
Author | Zhu, Jia‐Qi Shen, Feng Liang, Lei Huang, Dong‐Sheng Wu, Han Wang, Ming‐Da Xing, Hao Jia, Hang‐Dong Li, Chao Xu, Xin‐Fei Yang, Tian |
Author_xml | – sequence: 1 givenname: Han orcidid: 0000-0002-9829-3600 surname: Wu fullname: Wu, Han organization: Second Military Medical University (Naval Medical University) – sequence: 2 givenname: Jia‐Qi surname: Zhu fullname: Zhu, Jia‐Qi organization: Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) – sequence: 3 givenname: Xin‐Fei surname: Xu fullname: Xu, Xin‐Fei organization: Second Military Medical University (Naval Medical University) – sequence: 4 givenname: Hao surname: Xing fullname: Xing, Hao organization: Second Military Medical University (Naval Medical University) – sequence: 5 givenname: Ming‐Da surname: Wang fullname: Wang, Ming‐Da organization: Second Military Medical University (Naval Medical University) – sequence: 6 givenname: Lei surname: Liang fullname: Liang, Lei organization: Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) – sequence: 7 givenname: Chao surname: Li fullname: Li, Chao organization: Second Military Medical University (Naval Medical University) – sequence: 8 givenname: Hang‐Dong surname: Jia fullname: Jia, Hang‐Dong organization: Hangzhou Medical College – sequence: 9 givenname: Feng surname: Shen fullname: Shen, Feng organization: Second Military Medical University (Naval Medical University) – sequence: 10 givenname: Dong‐Sheng surname: Huang fullname: Huang, Dong‐Sheng email: huangdongshengzj@hotmail.com organization: Hangzhou Medical College – sequence: 11 givenname: Tian orcidid: 0000-0003-0575-0698 surname: Yang fullname: Yang, Tian email: yangtianehbh@smmu.edu.cn organization: Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34791793$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctq3DAUhkVJaC7ttsti6Kabmeji6zIxbROYpIVO1-JYPs4okSVXkilTKPQR-ox9kthMLhAoXUlC3_froP-I7FlnkZA3jC4Zpfwk9MYsOeWMZlwUL8ghy5lY5CWv9h73jB6QoxBuKBWMp8VLciDSomJFJQ7JrzPttI3oO1DaXienNsK1s_rnfFj__f2nRmOSC7vRjY7Ob5MrsG4AH7UyGJIvLqKNGiIm5zhAdGrCRwM-qcFPga6HpN6guh3mV5Iz49QttJisN-hh2L4i-x2YgK_v12Py7eOHdX2-WH3-dFGfrhZKFKJYdCoryq7JmqZJc-DA2qyrRMYy1rZC5Fmuco7I2gYY62jZdHlJVVmpqswoFrwVx-T9Lnfw7vuIIcpeh3lUsOjGIHlWVbTgOWMT-u4ZeuNGb6fp5HQ_IzlNJ-rtPTU2PbZy8LoHv5UPHzsB6Q5Q3oXgsZNKR4ja2ehBG8monPuTc3_ysb9JWz7THpL_KVQ74Yc2uP0PLb9erlZP7h0DW7CN |
CitedBy_id | crossref_primary_10_1039_D4TB02477J crossref_primary_10_1007_s12274_024_6777_0 crossref_primary_10_5582_bst_2023_01275 crossref_primary_10_1002_adtp_202300304 crossref_primary_10_1016_j_cej_2024_154506 crossref_primary_10_1002_smll_202311128 crossref_primary_10_1039_D3MA01150J |
Cites_doi | 10.1039/D0CS00986E 10.1016/j.cell.2020.08.040 10.1016/j.jhep.2019.04.007 10.1038/s41568-021-00339-z 10.1021/acs.bioconjchem.6b00569 10.1016/j.ccell.2021.05.009 10.1126/sciadv.aaz6108 10.1002/adma.202006189 10.1200/JCO.21.00163 10.1016/j.ccell.2020.10.011 10.1038/s41467-021-23864-9 10.1126/scitranslmed.aaz6804 10.1002/adma.201603463 10.1038/s41591-021-01444-0 10.1158/2159-8290.CD-15-1408 10.1002/adma.201503323 10.1016/j.jhep.2019.03.014 10.1016/j.immuni.2021.04.019 10.1038/s41422-020-0277-x 10.1038/s41467-021-21099-2 10.1016/j.jhep.2021.07.004 10.1021/acs.nanolett.1c01210 10.1016/j.cell.2020.11.041 10.1186/s12951-019-0494-y 10.1158/2159-8290.CD-20-0770 10.1016/j.immuni.2012.07.016 10.1021/acs.nanolett.1c00238 10.1016/j.jhep.2019.09.025 10.1038/nature15373 10.1136/gutjnl-2020-320716 10.1002/adma.201706759 10.1016/j.immuni.2010.10.009 10.1038/s41572-020-00240-3 10.1016/j.jhep.2021.06.015 10.1200/JCO.20.03555 10.1126/science.aar3593 10.1038/ni.1661 10.1002/adma.201904997 10.1002/hep.32023 10.1021/acsnano.7b07720 10.1002/adma.202000208 10.1016/j.cell.2021.02.048 10.1038/nature13848 10.1021/acsami.1c08552 10.1016/j.cell.2017.05.046 10.1038/s41575-020-00395-0 10.1038/s41586-021-03626-9 10.1016/S1470-2045(21)00332-6 10.1186/s12943-020-01297-0 10.1038/s41586-021-03741-7 10.1016/j.cell.2021.07.015 10.1038/s41467-021-24610-x |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202105237 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 34791793 10_1002_smll_202105237 SMLL202105237 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81972726 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3737-fc578fb5bbb46a2a1d5f935151dd33656c62ee1dba11f08bf680c89c9850e72d3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 04:18:07 EDT 2025 Fri Jul 25 11:52:05 EDT 2025 Wed Feb 19 02:27:39 EST 2025 Tue Jul 01 02:54:05 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Wed Jan 22 16:26:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | checkpoint blockade biointerfacing nanoparticles tumor targeting starvation therapy hepatocellular carcinoma |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3737-fc578fb5bbb46a2a1d5f935151dd33656c62ee1dba11f08bf680c89c9850e72d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9829-3600 0000-0003-0575-0698 |
PMID | 34791793 |
PQID | 2612611604 |
PQPubID | 1046358 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2599072611 proquest_journals_2612611604 pubmed_primary_34791793 crossref_citationtrail_10_1002_smll_202105237 crossref_primary_10_1002_smll_202105237 wiley_primary_10_1002_smll_202105237_SMLL202105237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 2010; 33 2021; 7 2021; 27 2019; 71 2021; 21 2021; 20 2021; 22 2019; 31 2017; 28 2020; 183 2008; 9 2019; 17 2020; 38 2021; 184 2015; 526 2020; 32 2012; 37 2021; 50 2021; 74 2021; 13 2020; 7 2020; 6 2016; 6 2021; 10 2021; 54 2021; 75 2015; 27 2021; 12 2021; 11 2021; 33 2020; 30 2020; 72 2021; 18 2021; 39 2020; 70 2015; 517 2018; 30 2021; 595 2018; 12 2016; 28 2017; 169 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 Raghav K. (e_1_2_8_13_1) 2021; 10 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 Melaiu O. (e_1_2_8_28_1) 2020; 7 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 21 start-page: 6031 year: 2021 publication-title: Nano Lett. – volume: 9 start-page: 1270 year: 2008 publication-title: Nat. Immunol. – volume: 10 year: 2021 publication-title: Cancer Discovery – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 2603 year: 2021 publication-title: Nano Lett. – volume: 72 start-page: 307 year: 2020 publication-title: J. Hepatol. – volume: 39 start-page: 989 year: 2021 publication-title: Cancer Cell – volume: 184 start-page: 404 year: 2021 publication-title: Cell – volume: 13 year: 2021 publication-title: Sci. Transl. Med. – volume: 11 start-page: 1792 year: 2021 publication-title: Cancer Discovery – volume: 169 start-page: 1327 year: 2017 publication-title: Cell – volume: 71 start-page: 333 year: 2019 publication-title: J. Hepatol. – volume: 70 start-page: 1746 year: 2020 publication-title: Gut – volume: 27 start-page: 1536 year: 2021 publication-title: Nat. Med. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 526 start-page: 118 year: 2015 publication-title: Nature – volume: 71 start-page: 163 year: 2019 publication-title: J. Hepatol. – volume: 20 start-page: 10 year: 2021 publication-title: Mol. Cancer – volume: 74 start-page: 2652 year: 2021 publication-title: Hepatology – volume: 6 start-page: 546 year: 2016 publication-title: Cancer Discovery – volume: 12 start-page: 832 year: 2021 publication-title: Nat. Commun. – volume: 517 start-page: 386 year: 2015 publication-title: Nature – volume: 50 start-page: 1587 year: 2021 publication-title: Chem. Soc. Rev. – volume: 595 start-page: 101 year: 2021 publication-title: Nature – volume: 22 start-page: 1126 year: 2021 publication-title: Lancet Oncol. – volume: 27 start-page: 7043 year: 2015 publication-title: Adv. Mater. – volume: 184 start-page: 2033 year: 2021 publication-title: Cell – volume: 21 start-page: 298 year: 2021 publication-title: Nat. Rev. Cancer – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 12 start-page: 3500 year: 2021 publication-title: Nat. Commun. – volume: 28 start-page: 9573 year: 2016 publication-title: Adv. Mater. – volume: 38 start-page: 803 year: 2020 publication-title: Cancer Cell – volume: 362 year: 2018 publication-title: Science – volume: 12 start-page: 4300 year: 2021 publication-title: Nat. Commun. – volume: 7 start-page: 6 year: 2021 publication-title: Nat. Rev. Dis. Primers – volume: 75 start-page: 1154 year: 2021 publication-title: J. Hepatol. – volume: 37 start-page: 930 year: 2012 publication-title: Immunity – volume: 184 start-page: 4512 year: 2021 publication-title: Cell – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 54 start-page: 1154 year: 2021 publication-title: Immunity – volume: 28 start-page: 23 year: 2017 publication-title: Bioconjugate Chem. – volume: 7 start-page: 10 year: 2020 publication-title: Semin. Cancer Biol. – volume: 17 start-page: 60 year: 2019 publication-title: J. Nanobiotechnol. – volume: 39 start-page: 2991 year: 2021 publication-title: J. Clin. Oncol. – volume: 39 start-page: 3002 year: 2021 publication-title: J. Clin. Oncol. – volume: 595 start-page: 730 year: 2021 publication-title: Nature – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 30 start-page: 285 year: 2020 publication-title: Cell Res. – volume: 33 start-page: 620 year: 2010 publication-title: Immunity – volume: 12 start-page: 109 year: 2018 publication-title: ACS Nano – volume: 183 start-page: 377 year: 2020 publication-title: Cell – volume: 75 start-page: 960 year: 2021 publication-title: J. Hepatol. – volume: 18 start-page: 293 year: 2021 publication-title: Nat. Rev. Gastroenterol. Hepatol. – ident: e_1_2_8_42_1 doi: 10.1039/D0CS00986E – ident: e_1_2_8_11_1 doi: 10.1016/j.cell.2020.08.040 – ident: e_1_2_8_15_1 doi: 10.1016/j.jhep.2019.04.007 – ident: e_1_2_8_49_1 doi: 10.1038/s41568-021-00339-z – volume: 10 year: 2021 ident: e_1_2_8_13_1 publication-title: Cancer Discovery – ident: e_1_2_8_33_1 doi: 10.1021/acs.bioconjchem.6b00569 – ident: e_1_2_8_14_1 doi: 10.1016/j.ccell.2021.05.009 – ident: e_1_2_8_30_1 doi: 10.1126/sciadv.aaz6108 – ident: e_1_2_8_23_1 doi: 10.1002/adma.202006189 – ident: e_1_2_8_4_1 doi: 10.1200/JCO.21.00163 – ident: e_1_2_8_21_1 doi: 10.1016/j.ccell.2020.10.011 – ident: e_1_2_8_16_1 doi: 10.1038/s41467-021-23864-9 – ident: e_1_2_8_17_1 doi: 10.1126/scitranslmed.aaz6804 – volume: 7 start-page: 10 year: 2020 ident: e_1_2_8_28_1 publication-title: Semin. Cancer Biol. – ident: e_1_2_8_36_1 doi: 10.1002/adma.201603463 – ident: e_1_2_8_12_1 doi: 10.1038/s41591-021-01444-0 – ident: e_1_2_8_46_1 doi: 10.1158/2159-8290.CD-15-1408 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201503323 – ident: e_1_2_8_52_1 doi: 10.1016/j.jhep.2019.03.014 – ident: e_1_2_8_25_1 doi: 10.1016/j.immuni.2021.04.019 – ident: e_1_2_8_26_1 doi: 10.1038/s41422-020-0277-x – ident: e_1_2_8_27_1 doi: 10.1038/s41467-021-21099-2 – ident: e_1_2_8_7_1 doi: 10.1016/j.jhep.2021.07.004 – ident: e_1_2_8_54_1 doi: 10.1021/acs.nanolett.1c01210 – ident: e_1_2_8_50_1 doi: 10.1016/j.cell.2020.11.041 – ident: e_1_2_8_41_1 doi: 10.1186/s12951-019-0494-y – ident: e_1_2_8_18_1 doi: 10.1158/2159-8290.CD-20-0770 – ident: e_1_2_8_38_1 doi: 10.1016/j.immuni.2012.07.016 – ident: e_1_2_8_29_1 doi: 10.1021/acs.nanolett.1c00238 – ident: e_1_2_8_10_1 doi: 10.1016/j.jhep.2019.09.025 – ident: e_1_2_8_34_1 doi: 10.1038/nature15373 – ident: e_1_2_8_20_1 doi: 10.1136/gutjnl-2020-320716 – ident: e_1_2_8_31_1 doi: 10.1002/adma.201706759 – ident: e_1_2_8_40_1 doi: 10.1016/j.immuni.2010.10.009 – ident: e_1_2_8_3_1 doi: 10.1038/s41572-020-00240-3 – ident: e_1_2_8_5_1 doi: 10.1016/j.jhep.2021.06.015 – ident: e_1_2_8_1_1 doi: 10.1200/JCO.20.03555 – ident: e_1_2_8_44_1 doi: 10.1126/science.aar3593 – ident: e_1_2_8_39_1 doi: 10.1038/ni.1661 – ident: e_1_2_8_51_1 doi: 10.1002/adma.201904997 – ident: e_1_2_8_9_1 doi: 10.1002/hep.32023 – ident: e_1_2_8_32_1 doi: 10.1021/acsnano.7b07720 – ident: e_1_2_8_19_1 doi: 10.1002/adma.202000208 – ident: e_1_2_8_22_1 doi: 10.1016/j.cell.2021.02.048 – ident: e_1_2_8_37_1 doi: 10.1038/nature13848 – ident: e_1_2_8_43_1 doi: 10.1021/acsami.1c08552 – ident: e_1_2_8_45_1 doi: 10.1016/j.cell.2017.05.046 – ident: e_1_2_8_6_1 doi: 10.1038/s41575-020-00395-0 – ident: e_1_2_8_24_1 doi: 10.1038/s41586-021-03626-9 – ident: e_1_2_8_8_1 doi: 10.1016/S1470-2045(21)00332-6 – ident: e_1_2_8_47_1 doi: 10.1186/s12943-020-01297-0 – ident: e_1_2_8_2_1 doi: 10.1038/s41586-021-03741-7 – ident: e_1_2_8_48_1 doi: 10.1016/j.cell.2021.07.015 – ident: e_1_2_8_53_1 doi: 10.1038/s41467-021-24610-x |
SSID | ssj0031247 |
Score | 2.4203813 |
Snippet | Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2105237 |
SubjectTerms | Adjuvants Antibodies Antigens biointerfacing nanoparticles Carcinoma, Hepatocellular - drug therapy checkpoint blockade Domains hepatocellular carcinoma Humans Immune system Immunosuppression Liver cancer Liver Neoplasms - drug therapy Lymphocytes Macrophages Nanoparticles Nanotechnology starvation therapy Synergistic effect T-Lymphocytes Therapy Tumor Microenvironment tumor targeting Tumors |
Title | Biointerfacing Antagonizing T‐Cell Inhibitory Nanoparticles Potentiate Hepatocellular Carcinoma Checkpoint Blockade Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202105237 https://www.ncbi.nlm.nih.gov/pubmed/34791793 https://www.proquest.com/docview/2612611604 https://www.proquest.com/docview/2599072611 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7Ekx587mrUlRaEPUWT7rzmqIMyLiqyjuAt9Cs4zJiIk7kIgj9hf-P-kq1KMtFxkYX1lk4q6Ve9Ol39FcC-EJxwxA1qP5W4AfcCVwWhco2lTElRwnWVee7iMurdBD9uw9s3p_hrfIj2hxtJRqWvScClGh--goaO70e0dYBLFlxL0XFyCtgir-hnix8l0HhV2VXQZrkEvDVFbfT44ezrs1bpL1dz1nOtTM_pMshpo-uIk-HBpFQH-ukdnuNnerUCS41fyo5qRlqFOZuvweIbtMJ1eD4eFIQu8ZhJjTfYUU47WvngiQr93y-_unY0Ymf53UANaOueoebGJXkTeceuipIik9C3ZT20gWVBewYUBMu6lM8oL-4l695ZPXygWtgxWtmhNJb1a9yDL3BzetLv9twme4OrRSxiN9OoDDIVKqWCSHLpmzDrCHSffGMETlWkI26tb5T0_cxLVBYlnk46upOEno25EV9hPi9yuwmsg26Wwr4JS8ASuGj3LH429sLEJJnQoQPudPZS3UCbU4aNUVqDMvOUhjVth9WB7y39Qw3q8SHlzpQZ0ka4xymhrkW-H3mBA3vtYxRLGjeZ22KCNCGa-ZjIHNiomaitig7vkl50gFes8I82pNcX5-dtaet_XtqGBbquw3B2YL58nNhv6EyVarcSmD-yjBge |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcgAOlDemBRYJxMmtvetXDhzalCqhSYUglXoz3ofVKKkdNY4QlZD6E_pX-Cv8BH4JM35BQAgJqQeOXq_X-5id-XZ39huA50Jw4hHXqP1kZHvc8Wzp-dLWhiIlBRFXZeS54UHQO_TeHPlHK_CluQtT8UO0G240M0p9TROcNqS3frCGzk-mdHaAaxZcTIW1X-W--fQRV23zV_1dHOIXnO-9HnV7dh1YwFYiFKGdKpTTVPpSSi9IeOJqP-0ItOyu1kIgwlEBN8bVMnHd1IlkGkSOijqqE_mOCbkWWO4VuEphxImuf_ddy1gl0FyW8VzQStpE9dXwRDp8a7m-y3bwN3C7jJVLY7e3Bl-bbqp8XCabi0JuqrNfGCT_q368BTdr6M22q7lyG1ZMdgdu_ETIeBc-74xzItA4TROFCWw7o0O7bHxGD6Nv5xddM52yfnY8lmPyTmBonPJZ41zI3uYFOV8hfGc9NPNFTsci5OfLuhSyKctPEtY9Nmoyo7-wHQQSk0QbNqqoHe7B4aW0_z6sZnlmHgLrIJKU2DZhiDsjRK1qsNjQ8SMdpUL5FtiNuMSqZm-nICLTuOKd5jENY9wOowUv2_yzirfkjzk3GumLa_01j4lYLnDdwPEseNa-Rs1D_ZZkJl9gHh-RTEjZLHhQSW37K7qfTKrfAl7K3l_qEL8fDgbt06N_-egpXOuNhoN40D_YX4frlF55HW3AanG6MI8ROxbySTlbGXy4bLH-Dss4do0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEB2VIiF44H4xFFgkEE9u7V3f8sBDmxAlNK0qSKW-ud6L1SipHTWOEJWQ-AQ-hV_hF_gSZnyDgBASUh949Hq919mZs97ZMwDPheDEI65R-8nI9rjj2dLzpa0NRUoKIq7KyHN7-8Hg0Htz5B-twZfmLkzFD9H-cKOVUeprWuBznW79IA1dnM7o6AC3LLiXCmu3yl3z4T1u2havhj2c4Rec91-PuwO7jitgKxGK0E4VimkqfSmlFyQ8cbWfdgQadldrIRDgqIAb42qZuG7qRDINIkdFHdWJfMeEXAss9xJc9gKnQ8Eiem9bwiqB1rIM54JG0iamr4Ym0uFbq-1dNYO_YdtVqFzauv4N-NqMUuXiMt1cFnJTnf9CIPk_DeNNuF4Db7ZdrZRbsGay23DtJzrGO_BxZ5ITfcZZmihMYNsZHdllk3N6GH_79LlrZjM2zE4mckK-CQxNUz5vXAvZQV6Q6xWCdzZAI1_kdChCXr6sSwGbsvw0Yd0To6ZzqoXtIIyYJtqwcUXscBcOL6T_92A9yzPzAFgHcaTEvglDzBkh6lSDxYaOH-koFcq3wG6kJVY1dzuFEJnFFes0j2ka43YaLXjZ5p9XrCV_zLnRCF9ca69FTLRygesGjmfBs_Y16h0atyQz-RLz-IhjQspmwf1KaNuq6HYyKX4LeCl6f2lD_G5vNGqfHv7LR0_hykGvH4-G-7uP4ColVy5HG7BenC3NYwSOhXxSrlUGxxct1d8B3LZ1PA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biointerfacing+Antagonizing+T-Cell+Inhibitory+Nanoparticles+Potentiate+Hepatocellular+Carcinoma+Checkpoint+Blockade+Therapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wu%2C+Han&rft.au=Zhu%2C+Jia-Qi&rft.au=Xu%2C+Xin-Fei&rft.au=Xing%2C+Hao&rft.date=2021-12-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=17&rft.issue=51&rft.spage=e2105237&rft_id=info:doi/10.1002%2Fsmll.202105237&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |