Intermolecular Enantioselective Benzylic C(sp3)−H Amination by Cationic Copper Catalysis
Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp3)−H functionalization by hydrogen‐atom transfer has emerged as a straightforward, powerful tool for the synthesis of chiral amines, but methods for intermolecular enantios...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 24; pp. e202304427 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
12.06.2023
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202304427 |
Cover
Loading…
Abstract | Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp3)−H functionalization by hydrogen‐atom transfer has emerged as a straightforward, powerful tool for the synthesis of chiral amines, but methods for intermolecular enantioselective C(sp3)−H amination remain elusive. Herein, we report a cationic copper catalytic system for intermolecular enantioselective benzylic C(sp3)−H amination with peroxide as an oxidant. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and broad substrate scope. More importantly, it can be used to synthesize bioactive molecules, including chiral drugs. Preliminary mechanistic studies indicate that the amination reaction involves benzylic radicals generated by hydrogen‐atom transfer.
A highly enantioselective intermolecular benzylic C(sp3)−H bond amination by using a chiral cationic copper catalyst and oxidant di‐tert‐butyl peroxide is reported. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and a broad substrate scope. |
---|---|
AbstractList | Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp
3
)−H functionalization by hydrogen‐atom transfer has emerged as a straightforward, powerful tool for the synthesis of chiral amines, but methods for intermolecular enantioselective C(sp
3
)−H amination remain elusive. Herein, we report a cationic copper catalytic system for intermolecular enantioselective benzylic C(sp
3
)−H amination with peroxide as an oxidant. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and broad substrate scope. More importantly, it can be used to synthesize bioactive molecules, including chiral drugs. Preliminary mechanistic studies indicate that the amination reaction involves benzylic radicals generated by hydrogen‐atom transfer. Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp3)−H functionalization by hydrogen‐atom transfer has emerged as a straightforward, powerful tool for the synthesis of chiral amines, but methods for intermolecular enantioselective C(sp3)−H amination remain elusive. Herein, we report a cationic copper catalytic system for intermolecular enantioselective benzylic C(sp3)−H amination with peroxide as an oxidant. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and broad substrate scope. More importantly, it can be used to synthesize bioactive molecules, including chiral drugs. Preliminary mechanistic studies indicate that the amination reaction involves benzylic radicals generated by hydrogen‐atom transfer. A highly enantioselective intermolecular benzylic C(sp3)−H bond amination by using a chiral cationic copper catalyst and oxidant di‐tert‐butyl peroxide is reported. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and a broad substrate scope. Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp(3))-H functionalization by hydrogen-atom transfer has emerged as a straightforward, powerful tool for the synthesis of chiral amines, but methods for intermolecular enantioselective C(sp(3))-H amination remain elusive. Herein, we report a cationic copper catalytic system for intermolecular enantioselective benzylic C(sp(3))-H amination with peroxide as an oxidant. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and broad substrate scope. More importantly, it can be used to synthesize bioactive molecules, including chiral drugs. Preliminary mechanistic studies indicate that the amination reaction involves benzylic radicals generated by hydrogen-atom transfer. Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp3 )-H functionalization by hydrogen-atom transfer has emerged as a straightforward, powerful tool for the synthesis of chiral amines, but methods for intermolecular enantioselective C(sp3 )-H amination remain elusive. Herein, we report a cationic copper catalytic system for intermolecular enantioselective benzylic C(sp3 )-H amination with peroxide as an oxidant. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and broad substrate scope. More importantly, it can be used to synthesize bioactive molecules, including chiral drugs. Preliminary mechanistic studies indicate that the amination reaction involves benzylic radicals generated by hydrogen-atom transfer.Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp3 )-H functionalization by hydrogen-atom transfer has emerged as a straightforward, powerful tool for the synthesis of chiral amines, but methods for intermolecular enantioselective C(sp3 )-H amination remain elusive. Herein, we report a cationic copper catalytic system for intermolecular enantioselective benzylic C(sp3 )-H amination with peroxide as an oxidant. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and broad substrate scope. More importantly, it can be used to synthesize bioactive molecules, including chiral drugs. Preliminary mechanistic studies indicate that the amination reaction involves benzylic radicals generated by hydrogen-atom transfer. Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp3)−H functionalization by hydrogen‐atom transfer has emerged as a straightforward, powerful tool for the synthesis of chiral amines, but methods for intermolecular enantioselective C(sp3)−H amination remain elusive. Herein, we report a cationic copper catalytic system for intermolecular enantioselective benzylic C(sp3)−H amination with peroxide as an oxidant. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and broad substrate scope. More importantly, it can be used to synthesize bioactive molecules, including chiral drugs. Preliminary mechanistic studies indicate that the amination reaction involves benzylic radicals generated by hydrogen‐atom transfer. Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp )-H functionalization by hydrogen-atom transfer has emerged as a straightforward, powerful tool for the synthesis of chiral amines, but methods for intermolecular enantioselective C(sp )-H amination remain elusive. Herein, we report a cationic copper catalytic system for intermolecular enantioselective benzylic C(sp )-H amination with peroxide as an oxidant. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and broad substrate scope. More importantly, it can be used to synthesize bioactive molecules, including chiral drugs. Preliminary mechanistic studies indicate that the amination reaction involves benzylic radicals generated by hydrogen-atom transfer. |
Author | Chen, Ying‐Ying Zhou, Qi‐Lin Dai, Ling Xiao, Li‐Jun |
Author_xml | – sequence: 1 givenname: Ling surname: Dai fullname: Dai, Ling organization: Nankai University – sequence: 2 givenname: Ying‐Ying surname: Chen fullname: Chen, Ying‐Ying organization: Nankai University – sequence: 3 givenname: Li‐Jun surname: Xiao fullname: Xiao, Li‐Jun organization: Nankai University – sequence: 4 givenname: Qi‐Lin orcidid: 0000-0002-4700-3765 surname: Zhou fullname: Zhou, Qi‐Lin email: qlzhou@nankai.edu.cn organization: Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37057709$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0stq3DAUBmBRUppLu-2yGLpJKZ7qYlnWcmqmzUBoN-2mGyFrjkHBllzJTnGeIOs8Yp6kmswkgUBJVzqSvl8S4hyjA-cdIPSW4AXBmH7SzsKCYspwUVDxAh0RTknOhGAHqS4Yy0XFySE6jvEi-arC5St0yATmQmB5hH6t3Qih9x2YqdMhWzntRusjpIXRXkL2GdzV3FmT1adxYB9ur2_OsmVvnU7KZc2c1XfVFvhhgLCd626ONr5GL1vdRXizH0_Qzy-rH_VZfv7967penueGCSbyDW0Z1RWlm1KW2gAYyjg0ILkELktBikqUhSEtbApacgqlwQ1p2hYaQqSU7ASd7s4dgv89QRxVb6OBrtMO_BQVrTCRQvCKJvr-Cb3wU3DpdUlRwklFMUvq3V5NTQ8bNQTb6zCr-19L4OMO_IHGt9FYcAYeGMZYCikFK1OFSdLV_-vajnf_WfvJjSla7KIm-BgDtMrs98egbacIVtsuUNsuUA9dkGKLJ7H72_4ZkPsn2g7mZ7RafluvHrN_AQykwm4 |
CitedBy_id | crossref_primary_10_1002_anie_202311749 crossref_primary_10_1002_ange_202420613 crossref_primary_10_1039_D4CC01969E crossref_primary_10_1002_ejoc_202400027 crossref_primary_10_1002_ejoc_202400566 crossref_primary_10_1039_D4QO01179A crossref_primary_10_1002_anie_202317489 crossref_primary_10_1007_s11426_023_1762_6 crossref_primary_10_1021_acs_orglett_3c02442 crossref_primary_10_1021_jacs_4c12324 crossref_primary_10_1021_jacs_4c12544 crossref_primary_10_6023_cjoc202406042 crossref_primary_10_1021_acscatal_4c06504 crossref_primary_10_1021_jacs_3c13822 crossref_primary_10_1016_j_mcat_2024_114342 crossref_primary_10_1038_s41467_024_48266_5 crossref_primary_10_1039_D4QO02268H crossref_primary_10_1021_jacs_3c07008 crossref_primary_10_1039_D0CS00488J crossref_primary_10_3390_molecules28166127 crossref_primary_10_1002_anie_202420613 crossref_primary_10_1002_ange_202317489 crossref_primary_10_1021_jacs_3c04912 crossref_primary_10_1016_j_checat_2024_101149 crossref_primary_10_1055_a_2513_8629 crossref_primary_10_1007_s11426_024_2030_3 crossref_primary_10_1002_ange_202311749 crossref_primary_10_1039_D3SC04643E crossref_primary_10_1021_acscatal_3c05635 crossref_primary_10_1088_2515_7655_ad6e17 crossref_primary_10_1021_acscatal_3c05955 |
Cites_doi | 10.1039/D0OB00491J 10.1021/acs.accounts.8b00169 10.1039/C9CS00921C 10.1039/D2SC03505G 10.1002/anie.202210912 10.1021/jacs.1c05206 10.1021/jacs.1c11340 10.1002/anie.201911742 10.1021/ja01536a062 10.1039/D1SC02049H 10.1021/cr00002a004 10.1002/adsc.202000495 10.1039/C7QO00547D 10.1002/anie.201506990 10.1021/acs.chemrev.9b00383 10.1021/acs.chemrev.1c00582 10.1039/C6CC07925C 10.1002/anie.201208906 10.1021/jacs.2c08285 10.1038/s41467-020-20770-4 10.1021/acs.accounts.1c00563 10.1002/1521-3773(20011001)40:19<3567::AID-ANIE3567>3.0.CO;2-C 10.1021/jacs.2c06432 10.1002/chem.201803716 10.1126/science.1233701 10.1021/jacs.7b03781 10.1016/bs.adomc.2015.08.001 10.1038/s41570-021-00291-4 10.2165/00002512-199813050-00005 10.1002/anie.201201921 10.1021/acs.oprd.9b00161 10.1021/ja026266i 10.1021/jacs.0c10415 10.1021/acscatal.0c01924 10.1002/anie.201808923 10.1039/D1CS00727K 10.1021/ja411912p 10.1002/tcr.201300027 10.1021/acs.orglett.5b02063 10.1039/D2CS00734G 10.1021/jacs.9b05850 10.1021/jacs.2c07089 10.1021/jacs.0c05254 10.1021/acs.accounts.1c00198 10.1002/anie.201810556 10.1021/ja066362 10.1039/C1CS15104E 10.1021/ja3122526 10.1021/acs.chemrev.9b00462 10.1002/anie.201003676 10.1021/ol062514u 10.1002/9783527629541 10.1021/jacs.2c10719 10.1038/nchem.2783 10.1002/anie.201902882 10.1039/C4CC03016H 10.1039/D0CC05226D 10.1039/c3cc44197k 10.1002/anie.201005552 10.1021/cr100218m 10.1039/c0cs00095g 10.1021/jacs.7b00270 10.1002/hlca.19970800407 10.1016/j.tetlet.2013.03.046 10.1021/jacs.0c07810 10.1021/cr300389u 10.1021/jacs.0c05362 10.1021/acscatal.0c00961 10.1016/S0040-4039(01)00427-0 10.1039/b509678b 10.1021/jacs.8b05343 10.1002/anie.201704260 10.1002/ejoc.201701759 10.1002/anie.201107334 10.1038/s41570-022-00388-4 10.1038/s41557-020-0482-8 10.1021/acs.accounts.7b00178 10.1002/anie.202110233 10.1021/jacs.1c01524 10.1021/jm900611t 10.1039/C6SC02231F 10.1021/op3003147 10.1021/jacs.0c05373 10.1016/S0040-4039(02)02432-2 10.1038/s41929-020-0460-y 10.1002/tcr.201100018 10.1021/jacs.1c07117 10.1126/science.aaf7783 10.1039/a907653k 10.1038/nchem.2366 10.1039/D1SC01990B 10.1021/ol061742l 10.1002/anie.201107427 10.1002/anie.202217638 10.1021/ja211600g 10.1073/pnas.95.7.4040 10.1038/s41557-018-0020-0 10.1021/jacs.0c03428 10.1021/ja00015a024 10.1002/anie.201806059 10.1021/acs.chemrev.6b00644 10.1021/ja066362+ 10.1039/c6sc02231f 10.1039/c9cs00921c 10.1039/c4cc03016h 10.1039/d1sc02049h 10.1039/d0ob00491j 10.1039/c1cs15104e 10.1039/d1cs00727k 10.1039/d0cc05226d 10.1039/c6cc07925c 10.1039/d2sc03505g 10.1039/d1sc01990b 10.1038/NCHEM.2366 10.1039/d2cs00734g 10.1038/NCHEM.2783 10.1039/c7qo00547d |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM 1KN BLEPL BNZSX DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202304427 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science Core Collection Web of Science - Science Citation Index Expanded - 2023 Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Web of Science MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 37057709 000979973600001 10_1002_anie_202304427 ANIE202304427 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22188101, 91956000 – fundername: Haihe Laboratory of Sustainable Chemical Transformations – fundername: Fundamental Research Funds for the Central Universities – fundername: National Key R&D Program of China grantid: 2022YFA1504302 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 22188101; 91956000 – fundername: National Natural Science Foundation of China grantid: 22188101, 91956000 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3737-d2f32a822d696aceec235ebe959e5967148764c1fed42652e6c0b1bffeb119993 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 51 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000979973600001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 18:31:42 EDT 2025 Fri Jul 25 10:35:39 EDT 2025 Wed Feb 19 02:23:28 EST 2025 Wed Jul 09 18:03:29 EDT 2025 Sat Sep 06 04:43:03 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Tue Jul 01 01:47:10 EDT 2025 Wed Jan 22 16:21:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Asymmetric Catalysis ASYMMETRIC-SYNTHESIS C-H Amination HYDROCARBONS BONDS Benzylamines AMIDATION ALLYLIC OXIDATION OLEFINS NITRENE TRANSFER-REACTIONS Copper Radicals C−H Amination |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3737-d2f32a822d696aceec235ebe959e5967148764c1fed42652e6c0b1bffeb119993 |
Notes | https://doi.org/10.26434/chemrxiv‐2023‐dmdcg . A previous version of this manuscript has been deposited on a preprint server ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4700-3765 0000-0002-3998-3628 |
PMID | 37057709 |
PQID | 2821518203 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | webofscience_primary_000979973600001 proquest_journals_2821518203 crossref_citationtrail_10_1002_anie_202304427 crossref_primary_10_1002_anie_202304427 proquest_miscellaneous_2801977582 wiley_primary_10_1002_anie_202304427_ANIE202304427 pubmed_primary_37057709 webofscience_primary_000979973600001CitationCount |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 12, 2023 |
PublicationDateYYYYMMDD | 2023-06-12 |
PublicationDate_xml | – month: 06 year: 2023 text: June 12, 2023 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 1997; 80 1991; 113 2017; 4 2020; 120 2020; 362 2019; 58 2011; 11 2020; 59 2020; 56 2020; 12 2020; 10 2017; 9 2001; 40 2014; 136 2011; 111 2017; 117 2001; 42 2012; 51 2020; 18 2022; 122 2023; 62 2009; 52 2020; 3 2012; 134 2013; 17 2013; 54 2019; 23 2002; 43 2019; 25 2013; 52 2020; 49 2014; 14 2016; 353 1991; 91 2019; 119 1958; 80 1998; 95 2014; 50 1998; 13 2023; 52 2021; 5 2015; 17 2007; 129 2018; 140 2013; 49 2010 2020; 142 2022; 51 2011; 40 2015; 54 2006; 8 2005 2013; 340 2021; 143 2019; 141 2015; 7 2017; 139 1999 2022; 144 2017; 50 2017; 53 2016; 7 2021; 54 2010; 49 2021; 12 2015; 115 2022; 6 2015; 64 2002; 124 2017; 56 2022; 13 2018 2013; 135 2018; 51 2009; 5 2021; 60 2018; 10 2012; 41 2018; 57 e_1_2_7_108_2 e_1_2_7_3_2 e_1_2_7_104_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_100_1 e_1_2_7_83_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_90_2 e_1_2_7_116_1 e_1_2_7_112_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_37_2 e_1_2_7_4_2 e_1_2_7_109_1 e_1_2_7_8_2 e_1_2_7_105_1 e_1_2_7_101_2 Hellstrom W. J. G. (e_1_2_7_110_1) 2009; 5 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_86_2 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_117_1 e_1_2_7_113_2 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_78_1 e_1_2_7_36_2 e_1_2_7_59_2 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_2 e_1_2_7_17_2 e_1_2_7_81_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_28_2 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_92_2 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_96_2 e_1_2_7_21_1 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_39_2 e_1_2_7_6_1 e_1_2_7_107_2 e_1_2_7_2_2 e_1_2_7_103_2 e_1_2_7_18_2 e_1_2_7_84_1 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_1 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_27_2 e_1_2_7_115_1 e_1_2_7_72_2 e_1_2_7_111_1 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_99_2 e_1_2_7_38_1 Nasrallah, A (WOS:000474117600048) 2019; 58 Alt, IT (WOS:000434546000056) 2017; 56 Yan, PC (WOS:000315254700017) 2013; 17 Ye, L (WOS:000499021600001) 2020; 59 Suh, SE (WOS:000671842200001) 2021; 12 Nemeth, EF (WOS:000072848500129) 1998; 95 Bagh, B (WOS:000399353800026) 2017; 139 Ghosh, AK (WOS:000269042700024) 2009; 52 Höke, T (WOS:000323195600006) 2013; 49 Spletstoser, JT (WOS:000244896900069) 2007; 129 Eames, J (WOS:000171531200006) 2001; 40 Jin, LM (WOS:000599506900042) 2020; 142 Andrus, MB (WOS:000177074400022) 2002; 124 Clark, JR (WOS:000432991800004) 2018; 10 Suh, SE (WOS:000547329800010) 2020; 142 Zeng, HT (WOS:000361087200039) 2015; 17 Clark, JS (WOS:000232601200010) 2005 Bakhoda, A (WOS:000460318200022) 2019; 58 Lu, HJ (WOS:000391453200008) 2016; 7 Chen, SJ (WOS:000697286000005) 2021; 143 Das, SK (WOS:000439009200015) 2018; 140 Paradine, SM (WOS:000301084600037) 2012; 134 Xie, JH (WOS:000288820600013) 2011; 111 Liu, L (WOS:000719143700001) 2021; 60 Reddy, RP (WOS:000241381800008) 2006; 8 Kohmura, Y (WOS:000168404000025) 2001; 42 HANSCH, C (WOS:A1991FE92400004) 1991; 91 Chen, XM (WOS:000988364200001) 2023; 62 Forero-Cortés, PA (WOS:000481979500002) 2019; 23 Darses, B (WOS:000391954000002) 2017; 53 Das, SK (WOS:000862304400001) 2022; 13 Liu, S (WOS:000582936100028) 2020; 56 Liu, Z (WOS:000736816900001) 2022; 144 Howard, EL (WOS:000425024900015) 2018; 2018 Nakafuku, KM (WOS:000542087800001) 2020; 12 Zhang, W (WOS:000403631200010) 2017; 139 Yang, CJ (WOS:000533815300002) 2020; 3 Khatua, H (WOS:000891005200001) 2022; 144 Hennessy, ET (WOS:000318268900043) 2013; 340 Uchida, T (WOS:000331876000011) 2014; 14 Das, SK (WOS:000891199800001) 2023; 62 Lu, HJ (WOS:000285422000033) 2010; 49 KHARASCH, MS (WOS:A1958WB37800062) 1958; 80 Huang, LB (WOS:000352750600004) 2015; 115 Roy, S (WOS:000729473200016) 2021; 54 Paradine, SM (WOS:000365279200012) 2015; 7 Prier, CK (WOS:000404056800009) 2017; 9 Hong, SY (WOS:000659357600013) 2021; 54 Mondal, S (WOS:000781225500009) 2022; 122 Cao, M (WOS:000848078600001) 2022; 144 Gephart, RT (WOS:000305554500039) 2012; 51 Zhou, XG (WOS:000083844900025) 1999 Fu, L (WOS:000551495700065) 2020; 142 Athavale, SV (WOS:000866246300001) 2022 Xu, P (WOS:000885758500001) 2022; 144 Simmons, EM (WOS:000301792000004) 2012; 51 Ni, ZK (WOS:000299416600030) 2012; 51 Chang, JWW (WOS:000297583400002) 2011; 11 Zhang, ZX (WOS:000753572000001) 2022; 51 Zhang, B (WOS:000318393000025) 2013; 54 Zheng, YW (WOS:000562075000052) 2020; 10 BOWRY, VW (WOS:A1991FX87800024) 1991; 113 Nageli, I (WOS:A1997XL00900006) 1997; 80 Shing, KP (WOS:000443675700016) 2018; 57 Zhang, C (WOS:000613566500010) 2021; 12 Song, LL (WOS:000949687200001) 2023; 52 Trowbridge, A (WOS:000526392500003) 2020; 120 Jayasooriya, IU (WOS:000721882400001) 2021; 12 Shimbayashi, T (WOS:000460679500002) 2019; 25 Ju, M (WOS:000667590300001) 2021; 5 Intrieri, D (WOS:000341774200002) 2014; 50 Das, SK (WOS:000575684100014) 2020; 142 Hellstrom, WJG (WOS:000208069800006) 2009; 5 Pandey, G (WOS:000367723400050) 2015; 54 Yao, H (WOS:000532260100009) 2020; 18 Li, CQ (WOS:000453348900045) 2018; 57 Afanasyev, OI (WOS:000502687900002) 2019; 119 Chen, JQ (WOS:000548144800001) 2020; 362 Collet, F (WOS:000288609400008) 2011; 40 Park, Y (WOS:000405642800019) 2017; 117 Zhang, W (WOS:000382558900035) 2016; 353 Pelletier, G (WOS:000242825200029) 2006; 8 Golden, DL (WOS:000796822600001) 2022; 6 Lang, K (WOS:000480497100032) 2019; 141 Nishioka, Y (WOS:000314650600023) 2013; 52 Yin, Q (WOS:000570357800001) 2020; 49 Ramirez, TA (WOS:000298854900020) 2012; 41 Nugent, T. C. (000979973600001.1) 2010 van Vliet, KM (WOS:000543700400029) 2020; 10 Lee, J (WOS:000639019400039) 2021; 143 Jia, ZJ (WOS:000541685800009) 2020; 142 Wei, XF (WOS:000558793400035) 2020; 142 Tran, BL (WOS:000331343300055) 2014; 136 Alderson, JM (WOS:000411548800011) 2017; 50 Khan, F (WOS:000442707400006) 2018; 51 Yamanaka, M (WOS:000174765600021) 2002; 43 Hazelard, D (WOS:000416065700032) 2017; 4 Wiese, S (WOS:000286149700001) 2010; 49 Fanourakis, A (WOS:000674321800007) 2021; 143 Liu, YG (WOS:000319250200022) 2013; 135 Buendia, J (WOS:000370521000004) 2015; 64 Spencer, CM (WOS:000077017800005) 1998; 13 |
References_xml | – volume: 144 start-page: 80 year: 2022 end-page: 85 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 2613 year: 2020 end-page: 2692 publication-title: Chem. Rev. – volume: 58 start-page: 3421 year: 2019 end-page: 3425 publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 13013 year: 2020 end-page: 13016 publication-title: Chem. Commun. – volume: 122 start-page: 5842 year: 2022 end-page: 5976 publication-title: Chem. Rev. – volume: 10 start-page: 8582 year: 2020 end-page: 8589 publication-title: ACS Catal. – volume: 119 start-page: 11857 year: 2019 end-page: 11911 publication-title: Chem. Rev. – volume: 52 start-page: 1739 year: 2013 end-page: 1742 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 10380 year: 2021 end-page: 10387 publication-title: Chem. Sci. – volume: 10 start-page: 4751 year: 2020 end-page: 4769 publication-title: ACS Catal. – volume: 142 start-page: 13515 year: 2020 end-page: 13522 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 475 year: 2021 publication-title: Nat. Commun. – volume: 57 start-page: 11947 year: 2018 end-page: 11951 publication-title: Angew. Chem. Int. Ed. – volume: 95 start-page: 4040 year: 1998 end-page: 4045 publication-title: Proc. Natl. Acad. Sci. USA – volume: 51 start-page: 6488 year: 2012 end-page: 6492 publication-title: Angew. Chem. Int. Ed. – volume: 143 start-page: 14438 year: 2021 end-page: 14444 publication-title: J. Am. Chem. Soc. – volume: 80 start-page: 1087 year: 1997 end-page: 1105 publication-title: Helv. Chim. Acta – volume: 111 start-page: 1713 year: 2011 end-page: 1760 publication-title: Chem. Rev. – volume: 142 start-page: 12493 year: 2020 end-page: 12500 publication-title: J. Am. Chem. Soc. – volume: 340 start-page: 591 year: 2013 end-page: 595 publication-title: Science – volume: 50 start-page: 11440 year: 2014 end-page: 11453 publication-title: Chem. Commun. – volume: 142 start-page: 20828 year: 2020 end-page: 20836 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 1784 year: 2018 end-page: 1795 publication-title: Acc. Chem. Res. – start-page: 2377 year: 1999 end-page: 2378 publication-title: Chem. Commun. – volume: 54 start-page: 4395 year: 2021 end-page: 4409 publication-title: Acc. Chem. Res. – volume: 353 start-page: 1014 year: 2016 end-page: 1018 publication-title: Science – volume: 5 start-page: 37 year: 2009 end-page: 46 publication-title: Neuropsychiatr. Dis. Treat. – volume: 54 start-page: 14875 year: 2015 end-page: 14879 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 2500 year: 2017 end-page: 2521 publication-title: Org. Chem. Front. – volume: 140 start-page: 8429 year: 2018 end-page: 8433 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 15383 year: 2022 end-page: 15390 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 10279 year: 2020 end-page: 10283 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 7709 year: 2017 end-page: 7712 publication-title: J. Am. Chem. Soc. – year: 2010 – volume: 25 start-page: 3156 year: 2019 end-page: 3180 publication-title: Chem. Eur. J. – volume: 6 start-page: 405 year: 2022 end-page: 427 publication-title: Nat. Chem. Rev. – volume: 17 start-page: 4276 year: 2015 end-page: 4279 publication-title: Org. Lett. – volume: 7 start-page: 6934 year: 2016 end-page: 6939 publication-title: Chem. Sci. – volume: 60 start-page: 26710 year: 2021 end-page: 26717 publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 307 year: 2013 end-page: 312 publication-title: Org. Process Res. Dev. – volume: 13 start-page: 391 year: 1998 end-page: 411 publication-title: Drugs Aging – volume: 91 start-page: 165 year: 1991 end-page: 195 publication-title: Chem. Rev. – volume: 136 start-page: 2555 year: 2014 end-page: 2563 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 5687 year: 1991 end-page: 5698 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 1129 year: 2020 end-page: 1133 publication-title: Angew. Chem. Int. Ed. – volume: 143 start-page: 10070 year: 2021 end-page: 10076 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 5013 year: 2006 end-page: 5016 publication-title: Org. Lett. – volume: 14 start-page: 117 year: 2014 end-page: 129 publication-title: Chem. Rec. – volume: 10 start-page: 583 year: 2018 end-page: 591 publication-title: Nat. Chem. – volume: 52 start-page: 5228 year: 2009 end-page: 5240 publication-title: J. Med. Chem. – volume: 52 start-page: 2358 year: 2023 end-page: 2376 publication-title: Chem. Soc. Rev. – start-page: 794 year: 2018 end-page: 797 publication-title: Eur. J. Org. Chem. – volume: 8 start-page: 6031 year: 2006 end-page: 6034 publication-title: Org. Lett. – volume: 51 start-page: 3066 year: 2012 end-page: 3072 publication-title: Angew. Chem. Int. Ed. – volume: 80 start-page: 756 year: 1958 end-page: 756 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 1640 year: 2022 end-page: 1658 publication-title: Chem. Soc. Rev. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 18 start-page: 3263 year: 2020 end-page: 3268 publication-title: Org. Biomol. Chem. – volume: 141 start-page: 12388 year: 2019 end-page: 12396 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 5191 year: 2021 end-page: 5200 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 2665 year: 2013 end-page: 2668 publication-title: Tetrahedron Lett. – volume: 12 start-page: 697 year: 2020 end-page: 704 publication-title: Nat. Chem. – volume: 57 start-page: 16837 year: 2018 end-page: 16841 publication-title: Angew. Chem. Int. Ed. – volume: 40 start-page: 3567 year: 2001 end-page: 3571 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 15733 year: 2021 end-page: 15738 publication-title: Chem. Sci. – volume: 7 start-page: 987 year: 2015 end-page: 994 publication-title: Nat. Chem. – volume: 42 start-page: 3339 year: 2001 end-page: 3342 publication-title: Tetrahedron Lett. – volume: 5 start-page: 580 year: 2021 end-page: 594 publication-title: Nat. Chem. Rev. – volume: 144 start-page: 19097 year: 2022 end-page: 19105 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 539 year: 2020 end-page: 546 publication-title: Nat. Catal. – volume: 11 start-page: 331 year: 2011 end-page: 357 publication-title: Chem. Rec. – volume: 64 start-page: 77 year: 2015 end-page: 118 publication-title: Adv. Organomet. Chem. – volume: 50 start-page: 2147 year: 2017 end-page: 2158 publication-title: Acc. Chem. Res. – volume: 142 start-page: 16211 year: 2020 end-page: 16217 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 629 year: 2017 end-page: 634 publication-title: Nat. Chem. – volume: 362 start-page: 3311 year: 2020 end-page: 3331 publication-title: Adv. Synth. Catal. – start-page: 5175 year: 2005 end-page: 5177 publication-title: Chem. Commun. – volume: 49 start-page: 8009 year: 2013 end-page: 8011 publication-title: Chem. Commun. – volume: 49 start-page: 10192 year: 2010 end-page: 10196 publication-title: Angew. Chem. Int. Ed. – volume: 135 start-page: 7194 year: 2013 end-page: 7204 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 2596 year: 2015 end-page: 2697 publication-title: Chem. Rev. – volume: 56 start-page: 10582 year: 2017 end-page: 10586 publication-title: Angew. Chem. Int. Ed. – volume: 117 start-page: 9247 year: 2017 end-page: 9301 publication-title: Chem. Rev. – volume: 13 start-page: 11817 year: 2022 end-page: 11828 publication-title: Chem. Sci. – volume: 134 start-page: 2036 year: 2012 end-page: 2039 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 8192 year: 2019 end-page: 8196 publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 1478 year: 2019 end-page: 1483 publication-title: Org. Process Res. Dev. – volume: 124 start-page: 8806 year: 2002 end-page: 8807 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 8850 year: 2010 end-page: 8855 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 493 year: 2017 end-page: 508 publication-title: Chem. Commun. – volume: 139 start-page: 5117 year: 2017 end-page: 5124 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 11388 year: 2020 end-page: 11393 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 9561 year: 2002 end-page: 9564 publication-title: Tetrahedron Lett. – volume: 41 start-page: 931 year: 2012 end-page: 942 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 1244 year: 2012 end-page: 1247 publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 2683 year: 2021 end-page: 2700 publication-title: Acc. Chem. Res. – volume: 49 start-page: 6141 year: 2020 end-page: 6153 publication-title: Chem. Soc. Rev. – volume: 129 start-page: 3408 year: 2007 end-page: 3419 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 1926 year: 2011 end-page: 1936 publication-title: Chem. Soc. Rev. – volume: 144 start-page: 13468 year: 2022 end-page: 13474 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 21858 year: 2022 end-page: 21866 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_92_2 doi: 10.1039/D0OB00491J – ident: e_1_2_7_73_1 – ident: e_1_2_7_10_2 doi: 10.1021/acs.accounts.8b00169 – ident: e_1_2_7_4_2 doi: 10.1039/C9CS00921C – ident: e_1_2_7_34_2 doi: 10.1039/D2SC03505G – ident: e_1_2_7_20_2 doi: 10.1002/anie.202210912 – ident: e_1_2_7_61_2 doi: 10.1021/jacs.1c05206 – ident: e_1_2_7_66_2 doi: 10.1021/jacs.1c11340 – ident: e_1_2_7_100_1 – ident: e_1_2_7_102_2 doi: 10.1002/anie.201911742 – ident: e_1_2_7_74_2 doi: 10.1021/ja01536a062 – ident: e_1_2_7_93_2 doi: 10.1039/D1SC02049H – ident: e_1_2_7_117_1 doi: 10.1021/cr00002a004 – ident: e_1_2_7_38_1 – ident: e_1_2_7_11_2 doi: 10.1002/adsc.202000495 – ident: e_1_2_7_15_2 doi: 10.1039/C7QO00547D – ident: e_1_2_7_22_2 doi: 10.1002/anie.201506990 – ident: e_1_2_7_5_1 doi: 10.1021/acs.chemrev.9b00383 – ident: e_1_2_7_72_2 doi: 10.1021/acs.chemrev.1c00582 – ident: e_1_2_7_43_2 doi: 10.1039/C6CC07925C – ident: e_1_2_7_56_2 doi: 10.1002/anie.201208906 – ident: e_1_2_7_67_2 doi: 10.1021/jacs.2c08285 – ident: e_1_2_7_71_2 doi: 10.1038/s41467-020-20770-4 – ident: e_1_2_7_68_1 – ident: e_1_2_7_19_2 doi: 10.1021/acs.accounts.1c00563 – ident: e_1_2_7_75_2 doi: 10.1002/1521-3773(20011001)40:19<3567::AID-ANIE3567>3.0.CO;2-C – ident: e_1_2_7_83_2 doi: 10.1021/jacs.2c06432 – volume: 5 start-page: 37 year: 2009 ident: e_1_2_7_110_1 publication-title: Neuropsychiatr. Dis. Treat. – ident: e_1_2_7_47_2 doi: 10.1002/chem.201803716 – ident: e_1_2_7_24_2 doi: 10.1126/science.1233701 – ident: e_1_2_7_14_1 – ident: e_1_2_7_80_2 doi: 10.1021/jacs.7b03781 – ident: e_1_2_7_41_2 doi: 10.1016/bs.adomc.2015.08.001 – ident: e_1_2_7_62_2 doi: 10.1038/s41570-021-00291-4 – ident: e_1_2_7_112_2 doi: 10.2165/00002512-199813050-00005 – ident: e_1_2_7_87_2 doi: 10.1002/anie.201201921 – ident: e_1_2_7_12_2 doi: 10.1021/acs.oprd.9b00161 – ident: e_1_2_7_76_2 doi: 10.1021/ja026266i – ident: e_1_2_7_59_2 doi: 10.1021/jacs.0c10415 – ident: e_1_2_7_99_2 doi: 10.1021/acscatal.0c01924 – ident: e_1_2_7_30_2 doi: 10.1002/anie.201808923 – ident: e_1_2_7_69_2 doi: 10.1039/D1CS00727K – ident: e_1_2_7_88_2 doi: 10.1021/ja411912p – ident: e_1_2_7_44_2 doi: 10.1002/tcr.201300027 – ident: e_1_2_7_89_2 doi: 10.1021/acs.orglett.5b02063 – ident: e_1_2_7_13_2 doi: 10.1039/D2CS00734G – ident: e_1_2_7_26_2 doi: 10.1021/jacs.9b05850 – ident: e_1_2_7_60_2 doi: 10.1021/jacs.2c07089 – ident: e_1_2_7_108_2 doi: 10.1021/jacs.0c05254 – ident: e_1_2_7_6_1 – ident: e_1_2_7_48_2 doi: 10.1021/acs.accounts.1c00198 – ident: e_1_2_7_97_2 doi: 10.1002/anie.201810556 – ident: e_1_2_7_107_2 doi: 10.1021/ja066362 – ident: e_1_2_7_9_1 – ident: e_1_2_7_17_2 doi: 10.1039/C1CS15104E – ident: e_1_2_7_28_2 doi: 10.1021/ja3122526 – ident: e_1_2_7_3_2 doi: 10.1021/acs.chemrev.9b00462 – ident: e_1_2_7_96_2 doi: 10.1002/anie.201003676 – ident: e_1_2_7_85_2 doi: 10.1021/ol062514u – ident: e_1_2_7_2_2 doi: 10.1002/9783527629541 – ident: e_1_2_7_49_2 doi: 10.1021/jacs.2c10719 – ident: e_1_2_7_65_2 doi: 10.1038/nchem.2783 – ident: e_1_2_7_78_1 – ident: e_1_2_7_51_2 doi: 10.1002/anie.201902882 – ident: e_1_2_7_106_1 – ident: e_1_2_7_45_2 doi: 10.1039/C4CC03016H – ident: e_1_2_7_98_2 doi: 10.1039/D0CC05226D – ident: e_1_2_7_52_2 doi: 10.1039/c3cc44197k – ident: e_1_2_7_32_2 doi: 10.1002/anie.201005552 – ident: e_1_2_7_7_2 doi: 10.1021/cr100218m – ident: e_1_2_7_18_2 doi: 10.1039/c0cs00095g – ident: e_1_2_7_27_2 doi: 10.1021/jacs.7b00270 – ident: e_1_2_7_55_2 doi: 10.1002/hlca.19970800407 – ident: e_1_2_7_77_2 doi: 10.1016/j.tetlet.2013.03.046 – ident: e_1_2_7_37_2 doi: 10.1021/jacs.0c07810 – ident: e_1_2_7_8_2 doi: 10.1021/cr300389u – ident: e_1_2_7_21_1 – ident: e_1_2_7_91_2 doi: 10.1021/jacs.0c05362 – ident: e_1_2_7_46_2 doi: 10.1021/acscatal.0c00961 – ident: e_1_2_7_58_2 doi: 10.1016/S0040-4039(01)00427-0 – ident: e_1_2_7_101_2 doi: 10.1039/b509678b – ident: e_1_2_7_36_2 doi: 10.1021/jacs.8b05343 – ident: e_1_2_7_29_2 doi: 10.1002/anie.201704260 – ident: e_1_2_7_90_2 doi: 10.1002/ejoc.201701759 – ident: e_1_2_7_116_1 doi: 10.1002/anie.201107334 – ident: e_1_2_7_84_1 – ident: e_1_2_7_70_2 doi: 10.1038/s41570-022-00388-4 – ident: e_1_2_7_104_2 doi: 10.1038/s41557-020-0482-8 – ident: e_1_2_7_42_2 doi: 10.1021/acs.accounts.7b00178 – ident: e_1_2_7_82_2 doi: 10.1002/anie.202110233 – ident: e_1_2_7_35_2 doi: 10.1021/jacs.1c01524 – ident: e_1_2_7_111_1 – ident: e_1_2_7_114_1 doi: 10.1021/jm900611t – ident: e_1_2_7_31_2 doi: 10.1039/C6SC02231F – ident: e_1_2_7_113_2 doi: 10.1021/op3003147 – ident: e_1_2_7_1_1 – ident: e_1_2_7_63_1 – ident: e_1_2_7_81_2 doi: 10.1021/jacs.0c05373 – ident: e_1_2_7_54_2 doi: 10.1016/S0040-4039(02)02432-2 – ident: e_1_2_7_103_2 doi: 10.1038/s41929-020-0460-y – ident: e_1_2_7_40_2 doi: 10.1002/tcr.201100018 – ident: e_1_2_7_94_2 doi: 10.1021/jacs.1c07117 – ident: e_1_2_7_79_2 doi: 10.1126/science.aaf7783 – ident: e_1_2_7_57_2 doi: 10.1039/a907653k – ident: e_1_2_7_25_2 doi: 10.1038/nchem.2366 – ident: e_1_2_7_95_2 doi: 10.1039/D1SC01990B – ident: e_1_2_7_53_2 doi: 10.1021/ol061742l – ident: e_1_2_7_86_2 doi: 10.1002/anie.201107427 – ident: e_1_2_7_105_1 doi: 10.1002/anie.202217638 – ident: e_1_2_7_23_2 doi: 10.1021/ja211600g – ident: e_1_2_7_109_1 doi: 10.1073/pnas.95.7.4040 – ident: e_1_2_7_39_2 doi: 10.1038/s41557-018-0020-0 – ident: e_1_2_7_50_1 – ident: e_1_2_7_64_2 doi: 10.1021/jacs.0c03428 – ident: e_1_2_7_115_1 doi: 10.1021/ja00015a024 – ident: e_1_2_7_33_2 doi: 10.1002/anie.201806059 – ident: e_1_2_7_16_2 doi: 10.1021/acs.chemrev.6b00644 – volume: 49 start-page: 10192 year: 2010 ident: WOS:000285422000033 article-title: Selective Intramolecular C-H Amination through the Metalloradical Activation of Azides: Synthesis of 1,3-Diamines under Neutral and Nonoxidative Conditions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201005552 – volume: 136 start-page: 2555 year: 2014 ident: WOS:000331343300055 article-title: Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja411912p – volume: 115 start-page: 2596 year: 2015 ident: WOS:000352750600004 article-title: Late Transition Metal-Catalyzed Hydroamination and Hydroamidation publication-title: CHEMICAL REVIEWS doi: 10.1021/cr300389u – volume: 58 start-page: 8192 year: 2019 ident: WOS:000474117600048 article-title: Catalytic Enantioselective Intermolecular Benzylic C(sp3)-H Amination publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201902882 – volume: 140 start-page: 8429 year: 2018 ident: WOS:000439009200015 article-title: Ir-Catalyzed Intramolecular Transannulation/C(sp2)-H Amination of 1,2,3,4-Tetrazoles by Electrocyclization publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b05343 – volume: 129 start-page: 3408 year: 2007 ident: WOS:000244896900069 article-title: Mild and selective hydrozirconation of amides to aldehydes using Cp2Zr(H)Cl:: Scope and mechanistic insight publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja066362+ – volume: 91 start-page: 165 year: 1991 ident: WOS:A1991FE92400004 article-title: A SURVEY OF HAMMETT SUBSTITUENT CONSTANTS AND RESONANCE AND FIELD PARAMETERS publication-title: CHEMICAL REVIEWS – volume: 122 start-page: 5842 year: 2022 ident: WOS:000781225500009 article-title: Enantioselective Radical Reactions Using Chiral Catalysts publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.1c00582 – volume: 58 start-page: 3421 year: 2019 ident: WOS:000460318200022 article-title: Copper-Catalyzed C(sp3)-H Amidation: Sterically Driven Primary and Secondary C-H Site-Selectivity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201810556 – start-page: 2377 year: 1999 ident: WOS:000083844900025 article-title: Asymmetric amidation of saturated C-H bonds catalysed by chiral ruthenium and manganese porphyrins publication-title: CHEMICAL COMMUNICATIONS – volume: 7 start-page: 6934 year: 2016 ident: WOS:000391453200008 article-title: Intramolecular 1,5-C(sp3)-H radical amination via Co(II)-based metalloradical catalysis for five-membered cyclic sulfamides publication-title: CHEMICAL SCIENCE doi: 10.1039/c6sc02231f – volume: 49 start-page: 8009 year: 2013 ident: WOS:000323195600006 article-title: Hydrogen-bond mediated regio- and enantioselectivity in a C-H amination reaction catalysed by a supramolecular Rh(II) complex publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc44197k – volume: 49 start-page: 6141 year: 2020 ident: WOS:000570357800001 article-title: Direct catalytic asymmetric synthesis of α-chiral primary amines publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c9cs00921c – volume: 62 year: 2023 ident: WOS:000891199800001 article-title: Transition-Metal-Catalyzed Denitrogenative Annulation to Access High-Valued N-Heterocycles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202210912 – volume: 50 start-page: 11440 year: 2014 ident: WOS:000341774200002 article-title: Organic azides: "energetic reagents'' for the intermolecular amination of C-H bonds publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c4cc03016h – volume: 59 start-page: 1129 year: 2020 ident: WOS:000499021600001 article-title: Enantioselective Copper(I)/Chiral Phosphoric Acid Catalyzed Intramolecular Amination of Allylic and Benzylic C-H Bonds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201911742 – volume: 95 start-page: 4040 year: 1998 ident: WOS:000072848500129 article-title: Calcimimetics with potent and selective activity on the parathyroid calcium receptor publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA – volume: 11 start-page: 331 year: 2011 ident: WOS:000297583400002 article-title: Transition-metal-catalyzed aminations and aziridinations of C-H and C=C bonds with iminoiodinanes publication-title: CHEMICAL RECORD doi: 10.1002/tcr.201100018 – volume: 57 start-page: 11947 year: 2018 ident: WOS:000443675700016 article-title: N-Heterocyclic Carbene Iron(III) Porphyrin-Catalyzed Intramolecular C(sp3)-H Amination of Alkyl Azides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201806059 – volume: 5 start-page: 580 year: 2021 ident: WOS:000667590300001 article-title: Nitrene transfer catalysts for enantioselective C-N bond formation publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-021-00291-4 – volume: 40 start-page: 3567 year: 2001 ident: WOS:000171531200006 article-title: Catalytic allylic oxidation of alkenes using an asymmetric Kharasch-Sosnovsky reaction publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 142 start-page: 13515 year: 2020 ident: WOS:000558793400035 article-title: Asymmetric Ni-Catalyzed Radical Relayed Reductive Coupling publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c05254 – volume: 12 start-page: 10380 year: 2021 ident: WOS:000671842200001 article-title: Benzylic C-H isocyanation/amine coupling sequence enabling high-throughput synthesis of pharmaceutically relevant ureas publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc02049h – volume: 13 start-page: 391 year: 1998 ident: WOS:000077017800005 article-title: Rivastigmine - A review of its use in Alzheimer's disease publication-title: DRUGS & AGING – volume: 17 start-page: 4276 year: 2015 ident: WOS:000361087200039 article-title: Copper-Catalyzed Ligand-Free Amidation of Benzylic Hydrocarbons and Inactive Aliphatic Alkanes publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.5b02063 – volume: 14 start-page: 117 year: 2014 ident: WOS:000331876000011 article-title: Asymmetric Nitrene Transfer Reactions: Sulfimidation, Aziridination and C-H Amination Using Azide Compounds as Nitrene Precursors publication-title: CHEMICAL RECORD doi: 10.1002/tcr.201300027 – volume: 62 year: 2023 ident: WOS:000988364200001 article-title: Enantioselective Intermolecular Radical Amidation and Amination of Benzylic C-H Bonds via Dual Copper and Photocatalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202217638 – year: 2022 ident: WOS:000866246300001 article-title: Enzymatic Nitrogen Insertion into Unactivated C-H Bonds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c08285 – volume: 64 start-page: 77 year: 2015 ident: WOS:000370521000004 article-title: Dirhodium(II)-Catalyzed C(sp3)-H Amination Using Iodine(III) Oxidants publication-title: ADVANCES IN ORGANOMETALLIC CHEMISTRY, VOL 64 doi: 10.1016/bs.adomc.2015.08.001 – volume: 80 start-page: 1087 year: 1997 ident: WOS:A1997XL00900006 article-title: Rhodium(II)-catalyzed CH insertions with {[(4-nitrophenyl)sulfonyl]imino}phenyl-lambda(3)-iodane publication-title: HELVETICA CHIMICA ACTA – volume: 18 start-page: 3263 year: 2020 ident: WOS:000532260100009 article-title: Copper-catalyzed direct amination of benzylic hydrocarbons and inactive aliphatic alkanes with arylamines publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/d0ob00491j – volume: 50 start-page: 2147 year: 2017 ident: WOS:000411548800011 article-title: Tunable, Chemo- and Site-Selective Nitrene Transfer Reactions through the Rational Design of Silver(I) Catalysts publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.7b00178 – volume: 40 start-page: 1926 year: 2011 ident: WOS:000288609400008 article-title: Catalytic C-H amination: the stereoselectivity issue publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c0cs00095g – start-page: 5175 year: 2005 ident: WOS:000232601200010 article-title: Tuneable asymmetric copper-catalysed allylic amination and oxidation reactions publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b509678b – volume: 41 start-page: 931 year: 2012 ident: WOS:000298854900020 article-title: Recent advances in transition metal-catalyzed sp3 C-H amination adjacent to double bonds and carbonyl groups publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c1cs15104e – volume: 142 start-page: 20828 year: 2020 ident: WOS:000599506900042 article-title: Enantioselective Intermolecular Radical C-H Amination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c10415 – volume: 144 start-page: 80 year: 2022 ident: WOS:000736816900001 article-title: An Enzymatic Platform for Primary Amination of 1-Aryl-2-alkyl Alkynes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c11340 – volume: 353 start-page: 1014 year: 2016 ident: WOS:000382558900035 article-title: Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay publication-title: SCIENCE – volume: 117 start-page: 9247 year: 2017 ident: WOS:000405642800019 article-title: Transition Metal-Catalyzed C-H Amination: Scope, Mechanism, and Applications publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00644 – volume: 8 start-page: 5013 year: 2006 ident: WOS:000241381800008 article-title: Dirhodium tetracarboxylates derived from adamantylglycine as chiral catalysts for enantioselective C-H aminations publication-title: ORGANIC LETTERS doi: 10.1021/ol061742l – volume: 54 start-page: 2665 year: 2013 ident: WOS:000318393000025 article-title: Copper-catalyzed enantioselective allylic oxidation of acyclic olefins publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2013.03.046 – volume: 54 start-page: 2683 year: 2021 ident: WOS:000659357600013 article-title: Mechanism-Guided Development of Transition-Metal-Catalyzed C-N Bond-Forming Reactions Using Dioxazolones as the Versatile Amidating Source publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.1c00198 – volume: 144 start-page: 21858 year: 2022 ident: WOS:000891005200001 article-title: Iron-Catalyzed Intermolecular Amination of Benzylic C(sp3)-H Bonds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c10719 – volume: 51 start-page: 1640 year: 2022 ident: WOS:000753572000001 article-title: Copper-catalyzed radical relay in C(sp3)-H functionalization publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d1cs00727k – volume: 124 start-page: 8806 year: 2002 ident: WOS:000177074400022 article-title: Highly enantioselective copper-bisoxazoline-catalyzed allylic oxidation of cyclic olefins with tert-butyl p-nitroperbenzoate publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja026266i – volume: 10 start-page: 583 year: 2018 ident: WOS:000432991800004 article-title: Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-018-0020-0 – volume: 49 start-page: 8850 year: 2010 ident: WOS:000286149700001 article-title: Catalytic C-H Amination with Unactivated Amines through Copper(II) Amides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201003676 – volume: 56 start-page: 13013 year: 2020 ident: WOS:000582936100028 article-title: Copper-catalyzed oxidative benzylic C(sp3)-H amination: direct synthesis of benzylic carbamates publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d0cc05226d – volume: 53 start-page: 493 year: 2017 ident: WOS:000391954000002 article-title: Transition metal-catalyzed iodine(III)-mediated nitrene transfer reactions: efficient tools for challenging syntheses publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c6cc07925c – volume: 120 start-page: 2613 year: 2020 ident: WOS:000526392500003 article-title: New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.9b00462 – volume: 13 start-page: 11817 year: 2022 ident: WOS:000862304400001 article-title: An iron(ii)-based metalloradical system for intramolecular amination of C(sp2)-H and C(sp3)-H bonds: synthetic applications and mechanistic studies publication-title: CHEMICAL SCIENCE doi: 10.1039/d2sc03505g – volume: 80 start-page: 756 year: 1958 ident: WOS:A1958WB37800062 article-title: THE REACTIONS OF TERT-BUTYL PERBENZOATE AND OLEFINS - A STEREOSPECIFIC REACTION publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 142 start-page: 16211 year: 2020 ident: WOS:000575684100014 article-title: Iron-Catalyzed Amination of Strong Aliphatic C(sp3)-H Bonds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c07810 – volume: 111 start-page: 1713 year: 2011 ident: WOS:000288820600013 article-title: Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines publication-title: CHEMICAL REVIEWS doi: 10.1021/cr100218m – volume: 141 start-page: 12388 year: 2019 ident: WOS:000480497100032 article-title: Asymmetric Induction and Enantiodivergence in Catalytic Radical C-H Amination via Enantiodifferentiative H-Atom Abstraction and Stereoretentive Radical Substitution publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b05850 – year: 2010 ident: 000979973600001.1 publication-title: Chiral Amine Synthesis: Methods, Developments and Applications – volume: 6 start-page: 405 year: 2022 ident: WOS:000796822600001 article-title: Radical C(sp3)-H functionalization and cross-coupling reactions publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-022-00388-4 – volume: 51 start-page: 1244 year: 2012 ident: WOS:000299416600030 article-title: Highly Regioselective Copper-Catalyzed Benzylic C?H Amination by N-Fluorobenzenesulfonimide publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201107427 – volume: 2018 start-page: 794 year: 2018 ident: WOS:000425024900015 article-title: Highly Efficient Copper-Catalyzed Amidation of Benzylic Hydrocarbons Under Neutral Conditions publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.201701759 – volume: 134 start-page: 2036 year: 2012 ident: WOS:000301084600037 article-title: Iron-Catalyzed Intramolecular Allylic C-H Amination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja211600g – volume: 144 start-page: 13468 year: 2022 ident: WOS:000885758500001 article-title: Enantioselective Radical Trifluoromethylation of Benzylic C-H Bonds via Cooperative Photoredox and Copper Catalysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c06432 – volume: 56 start-page: 10582 year: 2017 ident: WOS:000434546000056 article-title: Iron-Catalyzed Intramolecular Aminations of C(sp3)-H Bonds in Alkylaryl Azides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201704260 – volume: 42 start-page: 3339 year: 2001 ident: WOS:000168404000025 article-title: Mn(salen)-catalyzed enantioselective C-H amination publication-title: TETRAHEDRON LETTERS – volume: 54 start-page: 4395 year: 2021 ident: WOS:000729473200016 article-title: Road Map for the Construction of High-Valued N-Heterocycles via Denitrogenative Annulation publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.1c00563 – volume: 142 start-page: 11388 year: 2020 ident: WOS:000547329800010 article-title: Site-Selective Copper-Catalyzed Azidation of Benzylic C-H Bonds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c05362 – volume: 12 start-page: ARTN 475 year: 2021 ident: WOS:000613566500010 article-title: Catalytic enantioselective C(sp3)-H functionalization involving radical intermediates publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-20770-4 – volume: 60 start-page: 26710 year: 2021 ident: WOS:000719143700001 article-title: Copper-Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp3)-H/C(sp)-H Cross-Coupling with Rationally Designed Oxazoline-Derived N,N,P(O)-Ligands publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202110233 – volume: 25 start-page: 3156 year: 2019 ident: WOS:000460679500002 article-title: Recent Progress on Cyclic Nitrenoid Precursors in Transition-Metal-Catalyzed Nitrene-Transfer Reactions publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201803716 – volume: 143 start-page: 10070 year: 2021 ident: WOS:000674321800007 article-title: Enantioselective Intermolecular C-H Amination Directed by a Chiral Cation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c05206 – volume: 8 start-page: 6031 year: 2006 ident: WOS:000242825200029 article-title: Copper-catalyzed amidation of allylic and benzylic C-H bonds publication-title: ORGANIC LETTERS doi: 10.1021/ol062514u – volume: 23 start-page: 1478 year: 2019 ident: WOS:000481979500002 article-title: The 25th Anniversary of the Buchwald-Hartwig Amination: Development, Applications, and Outlook publication-title: ORGANIC PROCESS RESEARCH & DEVELOPMENT doi: 10.1021/acs.oprd.9b00161 – volume: 362 start-page: 3311 year: 2020 ident: WOS:000548144800001 article-title: A Review on the Latest Progress of Chan-Lam Coupling Reaction publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.202000495 – volume: 10 start-page: 8582 year: 2020 ident: WOS:000562075000052 article-title: Copper(II)-Photocatalyzed N-H Alkylation with Alkanes publication-title: ACS CATALYSIS doi: 10.1021/acscatal.0c01924 – volume: 57 start-page: 16837 year: 2018 ident: WOS:000453348900045 article-title: Catalytic Radical Process for Enantioselective Amination of C(sp3)-H Bonds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201808923 – volume: 340 start-page: 591 year: 2013 ident: WOS:000318268900043 article-title: Complex N-Heterocycle Synthesis via Iron-Catalyzed, Direct C-H Bond Amination publication-title: SCIENCE doi: 10.1126/science.1233701 – volume: 12 start-page: 15733 year: 2021 ident: WOS:000721882400001 article-title: Copper(II) ketimides in sp3 C-H amination publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc01990b – volume: 142 start-page: 12493 year: 2020 ident: WOS:000551495700065 article-title: Enantioselective Copper-Catalyzed Alkynylation of Benzylic C-H Bonds via Radical Relay publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c05373 – volume: 52 start-page: 5228 year: 2009 ident: WOS:000269042700024 article-title: Structure-Based Design, Synthesis, and Biological Evaluation of a Series of Novel and Reversible Inhibitors for the Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Protease publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm900611t – volume: 10 start-page: 4751 year: 2020 ident: WOS:000543700400029 article-title: Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes publication-title: ACS CATALYSIS doi: 10.1021/acscatal.0c00961 – volume: 3 start-page: 539 year: 2020 ident: WOS:000533815300002 article-title: Cu-catalysed intramolecular radical enantioconvergent tertiary β-C(sp3)-H amination of racemic ketones publication-title: NATURE CATALYSIS doi: 10.1038/s41929-020-0460-y – volume: 143 start-page: 14438 year: 2021 ident: WOS:000697286000005 article-title: Copper-Catalyzed Cross-Coupling of Benzylic C-H Bonds and Azoles with Controlled N-Site Selectivity publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c07117 – volume: 12 year: 2020 ident: WOS:000542087800001 article-title: Enantioselective radical C-H amination for the synthesis of β-amino alcohols publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-020-0482-8 – volume: 7 start-page: 987 year: 2015 ident: WOS:000365279200012 article-title: A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp3)-H amination publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.2366 – volume: 43 start-page: 2403 year: 2002 ident: WOS:000174765600021 article-title: An intriguing effect of Yb(OTf)3-TMSCl in the halogenation of 1,1-disubstituted alkenes by NXS:: selective synthesis of allyl halides publication-title: TETRAHEDRON LETTERS – volume: 139 start-page: 5117 year: 2017 ident: WOS:000399353800026 article-title: Catalytic Synthesis of N-Heterocycles via Direct C(sp3)-H Amination Using an Air-Stable Iron(III) Species with a Redox-Active Ligand publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b00270 – volume: 52 start-page: 1739 year: 2013 ident: WOS:000314650600023 article-title: Enantio- and Regioselective Intermolecular Benzylic and Allylic C-H Bond Amination publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201208906 – volume: 144 start-page: 15383 year: 2022 ident: WOS:000848078600001 article-title: Site- and Enantioselective Manganese-Catalyzed Benzylic C-H Azidation of Indolines publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c07089 – volume: 51 start-page: 3066 year: 2012 ident: WOS:000301792000004 article-title: On the Interpretation of Deuterium Kinetic Isotope Effects in C?H Bond Functionalizations by Transition-Metal Complexes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201107334 – volume: 51 start-page: 1784 year: 2018 ident: WOS:000442707400006 article-title: The Palladium-Catalyzed Ullmann Cross-Coupling Reaction: A Modern Variant on a Time-Honored Process publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.8b00169 – volume: 113 start-page: 5687 year: 1991 ident: WOS:A1991FX87800024 article-title: CALIBRATION OF A NEW HOROLOGERY OF FAST RADICAL CLOCKS - RING-OPENING RATES FOR RING-ALKYL-SUBSTITUTED AND ALPHA-ALKYL-SUBSTITUTED CYCLOPROPYLCARBINYL RADICALS AND FOR THE BICYCLO[2.1.0]PENT-2-YL RADICAL publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 54 start-page: 14875 year: 2015 ident: WOS:000367723400050 article-title: Visible-Light-Catalyzed Direct Benzylic C(sp3)-H Amination Reaction by Cross-Dehydrogenative Coupling publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201506990 – volume: 139 start-page: 7709 year: 2017 ident: WOS:000403631200010 article-title: Copper-Catalyzed Arylation of Benzylic C-H bonds with Alkylarenes as the Limiting Reagents publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b03781 – volume: 143 start-page: 5191 year: 2021 ident: WOS:000639019400039 article-title: Cobalt-Catalyzed Intermolecular C-H Amidation of Unactivated Alkanes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c01524 – volume: 135 start-page: 7194 year: 2013 ident: WOS:000319250200022 article-title: Nonheme Iron-Mediated Amination of C(sp3)-H Bonds. Quinquepyridine-Supported Iron-Imide/Nitrene Intermediates by Experimental Studies and DFT Calculations publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja3122526 – volume: 51 start-page: 6488 year: 2012 ident: WOS:000305554500039 article-title: Catalytic C?H Amination with Aromatic Amines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201201921 – volume: 52 start-page: 2358 year: 2023 ident: WOS:000949687200001 article-title: Photoinduced copper-catalyzed enantioselective coupling reactions publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d2cs00734g – volume: 9 start-page: 629 year: 2017 ident: WOS:000404056800009 article-title: Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.2783 – volume: 17 start-page: 307 year: 2013 ident: WOS:000315254700017 article-title: Industrial Scale-Up of Enantioselective Hydrogenation for the Asymmetric Synthesis of Rivastigmine publication-title: ORGANIC PROCESS RESEARCH & DEVELOPMENT doi: 10.1021/op3003147 – volume: 142 start-page: 10279 year: 2020 ident: WOS:000541685800009 article-title: Enzymatic Primary Amination of Benzylic and Allylic C(sp3)-H Bonds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c03428 – volume: 4 start-page: 2500 year: 2017 ident: WOS:000416065700032 article-title: Catalytic C-H amination at its limits: challenges and solutions publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/c7qo00547d – volume: 5 start-page: 37 year: 2009 ident: WOS:000208069800006 article-title: Emerging treatments for premature ejaculation: focus on dapoxetine publication-title: NEUROPSYCHIATRIC DISEASE AND TREATMENT – volume: 119 start-page: 11857 year: 2019 ident: WOS:000502687900002 article-title: Reductive Amination in the Synthesis of Pharmaceuticals publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.9b00383 |
SSID | ssj0028806 |
Score | 2.5935726 |
Snippet | Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp3)−H functionalization by... Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp 3 )−H functionalization by... Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp(3))-H functionalization by... Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp )-H functionalization by... Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp3 )-H functionalization by... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202304427 |
SubjectTerms | Amides Amination Amines Asymmetric Catalysis Benzylamines Catalysis Cations Chemical synthesis Chemistry Chemistry, Multidisciplinary Copper C−H Amination Enantiomers Functional groups Hydrogen Oxidants Oxidizing agents Physical Sciences Radicals Science & Technology Substrates |
Title | Intermolecular Enantioselective Benzylic C(sp3)−H Amination by Cationic Copper Catalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202304427 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000979973600001 https://www.ncbi.nlm.nih.gov/pubmed/37057709 https://www.proquest.com/docview/2821518203 https://www.proquest.com/docview/2801977582 |
Volume | 62 |
WOS | 000979973600001 |
WOSCitedRecordID | wos000979973600001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcoALpfw1pVRBqgQcvE3sOKmPu2FXCxI9ICpVXKLYcaSqbXbV3T20T8CZR-RJmLGTtFuEQHCLlXGisceezz_zDcB-VUnJS-yBQ6sUSw61ZYSbWS2ViWNNR0EUKPzpKJ0eJx9P5MmtKH7PD9FvuNHIcPM1DfBSLw5uSEMpAntAyb-jJOEUTk4XtggVfe75ozgapw8vEoJRFvqOtTHiB-vV173SL1DzjldaB7LOE002oex08BdQzgarpR6Y6zv0jv-j5GN41MLUcOjtagvu2eYJPMi77HBP4avbSrzokuuGY7pQczpbuLQ6OIOGI9tcX52fmjB_u5iLdz--fZ-GQ7p3Q5YQ6qsw93vBKDCbz-0llT0_yjM4noy_5FPW5mlgRmQiYxWvBfY351Wq0hK9ruFConEoqaxUaYYrrixNTFzbCvGA5DY1kY51XaOfIBYE8Rw2mlljtyGsFOKJCkGKRlgaJfhRW6E56URrYWtpAmBdPxWmJTGnXBrnhadf5gW1WNG3WABvevm5p-_4reRu1-1FO4wXBa5HEREhSBIBvO5fY0vTqUrZ2NmKZBAlZ7js4gG88ObS_0pkCIezSAWwf9t--vcujEapTKTulCWA-G_E8lZxYi1YBsCdAf1BvWJ49GHcl3b-pdJLeEjPzCVu2oWN5eXKvkJEttR7cH84ej-a7LnR9xPScS0b |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL70egQJAqAQdvEzuO6-MSttpCuwfUSohLtHYcqaJkV93dQ_sLOPMT-SXM2ElgixAIjkkmu7I9k_n8mO8D2K4qKfkUR2DXac2yXeMY4WZWS23T1NBWEBUKH07y8XH29oPsThNSLUzgh-gX3Cgy_PeaApwWpHd-sIZSCfaA1L-TLOPqKlwjWW-KzTfvewYpju4ZCoyEYKRD3_E2Jnxn_f31vPQL2LyUl9ahrM9FezfBdK0IR1A-DVZLM7AXlwge_6uZt-BGi1TjYXCt23DFNXdgs-gE4u7CR7-a-LnT141HdKbmZLbwyjr4EY1fu-bi_PTExsXLxVy8-vbl6zge0tEbcobYnMdFWA5Gg9l87s7oOlCk3IPjvdFRMWatVAOzQgnFKl4LHHLOq1znU0y8lguJ_qGldlLnCiddKs9sWrsKIYHkLreJSU1dY6ogIgRxHzaaWeMeQlxphBQV4hSDyDTJ8EddhR5lMmOEq6WNgHUDVdqWx5zkNE7LwMDMS-qxsu-xCF709vPA4PFby61u3Ms2khclTkkRFCFOEhE87x9jT9PGyrRxsxXZIFBWOPPiETwI_tL_lVCIiFWiI9j-2YH6576SRmslcr_REkH6N2ZF23AiLlhGwL0H_aF55XCyP-qvHv3LS89gc3x0eFAe7E_ePYbrdJ95Hact2FierdwTBGhL89SH4HcTqy_C |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkaAX_ltCCwSpEnDINrGTeH1c0l1t-VkhRKWKS7R2HKlqm426u4f2CTjziDxJZ-wkdIsQCI5Oxolsjz3f2J5vAHaKIknYFEegb6QM4r4yAeHmoEykjiJFR0EUKPxxko4P4neHyeGVKH7HD9FtuNHMsOs1TfC6KHd_koZSBHaPkn-HcczETbgVp2Gf3K-9zx2BFEPtdPFFnAeUhr6lbQzZ7mr9VbP0C9a8ZpZWkaw1RaN7MG0b4W6gHPeWC9XTF9f4Hf-nlffhboNT_YFTrAdww1QP4U7Wpod7BF_tXuJpm13XH9KNmqPZ3ObVwSXUf2uqi_OTI-1nr-c1f_Pj2_exP6CLN6QKvjr3M7cZjAKzujZnVHYEKY_hYDT8ko2DJlFDoLngIihYyXHAGStSmU7R7GrGE9QOmUiTyFSgyyXSWEelKRAQJMykOlSRKks0FESDwDdgrZpV5gn4hURAUSBKUYhLwxg_agrUJxUrxU2ZaA-Cdpxy3bCYUzKNk9zxL7OceizvesyDV5187fg7fiu53Q573szjeY4OKUIiREncg5fda-xpOlaZVma2JBmEyQL9LubBplOX7ldcIB4WofRg56r-dO9tHI2Ugqf2mMWD6G_EsqbhRFuw8IBZBfpD8_LBZH_YlZ7-S6UXcPvT3ij_sD95vwXr9DiwSZy2YW1xtjTPEJ0t1HM7AS8BdKkueg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intermolecular+Enantioselective+Benzylic+C%28sp+3+%29%E2%88%92H+Amination+by+Cationic+Copper+Catalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Dai%2C+Ling&rft.au=Chen%2C+Ying%E2%80%90Ying&rft.au=Xiao%2C+Li%E2%80%90Jun&rft.au=Zhou%2C+Qi%E2%80%90Lin&rft.date=2023-06-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=24&rft_id=info:doi/10.1002%2Fanie.202304427&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202304427 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |